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ABSTRACT
This bachelor’s thesis aims to study the interaction of biochemical substances with
graphene by utilizing sensors with a Ąeld-effect transistor arrangement. Adsorbed atoms
or molecules can induce doping of the graphene sheet, which can be experimentally
determined by observing the shift in the position of the Dirac point. Dependence of
the Dirac point position on the added substance is studied, as well as time response
to the addition of the liquid sample. Sensitivity to different molecules is observed and
the implication of the results for the adsorption of various molecules are discussed.
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ABSTRAKT
Tato bakalářská práce studuje interakci biochemických látek s grafénem pomocí senzorů
v uspořádání polem řízeného tranzistoru. Adsorbované atomy nebo molekuly mohou
vyvolat dopování grafénové vrstvy, což může být experimentálně určeno pozorováním
změny pozice Diracova bodu. Je studována závislost polohy Diracova bodu na přidané
látce a stejně tak i časová odezva na přidání kapalného vzorku. Je pozorována citlivost
na odlišné molekuly a jsou dikutovány důsledky výsledků pro adsorpci různých molekul.
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Introduction

Since its discovery in 2004 [1], graphene has taken the world of scientiĄc research

by storm. The potential of this novel material has been explored in applications

ranging from composite materials and anti-corrosive coatings to energy storage and

biomedical diagnostics.

The unique electronic properties of graphene, such as high carrier mobility and

ambipolar Ąeld effect, combined with an extremely high surface-to-volume ratio al-

low for sensors based on Ąeld-effect transistors to achieve extraordinarily low limits

of detection. These sensors offer considerable promise in various Ąelds, including

monitoring of environmental pollutants, early medical diagnostics, and DNA se-

quencing.

However, selective sensing of substances requires functionalization of graphene

and the Ąrst step in this direction is understanding the mechanism of adsorption

of biological molecules on non-functionalized graphene. For this purpose, three

different molecules based on nucleic acids are studied.

Additionally, the detection of urea by a graphene sensor is examined in this thesis.

Urea solution has found its use as an additive in diesel motors to lower NOx emissions

and graphene sensors placed in these motors could monitor the concentration of urea,

assessing whether, e.g., water was used instead.

The theoretical part of this work introduces graphene and the working principles

of sensors in the FET arrangement, along with the state of the art of biosensing

capabilities of graphene sensors. In the experimental part, two designs of graphene

sensors are fabricated and two types of experiments are performed to investigate

the interaction of graphene with the measured biochemical substances. Finally, the

results obtained from these experiments are presented and discussed.
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1 Graphene

Graphene is a two-dimensional allotrope of carbon with the atoms arranged in

a hexagonal (honeycomb) lattice, Fig. 1.1, where the individual carbon atoms are

spaced 1.42 Å apart. This novel material was Ąrst isolated by Geim and Novoselov

in 2004 [1], although the structure had been used as a theoretical model for various

calculations in graphite decades prior.

Fig. 1.1: The lattice of graphene in real (left) and reciprocal space (right). 𝑎i de-

note lattice primitive vectors, Ói are the nearest neighbour vectors, and 𝑏i are the

reciprocal lattice vectors. Points K and K’ on the edge of the Brillouin zone are

called the Dirac points. Adapted from [6].

Carbon atoms form strong covalent sp2 bonds in the plane of the graphene mono-

layer with π-orbitals perpendicular to it. This arrangement is responsible for some

of the unique electronic properties of graphene, as will be discussed in detail later.

Another important consequence of the structure is the resistance to in-plane de-

formations characterized by high Young modulus 𝐸 = 1 TPa [2] for defect-free

graphene. Other interesting properties of graphene for different applications include

high in-plane thermal conductivity of 5000 WmK⊗1 [3] for thermal management in

electronics, light transmittance ∼ 97.7 % [4] useful in optoelectronics, or gas imper-

meability [5] that makes graphene a possible candidate for anti-corrosive coatings.

1.1 Electronic properties

Graphene is often described as a zero band gap semiconductor due to the band

structure and the subsequent behavior of charge carriers at the Dirac points K and

K’. The charge carriers (called Dirac fermions) behave as relativistic particles with

zero rest mass moving at the Fermi speed 𝑣F ≈ 106 m/s in these points and can be
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continuously converted from electrons to holes (and vice versa) by the application of

an external electric Ąeld, which makes graphene predisposed for use in electronics.

The dispersion relation forms valence and conduction bands as cones that meet

in exactly one point, Fig. 1.2. When the Fermi level (𝐸F) intersects this point, the

conductivity of graphene is at its lowest, as the number of holes and electrons is in

equilibrium.

Fig. 1.2: Energy spectrum of graphene dependent on the wave vectors with a zoom-

in on the energy bands at one of the Dirac points. Adapted from [6].

This balanced state of charge carriers is true only for pristine graphene, but real

graphene samples are highly susceptible to doping of both p and n type, which con-

sequently changes the Fermi level. Adsorption of atoms or molecules on the surface

can cause electrostatic doping, which is studied in this thesis.

