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ABSTRACT
Technical textiles play a highly important role in today’s material engineering. In fibrous
composites, which are being applied in a number of industrial branches ranging from
aviation to civil engineering, technical textiles are used as the reinforcing or toughening
constituent. With growing number of production facilities for fibrous materials, the need
for standardized and reproducible quality control procedures becomes urgent.
The present thesis addresses the issue of tensile strength of high-modulus multifilament
yarns both from the theoretical and experimental point of view. In both these aspects,
novel approaches are introduced. Regarding the theoretical strength of fibrous yarns, a
model for the length dependent tensile strength is formulated, which distinguishes three
asymptotes of the mean strength size effect curve. The transition between the model of
independent parallel fibers applicable for smaller gauge lengths and the chain-of-bundles
model applicable for longer gauge lengths is emphasized in particular. It is found that
the transition depends on the stress transfer or anchorage length of filaments and can be
identified experimentally by means of standard tensile tests at different gauge lengths.
In the experimental part of the thesis, the issue of stress concentration in the clamping
has been addressed. High-modulus yarns with brittle filaments are very sensitive to
stress concentrations when loaded in tension making the use of traditional tensile test
methods difficult. A novel clamp adapter for the Statimat 4U yarn tensile test machine
(producer: Textechno GmbH) has been developed and a prototype has been built. A
test series comparing yarns strengths tested with the clamp adapter and with commonly
used test methods has been performed and the results are discussed. Furthermore, they
are compared with theoretical values using the Daniels’ statistical fiber-bundle model.
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ABSTRAKT
Technické textilie hrají v současnosti velmi důležitou roli v materiálovém inženýrství.
Používají se pro vyztužování nebo zvyšování houževnatosti ve vláknitých kompozitech,
které nachází uplatnění v celé řadě průmyslových odvětví sahajících od aeronautiky až
po stavební inženýrství. S rostoucí produkcí vláknitých materiálů roste také potřeba
standardizovaných a reprodukovatelných metod řízení jakosti.
Tato doktorská práce se zaměřuje na tahovou pevnost vysokomodulových vláknitých
svazků z teoretického i praktického úhlu pohledu. V obou těchto aspektech jsou před-
staveny nové přístupy. Co se týče teoretické pevnosti vláknitých svazků, je v této práci for-
mulován model délkově závislé tahové pevnosti, který rozlišuje tři asymptotická chování
pevnosti v závislosti na délce. Zdůrazněna je především problematika přechodu z módu
svazku nezávislých paralelních vláken (kratší svazky) do módu řetězce nezávislých svazků
(delší svazky). Ukazuje se, že tento přechod závisí na kotevní délce vláken ve svazku a
je možné jej experimentálně identifikovat pomocí standardních tahových zkoušek svazků
na různých délkách.
V experimentální části práce se autor zabývá koncentrací napětí v uchycení svazků při
tahové zkoušce. Vysokomodulové svazky s křehkými vlákny jsou v průběhu tahové zk-
oušky velmi náchylné ke koncentracím napětí, což často znemožňuje použití standard-
ních metod pro jejich zkoušení. V rámci této práce byl vyvinut a vyroben adaptér
uchycení pro existující zkušební stroj Statimat 4U firmy Textechno GmbH. Byla prove-
dena série komparativních tahových zkoušek na vláknitých svazcích s vyvinutým adap-
térem a standardními metodami a výsledky jsou v práci diskutovány. Tyto zkoušky jsou
rovněž porovnány s teoretickou pevností svazků predikovanou Danielsovým statistickým
modelem pro svazky.

KLÍČOVÁ SLOVA
vláknité svazky, pravděpodobnost a statistika, vliv velikosti, tahová zkouška vláknitých
svazků
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1 INTRODUCTION

1.1 Motivation

The 20th century has witnessed an uprise of fibrous composites. Fibrous reinforce-

ment has been used both for reinforcing polymer and metal matrices and toughen-

ing ceramic matrices. As the production of high modulus and high strength fibers

– made of both ceramic and polymer materials – has grown in efficiency and thus

has become more economic, the supreme properties of fibrous composites have been

exploited by an ever wider range of industry branches. Having been discovered for

aviation and sport, the domain of fibrous composites expanded over energy and au-

tomotive and, finally has reached civil engineering, where the strength and stiffness

to weight and price ratio became interesting only at the end of the 1990s. There are

in general three fundamental parts determining the mechanical behavior of fibrous

composites:

1) fibers (reinforcing or toughening)

2) matrix (polymer, ceramic, metal)

3) interface between fibers and matrix

Even though there have been endless discussions on the hierarchy of priorities of

these three components, it is probably most apt to conclude that each one plays a

significant role with none of them being less important than the others.

For the most part, this thesis thoroughly examines the fibrous constituent sepa-

rately. The understanding of the complex behavior of the fibrous constituent alone

– fibers, bundles and yarns – provides much inside into the composite behavior and

is of great significance for simulating the composite mechanics. However, in the last

chapter, the interaction of short fiber bundles with cement-based matrix and the

resulting composite called glass fiber reinforced concrete (GFRC) are analyzed.

Being a brittle material whose strength is governed by the weakest link, high-

modulus fibers and fiber bundles exhibit various size-effects, which are in their ele-

mentary tendencies depicted in Fig. 1.1. On one hand, the tensile strength decreases

with the gauge length of the fibrous material. On the other hand, the strength de-
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Fig. 1.1: Demonstration of size-effect in the tensile strength of high-modulus fibrous

material: log-log plot of carbon filament and carbon yarn tensile strengths at various

gauge lengths.

creases with the number of fibers in the bundle. In particular, the strength of a

single fiber is on average about 20% higher than the strength of a multi-filament

yarn. As shall be revealed in the body of the thesis, this tendency only applies for

a range on gauge lengths and is violated above a transition threshold. Clearly, the

tensile strength of fibrous materials is not a trivial quantity to identify and a number

of mechanisms have to be understood in order to predict the tensile strength in a

range extrapolated beyond experimentally measured data.

1.2 Goal setting

The main goals of this work can be summarized as follows:

(1) Provide a probabilistic model of the strength of high-modulus fibrous material

for the complete range of gauge lengths.
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(2) Address the clamping issue in tensile testing of fibrous yarns and propose an

enhanced clamp device that reduces stress concentrations in the clamp region.

(2) Analyze and asses the behavior of short glass fiber reinforced cement-based

matrix subjected to tensile loading from the probabilistic point of view.

1.3 Overview of the dissertation

The probabilistic model of the yarn strength developed in this thesis is an extension

of the classical Daniels’ statistical fiber bundle model [16]. It includes the effects of

friction between individual filaments in the bundle and represents this effect by a

finite stress transfer length which causes the bundle of parallel fibers to behave like

a chain of independent bundles. A method for identifying the stress transfer length

based on tensile tests at various gauge lengths is presented.

Closely connected to the experimental investigation of the yarn strength is the

issue of stress concentrations in the clamp region. This phenomenon causes a re-

duction of the measured strength compared to its theoretical value based on fiber

bundle models. A new clamping device is proposed, which diminishes the stress

concentration issue by a large amount.

Ultimately, the fibrous yarns are to be applied as reinforcement in composites.

Cement-based fibrous composites have been thoroughly described by the author in

[56, 49, 50, 54]. In this thesis, only short glass fiber reinforced concrete (GFRC) is

addressed since it has not been included in the authors dissertation at the RWTH

Aachen University [54]

The body of the thesis is structured as follows:

• Chapter 2: State of the art

• Chapter 3: Stress transfer length in yarns

• Chapter 4: Tensile testing of yarns

• Chapter 4: Glass fiber reinforced concrete
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Summary of chapter 2

On the background of the state of the art, the length dependent strength of fi-

brous yarns is introduce, analyzed and issues are highlighted. Fiber bundle models,

weakest link models and chain of bundles models are summarized in light of their

probabilistic aspects. Current standardized tensile test setups for high-modulus

multi-filament are critically discussed and both their advantages and disadvantages

are pointed out motivating the development of an enhanced tensile test device.

Summary of chapter 3

A probabilistic model of the strength of fibrous yarns is derived. Based on the

fiber bundle model with spatially correlated fiber strength and the chain of bundles

model, it describes the length dependent yarn strength over the full range of gauge

lengths with three distinguished asymptotes. These correspond to gauge ranges

1) less than the correlation length – constant mean strength;

2) greater than the correlation length and less than the stress transfer length –

Weibull scaling law;

3) greater than the stress transfer length – chain-of-bundles model.

Summary of chapter 4

A new tensile test clamping device for high-modulus yarns is proposed, and the

mechanism of reducing the stress concentrations is explained. Experiments with

AR-glass and carbon yarns are used to validate the performance of a prototype of

the new device. Standardized tensile tests using resin porters and capstan grips are

performed as reference values.

Summary of chapter 5

The highly heterogeneous structure of glass fiber reinforced concrete is studied from

a probabilistic point of view. A semi-analytical multiscale model of the composites

response is formulated. Due to the probabilistic formulation, the model is capable
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of evaluating statistical moments of the composite response and of propagating

micromechanical properties of its constituents to its macro-scale behavior.
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2 STATE OF THE ART

The following state of the art presents a summary and analysis of technical literature

regarding fibrous yarns. Both theoretical models of their mechanical behavior and

experimental setups for determining their tensile strength are described. Note that

state of the art regarding glass fiber reinforced concrete is provided at the beginning

of Chapter 5.

2.1 Strength of multi-filament yarns

It has been widely agreed upon in the scientific community that the strength of

multifilament yarns cannot be modeled deterministically. The reasons for the use of

probabilistic methods for this purpose are:

a) The random nature of fiber failure and fiber properties in general;

b) the large number of fibers (of the order of 104-108) in yarns.

If one incorporated these features in deterministic models, computational limits

would be exceeded very fast [10]. In this thesis, probabilistic methods are therefore

taken into account.

As shall be explained in this introductory overview to the probabilistic modeling

of fibrous yarns, the yarn strength is determined by a complex propagation of the

random fiber strength through the yarn structure. A yarn is a bundle of fibers with

frictional interaction so that the yarn behaves essentially like a pseudo-composite.

Such a structure can represented by a series-parallel system of fibers, whose strength

has been addressed by many authors in the past, e.g. in [40, 19, 20, 66, 68, 50]. The

elementary failure mechanism considered in this work is a micromechanical fiber

rupture governed by the weakest flaw in the fiber material structure. Therefore,

the weakest link model and the related Weibull scaling law, which are thoroughly

described in the following subsection, can be applied.
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2.1.1 Weakest link model

Weakest link models describe the strength of a structural system by the strength

of its weakest link. Given that the system is divided into sub-elements where the

failure of either of these elements causes the ultimate failure of the whole system, the

weakest link model applies. If the sub-elements have a random strength distribution,

the strength of the system decreases as its size grows. This phenomenon is known

as the statistical size effect and can be explained by the behavior of global minima

of sets of random realizations: with growing number of random realizations in a set

the expected value of the global minimum decreases.

First intuitive formulations of the strength of materials by means of the weakest

link theory and the connected statistical size effect date back to Leonardo da Vinci

(1500s) and Galileo Galilei (1638). However, a robust mathematical theory with

derived statistical distribution function was first formulated by W. Weibull [69].

Since a brittle filament is only as strong as its weakest cross-section, it can be

assumed to behave according to the weakest link model. It is generally accepted

that the random flaws in the fiber’s material structure follow the compound Poisson

process, i.e. the mean number of flaws per unit length with strength less than or

equal 𝜎, Λ(𝜎) is of the form

Λ(𝜎, 𝜎0) = [(𝜎/𝜎0)𝑚] /𝐿0 (2.1)

where 𝜎0 is a scale parameter related to the reference length 𝐿0 and 𝑚 is a shape

parameter [29, 45, 61, 11]. The tensile strength of fibers of length 𝐿 is therefore a

random variable which follows the Weibull distribution (extreme value distribution

of type III) defined as

𝐹 (𝜎, 𝐿) = 1 − exp [−𝐿Λ(𝜎/𝜎0)] . (2.2)

The mean fiber strength is then

𝜇⋆
𝜎f

(𝐿) = (𝐿/𝐿0)−1/𝑚 𝜎0Γ(1 + 1/𝑚) (2.3)

with Γ denoting the gamma function. The formula reveals the length dependency

of the mean fiber strength (as well as of any percentile of the fiber strength), which
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Fig. 2.1: (a) Theoretical fiber Eq. (2.8) and mean bundle Eq. (2.9) stress-strain

diagrams; (b) theoretical mean fiber strength Eq. (2.3) and mean bundle strength

Eq. (2.6) as a function of gauge length.

is found to be proportional to 𝐿−1/𝑚 (Fig. 2.1b). This means that the mean tensile

strength of fibers decreases with fiber length with the slope −1/𝑚 in a double

logarithmic plot. For ceramic fibers used as reinforcement in composites, the shape

parameter is usually between 3.0 and 7.0 [14, 12].

