
USING RYZE TELLO UAVS IN MULTI-ROBOT SYSTEMS

Matouš Hýbl
Master Degree Programme (2nd year), FEEC BUT

E-mail: xhyblm00@stud.feec.vutbr.cz

Supervised by: Petr Gábrlík
E-mail: xgabrl00@stud.feec.vutbr.cz

Abstract: This paper describes ways of integrating Ryze Tello UAVs (Unmanned Aerial Vehicles)
with existing robotic systems. The main focus of this paper is the creation of bridging software and
hardware that allows connecting of multiple drones to the robotic system while allowing for both
video feed streaming and UAV control. The secondary focus of this paper is a proof of usability of
the Rust programming language in robotic applications.

Keywords: unmanned aerial vehicle, multi-robot system, UAV, ROS, Rust

1 INTRODUCTION AND MOTIVATION

Ryze Tello UAVs (Unmanned Aerial Vehicles) (shown in the figure 1) are cheap and small UAVs
that are originally aimed at students to study programming or being simply a toy. On the other
hand the manufacturer provides a simple API (Application Programming Interface) based on UDP
(User Datagram Protocol) datagrams that can be used to control the behavior of the UAV as well as
reading some status information from it. Alongside with an on-board camera with video streaming
capabilities, this makes the drone a good candidate for a research device, especially for UAV swarm
research (an example of such swarm is shown in the figure 2) or research in UAV-UGV (Unmanned
Ground Vehicle) cooperation.

There are two versions of the UAV - the Tello and Tello EDU, the latter one being more suitable for
introduction to programming as it features a kit that can be used for simple visual robot navigation.
The Tello can be controlled wirelessly using a mobile device via Wi-Fi, where it acts as an access
point [1]. On the other hand, the Tello EDU allows for being connected to an external access point
as a standard Wi-Fi station. This seems promising as it would allow for connecting multiple UAVs
to a single access point, therefore allowing for easy implementation of robotic swarms. The problem
with this configuration is that the video feed is not accessible in station mode, which disables one
of the main advantages of the UAV - the real-time video stream. That means that then it cannot be
used for visual navigation or SLAM (Simultaneous Localization and Mapping) and for example for
reconnaissance with UGV-cooperation.

This paper aims at removing this problem by creating bridging hardware and software which doesn’t
require the drone to be switched to the station mode, therefore also eliminating the need to buy the
more expensive EDU version.

84

Figure 1: Ryze Tello UAV [2]. Figure 2: An example of an UAV swarm
equipped with lights [3].

2 METHODOLOGY

This section describes the hardware and software used and developed as well as different approaches
of doing so, as the bridging software can be implemented using at least three different ways.

2.1 HARDWARE

Hardware used for the software bridge needs to meet following conditions:

• have a working Wi-Fi and ethernet network interface,

• have enough computing power to allow for video encoding and streaming.

For simplicity of implementation, a Raspberry Pi single-board computer was used, more specifically
version 3B which was the first one to have a Wi-Fi interface and also enough computing power.

During development, it was also discovered that the UAV is not designed to withstand prolonged
periods of being placed on a table with no airflow which results in overheating leading to frequent
shutdowns. A simple PC case fan can be placed below the UAV, therefore mitigating the problem. In
the future development integrated charging could also be implemented.

2.2 SOFTWARE

There are at least three approaches to developing the bridging software. These approaches differ only
in the ways of controlling the UAV, video streaming implementation remains the same for all of them.
The approaches are:

• direct retransmission of control and status datagrams,

• control and status datagram translation,

• using the ROS node to control the UAV.

2.2.1 DIRECT RETRANSMISSION OF CONTROL AND STATUS DATAGRAMS

Direct retransmission of control and status datagrams is the most straightforward way of controlling
the UAV. The principle is simple, the bridging computer opens the same ports on its ethernet interface
as the ports that are opened on the UAV, where it receives the control data originally meant for the

85

UAV and sends them to it. Then it opens a port on which the UAV sends its status data to and sends
the status data back to the control computer. With this configuration, the program on the bridging
computer sends whatever data is received from the control computer directly to the UAV and when
there are status data available from the UAV, they are sent to the control computer. The whole process
is schematically shown in the figure 3. And an example of code in the Rust programming language is
shown in the listing 1.