1.2 Preparation by CVD

There are several possible ways of graphene fabrication (e.g., mechanical exfoliation,

epitaxial growth, and thermal decomposition of SiC), but chemical vapour deposition

(CVD) is the most promising method for large-scale, commercial production. In

CVD, a precursor gas is injected into the chamber, which reacts with or thermally

decomposes on a substrate.

For graphene preparation, methane or ethylene are most commonly used as pre-

cursor gases that break down into carbon and hydrogen atoms, but almost any

organic substance containing carbon can be used [7]. Common substrates include

copper and nickel, but copper foil is preferred due to the low solubility of carbon

in copper compared to nickel, therefore carbon atoms precipitate on the substrate

surface instead of Ąrst diffusing into the substrate bulk.

16



The exact growth parameters differ depending on the precursor gas, the sub-

strate, and the CVD furnace construction, among others. Using copper foil as

the substrate, the Ąrst step is annealing at high temperature (approximately 1000 ◇C)

in argon to smooth out the substrate surface before heating in H2 atmosphere at low

pressure. In the next phase, methane is added into the chamber, where the molecules

decompose. Hydrogen atoms are removed away by continuous H2 gas Ćow, while

carbon atoms accumulate on the substrate and create growth centers that expand

into grains. These grains increase in size until they connect with neighbouring grains

and form a monolayer of graphene. The growth stops once the whole copper foil is

covered, but multilayers can emerge in the places of the original growth centers if

the growth rate is too quick. In this case, the second and third layers begin forming

before the whole foil is covered with the graphene monolayer.

17





2 Graphene sensors based on Ąeld-effect

transistors

Due to its unique structure and electronic properties, graphene is a promising can-

didate for all manner of sensors. Shedin et al. developed a graphene sensor able

to detect individual gas molecules [9]. Selective detection of nucleic acids on func-

tionalized graphene with the limit of detection (LOD) in the order of pM was also

observed [10]. One type of sensor design that stands out because of its fast response

and relatively simple test procedure is a Ąeld-effect transistor (FET). Additionally,

FET sensors have inherently high sensitivity and low LOD due to the amplifying

function of transistors.

The classical FET consists of three electrodes (source, drain, and gate), a semi-

conducting channel between source and drain, and an insulating layer that separates

the channel from gate. At a constant voltage 𝑉SD between source and drain, the cur-

rent 𝐼SD Ćowing through the channel can be modulated by the gate voltage (𝑉G).

In the case of graphene Ąeld-effect transistor (GFET), graphene serves as the con-

ductive channel that is able to utilize both holes and electrons as charge carriers de-

pending on the applied gate voltage due to its ambipolar character. Fig. 2.1 shows

the typical transfer curve for a GFET with the peak of the 𝑅(𝑉G) dependency cor-

responding to the so-called Dirac point voltage (𝑉D), where the charge carriers are

in equilibrium.

n-dopingp-doping

Fig. 2.1: Dependency of resistance 𝑅 on applied gate voltage 𝑉G. Adapted from

[11].
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2.1 Bottom-gated FET sensors

A traditional FET has a solid-state bottom gate (Fig. 2.2), analogously a silicon

substrate is usually used as the bottom gate for a GFET with a thin layer of sil-

icon dioxide (SiO2) as the insulator. The conductivity of the graphene channel is

modulated directly by applying gate voltage 𝑉G.

Using the model of a parallel-plate capacitor, the concentration of the majority

carriers in graphene can be calculated from 𝑉G. The capacitance of a capacitor is

deĄned as the ratio of charge and voltage:

𝐶 =
𝑄

𝑉
. (2.1)

For a parallel-plate capacitor, the capacitance can be calculated as [12]:

𝐶 =
𝜀0𝜀r𝐴

𝑑
, (2.2)

where 𝜀0 is the permittivity of vacuum, 𝜀r the relative permittivity of the dielectric,

𝐴 the area of the plates and 𝑑 the distance between them. For GFET, the dielectric

is the SiO2 layer and the charge 𝑄 can be expressed as the elementary charge 𝑒

multiplied by the number of majority carriers 𝑁 in graphene. After substituting

𝑄 = 𝑁𝑒 and combining equations 2.1 and 2.2:

𝑁 =
𝜀0𝜀r𝐴

𝑒𝑑
𝑉. (2.3)

Considering that graphene is a 2D structure, the concentration of majority car-

riers 𝑛 depending on the gate voltage 𝑉G can be determined as:

𝑛 =
𝑁

𝐴
=

𝜀0𝜀r

𝑒𝑑
𝑉G. (2.4)

2.2 Top-gated FET sensors

Another way of insulating the channel from the gate electrode is to apply a high-

resistive electrolytic solution on the channel and add a top gate from above (Fig. 2.2).