2.1.2 Fiber bundle models

The analysis of the strength of a fiber bundle which consists of parallel brittle fibers

with random strength is based on the work of H.E. Daniels [16]. This work has been

reviewed and extended with further effects relevant to fiber bundles many times

since [13, 47, 10]. Daniels analyzed a set of parallel Weibull fibers (i.e. following the

strength distribution given by Eq. 2.2) subjected to increasing load 𝜎 and derived an

exact statistical distribution of the strength of such a bundle consisting of 𝑛f fibers,

which was later rewritten in the compact recursive form

𝐺𝑛f (𝜎) =
𝑛f∑︁

𝑖=1
(−1)𝑖+1

(︃
𝑛f

𝑖

)︃
[𝐹 (𝜎)]𝑖 𝐺𝑛f−𝑖

(︂
𝑛f𝜎

𝑛f − 𝑖

)︂
(2.4)

where 𝐺0(𝜎) = 1 and 𝐺1(𝜎) = 𝐹 (𝜎) is the strength distribution of a single fiber

given by Eq. (2.2). Daniels also formulated comprehensive results on the behavior

of asymptotic bundles (large 𝑛f) including the asymptotic bundle strength which
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was found to be normally distributed as

𝐺𝑛f→∞(𝜎) ≈ Φ
(︃

𝜎 − 𝜇⋆
𝜎b

𝛾⋆
𝜎b

√
𝑛f

)︃
(2.5)

where Φ is the standard normal distribution function, 𝜇⋆
𝜎b

is the mean value

𝜇⋆
𝜎b

(𝐿) = 𝜎0

(︂
𝑚𝐿

𝐿0

)︂−1/𝑚

exp(−1/𝑚) (2.6)

and 𝛾⋆2
𝜎b

/𝑛f the variance of the bundle strength. It is interesting to note that the

mean bundle strength decreases with respect to the length with the same rate as a

single fiber (i.e. 𝜇⋆
𝜎b

∝ 𝐿−1/𝑚, see Fig. 2.1). The convergence of the mean bundle

strength to its asymptotic distribution Eq. (2.5) with growing 𝑛f was shown to be

extremely slow 𝑂(𝑛−1/6
f ). Smith in [60] and later Daniels [17] himself proposed

modifications on the mean value and variance that respect the actual finite number

of fibers and accelerate the convergence significantly.

S. L. Phoenix and H. M. Taylor [47] analyzed the fiber bundle behavior as con-

trolled by bundle strain 𝜀 and its failure determined by the random strain to failure

of individual fibers 𝜉, which has the two-parameter Weibull form

𝜉 ∼ 𝐹𝜉(𝜀, 𝐿) = Pr{𝜉 ≤ 𝜀} = 1 − exp [−𝐿/𝐿0(𝜀/𝜀0)𝑚] (2.7)

with the scale parameter 𝜀0 relative to the reference length 𝐿0, and the shape pa-

rameter 𝑚. The fiber stress-strain relationship (Fig. 2.1a) is then defined as

𝜎f(𝜀) =

⎧⎪⎨⎪⎩ 𝐸f 𝜀 : 0 < 𝜀 < 𝜉

0 : otherwise.
(2.8)

This strain based approach enables the formulation of the whole mean stress-strain

curve of an asymptotic bundle (𝑛f → ∞) as

𝜇𝜎b(𝜀, 𝐿) = 𝐸f𝜀 [1 − 𝐹𝜉(𝜀, 𝐿)] (2.9)

on one hand and, on the other hand, additional random properties of fibers (wavi-

ness, length, modulus of elasticity etc.) can be included [47, 44, 10]. Analyzing the

mean stress-strain function of a bundle (Eq. 2.9), its maximum is the mean bundle

strength given by Eq. (2.6) and its stationary point is the strain at which the mean

bundle strength is achieved

𝜀⋆
b = 𝜎0/𝐸f

(︂
𝑚𝐿

𝐿0

)︂−1/𝑚

. (2.10)
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The relation of Eq. (2.6) and Eq. (2.3) given as

𝜇⋆
𝜎b

𝜇⋆
𝜎f

= exp(−1/𝑚)
𝑚1/𝑚 Γ(1 + 1/𝑚) (2.11)

is the reduction factor for the mean bundle strength compared to the mean fiber

strength and it depends only on the Weibull modulus 𝑚. For fibers with 𝑚 ≈ 5.0

for example, the mean bundle strength is 35.5% lower than the mean fiber strength.

This strength reduction is generally inherent to fiber bundles with scatter in strength

of individual fibers due to micro-scale flaws.

Fiber bundle models are a means for modeling parallel structures with indepen-

dent links. They can be applied to simulate the response of a fiber bundle with no

interaction among individual fibers response to an applied tensile load.

2.1.3 Load sharing mechanisms

An important property of a system of parallel fibers is the stress redistribution upon

local fiber damage. Existing models take this mechanical aspect into consideration

by defining various load sharing patterns for surviving fibers if some fiber breaks.

The nomenclature on load sharing mechanisms found in literature is not consistent.

In what follows, the nomenclature used in [32] is reproduced.

The most intuitive load sharing mechanism is equal load sharing (ELS) used in

the classical Daniels’ fiber bundle models [16, 13], where all intact fibers take up

an equal amount of the load that was carried by a failed fiber. To be more precise,

the load is distributed among the intact fibers with respect to their stiffnesses. ELS

assumes that fibers do not interact in parallel so that it is suitable to model dry

bundles even though a weak inter-fiber friction is present [11].

In composites, the failure of a fiber might cause a stress concentration within a

localized area so that the load is taken over only by close neighbors. This phenomena

is called localized load sharing (LLS) which covers many models with various rules

for the influence of breaks of surviving fibers in 1D, 2D and 3D [24, 25, 19, 20, 21,

22, 23, 30, 73, 63].

Load sharing rules applied e.g. by [64, 46, 15] take into consideration the lon-

gitudinal position of fiber breaks. Broken fibers then carry a residual load due to
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Fig. 2.2: Load sharing mechanisms

pullout and intact fibers share the remaining part of the load equally or locally.

When the longitudinal position of fiber breaks and the resulting pullout is consid-

ered, the mechanism is called global load sharing (GLS) or frictional load sharing

(FLS).

Localized load sharing systems are more accurate in simulating the real mechan-

ical behavior of composites and yarns or pseudo-composites. However, LLS models

are much more complex and computationally demanding than the ELS counterparts.

Several factors determine whether the use of ELS can be justified for modeling of

composites: 1) matrix shear stiffness 2) bond strength 3) fiber strength variability.

If the matrix shear stiffness is high, the bond weak and the fiber strength variability

high, ELS can be applied [46, 32]. In the other extreme case, failure will be rather

localized and one of the LLS models has to be used. Pseudo-composites, which are

the focus of this thesis, have extremely low frictional bond compared to polymer

matrix composites. Therefore, the ELS rule is most likely to be an appropriate

representation of load redistribution upon fiber failures.

2.1.4 Filament interactions in yarns

When applied as reinforcement or toughening constituent in brittle matrix compos-

ites, fibrous yarns are often not completely penetrated by the matrix. Especially

in cementitious composites with fibrous reinforcement, the bond between fibers and

matrix develops only in the outer region of the yarn cross-section and has a rather

irregular structure. This fact alone leads to a complex damage process in a loaded

crack bridge. The effect of irregularity of the outer bond on the crack bridge perfor-

mance has been studied using the statistical fiber bundle model in [56, 49, 50, 10, 67].
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Due to an incomplete penetration of the matrix into the yarn there is still a large

fraction of filaments without any contact to the matrix.

Even though the filament-filament frictional stress is much lower than the bond

shear stress transmitted by filament-matrix bond, the effect of the inner bond on the

macroscopic performance of a composite cannot be neglected [26]. While the outer

bond affects the behavior locally at the length scale of a crack-bridge, the inner

bond influences the failure process at the length scale of a structural element with

sufficiently large stress transfer (or anchorage) length. This can be documented by

a significant contribution of the inner bond to the stress level in the post-cracking

regime of a tensile specimen reinforced with AR-glass yarns [27]. As a consequence,

the interaction and damage effects for both outer and inner bond require a detailed

mechanical characterization.

While it is possible to study and characterize the interaction between a single

filament and the matrix experimentally using the pull-out test [6], it is impossible to

directly test the in-situ filament-filament interaction. An indirect qualitative experi-

mental observation of the in-situ filament interaction is possible by imposing various

levels of twist during the yarn tensile test. An experimental study of the effect of

increased in-situ filament interaction on the strength of high-modulus multifilament

yarns (carbon and AR-glass) can be found in [9]. A multivariate experimental analy-

sis was used to study the compound effect of the loading rate, gauge length, fineness

and twist.

A numerical approach based on Monte Carlo simulation of random filament

strength was used in [51, 41] to compute the strain-stress relationship of twisted

blended yarns. The stress transfer length occurring in such a yarn structure was

computed as a function of yarn strain, twist level (lateral pressure), position of a

filament within the bundle cross-section and filament type. An advanced model for

the statistical strength of twisted fiber bundles has been presented recently in [48].

These approaches are, however, computationally very demanding.

In this thesis, the available theoretical framework of statistical fiber bundle mod-

els is utilized with the goal to provide a method for identifying the filament-filament

interaction within the yarn using the data from a specifically designed tensile test
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setup [9, 11, 55].

2.2 Tensile testing

In order to validate any model of tensile strength of high-modulus multifilament

yarns, an appropriate tensile test device has to be used for the experiments. The

steadily growing application of technical yarns has evoked intensive efforts to im-

prove the quality and reproducibility of strength characterization for this type of

material [2, 53]. In contrast to traditional yarn materials like cotton and polyester,

high-modulus yarns made of glass, carbon, aramid or UHMPE are very sensitive to

stress concentrations due to their brittleness when loaded in tension. At the same

time, they exhibit a pronounced strength size effect due to the presence of randomly

distributed flaws along the yarn. Both these properties make the use of traditional

setups for yarn tensile testing difficult.

Two categories of methods that are currently being used for introducing the

tensile load into a high-modulus multifilament yarn in order to measure its tensile

strength are outlined below.

2.2.1 Load transfer via deflection and friction

The first category uses mechanical fixing clamps and an additional deflection of the

yarn which introduces the load to the yarn through friction. The deflection reduces

the force which has to be taken up by the fixing clamps. An example of this method

is the test with capstan grips [2, 1, 3] where the yarn is deflected or twisted around

a spool, see Fig. 2.3a.

In some cases, the tests are semi or even fully automatic (Statimat 4U with

‘big bollards’, Textechno GmbH) which is a great advantage of this test method.

However, the method also has some disadvantages. Due to the radii of the deflection

elements, the minimum test length of the specimen is limited. Furthermore, the test

length of the yarn is not precisely defined since the force is introduced over a certain

length at the deflection elements. Since the yarn strength is length-dependent, the

test length needs to be known for the interpretation of the yarn tensile properties.



2.2. TENSILE TESTING 25

(a) (b)

Fig. 2.3: Yarn tensile test with capstan grips – Zwick Roell AG (a); embedding the

porters in resin (b) – specimens can be tested with any tensile test machine (ITA,

RWTH university, Aachen, Germany

The main disadvantage, however, is the non-uniformly distributed stress among

filaments. This issue arises because filaments directly contacting the spool carry

more of the introduced load.