In this case, an electric double layer (EDL) forms at the graphene/electrolyte inter-

face. Some ions in the electrolyte are immobilized on the graphene surface, while

the rest of them creates a diffuse layer. The thickness of EDL, called the Debye

length (ÚD), depends on the ionic strength 𝐼 of the electrolyte as [13]:

ÚD =

√︃

𝜀0𝜀r𝑘B𝑇

2𝑁A𝑒2𝐼
, (2.5)

where 𝜀r represents the relative permittivity of the electrolyte, 𝑘B the Boltzmann

constant, 𝑇 the temperature, and 𝑁A the Avogadro constant.
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Any ions at a distance further from the graphene surface than ÚD are screened by

the EDL, which prevents them from interacting with graphene. Therefore, a large

Debye length in the electrolyte is always desirable to heighten the sensitivity by

increasing the distance at which analytes can inĆuence graphene. But it is also

an essential requirement for graphene functionalized by probe molecules adsorbed

on the surface, because the height of the probes themselves needs to be taken under

consideration.

VSD

VG source draingraphene

insulator

gate

VSD
VG

source draingraphene

electrolyte

gate

insulator

Fig. 2.2: Schematic of a bottom-gated (left) and a top-gated (right) GFET.

Electrolyte-gated GFETs are especially suitable for use as biosensors due to low

operating potentials (usually in the range of ±1 V), that prevent redox reactions

and splitting of molecules.

2.3 The sensing mechanism

A molecule adsorbed on graphene modulates its conductivity by changing the Fermi

level 𝐸F. For example, the adsorption of a water molecule (an electron acceptor)

would lower the 𝐸F under the Dirac point, resulting in the p-doping of graphene,

which is reĆected in the shift of the transfer curve to the right compared to pristine

graphene.

Applying positive 𝑉G on bottom electrode increases the concentration of electrons

leading to the rise of 𝐸F. In the case of originally p-doped graphene, it corresponds to

the increase in the resistance of graphene as the concentration of holes (the majority

carriers) decreases. The transfer curve reaches its peak as 𝐸F intersects Dirac point

and there is no predominant doping of p or n type to enhance the conductivity

of graphene. Additional increase of 𝑉G moves 𝐸F further above the Dirac point

and the resistance decreases as electrons become the majority carriers and their

concentration increases with the application of positive 𝑉G.
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To compare the doping effect of different molecules, either the shift of the transfer

curve or the concentration of majority carriers 𝑛 at the Dirac voltage 𝑉D (calculated

from eq. 2.4) are used.
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3 Interactions of biomolecules and graphene

In general, there are two main effects at play when biomolecules interact with

graphene: non-covalent π− π stacking and molecular doping.

Many organic molecules contain aromatic rings with delocalized π-electrons and

the same delocalization of electrons is observed in graphene due to the sp2 hy-

bridization of carbon atoms. To model the interactions between such π-systems, it

is convenient to simplify the molecules by dividing them into a positive planar frame-

work and a negative cloud of π-electrons above and below, as suggested by Hunter

and Sanders in [14]. The π-electrons roughly copy the shape of the aromatic ring

with an electron-poor region in the middle.

In the presented model, the geometry of the π−π interaction is dictated by elec-

trostatic interaction and the strength of the π−π interaction is controlled by van der

Waals forces. The π-electrons of different π-systems repulse each other and force

the molecules to adopt a geometric arrangement that minimizes this repulsion, while

maximizing the attraction between the π-electrons of one molecule and the positive

framework in the electron-poor cavity of the other molecule. This can create a ma-

jor offset in the positioning of the two π-system on top of each other, see Fig.

3.1. The alignment of the molecules depends on the distribution of electron-rich

and electron-poor regions rather than on the overall molecular potential.

Fig. 3.1: Offset geometry illustrated on the adsorption of benzene on top of

graphene. Adapted from [15]

The van der Waals forces contribute to the energy of the interaction and are

roughly proportional to the overlap area of the π-electron clouds of the molecules.

The magnitude of the interaction can be critically inĆuenced by atoms in the regions

of intermolecular contact.

These atoms in the intermolecular region can also be directly responsible for

the molecular doping of graphene. The proximity of a charged atom or molecular

region close to the graphene surface results in charge transfer and doping of graphene.
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3.1 Nucleic acids

Nucleic acids form the foundation of all living organisms. Deoxyribonucleic acid

(DNA) stores the information necessary for the synthesis of proteins, while ribonu-

cleic acid (RNA) is responsible for the transmission of this information and the pro-

tein synthesis itself [16].

Nucleic acids can be broken down into the following structural units: nucleobases,

a pentose (a 5-carbon sugar), and a phosphate group.

adenine (A) guanine (G) cytosine (C) thymine (T) uracil (U)

purines pyrimidines

Fig. 3.2: The Ąve primary nucleobases.

There are Ąve primary nucleobases: adenine (A), cytosine (C), guanine (G),

thymine (T), and uracil (U), which can be divided into the purine and pyrimidine

groups, Fig. 3.2. Nucleobases from each group form complementary base pairs C-G

and A-T that connect the two strands of the double-helical DNA structure.

Adding a pentose to a nucleobase creates a nucleoside. The pentose is either

ribose or 2-deoxyribose depending on whether the molecule is found in RNA or

DNA.

Substituting the 5’-OH group in the pentose with one or more phosphate groups

produces a nucleotide, Fig. 3.3. The phosphate group binds to the pentose of

a neighbouring nucleotide in the DNA or RNA chain, forming the so-called backbone

of the single- or double-helical spiral.

The aromatic rings that comprise the nucleobases make possible the physisorp-

tion of nucleic acids on graphene by the π − π stacking interaction. This has

been studied both theoretically by density functional theory (DFT) calculations

[17, 18, 19] and experimentally [20, 21]. In the case of nucleobases and nucleosides,

n-doping of graphene and the subsequent increase in the Fermi level are observed.

The effect of the adsorption of nucleotides depends heavily on the positioning of

the molecule on top of graphene due to the negatively charged phosphate group

that can cause molecular p-doping of graphene when in close proximity to the sheet.
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P

O

OOH

O
–

N

N

N

N

NH2

O

OH

nucleosidenucleotide

Fig. 3.3: Composition of a nucleotide, which is comprised of a nucleoside and one

or more phosphate groups.

3.2 Urea

Urea is an organic compound consisting of two amine groups attached to a carbonyl

group, NH2-CO-NH2. Low and high levels of urea in blood and urine are indicative

of various health problems concerning mainly kidneys and liver. Urea is also widely

used as a fertilizer in agriculture, but it decomposes into toxic ammonia, an environ-

mental pollutant. Urea solution is utilized as an additive in diesel motors to lower

NOx emissions. Therefore, the accurate detection of urea and the estimate of con-

centration are of great importance in many areas, including healthcare, agriculture,

and environmental monitoring.

Based on a theoretical study [22] done using DFT calculations, it is predicted

that urea interacts very weakly with pristine graphene. The high distance between

the molecule and graphene of 2.86 Å, the low adsorption energy of 𝐸ads = −0.776 eV,

and no observed changes at the Fermi level in density of states (DOS) all indicate

that only weak chemisorption occurs. This is further supported by the fact that

the calculated charge transfer is only 0.065 e from the graphene layer to the urea

molecule, resulting in a small p-doping of graphene. The same study also investi-

gates the effect of doping graphene with transition metal atoms and proposes this

functionalization of graphene to improve the adsorption of organic compounds.
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4 Sensor fabrication

The whole process of sensor preparation takes place at the Central European Insti-

tute for Technology (CEITEC).

4.1 Methods used for the preparation of sensors

4.1.1 Optical lithography

Optical lithography is used for the fabrication of structures on the sample surface

using a beam of focused (usually ultra-violet-UV) light and resist (a substance that

changes its structure upon interaction with light). Generally, resists are labeled as ei-

ther positive, or negative depending on whether the exposure to UV light strengthens

(negative ones) or weakens the resist structure (positive ones). Chemical processes

then remove the weaker parts of the structure, i. e., the exposed parts are removed

with the use of a positive resist, while with a negative resist the non-exposed areas

removed.

Optical lithography enables the preparation of multiple samples at the same

time, however, the lower limit for the size of the structures is 1 Ûm.

4.1.2 Electron-beam physical vapour deposition

Physical vapour deposition (PVD) is a method used to create thin Ąlms and coatings.

For electron-beam physical vapour deposition (EBPVD) is the source material in

the form of pellets in a crucible heated by a focused electron beam. Under ultra

high vacuum (UHV) conditions, the heated material evaporates, the vapours then

travel through the vacuum chamber and precipitate on the cooler sample surface

resulting in a thin layer of the source material.

EBPVD can achieve high deposition rates with high material utilization efficiency

and excellent uniformity of coating.

4.1.3 Reactive-ion etching

Reactive-ion etching (RIE) is a dry etching method and achieves very anisotropic

etch proĄles compared to the usually isotropic effect of wet etching. An oscillating

RF Ąeld is applied to the vacuum chamber that ionizes the gas molecules. Every

half of the RF cycle, the electrons hit the powered lower electrode, which then

acquires a negative self-bias that attracts the ions from plasma to the sample surface.

The impact of the high-energy ions causes sputtering in addition to chemical reaction

with the sample materials.
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4.1.4 Graphene transfer

Graphene is grown by CVD (see section 1.2) on copper foil and is transferred onto

the prepatterned silicon wafer using the ŞwetŤ transfer method.

a) b) c)

d) e) f)

graphene
Cu foil PMMA RIE

Cu etching

Fe(NO3)3 DI water

substrate PMMA etching

acetone

Fig. 4.1: Step-by-step schematic of the graphene transfer process. Adapted from

[23].

First, graphene is grown on both sides of the copper foil in a CVD furnace, Fig.

4.1 a). Second, a thin Ąlm of poly(methyl methacrylate) (PMMA) is spin-coated

on graphene (the liquid solution is applied onto a rotating substrate to form a thin

layer) and left to dry overnight, Fig. 4.1 b). This PMMA layer acts as a support

structure and prevents mechanical damage of graphene during the transfer processes.