2.2.2 Load transfer via resin porters

For the second category of methods, the yarn ends are embedded in resin blocks

which are then used for the load introduction (Fig. 2.3b). An example of resin

porters for testing AR-glass yarns can be found in [53, 9]. The main advantage

of these methods is the relatively well-defined test length and the uniform load

introduction at large test lengths [67, 9]. However, the sample preparation is very

Tab. 2.1: State of the art for tensile test methods.

method gauge length load introduction specimen preparation

capstan grips not accurately defined non-uniform automatic

resin porters defined gauge length uniform time consuming
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time consuming and biased by the human factor. On one hand, manipulation during

the sample preparation inevitably causes damage of the brittle filaments and, on the

other hand, the inclination of the yarn to the resin porters axis is variable and induces

bending into the yarn. The main advantages and disadvantages of these commonly

used methods are briefly summarized in Tab. 2.1.
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3 STRESS TRANSFER LENGTH IN YARNS

As stated in Sec. 2, the stress transfer length is a property of fibrous yarns, which

governs their size effect behavior at longer gauge lengths, see Fig. 3.1. Therefore, it

is highly important to identify this property in order to describe the tensile strength

for an arbitrary length.

The key idea of the identification of the stress transfer length introduced in

this thesis is to exploit the fact that the in-situ filament-filament interaction affects

the length-dependent strength of the yarn (size effect curve). The effect of friction

between filaments becomes significant when the specimen length is greater than the

stress transfer length, i.e. the length at which a broken filament recovers its stress

within the gauge length. Such a yarn structure becomes fragmented into a chain-of-

bundles and behaves like a pseudo-composite and the slope of the size effect curve

is decreased, see Fig. 3.1.

It is to be understood that the chain-of-bundles model is a simplified represen-

tation of the complex mechanics of fiber interactions. The fundamental assumption

of the model is that due to the stress transfer between fibers, the yarn behaves

like a chain of independent fiber bundles whose lengths equal the stress transfer

length. Even though the bulk of probabilistic models of unidirectional composites

are based on the chain-of-bundles assumption, the stress transfer length cannot be

directly related to the length along which the fiber stress is fully recovered from a

Fig. 3.1: Tensile strengths of Toho Tenax 1600 tex carbon yarns as measured at

various gauge length.
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rupture. Rather, the stress transfer length is a smeared representation of this phys-

ical property which is variable among filaments. For this reason, we will refer to it

as ‘effective bundle length’.

3.1 Model assumptions

The only source of randomness considered in the present model is the variability in

local filament strength. Filaments respond elastically to tensile loading with brittle

failure upon reaching their strength. The local random breaking strain 𝜉 at a certain

point over the filament length is considered to follow the Weibull distribution:

𝐹𝜉 (𝜀) = Pr {𝜉 ≤ 𝜀} = 1 − exp
[︂
−
⟨

𝜀

𝑠

⟩𝑚]︂
(3.1)

where 𝑠 and 𝑚 are the scale and shape parameter of the local distribution and 𝜀

is the imposed axial strain. The spatial distribution of the random strength along

a filament has a length scale 𝑙𝜌 at which the strength variability diminishes [67].

As a consequence, for short specimens 𝑙 ≪ 𝑙𝜌 the strength realization along the

filament can be considered a constant function with random value and, therefore,

the random filament strength for this length range is length-independent. On the

other hand, for 𝑙 ≫ 𝑙𝜌 the local strength varies over the filament length. Therefore,

the overall filament strength is defined by the minimum local strength along the

filament length corresponding to the weakest link model and is well described by

the Weibull extreme value distribution [69, 67].

With these assumptions for a single filament a qualitative profile of the mean

size effect curve of a fibrous yarn can be expected as shown in Fig. 3.2. Two types of

mechanisms of load transfer can be distinguished depending on the yarn length. The

two regions are separated by the effective bundle length (related to the stress transfer

length) 𝑙⋆
b at which the fiber fragmentation can occur. The implicit assumption is

that the autocorrelation length of the random strength process along the filament is

less than 𝑙⋆
b. This assumption is reasonable because the autocorrelation length is of

the order of a few millimeters [10] while the effective bundle length in dry yarns is

of the order of tens of centimeters [40, 11], see also Fig. 3.1. The two main regimes

can be characterized as follows:
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• For the range of lengths 𝑙 < 𝑙⋆
b, the yarn is acting as a bundle or a set of parallel,

independent filaments with identical Weibull strength distribution. Its size

effect behavior has been described in a large number of scientific publications,

e.g. [16, 13, 44] and corrections to the asymptotic strength distribution for

finite number of fibers have been proposed in [60, 17]. In such a bundle, a

filament is assumed to break only once within its length and the associated

released force is redistributed evenly among the surviving fibers according to

the equal load sharing mechanism, see Sec. 2.1.3. Two limiting behaviors

of a bundle with independent filaments can be distinguished based on the

dependence of strengths of individual filaments on their length.

∘ For very short lengths 𝑙 < 𝑙𝜌 any realization of the random process of

local strength along the filament can be considered a constant function.

In other words, the realization of the local filament strength simplifies to

a single random variable independent of the position along the filament.

The consequence is that the left asymptote of the filament mean strength

is a horizontal line at the level of the mean value of the local random

filament strength. Therefore, also the mean size effect curve of a bundle

has a horizontal left asymptote [66, 67]. As the bundle length approaches

the correlation length 𝑙𝜌 the mean size effect curve starts to decline from

the left horizontal asymptote and turns slowly down in the direction of

the middle asymptote dictated by the classical Weibull size effect [69].

∘ Bundles with length greater than 𝑙𝜌 but still shorter than 𝑙⋆
b are assumed

to consist of non-interacting fibers whose strength is described by the

weakest link model and Weibull scaling based on the classical extreme

value theory. The slope −1/𝑚 of the middle asymptote in log-log scale

is dictated solely by the shape parameter 𝑚 of the Weibull distribution

of the local filament strength.

• With increasing gauge length, the filament-filament friction can recover the

stress released upon a filament break and allows for multiple filament breaks

resulting in fragmentation of filaments along their lengths. Such a length 𝑙⋆
b

marks the transition from the bundle behavior to the behavior of a chain-of-
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bundles. The slope of the mean size effect curve for 𝑙 > 𝑙⋆
b is significantly re-

duced. Asymptotically, its slope approaches −1/(𝑛f𝑚), where 𝑛f is the number

of filaments in the yarn [23]. The particular shape of this transition depends

on the number of filaments in the bundle [19, 20].

The transition zone from a bundle range to chain-of-bundles range is of special

interest. The change in the slope of the size effect curve reveals the length 𝑙⋆
b at

which the fragmentation starts. The idea of the present paper is to exploit this

fact in order to identify the effective bundle length 𝑙⋆
b within the tested yarn. The

identification procedure tries to find an intersection between the two branches of

the mean size effect curve. The mathematical formulation of the two branches is

summarized in the following two sections.

3.2 Bundle of parallel independent fibers

As derived in Sec. 2, the mean strength of a single Weibullian filament is prescribed

as

𝜇𝜎f = 𝑠0 ·
(︃

𝑙0
𝑙

)︃−1/𝑚

· Γ
(︂

1 + 1
𝑚

)︂
(3.2)

Fig. 3.2: Mean size-effect curve in log-log scale with three distinguished asymptotes
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with 𝑠0 and 𝑚 denoting the scale and shape parameters of the Weibull distribution,

respectively, and Γ(·) is the Gamma function [13]. The scale parameter 𝑠0 is related

to a reference length 𝑙0. As pointed out in [67] the above power-law scaling predicts

unlimited mean strength for 𝑙 → 0 and is therefore unrealistic. To impose an upper

bound on the strength, a statistical length scale in the form of an autocorrelation

length of a random strength process along the filament has been introduced in [67].

With this in mind, the length-dependent mean filament strength given by Eq. (3.2)

can be formulated with the variable 𝑙𝜌. The resulting form then includes the function

𝑓𝜌(𝑙𝜌, 𝑙) as:

𝜇𝜎f = 𝑠0 · 𝑓𝜌 (𝑙𝜌, 𝑙) · Γ
(︂

1 + 1
𝑚

)︂
(3.3)

The refined scaling function 𝑓𝜌(𝑙𝜌, 𝑙) accounting for the correlation length 𝑙𝜌 has been

suggested as either

𝑓𝜌 (𝑙𝜌, 𝑙) =
(︃

𝑙

𝑙𝜌
+ 𝑙𝜌

𝑙𝜌 + 𝑙

)︃−1/𝑚

(3.4)

or

𝑓𝜌 (𝑙𝜌, 𝑙) =
(︃

𝑙𝜌
𝑙𝜌 + 𝑙

)︃1/𝑚

. (3.5)

Note that this length-scaling remains qualitatively unchanged for any arbitrary num-

ber of parallel filaments. Thus, in the sequel the length dependency of the scaling

parameter within the range 𝑙𝜌 < 𝑙b < 𝑙⋆
b (see Fig. 3.2) shall be represented by the

scaling function

𝑠b = 𝑠0 · 𝑓𝜌 (𝑙𝜌, 𝑙b) . (3.6)

In the limit of 𝑙 ≫ 𝑙𝜌, the scaling in Eqs. (3.4) and (3.5) recovers the classical

Weibull length-dependency 𝑓W (𝑙) = (𝑙𝜌/𝑙)1/𝑚. Such a decomposition of the length

effect allows for a simple scaling of the mean value

𝜇𝜎1 = 𝜇𝜎0 · 𝑓𝜌 (𝑙1)
𝑓𝜌 (𝑙0)

(3.7)

that shall be used later in the identification procedure.

The cumulative distribution function of a random per fiber bundle strength of

a parallel set of filaments with independent identically distributed strength, 𝐺𝑛f (𝜀),

is given by the recursive formula Eq. (2.4), derived by Daniels [16]. The result-

ing bundle strength approaches the Gaussian normal distribution, 𝐺𝑛f→∞ given by
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Eq. (2.5), as the number of filaments grows large (𝑛f → ∞). Based on Daniels’

analysis, the expected asymptotic mean bundle strength 𝜇𝜎b with Weibull fibers is

related to the filament properties as

𝜇𝜎b = 𝑠b · 𝑚−1/𝑚 · 𝑐𝑚 with 𝑐𝑚 = exp
(︂

− 1
𝑚

)︂
(3.8)

with 𝑠b obtained using Equation (3.6). The standard deviation 𝛾𝜎b is given as

𝛾𝜎b = 𝑠b · 𝑚−1/𝑚
√︁

𝑐𝑚 · (1 − 𝑐𝑚). (3.9)

The (length-dependent) standard deviation of yarn random strength is scaled in the

same way as the mean value is scaled in Eq. (3.7). As a consequence, the coefficient of

variation of the bundle strength does not depend on the bundle length. The decrease

of the normalized mean bundle strength 𝜇𝜎b with respect to the filament strength

𝜇𝜎f is obvious from the comparison of Eqs. (3.8) and (3.2). In reality, bundles have

a finite number of filaments 𝑛f and the mean strength is thus only approaching the

Daniels’ asymptotic prediction. Both Smith and Daniels proposed ways to decrease

the gap between the strength distribution of finite sized bundles and the asymptotic

Daniels’ normal approximation by adjusting 𝜇𝜎b to 𝜇𝜎b,nf
[60, 17]. Both adjustments

have a similar form so that only Smith’s formula is written below for demonstration

purposes:

𝜇𝜎b,nf
= 𝜇𝜎b + 𝑛

−2/3
f 𝑏 · 𝜆. (3.10)

In the case of Weibull filament distribution the parameter

𝑏 = 𝑠b · 𝑚−1/𝑚−1/3 exp [−1/ (3𝑚)]

and the coefficient 𝜆 = 0.996. This correction shifts the mean value of the bundle

strength. The standard deviation corresponding to 𝜇𝜎b given by Eq. (3.9) is a fair

approximation and does not need any further adjustment for a finite number of

filaments 𝑛f .

3.3 Chain of fiber bundles

Filaments in yarns are not ideally independent as assumed by the fiber bundle

models. They exhibit a certain amount of frictional interaction that leads to multiple
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rupture of individual filaments. The distance between two breaks along a filament

can only be larger than the stress transfer length, also called the ineffective or

shielded length. This length determines the distance from a break beyond which

the filament stress state is independent of further ruptures. Based on this reasoning,

the mechanical-probabilistic model represents the yarn with interacting fibers as a

chain of mechanically and statistically independent fiber bundles or chain-of-bundles.

Each bundle is assumed to have the length corresponding to the stress transfer

length. A yarn can therefore be idealized as a one-dimensional chain of independent

identically distributed bundles with equal load sharing within each bundle.

The strength distribution 𝐺𝑛f (𝜀) of each of the serially coupled bundles subjected

to the longitudinal global strain 𝜀, has been described in Sec. 3.2. Obviously, the

yarn strength is governed by the weakest bundle and thus it is distributed as follows

𝐻𝑛b,𝑛f (𝜀) = 1 − [1 − 𝐺𝑛f (𝜀)]𝑛b , 𝜀 ≥ 0 (3.11)

with 𝑛b being the number of serially coupled bundles.

The distribution of the chain-of-bundles strength can have different shapes de-

pending on the ratio between the number of filaments 𝑛f and number of bundles 𝑛b

[62, 66]. In general, its left tail is of the Weibull form and, close to the mean value,

the distribution can be approximated by the Gaussian normal form. For small values

of 𝑛f , the lower (Weibull) tail of the bundle strength distribution reaches close to its

mean value. On the other hand, for large 𝑛f , the Gaussian shape of the distribution

reaches far into the lower tail.

As known from the extreme value theory, the minimum of IID Gaussian vari-

ables, here representing the strength of a chain-of-bundles with dominating Gaussian

distribution, approaches the Gumbel distribution [18] as 𝑛b → ∞

𝐻𝑛b,𝑛f (𝜀) = 1 − exp
[︃
− exp

(︃
𝜀 − 𝑏𝑛b,𝑛f

𝑎𝑛b,𝑛f

)︃]︃
(3.12)

where

𝑎𝑛b,𝑛f = 𝛾𝜎b√
2𝜔

,

𝑏𝑛b,𝑛f = 𝜇𝜎b,𝑛f + 𝛾𝜎b

[︃
ln (𝜔) + ln (4𝜋)√

8𝜔
−

√
2𝜔

]︃



3.4. EVALUATION OF THE EFFECTIVE BUNDLE LENGTH 34

and 𝜔 = ln (𝑛b). The mean value of yarn strength is then 𝜇𝜎y = 𝑏𝑛b,𝑛f − 𝜂 · 𝑎𝑛b,𝑛f

and the median equals 𝑏𝑛b,𝑛f +ln (ln (2)) ·𝑎𝑛b,𝑛f . Here, 𝜂 ≈ 0.5772 denotes the Euler-

Mascheroni constant. The strength distribution given in Equation (3.12) is very

accurate for a high number of filaments, 𝑛f , and a number of bundles greater than

approximately 300. For lower numbers of bundles 𝑛b ∈ (1; 300), a cubic regression,

which was proposed in [66], will be assumed for the mean chain-of-bundles strength.

Using the constants introduced in Eq. (3.11), the cubic regression can be written as

𝜇𝜎y = 𝜇𝜎b − 𝛾𝜎b

(︁
−0.007𝜔3 + 0.1025𝜔2 − 0.8684𝜔

)︁
, (3.13)

where 𝜇𝜎b and 𝛾𝜎b are the bundle mean strength and standard deviation, respec-

tively. This approximation describes the transition from the mean value of the

Gaussian distribution of a single bundle to the mean value of the Gumbel distribu-

tion of a chain-of-bundles.

As already mentioned, for the strength distribution of bundles consisting of a

low number of filaments 𝑛f the left Weibull tail reaches close to the mean value.

As a consequence, the Weibull shape of the distribution becomes significant also for

the distribution of the chain-of-bundles strength. Yarns consisting of a very large

number of such bundles (of the order 103 bundles with 8 parallel filaments) have the

Weibull strength distribution with the Weibull modulus given solely by multiplying

the number of filaments 𝑛f by the Weibull modulus of a single filament 𝑚 [19, 20].

For the considered types of multifilament yarns consisting of several hundreds of

filaments and a low number of bundles per meter (approximately 5 for AR-Glass,

2400 tex) it is sufficient to use the approximating Eq. (3.13) or the median value

obtained from:

𝜎50
𝑦 = 𝜇𝜎b,nf

+ 𝛾𝜎bΦ−1
(︁
1 − 0.51/nb

)︁
. (3.14)

Here, Φ−1 (·) stands for the inverse standard Gaussian cumulative distribution func-

tion (percent point function) and 𝑛b = 𝑙y/𝑙b stands for the number of bundles the

yarn consists of.
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Fig. 3.3: Example of the effective bundle length identification with software module

implemented in Python scripting language.

3.4 Evaluation of the effective bundle length

Let us assume that two sets of strength data 𝜇test
𝜎b

and 𝜇test
𝜎y are available for two

respective gauge lengths falling into the different length ranges defined in Sec. 3.1,

i.e. 𝑙test
b < 𝑙⋆

b and 𝑙test
y > 𝑙⋆

b. Apart from the known gauge lengths and the measured

mean strengths, the knowledge of the Weibull modulus 𝑚 and correlation length

𝑙𝜌 are required. The estimation of the effective bundle length 𝑙⋆
b is then performed

using the following procedure (see Fig. 3.3 for the user interface of the implemented

identification module).

1. The mean strength 𝜇test
𝜎b

estimated as the average strength for the length 𝑙test
b is

substituted into Eqs. (3.8) and (3.10) in order to obtain the scaling parameter

𝑠b of the Weibull distribution for the tested length

𝑠b = 𝜇test
𝜎b

·
[︁
𝑚−1/𝑚 · c + 𝑛

−2/3
f · 𝑚−(1/𝑚+1/3) exp

(︂
− 1

3𝑚

)︂
𝜆
]︂−1

. (3.15)

2. With the scaling parameter 𝑠b at hand, the corresponding standard deviation

𝛾𝜎b is evaluated using Equation (3.9). It is important to emphasize, that we use

the theoretical scatter of the bundle strength to identify the slope of the mean

size effect curve in the range of lengths 𝑙 ∈ ⟨𝑙𝜌; 𝑙⋆
b⟩ instead of the measured
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value of scatter. Note that in a typical yarn the number of filaments 𝑛f is

very large and thus the theoretical scatter of the bundle strength is very small

(proportional to 𝑛
−1/2
f ).

The choice of the theoretical scatter of the bundle strength is justified by

the fact that the experimentally obtained standard deviation is increased by

the sources of randomness other than the scatter of local strength along the

filaments. Obviously, this was also the case in the performed tests, as the

measured variability did not correspond to the slopes of the means ize effect

curve for the two tested types of yarns. This discrepancy was ascribed to the

manual production of the specimens and clamps [9, 50]. Note that even if a

realistic measurement of the scatter of the yarn strength due to the random

filament strength was possible, much larger sample size would be required

for a statistically significant estimate of the second moment compared to the

estimate of the mean yarn strength.

3. The obtained bundle characteristics are scaled to the unknown length 𝑙⋆
b using

Equation (3.7) and exploiting the fact that the standard deviation (as well as

every quantile) scales identically with the mean value:

𝜇⋆
𝜎b

= 𝜇test
𝜎b

· 𝑓 (𝑙⋆
b)

𝑓 (𝑙test
b ) and 𝛾⋆

𝜎b
= 𝛾test

𝜎b
· 𝑓 (𝑙⋆

b)
𝑓 (𝑙test

b ) .

4. The chaining effect involved in the experimental data is now expressed using

Equation (3.13) for the unknown bundle length 𝑙⋆
b as

𝜇test
𝜎y = 𝜇⋆

𝜎b
(𝑙⋆

b) − 𝛾⋆
𝜎b

(︁
−0.007𝜔3

⋆(𝑙⋆
b) + 0.1025𝜔2

⋆(𝑙⋆
b) − 0.8684𝜔⋆(𝑙⋆

b)
)︁

(3.16)

where 𝜔⋆ represents the logarithm of the number of bundles in series 𝜔⋆ =

ln
(︁
𝑙test
y /𝑙⋆

b

)︁
. The non-linear implicit Eq. (3.16) is then solved for 𝑙⋆

b using

standard root finding algorithms.

In order to demonstrate the identification procedure on real data, two test series

with different yarn types (carbon and AR-glass) have been conducted. The input

data and the results of the evaluation are summarized in Tab. 3.1. The resulting

effective bundle length for AR-glass yarns is one third larger than that of the carbon

yarn detecting a higher amount of frictional interaction within the carbon yarn. This
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property unit symbol carbon AR-glass

fineness [tex] - 1600 2400

No. of filaments [-] 𝑛f 24000 1600

Weibull modulus [-] 𝑚 5.00 4.52

correlation length [mm] 𝑙𝜌 1.0 1.0

gauge length I [mm] 𝑙test
b 50.0 100.0

measured strength I [MPa] 𝜇test
𝜎b

1955.8 1038.0

gauge length II [mm] 𝑙test
y 500.0 500.0

measured strength II [MPa] 𝜇test
𝜎y

1586.9 882.8

identified bundle length [mm] 𝑙⋆
b 142.1 201.8

Tab. 3.1: Summary of experimental data and the evaluated effective bundle lengths

for carbon and AR-glass yarns.

trend is in agreement with experimental observation. On one hand, in the post-peak

behavior of a tensile test, the level of stress transmitted by friction is significantly

higher for carbon yarns than for AR-glass yarns. On the other hand, the mean size

effect curve tends to flatten at smaller gauge lengths for carbon than for AR-glass

yarns.

3.5 Remarks to the identification method

Due to the limitations of the experimental setup, the described procedure can be

considered valid only in a certain range of gauge lengths. The following limiting

cases must be considered when designing the test series with the goal of identifying

the effective stress transfer length.

• The identification procedure is valid only if the effective bundle length to be

identified (the intersection point of the single bundle and a the chain-of-bundles

size effect curves) is between the two test lengths 𝑙test
b and 𝑙test

y , i.e. if the sought

length 𝑙⋆
b ∈

⟨
𝑙test
b ; 𝑙test

y

⟩
.

• If the correlation length is of the same order as the test length (𝑙test
b ≈ 𝑙𝜌) the



3.5. REMARKS TO THE IDENTIFICATION METHOD 38

estimation of 𝑙⋆
b becomes sensitive to slight changes in 𝑙𝜌. In particular, for the

identification summarized in Tab. 3.1, the correlation length 𝑙𝜌 = 1.0 mm ≪

𝑙test
b = 50 mm was assumed leading to 𝑙⋆

b = 142.1 mm for the carbon yarns.

When assuming the autocorrelation length in the same length range as the

short test length, e.g. 𝑙𝜌 = 𝑙test
b = 50 mm, the estimated bundle length is

𝑙⋆
b = 226.0 mm. A possible remedy would be to add further test(s) in the

range between the 𝑙test
b and 𝑙test

y and to make the correlation length a part of

the regression procedure.

• The identification procedure does not account for the case that the measured

strength for 𝑙test
b is distorted by the nonuniform loading of filaments due to

the irregularities in the yarn clamping. These effects lead to the reduction

of the strength for short specimens as described in [67, 55]. This case can

be handled by simply ignoring the short gauge length tests with a decay in

mean strength. For the tested AR-glass yarns, the strength reduction could

be observed experimentally for test lengths 𝑙test
b < 40 mm.

Another point to mention is that the bundle length has been identified as a deter-

ministic value. It might be argued that it exhibits some scatter along the yarn,

i.e. that the bundles in a yarn have variable lengths [42]. The justification for the

assumption of the constant bundle length can be constructed by realizing that the

actual bundle length is related to the stress transfer length which in turn depends

on the spatially variable filament-filament friction. In particular, two directions of

spatial scatter of friction can be distinguished: along and across the yarn.