Third, the other side of the copper foil is cleaned by RIE to remove any possible

residue of graphene, Fig. 4.1 c). Fourth, the copper foil beneath graphene is etched

away in Fe(NO3)3 · 9 H2O, Fig. 4.1 d). Fifth, the graphene layer with the PMMA

Ąlm Ćoats on the liquid surface and can be scooped on a prepared, clean sample

and moved into a different solution. The graphene sample is moved into deionized

(DI) water four times with this method, Fig. 4.1 e). To ensure that no iron residue

remains from the Fe(NO3)3 · 9 H2O etching, the graphene layer is transferred into

hydrochloric acid (HCl) for 5 minutes and then four times into DI water and at

last into ethanol to remove any other contaminants. The clean graphene layer is

carefully scooped on the sample surface and left to dry overnight.

The last step concerns the removal of the PMMA layer. The sample is baked for

45 minutes on a hot plate at temperatures rising from 60 ◇C to 105 ◇C to evaporate

residual water and then left in acetone heated at 52 ◇C for 2 hours to etch the PMMA

Ąlm, Fig. 4.1 f). Finally, the sample is cleaned one last time in isopropyl alcohol

and ethanol and left to dry.
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4.2 Sensor preparation

Previously cleaned silicon wafers with a 280 nm thick layer of SiO2 are used as

the substrate for the sensors.

The Ąrst step involves optical lithography and deposition by electron-beam evap-

oration (as described in sections 4.1.1 and 4.1.2) to create the gold electrodes, Fig.

4.2. The silicon wafer is spin-coated with the positive photoresist AZ 5214 E, Fig.

4.2 a), which is followed by UV light exposure, Fig. 4.2 b), and development in the

AZ 726 MIF developer, Fig. 4.2 c). The prepared sample is then covered by 5 nm

of Ti and an 80 nm thick layer of AU, Fig. 4.2 d). The Ti thin Ąlm ensures better

adhesion of Au to SiO2. Most of this gold layer is then removed during the so-called

Şlift-ofŤ process, which leaves Au only in the designated areas that were exposed

during lithography, Fig. 4.2 e).
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Fig. 4.2: Step-by-step schematic for the fabrication of electrodes. Adapted from

[23].

This initial lithography is followed by the transfer of graphene onto the pre-

patterned sample (for details see section 4.1.4). It is necessary to clean the sample

by RIE just before transfering the graphene sheet to ensure that the graphene layer

does not tear and that no contaminants stay between graphene and the sample

surface.

The next step aims to shape the graphene layer into a Hall bar structure using

optical lithography. The sample is spin-coated with a thin layer of PMMA and

the negative photoresist AR-N 4340 before exposure and development in the AR

300-475 developer. The remaining resist and the graphene outside the desired Hall

bar shape are removed by RIE.
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Finally, the sample is baked at 180 ◇C for 30 minutes to ensure better adhesion

of graphene to the surface, the sample is then attached by a conductive silver paint

and wire-bonded onto a expander.
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5 Experiments

5.1 Sensor designs

Two sensor designs are used for the measurements, Fig. 5.1. The Ąrst design utilizes

Hall bar shaping of graphene, Fig. 5.1 a), and the second design uses a simpler

2-probe setup consisting of two probes fully covered by non-patterned graphene,

Fig. 5.1 b). Both sensor designs are manufactured as described in section 4.2 with

only one difference: the step of shaping graphene by optical lithography is left out

in the case of the 2-probe samples.

During the fabrication process of these two designs, it has been proved that

baking the sample after graphene transfer is crucial for the durability of the sensors.

The lithographic process of shaping the Hall bars includes several short periods of

baking, therefore a separate baking step before the attachment to the expander

is unnecessary. Omitting this step in the case of the 2-probe samples results in

tearing of graphene upon the removal of liquid from the sensor surface (both by

sucking it off with a pipette or by letting it dry out in atmospheric conditions).

After implementing this baking step, the 2-probe samples can last several hours of

continuous measurements with only a moderate change (≈ 102 Ω) in the resistance

of graphene (which commonly has resistance in the range of 300 − 2000 Ω).

Fig. 5.1: Images of the used sensors under an optical microscope. Left: The ar-

rangement of a sample with three Hall bars, the detail of the central Hall bar with

the dashed line designating the area covered by graphene. Right: 2-probe design

with graphene covering the upper part of the sample.
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5.2 Characterization of the sensors by Raman spectra

Raman spectroscopy was performed at CEITEC to assess the quality of graphene

on the used sensors. Raman spectra of graphene are characterized by the presence

of G peak at ∼ 1600 cm⊗1 and 2D peak at ∼ 2700 cm⊗1. The G peak appears due

to the sp2 hybridization of carbon atoms in graphene. The intensity of the 2D peak

determines the number of graphene layers, a ratio of 2:1 and higher of the 2D:G

peaks proves that the graphene sheet is monolayer. A third peak (D) can appear

at ∼ 1350 cm⊗1, that indicates the presence of defects in the crystal structure of

graphene.
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Fig. 5.2: Raman spectra of the Hall bar design in selected points.
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Fig. 5.3: Raman spectra of the 2-probe design in selected points.
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Based on the Raman spectra of graphene on the Hall bar sensors (Fig. 5.2),

the graphene sheet is monolayer and almost defectless. The graphene sheet on

the 2-probe sensors (Fig. 5.3) is also monolayer, but its crystal structure contains

a large number of defects as shown by the high intensity of the D peak.

5.3 Biochemical samples

The Institute of Biophysics of the Czech Academy of Sciences provided the follow-

ing samples of substances based on nucleic acids (Fig. 5.4): adenine (A), adeno-

sine (A-N), and deoxyadenosine monophosphate (dAMP). Both adenosine and de-

oxyadenosine monophosphate are based on the nucleobase adenine, therefore let

us call these samples adenine-based for simplicity. All samples were prepared in

concentrations of 0.1 mM, 1 mM, and 10 mM in aqueous solution.

N

N

N

NH

NH2

O

OH OH

OH

N

N

N

N

NH2

P

O

OOH

O
–

N

N

N

N

NH2

O

OH

Fig. 5.4: Chemical structure of the samples (left to right): adenine, adenosine, and

deoxyadenosine monophosphate.

For the samples of urea, Fig. 5.5, four concentrations (10 %, 20 %, 35 %, and

50 %) were prepared by dissolving crystalline urea in DI water.

Measurements of adenine-based samples were done on sensors with the 2-probe

design. Sensors with the Hall bar shape of graphene were used for the measurements

of urea.

O

NH2NH2

Fig. 5.5: Chemical structure of urea.
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5.4 Measurements

The experimental setup (Fig. 5.6) utilizes the FET arrangement of the sensors.

The gate voltage is realized by current source connected parallel to 1 MΩ resistor.

For the measurements with bottom gating, the gate electrode is connected directly

to the sensor, while the electrolytic top gating is managed by applying voltage to

a needle inserted from above into the droplet and without touching the graphene

layer at the same time.

graphene

current

source

lock-in amplifier

outputinput

1,333 kHz

1 V, 300ms

1
 M
Ω

1
0
 M
Ω

Fig. 5.6: The electrical circuit of the experimental setup. Adapted from [23].

A lock-in ampliĄer for resistance measurement is placed between source and

drain. The signal from lock-in ampliĄer goes through 10 MΩ resistor before pass-

ing through the graphene layer. The voltage is set to 1 V and the 10 MΩ resistor

determines the current 𝐼SD = 100 nA. The resistance of the examined biochemi-

cal substances was measured to be in the order of 100 − 101 MΩ, therefore current

leakage through the measured solution is negligible and all current Ćows through

the graphene layer.

The individual parameters for the measurements can be adjusted in a program

using LabView environment.

5.4.1 Time response

The Ąrst type of measurement examines the sensor response to the addition of

different substances. The resistance as a function of time is measured without
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the application of gate voltage, i.e., at 𝑉G = 0 V.

First, the sensor resistance is measured in atmospheric conditions for 30 s to

obtain a mean value of the initial resistance. A droplet of the measured substance is

added with a pipette on top of the graphene sheet and left there for several minutes

until stabilization of the resistance is observed. Then the droplet is sucked off by

pipette and the sensor surface is cleaned by adding and removing a large drop of

DI water several times. Several minutes are needed for the sensor to stabilize in

atmospheric conditions again.

5.4.2 Transfer curve

The second type of measurement uses either the bottom or top gate to obtain

the transfer curve of graphene by tracking the change of resistance depending on

the applied gate voltage.

The gate voltage is swept from 0 → maximal value → minimal value → 0. There

is a signiĄcant hysteresis characterized by a shift of the whole transfer curve, that is

noticeable by sweeping in both directions. Using the electrolytic top gate, the sweep

is in the range of ±1 V, however, the sweeping range for the bottom gate can reach

values up to ±80 V if needed.

Between measurements of different substances and concentrations, the sensor

surface is thoroughly cleaned with isopropyl alcohol and ethanol to remove any

organic contaminants from previous experiments.
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6 Results

6.1 Time response measurements

Fig. 6.1 shows the measured response in time for adenosine (A-N) without the ap-

plication of gate voltage. The addition of the droplet causes a sharp increase of

resistance followed by a stabilization period, when the resistance rises at a slower

rate. The sudden jumps in resistance right after the removal of the droplet cor-

respond to the cleaning of the sensor surface by pipetting on and off drops of DI

water. During the stabilization in ambient conditions, the resistance decreases and

returns back to the initial value measured before the application of the examined

substance.
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Fig. 6.1: Reaction in time to the addition of different concentrations of adenosine

(A-N).