• Along the yarn: As the level of filament friction is relatively low, the stress

transfer length needed to recover the breaking stress is large, at the order

of centimeters. On the other hand, the length-scale of spatial variation of

the filament-filament friction due to irregular packing of the yarn is at the

order of micrometers. Realizing that the stress transfer length represents the

sum of many local frictional links along the filament we can expect that the

local scatter of friction gets homogenized at the scale of the stress transfer

length. Therefore, the scatter of stress transfer length can be regarded as very

small. More precisely, the fluctuating friction intensity along a single filament
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can be idealized as 𝑛c number of frictional cells with constant level of friction,

each represented by independent, identically distributed (IID) random variable

given by the mean 𝜇c and variance 𝜎2
c > 0. The coefficient of variation of the

cell friction is covc = 𝜎c/𝜇c. As stated above, the number of frictional cells

𝑛c along a filament within the mean stress transfer length having a significant

difference in friction level is very high. Therefore, the mean value 𝜇f of the

sum of these frictional contributions along the yarn defining the stress transfer

length converges to 𝑛c · 𝜇c and, according to the central limit theorem (CLT),

the variance is equal to 𝜎2
f = 𝑛c · 𝜎2

c . As a consequence, the coefficient of

variation covf = 𝜎c/(√𝑛c · 𝜇c) = covc/
√

𝑛c rapidly decreases at a length-scale

of the stress transfer length with large 𝑛c

• Across the yarn: The scatter of friction due to variable filament surface rough-

ness or lateral pressure within the yarn cross section diminishes as the number

of filaments 𝑛f grows large. Formally, the bundle length can be idealized as the

average of filament stress transfer lengths within the cross section. All stress

transfer lengths of individual filaments can be viewed as IID random variables

characterized by mean 𝜇f and variance 𝜎2
f > 0. The CLT then states that as

the sample size 𝑛f increases, the distribution of the sample average approaches

the Gaussian normal distribution with mean 𝜇l = 𝜇f and variance 𝜎2
l = 𝜎2

f /𝑛f

irrespective of the shape of the distribution of the random variable. The co-

efficient of variation of the stress transfer length covl = covc/
√

𝑛c𝑛f . Thus,

in the case of applied yarns the scatter of the filament transfer length can be

assumed very small.

Based on these considerations the variance of the effective bundle length should

become insignificant and, therefore, the assumption of a constant 𝑙⋆
b along the yarn

seems to be justified in the context of the experimental identification. It should be

noted that the redistribution pattern included in the applied chain-of-bundles model

is based on the global load sharing rule (see Sec. 2.1.3). As the chaining of bundles

for lengths 𝑙 > 𝑙⋆
b is caused by the frictional stress along the filaments, it should also

result in a more local redistribution of stresses upon a filament break. This issue

is not included in the applied chain-of-bundles approximation of the corresponding
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part of the mean size effect curve.

3.6 Conclusions

The known aspect of length dependency of the tensile strength of fibrous yarns has

been investigated and a model has been developed with two distinguished modes of

mechanical behavior. These two modes represent the asymptotic behavior for short

and long yarns. For short yarns, the statistical fiber-bundle model due to Daniels

applies with reasonable accuracy. A modification to this model for very short lengths

has been proposed by Vořechovský for the Daniels’ model predicts infinite strengths

as the gauge length approaches zero.

The right asymptote of the mean size effect curve (length dependency of tensile

strength) describes the chain-of-bundles behavior characteristic to fibrous compos-

ites and twisted yarns. However, even dry yarns with no twist behave like a chain-of-

bundles if the gauge length is sufficiently long. Filaments can rupture multiple times

and the mean tensile strength decreases with a much lower slope than during the

fiber-bundle mode. This behavior is closely related to the in situ filament friction,

which is a material property and marks the transition between the fiber-bundle and

the chain-of-bundles behavior.

Upon this idea, a method based on the size effect curve has been proposed to

identify the transition length marking the ‘effective bundle length’. With the use

of a set of standard yarn tensile tests at different gauge lengths and an analytical

model of the mean size effect curve, the inter-filament frictional interaction can be

indirectly identified with a moderate effort. The identification method was applied

to AR-glass and carbon yarns and with the help of the implemented software module,

the effective bundle lengths have been identified for these materials.
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4 TENSILE TESTING OF YARNS

As stated in the state of the art Sec. 2.2, the growing market of technical textiles

requires robust methods for quality management. One of the key properties of high-

modulus yarns for structural applications is their tensile strength. However, the

brittle fibers are prematurely damaged in the clamping systems of existing tensile

test machines, see Sec. 2.2. Therefore, the measured tensile strength is underesti-

mated making the design with the tested material overly safe and not economic.

This leads to larger structural dimensions and thus wasting of both the textile and

the matrix material.

To avoid stress concentrations in yarns at the clamps during the tensile test,

a new clamp adapter has been developed, which separates the functions of yarn

fixation and of stress homogenization (Fig. 4.1b). This novel clamp adapter for the

Statimat 4U yarn tensile test machine produced by Textechno GmbH was developed

in order to meet the special requirements on precise tensile testing of high-modulus

multifilament yarns. With the new clamp adapter, higher strengths close to the

theoretical values (perfectly clamped filaments at a unique length and with no initial

Fig. 4.1: Development of the clamp adapter: (a) first simple realization of the mech-

anism; (b) Prototype of the adapter produced by Textechno GmbH.
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damage) can be measured. A test series comparing yarns strengths tested with the

novel clamp adapter and with standard test methods has been performed and the

results are discussed in this thesis. Furthermore, they are compared with theoretical

values using the Daniels’ fiber-bundle model.

4.1 New tensile test device

The newly developed tensile test device – a clamp adapter for the tensile test machine

Statimat 4U (referred to as ‘Statimat 4U adapter’ further in the text) – significantly

reduces the problem of stress concentration in the clamps. On the other hand,

compared to the current tensile test methods, it enables the testing of yarns with

precisely defined lengths so that the device can be used to measure the effect of

yarn length on its strength, see Chapter 3. Up to this point, the resin porters were

the only option for direct testing of the tensile strength of dry high-modulus yarns

made of glass fibers. Otherwise, indirect strength measurements have been used in

the industry. A common method is to test the fibers directly in the polymer matrix,

i.e. to test the glass fiber reinforced composite. Such a tensile test is reasonable

from the practical point of view but it tells little about the strength of the raw yarn

and, therefore, can neither be used for extrapolation to other composite materials

nor does it characterize the material for purposes of e.g. quality management.

The basic concept of the test set up is the separation of the clamping function

from the stress homogenization function at the ends of the test length into two

pairs of separate clamps controlled by separate pressure air circuits. Thanks to

the introduction of the homogenizing clamp into the semi-automated Statimat 4U

machine, several test series with a large number of samples for varied test lengths

and yarn materials can be performed.

Tensile tests performed with the Statimat 4U adapter proceed in the following

steps:

1.) The outer ‘fixation clamps’ (FCs) clamp the yarn with the pressure 𝑝FC and

introduce a fraction of the axial prestress force 𝐹0 (see Fig. 4.2a).

2.) The yarn is laterally compressed by the inner ‘homogenization clamps’ (HCs)
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with soft polyurethane contact layers with the pressure 𝑝HC which increases

the inter-filament interaction within the yarn cross-section.

3.) An additional axial force 𝐹HC is introduced by the homogenization clamp.

In general 𝐹HC is much smaller (e.g. 1/10) than the corresponding 𝐹FC (see

Fig. 4.2b).

3.) The axial load 𝐹FC is increased while keeping the difference between 𝐹FC and

𝐹HC constant, i.e. the additional axial force 𝐹HC is constant (see Fig. 4.2c).

This way the yarn is not damaged by the HCs defining the gauge length since the

majority of the tensile force is introduced by the outer FCs. The HCs combine lateral

pressure via a soft contact layer with a moderate axial force. The lateral pressure

𝑝HC homogenizes the stress in filaments by intensifying the inter-filament friction,

see the stress profiles at both sides of the homogenization clamp in Fig. 4.3b. At the

same time, the additional axial force 𝐹HC increases the probability of filament breaks

within the gauge length and thus defines the gauge length. Note that the gauge

length is, contrary to the deflection-friction tests, defined as the distance between

the HCs. The deflection of the yarn around the bollards of the standard Statimat

4U machine (placed between the HCs and FCs in the adapter clamp version) has a

similar function as the HCs — it takes up a part of the load due to friction and can

be used in addition to the HC to diminish damage in the FCs.

In contrast to the standard clamping with bollards, the control parameters (e.g.

the additional axial force 𝐹HC introduced by the HCs, lateral pressure 𝑝FC and 𝑝HC

of the respective FCs and HCs) of the adapter clamps can be freely adjusted to

achieve optimal test setup for a given material. If, for example, a yarn consists of

brittle filaments with rather large cross-sections, they will be more prone to rupture

due to the lateral pressure of the homogenizing clamp which, in this case, should be

kept low in order to best balance the trade-off between homogenization of stresses

within the yarn cross-section and the initial filament damage.
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Fig. 4.2: Statimat 4U adapter with the newly developed clamp (detail): (a)-(c)

phases of the tensile test with stress plotted along the tested yarn.

4.2 Comparative experiments

In order to assess the quality of the Statimat 4U adapter, tensile tests have been

performed using both the adapter and standard methods for reference. Yarns of

three different materials were tested.

4.2.1 Material

1.) AR-glass

Material: AR-glass yarns 1200 tex (Saint-Gobain Vetrotex Deutschland GmbH)

Reference method 1: embedding the porters in resin

Reference method 2: capstan grips

Gauge lengths adapter: 50, 70, 110, 160, 230, 340 and 500 mm

Gauge lengths reference 1: 50, 70, 110, 160, 230, 340 and 500 mm

Gauge lengths reference 2: 400, 550 and 800 mm

2.) E-glass

Material: E-glass yarns 1200 tex (PPG Industries, Inc.)

Reference method: embedding the porters in resin
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Fig. 4.3: Comparison of Statimat 4U and Statimat 4U adapter: (a) yarn stress

state in the standard clamp of Statimat 4U; yarn stress state in double clamp of the

Statimat 4U adapter.

Gauge lengths adapter: 50, 70, 110, 160, 230, 340 and 500 mm

Gauge lengths reference: 50, 110, 160, 230, and 500 mm

3.) carbon

Material: carbon 400 tex (Toho Tenax Co., Ltd.)

Reference method: Statimat 4U big bollard clamps

Gauge lengths adapter: 35, 70, 130, 250 and 500 mm

Gauge lengths reference: 35, 70, 130, 250 and 500 mm

4.2.2 Design of experiment

The gauge lengths were chosen, if possible, in a way that they appear equidistant in

logarithmic scale. For the AR-glass tests, a randomized experiment was performed.
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Initial material biases caused by fluctuations in strength due to the position of the

test sample within the spool were eliminated by a random specimen choice. That

means, specimens taken from the spool in an ordered manner were assigned the

parameters length and test method randomly. Using the design of experiments

wording [37], a block randomized comparison experiment with one factor of two

levels (test method) was performed. The measured response variable was the tensile

strength and the overall sample size was 280 specimens (2 levels of the factor test

method, 7 blocks - gauge lengths, 20 replicates per block). The remaining two

comparative experiments (E-glass and carbon) were not randomized.

Optimum parameters for testing with the Statimat 4U adapter – lateral pressure

of both the HCs and the FCs and the additional axial force – were found by applying

an iterative full factorial experiment design with 10 replicates for each parameter

combination.

4.2.3 Discussion of the comparative experiment

The results of the comparative experiment in terms of mean strength and COV

(coefficient of variation) are summarized in Fig. 4.4 and Tab. 4.1. The table sum-

marizes the measured values and statistical significance of the hypothesis testing

(H0 : 𝜎uA > 𝜎uR) as well as the 95% confidence intervals (CI) for the difference of

the compared methods, where 𝜎uA and 𝜎uR stand for the tensile strength measured

with the Statimat 4U adapter and the reference method, respectively.