The measured time response to adenine (A) and deoxyadenosine monophosphate

(dAMP) has the same character as for adenosine (A-N), the relative change of resis-

tance in response to the different concentrations of the substances is summarized in

Tab. 6.1: Relative change of resistance Δ𝑅 (%) after addition of different concen-

trations of A, A-N, dAMP, and a reference measurement for the aqueous solution.

substance \ 𝑐 (mM) 0.1 1 10

A 12.9 % 17.2 % 9.1 %

A-N 25.3 % 29.9 % 22.8 %

dAMP 31.1 % 34.1 % 22.4 %

H2O 8.3 %
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Tab. 6.1. The change is calculated as the difference between the maximal value of

resistance 𝑅max before the removal of the droplet and the value of initial resistance

𝑅0 stabilized before the addition of the droplet:

Δ𝑅 =
𝑅max − 𝑅0

𝑅0

, (6.1)

both values are averaged over 5 s time period. A reference measurement is done with

a sample of the aqueous solution that the substances are diluted in.

Fig. 6.2: Reaction in time to the addition of different concentrations of urea.

The reaction to the addition of urea (Fig. 6.2) follows a similar pattern: Ąrst

an immediate increase of resistance and then a gradual stabilization with time.

However, in this case, resistance decreases during the stabilization period. Tab. 6.2

contains the relative change (calculated by eq. 6.1) for the measured concentrations

and a reference measurement of DI water.

Tab. 6.2: Relative change of resistance Δ𝑅 (%) after addition of different concen-

trations of urea and a reference measurement of DI water.

substance \ 𝑐 (%) 10 20 35 50

urea 36.7 % 44.6 % 46.9 % 24.3 %

DI water 17.4 %

6.2 Transfer curve measurements

The peak of the transfer curve corresponds to the Dirac point voltage 𝑉D, where

the Fermi level intersects the Dirac point. The type and degree of doping of graphene
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caused by the adsorption of atoms or molecules can be determined based on the shift

of 𝑉D.

Fig. 6.3 shows a typical measurement of the transfer curve using the electrolytic

top gate: for the 50 % solution of urea, the gate voltage is swept 0 V → 0.5 V →

−1 V → 0 V with 0.01 V/0.5 s step and a noticeable hysteresis is observed. Re-

sistance decreases when the sweeping gate voltage 𝑉G moves away from the Dirac

point voltage 𝑉D and increases when the 𝑉G sweeps close to the 𝑉D again. This cor-

responds to the movement of the Fermi level away and then back closer to the Dirac

point. The voltage range is adjusted for the reference measurement of DI water to

better capture the peak of the transfer curve. The higher values of resistance in

the reference measurement are mainly caused by the degradation of graphene with

the use of the sensor.
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Fig. 6.3: Comparison of transfer curves for urea and DI water. Coloured arrows

point in the direction of the voltage sweep. Black arrows mark the shift of both

peaks from the reference measurement of DI water to the measurement of the urea

solution.

In the majority of measurements, the right peak was better deĄned than the left

one. For this reason, the position of the right peak is examined in the results analysis

of the transfer curves.

For the adenine-based samples, seven measurements were done with the use of

the electrolytic top gate and four with the solid bottom gate. The results are shown

in Fig. 6.4. The graphs plot the position of the Dirac point voltage 𝑉D depending on

the concentration for each of the samples. Reference measurements of the aqueous
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solution found 𝑉D = (0.21 ± 0.08) V with the top gate and 𝑉D = (12 ± 3) V with

the bottom gate.
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Fig. 6.4: Position of the Dirac point voltage 𝑉D for adenine-based substances using

the electrolytic top gate (a) and the solid-state bottom gate (b). Data points were

moved fractionally along the x-axis for clarity.

The different concentrations of urea were measured Ąve times with top gating

and four times with bottom gating, Fig. 6.5. Reference measurements done for DI

water determined the Dirac point voltage as 𝑉D = (0.46 ± 0.06) V with the top gate

and 𝑉D = (25 ± 2) V with the bottom gate.
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Fig. 6.5: Results of urea with the electrolytic top gate (a) and the solid-state bottom

gate (b).

The concentration of majority carriers in graphene can be calculated using the mo-

del of a parallel-plate capacitor, as described in section 2.1. Substituting gate voltage

𝑉G in eq. 2.4 with the Dirac point voltage 𝑉D measured for the individual sub-

stances by the solid-state bottom gate gives the concentration of majority carriers

in graphene with the adsorbed molecules, Fig. 6.6.
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Fig. 6.6: Concentration of the majority carriers as calculated by eq. 2.4 from

the solid-state bottom gate measurements for adenine-based samples (a) and urea

(b).

6.3 Discussion

Based on the results obtained from transfer curve measurements, all adenine-based

samples cause n-doping of graphene. The peak shifts to the left compared to the

reference measurements of the aqueous solution and the Dirac point voltage 𝑉D

moves into low values of the gate voltage 𝑉G. Experiments done in atmospheric

conditions show that all graphene sensors are originally heavily p-doped.
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Fig. 6.7: The movement of the Fermi level after the addition of 1 mM A-N.