Fig. 4.4 shows that the mean tensile strengths measured with Statimat 4U

adapter were for all three materials and all gauge lengths higher than the refer-

ence values. A lower level of significance for the H0 : 𝜎uA > 𝜎uR hypothesis was

calculated only for the 500 mm carbon yarn tests. Carbon yarns were observed to

have a much smaller scatter in strengths than glass yarns. Therefore a high level of

significance of H0 : 𝜎uA > 𝜎uR is given for carbon even though the mean strength

differences were not as pronounced as for AR-glass and E-glass. At the gauge length

500 mm, however, the significance of H0 : 𝜎uA > 𝜎uR was only 65% for carbon

yarns. This actually suggests that an unambiguous statement on which strengths

are higher cannot be given at this gauge length (the usual level of significance for
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adapter reference

𝜎uA COV 𝜎uR COV significance 95 % conf. interval

[MPa] [%] [MPa] [%] 𝐻0 : 𝜎uA > 𝜎uR 𝜎uA − 𝜎uR [MPa][%]

AR-glass 1200 tex

50 1220 4.9 1090 10.0 ≈ 1.0 (72.8, 187.0)(6.0, 15.3)

70 1224 7.3 1012 12.9 ≈ 1.0 (138.9, 283.5)(11.4, 23.1)

110 1237 4.1 946 12.0 ≈ 1.0 (233.6, 347.9)(18.9, 28.1)

160 1216 7.0 877 18.0 ≈ 1.0 (257.3, 421.3)(21.1, 34.6)

230 1168 9.1 866 23.3 ≈ 1.0 (196.8, 405.6)(16.9, 34.7)

340 1151 9.1 871 11.5 ≈ 1.0 (214.2, 345.2)(18.6, 30.0)

500 1087 6.4 809 19.2 ≈ 1.0 (199.3, 356.2)(18.3, 32.8)

E-glass 1200 tex

50 1520 6.1 12405 9.7 ≈ 1.0 (203.8, 357.5)(13.4, 23.5)

70 1533 5.3 1141 11.3 ≈ 1.0 (247.7, 423.3)(16.8, 28.7)

110 1476 8.2 1160 12.9 ≈ 1.0 (133.7, 355.1)(9.5, 25.3)

160 1405 12.2 - - - -

230 1382 14.2 1066 16.2 ≈ 1.0 (188.6, 443.7)(13.6, 32.1)

340 1290 13.5 - - - -

500 1150 15.9 1010 20.9 0.976 (1.2, 280.3)(1.0, 24.4)

carbon 400 tex

35 2165 3.7 1952 3.7 ≈ 1.0 (159.1, 265.2)(7.3, 12.3)

70 2093 3.2 1933 3.0 ≈ 1.0 (116.9, 203.1)(5.6, 9.7)

130 1936 3.6 1787 2.4 ≈ 1.0 (110.2, 188.2)(5.7, 9.7)

250 1837 5.2 1694 4.2 ≈ 1.0 (86.0, 201.6)(4.7, 11.0)

500 1578 6.3 1566 6.1 0.654 (-55.7, 80.8)(-3.5, 5.1)

Tab. 4.1: Results of the comparative experiments for AR-glass 1200 tex, E-glass

1200 tex, carbon 400 tex.
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decision making is taken as 5%).

It seems that the differences in mean strengths for E-glass and carbon become

smaller for longer gauge lengths in general. This effect is probably due to the

increased influence of the statistical size effect which predicts lower strengths for

yarns at longer gauge lengths because of the higher probability of severe flaws [67,

69, 16, 56]. Since the effect of stress concentrations in the clamps is constant and

independent on gauge length, the failure of yarns at very long lengths is rather given

by the weakest flaw in the material structure which, at some point, will exceed the

strength given by the stress concentrations in the clamps. Thus the positive effect

of the adapter clamps diminishes with growing length.

4.3 Comparison with theoretical strength

The fact that the new testing device could measure generally higher values of

strength compared to the current techniques raised the question, whether or not

the measured strength is close to the level theoretically achievable for the measured

material. Using the theoretical framework of fiber-bundle models and the related

statistical size effect, an analysis of the correspondence between the filament and

yarn strength is performed for carbon and AR-glass.

4.3.1 Theoretical yarn strength

Let us recall the theoretical mean filament strength (Eq. 2.3) as a function of gauge

length,𝐿, given the shape 𝑚 and scale (63.2% percentile) 𝜎0 parameters of its Weibull

strength distribution (note that the scale parameter is related to the reference length

𝐿0)

𝜇⋆
𝜎f

(𝐿) = (𝐿/𝐿0)−1/𝑚 𝜎0Γ(1 + 1/𝑚). (4.1)

This relation holds if the only source of randomness is the filament strength. See

Sec. 2.1 for detailed derivation. Further, let us recall the mean strength of a fiber

bundle consisting of a large number of identically and independently distributed
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Fig. 4.4: Results of the comparative experiment: yarn strength measured with Sta-

timat 4U adapter and various reference methods
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filaments as given by Eq. 2.6

𝜇⋆
𝜎b

(𝐿) = 𝜎0

(︂
𝑚𝐿

𝐿0

)︂−1/𝑚

exp(−1/𝑚). (4.2)

As stated in Chapter 3, this mean size effect curve only applies for a given range

of gauge lengths. In this form, it includes neither the horizontal asymptote due to

local strength correlation, nor the right asymptote describing the chain-of-bundles

model applying for longer yarns experiencing filament fragmentation. Since both

the correlation length and the effective bundle length are a priori unknown, we use

Eq. (4.2) for the prediction of the yarn strength while keeping in mind the above

statements on its accuracy for very short and very long gauge lengths.

4.3.2 Inference on the fiber strength distribution

Inference on the two unknown parameters of the filament strength distribution

(shape 𝑚 and scale 𝜎0) is drawn based on single filament tests. Tests with AR-

glass and carbon filaments each at two gauge lengths were available so that the

analysis is performed with these two materials only. The filament strength distribu-

tion is recalled from Sec. 2.1, Eq. 2.2 with explicit notation of the two parameters

𝐹 (𝜎, 𝐿) = 1 − exp
[︂
− 𝐿

𝐿0

⟨
𝜎

𝜎0

⟩]︂
. (4.3)

I. Statistical model A number of statistical models can be formulated for the

available experimental data. One possibility is the filament strength distribution of

the Weibull form at a fixed gauge length as given by Eq. (4.3). Parameters can be

inferred for each gauge length separately and their (weighted) average then taken

as the representative vector of parameters.

Another statistical model involves both sets of experiments directly via their

sample means at different gauge lengths. It is prescribed by Eq. (4.1) and the model

parameters are evaluated by regression.

II. Inference If the statistical model is given by Eq. (4.3), various inference meth-

ods can be used for parameter identification. Many researchers have addressed this
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issue using the a) method of statistical moments; b) maximum likelihood method

and c) Bayesian method [39, 28, 72, 71, 68, 61, 43, 4].

When Eq. (4.1) defines the statistical model of the data, the sought parameters

have a neat interpretation in the log-log plot of the mean filament strength vs. its

gauge length. The model is linear with slope −1/𝑚 and its vertical position ln(𝜇̂𝜎)

at a log-length ln(𝐿̂) is related to the logarithm of the scale parameter ln(𝜎0) by

ln(𝜎0) = ln(𝜇̂𝜎) +
[︁
ln(𝐿̂) + ln(𝑚/𝐿0) − 1

]︁
𝑚−1 (4.4)

resulting from Eq. (2.6).

When the parameters of the distribution of the filament strength are estimated,

Eq. (4.2) can be utilized to evaluate the theoretical bundle strength at any gauge

length. This computation can also be performed inversely so that the filament

strength distribution at any gauge length can be evaluated when the mean bundle

strengths at different gauge lengths are given.

Let us remark, that the reduction of strength for bundles compared to single

filaments is in this model caused only by the scatter in filament strength. The

difference between model prediction for bundle strength and measured values (in

the range of gauge lengths corresponding to the bundle behavior [11]) can be related

to imperfections of the test method.

4.3.3 Results

A prediction of the theoretical bundle strength (Fig. 4.5, dashed lines) based on

the mean filament strength (Fig. 4.5 triangles, measured with FAVIMAT Textechno

GmbH) was evaluated and compared with bundle measurements described in Sec. 4.2

(Fig. 4.5, filled circles) for AR-glass and carbon. Filament tests for E-glass were not

available to the author at the time this thesis was written.

If the filament tests can be assumed to be unbiased, the predicted bundle strength

(Fig. 4.5, dashed lines) fits the measured values of the yarn strength (Fig. 4.5, filled

circles) fairly well in the fiber-bundle range of the yarn behavior. Even though the

theoretical strength is very close to the measured strength for larger gauge lengths,
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Fig. 4.5: Scaling of filament strength (solid line) and bundle strength (dashed line)

based on filament tests (triangles) compared with measured bundle strengths (Sta-

timat 4U adapter and reference method).

it has to be recalled that this rage of lengths most probably belongs to the chain-

of-bundles rage of behavior while the theoretical strength is predicted for a fiber

bundle with non-interacting fibers.

Compared to the the reference method (Fig. 4.5, gray squares) it is obvious that

the Statimat 4U adapter delivers strengths much closer to the theoretical bundle

strength, which assumes a perfect clamping and thus the damage due to clamping
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of the Statimat 4U adapter can be considered very low.

The discrepancy between model and experiments for shorter gauge length (≤

100 mm) is due to filament waviness and differences in filament lengths. At short

yarn lengths, these minor geometrical imperfections become more pronounced and

cause non-uniform strain distribution across the yarn. More detailed explanations

are given in [67].

4.4 Homogeneous vs. inhomogeneous yarn stress

So far, it has been assumed that a homogeneous stress state in the yarn cross-

section increases its overall tensile strength when compared to the counterpart of

non-uniformly distributed stress. In this section, we provide a mathematical proof

of this intuitive statement.

Let us assume that a bundle of non-interacting parallel brittle fibers is subjected

to a global strain 𝜀y, which in the case of the tensile test device equals the clamp

displacement 𝑢 divided by the initial gauge length 𝐿:

𝜀y = 𝑢

𝐿
. (4.5)

Provided that all fibers are perfectly clamped at the gauge length 𝐿, the fiber stress

𝜎f equals 𝐸f𝜀y with 𝐸f being the modulus of elasticity of the fibers. During real

tensile tests, however, the fibers are not perfectly clamped. Variations in fiber

slip in the clamps, initial fiber length and other sources of inhomogeneities can be

summarized into an effective modulus of elasticity,𝐸f,eff , which equals

𝐸f,eff = 𝐸f + 𝜖(𝜀y), (4.6)

where 𝜖 is an error term – in general a function of the global yarn strain 𝜀y. Thus,

the fiber stress equals

𝜎f(𝜀y) = 𝜀y𝐸f,eff = 𝜀y[𝐸f + 𝜖(𝜀y)]. (4.7)

The stress of a yarn subjected to 𝜀y is

𝜎y(𝜀y) = 1
𝑛f

𝑛f∑︁
𝑖=1

𝜎f,𝑖(𝜀y), (4.8)
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where 𝜎f,𝑖(𝜀y) are stresses in individual fibers corresponding to the global yarn strain.

According to [16, 44], the expected fiber stress at any given 𝜀y equals

E[𝜎f,i(𝜀y)] = 𝜀y · (𝐸f + 𝜖𝑖) · [1 − 𝐹 (𝜀y · (𝐸f + 𝜖𝑖))], (4.9)

where 𝐹 (𝜎f) is the failure probability of a fiber subjected to the stress 𝜎f . If 𝐹 (𝜎f)

is a Weibull distribution with shape 𝑚 and scale 𝑠, the maxima of these expected

fibers stresses E[𝜎f,i(𝜀y)] are given by

E[𝜎f,i]⋆ = 𝑠 · 𝑚−1/𝑚 · exp(−1/𝑚) (4.10)

and are attained at the strain

𝜀⋆
f,𝑖 = 𝑠 · 𝑚−1/𝑚

𝐸f + 𝜖𝑖

, (4.11)

which is different for each fiber, see Chapter 2 for derivation of the formulas.