This conclusion is further supported by the time response measurements, where

the immediate reaction is an increase of resistance, meaning that the Fermi level

moves closer to the Dirac point and graphene accepts electrons, Fig. 6.7.
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The results for adenine (A) are in agreement with results obtained both experi-

mentally [20] and by DFT calculations of adsorption of nucleobases on graphene

[17, 19]. However, both studies predict only negligible charge transfer of 0.02−0.03 e

from the individual nucleobases to graphene. Adsorption of adenosine (A-N) was

measured experimentally [21] with the resulting shift of the transfer curve found also

to the left compared to pristine graphene. No experimental or theoretical studies

were found for the adsorption of nucleotides (such as dAMP) on graphene. The ade-

nine nucleobase at the core of the dAMP nucleotide causes n-doping, while the nega-

tively charged phosphate group induces p-doping and predictions about the overall

effect are difficult to make without previous calculations examining the strength of

these opposing effects.

Additionally, the transfer curve measurements show that doping becomes stron-

ger with increasing concentration (as demonstrated by the further shift of 𝑉D for

the 1 mM concentrations compared to the shift of 𝑉D for the 0.1 mM concentra-

tions), but the opposite tendency is observed for high concentrations. The same

effect is observed in the time response measurements for different concentrations,

Tab. 6.1. A possible explanation might be that at a sufficiently high concentration

the molecules begin interacting between themselves forming weak bonds. The forma-

tion of these bonds consumes electrons that are taken back from graphene, lowering

its Fermi level.
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Fig. 6.8: The movement of the Fermi level after the addition of 35 % urea.

The same behavior can be seen in the results of transfer curve measurements for

different concentrations of urea and identical reasoning may be applied. Based on

these measurements, adsorbed urea induces n-doping of graphene. This result runs
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contrary to a theoretical study done by DFT [22], which predicts only a very small

p-doping of graphene with a charge transfer of 0.065 e.

The initial time response to the addition of urea supports n-doping as in the case

with the adenine-based samples. However, during the stabilization period, resistance

decreases, opposite to the stabilization of the adenine-based samples. This discrep-

ancy can be explained by the observed hysteresis, when the Dirac point can ŞdriftŤ

with time. The transfer curve measurements show the Dirac point voltage 𝑉D very

close to 0 V for both top and bottom gating, much closer than for any of the adenine-

based samples. In the majority of these measurements for urea with the solid-state

bottom gate, the second peak appears to the right of the Ąrst one, indicating that

the 𝑉D drifts to the right with time and the resistance should decrease in response,

Fig. 6.8. Measuring the time response without gating, i.e., at 𝑉G = 0 V and therefore

very close to the 𝑉D, could make this drifting more pronounced.

43





Conclusion

The aim of this thesis was to detect biochemichal substances using a graphene sensor.

For this purpose, two designs of sensors were fabricated and two types of experiments

were performed. Urea, adenine, adenosine, and deoxyadenosine monophosphate

were chosen as samples of the biochemical substances.

The Ąrst experiment examined change in the resistance after the addition of

the measured sample as a function of time. The second experiment obtained the trans-

fer curve of graphene and the doping effects caused by the adsorption of the sam-

ples. This was done by applying gate voltage on either the electrolytic top gate, or

the solid-state bottom gate and measuring the resistance of graphene.

Both types of experiments conĄrmed that the samples based on nucleic acids

cause n-doping of graphene, in accordance with results reported in literature. Ad-

sorbed urea also induces n-doping, however, DFT calculations suggest that only

negligible p-doping should occur.

In all experiments was observed a dependency of doping on the concentration

of the measured sample. At Ąrst, doping of graphene increases with rise in con-

centration, but the opposite effect is observed at high concentrations. A proposed

explanation is that at sufficiently high concentrations, the individual molecules begin

interacting between themselves forming weak bonds. The formation of these bonds

consumes electrons that are taken back from graphene, moving the Fermi level in

the process.

Due to the use of liquid samples in the measurements, a signiĄcant hysteresis was

observed, suggesting that the Dirac point of graphene ŞdriftsŤ in time after the ad-

dition of the measured sample. This effect should be taken under consideration,

especially in measurements with longer duration, as it can alter the sensor response.

Further research based on the work done in this thesis should be directed at

the functionalization of graphene, which is a necessary requirement for future appli-

cations in sensing and detection using graphene-based sensors. Additionally, a third

type of measurement using the Hall effect could be designed to directly measure the

concentration of majority carriers.
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List of symbols, quantities and abbreviations

A adenine

A-N adenosine

CEITEC Central European Institute of Technology

CVD chemical vapour deposition

dAMP deoxyadenosine monophosphate

DFT density functional theory

DI deionized (water)

DNA deoxyribonucleic acid

DOS density of states

EBPVD electron-beam physical vapour deposition

EDL electric double layer

Fe(NO3)3 · 9 H2O iron(III) nitrate nonahydrate

FET Ąeld-effect transistor

GFET graphene Ąeld-effect transistor

LOD limit of detection

PMMA poly(methyl methacrylate)

PVD physical vapour deposition

RF radio frequency

RIE reactive-ion etching

RNA ribonucleic acid

SiO2 silicon dioxide

UHV ultra high vacuum

UV ultra-violet

𝐸F Fermi level
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ÚD Debye length

𝑉D Dirac point voltage

𝑉G gate voltage
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