With the substitution of Eq. (4.9), the yarn stress given by Eq. (4.8) becomes

(for a large number of fibers)

𝜎y(𝜀y) = 1
𝑛f

𝑛f∑︁
𝑖=1

E[𝜎f,i(𝜀y)]. (4.12)

The maximum of the yarns stress 𝜎⋆
y, i.e. the yarn strength, is attained at the strain

𝜀⋆
y:

𝜎⋆
y = max[𝜎y(𝜀y)] = 1

𝑛f

𝑛f∑︁
𝑖=1

E[𝜎f,i(𝜀⋆
y)]. (4.13)

Clearly, Eq. (4.13) is maximized when the global yarn strain equals the fiber strain

corresponding to the mean strength of individual filaments, in mathematical form:

𝜀⋆
y = 𝜀⋆

f,𝑖, ∀𝜀⋆
f,𝑖. This is only possible if the error term 𝜖𝑖 in 𝐸f,eff becomes zero, which

results in a uniform stress state within the yarn. This gives the proof that uniform

stress state results in the maximum possible yarn strength compared to any form of

non-uniform stress state.

4.5 Conclusions

The newly developed tensile test device Statimat 4U adapter largely diminishes

stress concentrations in high-modulus yarns with brittle filaments and thus measures
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higher strengths than other tensile test methods. Both a comparative experiment

and theoretical models based on single filament tests confirm the better performance

of the new device with a high statistical significance. A combination of the improved

testing method for bundles, tests on single filaments and of the fiber bundle model

describing the statistical size-effect provides an efficient means for thorough strength

characterization of high-modulus multifilament yarns.

Concerning other materials, the positive effect of the adapter clamp could not be

observed for aramid, UHMPE and basalt yarns, which have been tested in smaller

sample sizes. However, significant differences compared to reference methods were

measured for a small sample size of coated carbon yarns (9% polymer matrix). The

positive effect of the Statimat 4U adapter on the yarn strength can thus be expected

mostly for yarns with very brittle fibers, or generally, fibrous structures prone to local

stress concentrations.



56

5 GLASS FIBER REINFORCED CONCRETE

In this chapter, the behavior of fibrous yarns in composites is demonstrated. In

particular, the analyzed composite consists of a cement-based matrix and chopped

AR-glass strands which serve as reinforcement for the quasi-brittle matrix. Two ap-

proaches to the simulation of the crack bridging effects of chopped AR-glass strands

are introduced and compared: a semi-analytical probabilistic model and a discrete

rigid body spring network model with semi-discrete representation of the chopped

strands. While the probabilistic model has been developed by the author, the latter

discrete model has been developed by prof. John E. Bolander from UC Davis and

serves merely for reference purposes.

The chopped AR-glass strands exhibit random features at various scales. Fiber

strength and interface stress are considered as random variables at the scale of a

single fiber bundle while the orientation and position of individual bundles with

respect to a crack plane are considered as random variables at the crack bridge

scale. At the scale of the whole composite domain, the distribution of fibers and the

resulting number of crack-bridging fibers is considered. All these effects contribute to

the variability of the crack bridge performance and result in size-dependent behavior

of the composite.

The structure of this chapter is as follows: Sec. 5.1 provides an introduction and

state of the art report. In Sec. 5.2, a probabilistic approach that predicts statistical

moments of the bridging force is described. In Sec. 5.3, a discrete model with semi-

discrete representation of the fiber bundles is presented. Both models are compared

and their possibilities and limitations are discussed in Sec. 5.5

5.1 Introduction

Glass fibers as reinforcement in cement-based matrix were first utilized in the 1960s

in Russia [7]. A further major step towards glass fiber reinforced concrete (GFRC or

GRC) is due to the company Owens Corning which developed alkali-resistant (AR)

glass by increasing the content (>16%) of zirconia [70, 35] in the material. This
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enhancement allowed for the production of a durable high-performance cement-

based composite, which has been used in various modifications in structural and

military engineering since [5, 52].

Each of the AR-glass fibers is a bundle of (typically 50 to 400) monofilaments

which are bonded together by a sizing material. When bridging a crack, these

filaments debond and rupture or are being pulled out and thus increase the toughness

of the cement-based composite [36]. Moreover, the short dispersed fibers increase

the first cracking stress and, above a critical volume fraction threshold, the ultimate

tensile strength. These features together with the enhanced durability make the

use of GFRC an alternative to traditional steel fiber reinforced concrete (FRC).

However, the bridging mechanism is far more complex than in FRC.

Once a crack forms in the matrix, the glass fibers bridging the crack act against

further crack opening by stretching and pullout. During this process, some filaments

are completely pulled out while others rupture. The mechanism exhibits random

features that can be divided into three scales:

1) At the micro scale, individual filaments within a bundle experience random

interface shear flow depending on their position within the bundle and thus

on the penetration of the matrix into the bundle core. A second source of

randomness at the micro scale is the fiber strength that is determined by the

weakest flaw in the material structure.

2) At the meso scale, individual bridging fibers are randomly oriented and po-

sitioned within the composite domain. This randomness causes variability in

the bridging force due to snubbing and non-uniform pullout lengths [34]

3) At the macro scale, the overall number of fibers bridging a crack is a random

variable that depends on the specimen geometry, fiber geometry and fiber

volume fraction.

A model that considers these sources of random effects and reflects the complexity

and unique bridging mechanism of the short glass fiber bundles does not exist to

date.
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Fig. 5.1: Multiscale approach to the modeling of GFRC: (a) composite crack bridge

with multiple filament bundles; (b) filament bundle; (c) single filament considered

independently from the bundle.

5.2 Probabilistic model

The semi-analytical probabilistic model is limited to uniaxial tensile loading of a

composite with discrete, planar matrix cracks and mechanically independent fibers.

The mechanical independence of fibers is provided if matrix deformations are much

lower than the fiber deformations i.e. the matrix stiffness 𝐸m(1 − 𝑉f) ≫ 𝐸f𝑉f is

much higher than that of the fibers. Here, 𝐸m and 𝐸f are the matrix and fiber

elastic moduli, respectively, and 𝑉f is the fiber volume fraction.

5.2.1 Single filament

Let us assume that the bridging action of a single filament with embedded length

ℓe and inclination angle 𝜙c (with respect to the crack plane normal) is provided in

the form

𝑃f = 𝑓(𝑤, ℓe, 𝜙c, 𝜃𝜃𝜃r, 𝜃𝜃𝜃d), (5.1)

where 𝑃f is the bridging force, 𝑤 is the crack opening, 𝜃𝜃𝜃d is a vector of deterministic

parameters and 𝜃𝜃𝜃r a vector of random variables defined over the sampling space Ωr

with the corresponding joint distribution function 𝐺Ωr . The mean force transmitted
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by a filament within a bundle bridging a matrix crack is

𝜇𝑃f (𝑤, ℓe, 𝜙c) = EΩr [𝑃f ] (5.2)

with EΩ[X] being the expectation operator applied to the random variable X defined

over the sampling space Ω with the joint probability distribution function 𝐺Ω(X),

i.e.

EΩ[X] =
∫︁

Ω
X d𝐺Ω(X). (5.3)

The variance of the filament bridging force is given by

𝜎2
𝑃f

(𝑤, ℓe, 𝜙c) = DΩr [𝑃f ], (5.4)

with DΩ[X] being the variance operator applied to the random variable X defined

over the sampling space Ω with the joint probability distribution function 𝐺Ω(X),

i.e.

DΩ[X] = EΩ[X2] − EΩ[X]2 =
∫︁

Ω
X2 d𝐺Ω(X) − EΩ[X]2. (5.5)

5.2.2 Filament bundle

Given the number of filaments in a bundle, 𝑛f , the force transmitted by the whole

bundle reads

𝑃b =
𝑛f∑︁

𝑖=1
𝑃f(𝑤, ℓe, 𝜙c, 𝜃𝜃𝜃r,𝑖, 𝜃𝜃𝜃d), (5.6)

where 𝜃𝜃𝜃r,𝑖 is the vector of parameters obtained as the 𝑖th sample from the sampling

space Ωr of the random variables 𝜃𝜃𝜃r. Since the inclinations and embedded lengths

of the bridging bundles will be random, the 𝜙c and ℓe parameters are to be treated

as random variables. Their sampling space will be referred to as Ω𝜙. The mean

bridging force transmitted by a bundle has the form

𝜇𝑃b(𝑤) = EΩ𝜙Ωr [𝑃b] = 𝑛fEΩ𝜙Ωr [𝑃f ]. (5.7)

For the variance of the bundle bridging force, we have to use the law of total variance,

which states

D[𝑌 ] = E[D(𝑌 |𝑋)] + D[E(𝑌 |𝑋)]. (5.8)
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When this law is applied to the present case, (𝑌 |𝑋) is substituted by 𝑃b(𝑤, ℓe, 𝜙c, 𝜃𝜃𝜃d|𝜃𝜃𝜃r).

We can alternatively express the conditional probability by explicitly writing the in-

tegration domain for individual statistical operators in the equation. With this

notation, the variability of the randomly oriented filament bundle with random em-

bedded length reads:

𝜎2
𝑃b

(𝑤) = EΩ𝜑
[DΩr(𝑃b)] + DΩ𝜑

[EΩr(𝑃b)]

= 𝑛2
f

(︁
EΩ𝜑

[DΩr(𝑃f)] + DΩ𝜑
[EΩr(𝑃f)]

)︁
.

(5.9)

where we do not explicitly write out the dependencies of 𝑃f on its parameters.

5.2.3 Multiple bundles

Let us now introduce the variable 𝑛b, which stands for the number of bundles

(chopped strands) bridging a matrix crack. In a composite with randomly dis-

persed fiber bundles, 𝑛b will be a random variable with sampling space Ωb. The

total force transmitted by all 𝑛b bundles can be written as

𝑃c =
𝑛b∑︁

𝑗=1

𝑛f∑︁
𝑖=1

𝑃f(𝑤, ℓe,𝑗, 𝜙c,𝑗, 𝜃𝜃𝜃r,𝑖𝑗, 𝜃𝜃𝜃d) =
𝑛b∑︁

𝑗=1
𝑃b,𝑗, (5.10)

where ℓe,𝑗 and 𝜙c,𝑗 are the 𝑗th samples from the Ω𝜙 sampling space, the vector 𝜃𝜃𝜃r,𝑖𝑗

is the 𝑖𝑗th sample from the sampling space Ωr and 𝑃b,𝑗 can be expressed as

𝑃b,𝑗 =
𝑛f∑︁

𝑖=1
𝑃f(𝑤, ℓe,𝑗, 𝜙c,𝑗, 𝜃𝜃𝜃r,𝑖𝑗, 𝜃𝜃𝜃d). (5.11)

The mean force resulting from the bridging action of randomly dispersed short fiber

bundles has the form

𝜇𝑃c(𝑤) = EΩbΩ𝜙,Ωr [𝑃c] = EΩb [𝑛b] 𝜇𝑃b(𝑤)

= EΩb [𝑛b] 𝑛f EΩ𝜙Ωr [𝑃f ].
(5.12)

Applying the law of total variance according to Eq. (5.8) with 𝑃c(𝑤, ℓe, 𝜙c, 𝜃𝜃𝜃r, 𝜃𝜃𝜃d|𝑛b)

substituted for (𝑌 |𝑋), the variance of the crack bridging force 𝑃c is obtained as

𝜎2
𝑃c(𝑤) = DΩbΩ𝜙Ωr [𝑃c] = DΩbΩ𝜙Ωr

⎡⎣ 𝑛b∑︁
𝑗=1

𝑃b,𝑗

⎤⎦
= EΩb

⎡⎣DΩ𝜙Ωr

⎛⎝ 𝑛b∑︁
𝑗=1

𝑃b,𝑗

⃒⃒⃒⃒
⃒⃒𝑛b

⎞⎠⎤⎦+ DΩb

⎡⎣EΩ𝜙Ωr

⎛⎝ 𝑛b∑︁
𝑗=1

𝑃b,𝑗

⃒⃒⃒⃒
⃒⃒𝑛b

⎞⎠⎤⎦ (5.13)
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Exploiting the independence of 𝑃b and 𝑛b, Eq. (5.13) can be simplified to

𝜎2
𝑃c(𝑤) = EΩb

[︁
𝑛b · DΩ𝜙Ωr (𝑃b)

]︁
+ DΩb

[︁
𝑛b · EΩ𝜙Ωr (𝑃b)

]︁
= EΩb [𝑛b] · DΩ𝜙Ωr [𝑃b] + DΩb [𝑛b] ·

(︁
EΩ𝜙Ωr [𝑃b]

)︁2
.

(5.14)

In order to evaluate the statistical moments of the bridging response, the distribution

functions of the random variables need to be known. The derivation of distribution

functions for individual random variables is out of the scope of the present publica-

tion so that we refer to [56] for the distribution of the strength of a brittle fiber in

composite and the bond strength distribution. The distribution of the number of

dispersed short fibers bridging a planar matrix crack is in detail dealt with in [65].

5.3 Discrete model

The discrete model developed by John E. Bolander at UC Davis [8] is introduced and

used as reference for the probabilistic model described above. In the discrete model,

fiber and matrix phase models are both based on a lattice model. The matrix phase

is represented by a set of randomly distributed nodes which are interconnected

by springs and kinematic constraints. This nodal set for the matrix phase has

lattice topology and material properties by the Delaunay/Voronoi tessellations which

enable the discretized matrix phase to behave in an elastically homogeneous fashion

(Fig. 5.2a). As shown Fig. 5.2b, the matrix element is defined according to the

rigid-body-spring concept [8]. The linear and rotational zero-size springs are formed

at the centroid 𝐶 of the area 𝐴𝑖𝑗 of the Voronoi facet common to nodes 𝑖 and 𝑗.

The spring set is constrained to nodes 𝑖 and 𝑗 via rigid arm constraints.

The fiber phase can be discretized within the computational domain irrespective

of the background lattice representing the matrix [31]. A fiber element is defined

wherever a fiber passes through the Voronoi facet 𝐴𝑖𝑗 associated with a matrix

element (Fig. 5.2c). In the semi-discrete fiber model, a linear zero-size spring for

the fiber reinforcement is positioned at the intersection point I and aligned with

the fiber path. The spring is linked to the associated two nodes 𝑖 and 𝑗 through

rigid-arm constraints similar to the rigid-body-spring construction of the matrix

elements. The semi-discrete modeling of fibers is computationally efficient, contrary
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to the fully-discrete fiber modeling in which a fiber is discretized as a series of the

frame elements with additional nodal degrees of freedom and its elements are linked

to the associated nodes via an ordinary bond link. This feature of the semi-discrete

fiber model enables simulations with large numbers of fibers.

Fig. 5.2: Lattice discretization of fiber reinforced concrete: (a) Delaunay/Voronoi

tessellations of material domain; (b) matrix element 𝑖𝑗 defined by facet centroid 𝐶;

and (c) fiber element associated with intersection point 𝐼.

5.4 Computational example

Having formulated the modeling framework for GFRC in two alternatives, we can

proceed to a computational example, which compares the two approaches. Both

models require an independent micromechanical model of a fiber bridging action.

For this purpose, we apply the analytical form due to [38] with snubbing and spalling

effects according to [33]. For reasons of brevity and readability, we simplify the

general expressions by assuming a perfectly plastic (frictional) bond with infinite

initial stiffness and constant bond strength. With these assumptions, the resulting

form for a filament bridging action in the debonding phase reads

𝐹f,deb(𝑤, 𝜎u = ∞) = 𝐴f

√︃
2𝐸f𝜏𝑤

𝑟
· exp (𝑓𝜙c) · (cos 𝜙c)𝑠 (5.15)

with 𝐸f , 𝐴f and 𝑟 being the filament modulus of elasticity, cross-sectional area and

radius, respectively, 𝜏 denoting the bond strength, 𝑓 the snubbing coefficient and 𝑠
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Fig. 5.3: Analytical model of a single fiber bridging action due to Naaman et al.

[38].

the spalling coefficient. When the fiber is fully debonded along the embedded length

ℓe, the pullout stage starts. Again, for reasons of brevity, we ignore any hardening

or softening during the pullout stage and write the bridging force during the pullout

stage simply as

𝐹f,pull(𝑤, 𝜎u = ∞) = 2𝜋𝑟𝜏(ℓe + 𝑤0 − 𝑤) · exp (𝑓𝜙c) · (cos 𝜙c)𝑠 (5.16)

with 𝑤0 being the crack opening at the transition between the debonding and pullout

stage. It can be obtained by formulating the continuity condition

𝐹f,deb(𝑤0) = 𝐹f,pull(𝑤0) → 𝑤0 = 2ℓ2
e𝜏

𝑟𝐸f
. (5.17)

In both Eq. (5.15) and Eq. (5.16), the assumption was that fibers have an infinite

strength 𝜎u = ∞. If we now include the possibility of fiber rupture, we have to

multiply the fiber force in the debonding phase by 𝐻(𝜎u − 𝜎f), where 𝜎f denotes the

fiber stress and 𝐻(·) the Heaviside step function defined as

𝐻(𝑥) =

⎧⎪⎨⎪⎩ 0 : 𝑥 < 0

1 : 𝑥 ≥ 0.
(5.18)

The filament force in the debonding stage then becomes

𝐹f,deb(𝑤) = 𝐴f

√︃
2𝐸f𝜏𝑤

𝑟
· exp (𝑓𝜙c) · (cos 𝜙c)𝑠 · 𝐻(𝜎u − 𝜎f) (5.19)
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Fig. 5.4: Computational example performed with the present modeling framework:

(a) single filament bridging responses (gray curves) sampled from the sampling space

of random variables (𝜏 ∼ uniform distribution between 0.01 and 0.4 MPa and 𝜎u ∼

Weibull distribution with shape 𝑚 = 5 and scale 𝑠 = 1.75 GPa) and mean filament

response (black curve); (b) filament bundle responses sampled from the sampling

space of random variables (𝜙c ∼ sin(2𝑥) distribution and ℓe ∼ uniform distribution

between 0 and 9 mm) and mean bundle response (black curve).

with

𝜎f = 𝐹f,deb(𝑤, 𝜎u = ∞)
𝐴f

. (5.20)

In a similar manner, the pullout force has to be multiplied by a Heaviside function

which ensures that fibers have not ruptured at their peak stress during the debonding

so that

𝐹f,pull(𝑤) = 2𝜋𝑟𝜏(ℓe + 𝑤0 − 𝑤) · exp (𝑓𝜙c) · (cos 𝜙c)𝑠 · 𝐻(𝜎u − 𝜎f,max), (5.21)

where

𝜎f,max = 2𝜋𝑟𝜏ℓe

𝐴f
. (5.22)

The complete filament bridging action (see Fig. 5.3) can be written as

𝑃f(𝑤) = 𝐹f,deb(𝑤) · 𝐻(𝑤0 − 𝑤) + 𝐹f,pull · 𝐻(𝑤 − 𝑤0). (5.23)

An example of the filament bridging action is depicted in Fig. 5.4a for material

parameters that correspond to AR-glass fibers with random 𝜏 distributed uniformly
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between 0.01 and 0.4 MPa and random fiber strength 𝜎u with Weibull distribution

with shape parameter 𝑘 = 5 and scale parameter 𝜆 = 1.75 GPa. The filaments

are embedded perpendicular to the crack plane in this example. The figure shows

samples from the distributions given by Eq. (5.23) and the mean filament response

given by Eq. (5.2), which, multiplied by the number of filaments in a bundle, is the

prediction of the response of a perpendicularly embedded filament bundle. The red

curve is a single simulation of a bundle consisting of 100 filaments performed by the

discrete model.

Fig.5.4b depicts the bridging force of a bundle consisting of 𝑛f = 100 filaments

with random bond strength and fiber strength as in Fig. 5.4a but, additionally, the

orientation angle and embedded length are considered as random variables. Random

samples of such filament bundles and the mean bundle bridging force predicted by

the probabilistic model with Eq. (5.7) are depicted. The red curve is the bridging

force of 𝑛b = 100 bundles that are randomly oriented and positioned within the

crack predicted by the discrete model.

5.5 Conclusions

Both the probabilistic and the discrete model are capable of simulating the crack

bridging action of chopped AR-glass strands in a cement-based matrix. The prob-

abilistic model is computationally very efficient and able to evaluate statistical mo-

ments of the response. However, the model formulation includes a number of as-

sumption that make the model of use only for uniaxial tension in its current form.

The discrete model evaluates the response of the composite as a single sample.

Therefore, repeated calculations would have to be performed when the variability

was of interest. The discrete model, even though more computationally demand-

ing, is much more robust than the probabilistic model. It is not limited to uniaxial

tension and is therefore suitable for general purposes. Its comparison with the

probabilistic model serves as a verification of the semi-discrete fiber bundle imple-

mentation.
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SUMMARY

The present thesis proposes probabilistic models of the tensile strength of high-

modulus multifilament yarns and glass fiber reinforced concrete. Novel approaches to

modeling of the tensile strength of both multifilament yarns and glass fiber reinforced

concrete have been derived and described. Regarding the tensile testing of high-

modulus multifilament yarns, issues with stress concentrations in clamps of the

currently used tensile test machines have been identified. A new clamp device that

addresses this issue was developed and validated in comparative experiments with

commonly used tensile test machines.

Suggestions for further research

I. multifilament yarns Although the presented work shed light on a variety of

aspects of the tensile behavior of high-modulus multifilament yarns, some issues

have remained unanswered or have not been answered completely. The following

suggestions summarize the open questions and should encourage further research in

the field.

In the long run, the approach motivates further work in two directions: First, the

industrial testing devices should be enhanced in order to deliver automatic testing

of high-modulus multifilament yarns with varied lengths. Second, a more advanced

modeling of the mean size effect curve transition between the bundle range and

chain-of-bundles range would enable further theoretical conclusions about the re-

distribution mechanisms between the filaments within the yarn. In particular, a

random-field simulation accounting for effects like position of filaments within the

bundle cross-section and the transition from the global to the local load sharing with

possibly variable bundle length would provide more insight into the transition from

the fiber-bundle to the chain-of-bundles behavior of fibrous yarns.

As the author points out in the corresponding chapter, the transition between

the two modes of tensile strength behavior is rather fluent. Especially in the length

range between one and two effective bundle lengths, the prediction of the yarn

behavior is rather complex. Since this is the length scale of macroscopic structural
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elements, the issue surely deserves further attention.

Due to the double-clamp mechanism of the Statimat 4U adapter, it is difficult

to measure yarn strain during the tensile test – the reference length changes during

the test. This is a severe limitation which has to be addressed if the clamp device is

to be released for serial production and used industrially. One possibility is external

optical measurement but the device will require a robust built-in solution for strain

measurement, eventually.

In course of the validation of the novel clamp device, five materials have been

tested. For each material, the parameters of the clamps have to be set in a time

consuming procedure. With the design of experiments framework and a software

module for the tensile test machine, the optimization of the clamping parameters

should be performed automatically with a series of tensile test of the studied mate-

rial.

A problem that has only been addressed marginally is the tensile testing of coated

yarns. Currently used methods are very time consuming and the adapter clamps

have proved to yield very good results with this kind of material. In particular, the

tensile strengths with coated carbon and basalt yarns were about 9% higher than

with standard methods. Taking into account the uprise of coated yarn material,

further research in this direction seems to be highly desirable.

II. glass fiber reinforced concrete The probabilistic model derived in Chap-

ter 5 provides a homogenized material model for the tensile response of glass fiber

reinforced concrete (GFRC). Its output is a constitutive law, which can be used

in the vectorial formulation of microplane responses within the framework of a mi-

croplane damage model [58, 59, 57]. With this link to macroscale computation,

the probabilistic model is a very useful and computationally convenient means for

designing and optimizing GFRC structures.

In order to increase the durability and serviceability of textile reinforced concrete

structures, chopped glass fiber bundles are usually added into the cement-based ma-

trix. However, the fiber volume fraction, fiber length and fiber type are parameters

that can be easily controlled and modified in order to achieve an optimized struc-
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tural behavior under both service loads and in ultimate limit state. An algorithm

performing this task requires the model of interaction effects between the bearing

textile reinforcement and the toughening chopped fiber reinforcement. This direction

should be further investigated if the model is to be applied in structural computation

and design.
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