Control
Computer

Bridge
Computer

Tello
UAV

ethernet

Control
Computer

ethernet Wi-Fi Wi-Fi

8889 8889

88908890

8889 8889

192.168.10.1/2410.y.y.y/8 192.168.10.2/24
10.x.x.x/8

Figure 3: A simple schematic diagram depicting direct retransmission bridge.

1 l e t t e l l o _ c o n t r o l _ s o c k e t = UdpSocket : : b ind (" 1 9 2 . 1 6 8 . 1 0 . 2 : 9 0 0 9 ") . unwrap () ;
2 l e t t e l l o _ s t a t e _ s o c k e t = UdpSocket : : b ind (" 1 9 2 . 1 6 8 . 1 0 . 2 : 8 8 9 0 ") . unwrap () ;
3 l e t c o n t r o l _ s o c k e t = UdpSocket : : b ind (" 0 . 0 . 0 . 0 : 8 8 8 9 ") . unwrap () ;
4 loop {
5 l e t mut b u f f e r : [u8 ; 1500] = [0 ; 1 5 0 0] ;
6 match c o n t r o l _ s o c k e t . r e cv_ f rom (&mut b u f f e r) {
7 Ok ((s i z e , a d d r e s s)) => {
8 c o n t r o l l e r _ a d d r e s s = a d d r e s s . i p () . t o _ s t r i n g () ;
9 t e l l o _ c o n t r o l _ s o c k e t . s e n d _ t o (& b u f f e r [0 . . s i z e] , " 1 9 2 . 1 6 8 . 1 0 . 1 : 8 8 8 9 ") ;

10 }
11 E r r (_) => {}
12 }
13 match t e l l o _ c o n t r o l _ s o c k e t . r e cv_ f rom (&mut b u f f e r) {
14 Ok ((s i z e , a d d r e s s)) => {
15 c o n t r o l _ s o c k e t . s e n d _ t o (& b u f f e r [0 . . s i z e] , f o r m a t ! (" {} :8889 " , &

c o n t r o l l e r _ a d d r e s s)) ;
16 }
17 E r r (_) => {}
18 }
19 match t e l l o _ s t a t e _ s o c k e t . r e cv_ f rom (&mut b u f f e r) {
20 Ok ((s i z e , a d d r e s s)) => {
21 c o n t r o l _ s o c k e t . s e n d _ t o (& b u f f e r [0 . . s i z e] , f o r m a t ! (" {} :8890 " , &

c o n t r o l l e r _ a d d r e s s)) ;
22 }
23 E r r (_) => {}
24 }
25 s t d : : t h r e a d : : s l e e p (D u r a t i o n : : f r o m _ m i l l i s (1 0)) ;
26 }

Listing 1: Implementation of the direct retransmission approach.

This approach was tested and seemed to work quite well. The advantage of this approach is that
the existing libraries and tools developed to control the UAV can be used, just by changing the IP
addresses and the way video is streamed. The disadvantage is that this approach still requires the
maintenance of custom software and changes to video streaming.

86

2.2.2 CONTROL AND STATUS DATAGRAM TRANSLATION

The second approach is similar to the first one, but with the difference that a custom control and status
data model is employed. This means that the designer of the robotic system has complete control over
the data being sent to the bridging computer the UAV. There is also room for adding, for example,
some control logic to the bridge, such as autoland safety features that are not dependent on the control
program. This approach was tested and seemed to work quite well. The advantages of this approach
are clear - custom functions can be implemented and a standardized communication interface can be
used. The disadvantages remain the same as with the previous approach - maintenance of custom
software is required.

2.2.3 USING ROS NODE TO CONTROL THE UAV

The last approach is especially suitable for ROS (Robot Operating System) based robotic systems.
As ROS is a distributed system a ROS node used to control the UAV can be run on the bridging
computer. This is the easiest approach for all ROS enabled robotic systems as nodes for the Tello
UAV are already prepared and ready for immediate use [4, 5, 6]. These nodes could also publish
images which result in handling the live video stream in a very clean way.

2.2.4 VIDEO STREAMING

Retransmission of the video can be implemented using various audio/video streaming utilities, such
as FFmpeg or GStreamer. In this case, GStreamer was used. The goal was to set-up an RTSP (Real-
Time Streaming Protocol) streaming server serving the UAV video stream. The GStreamer pipeline
was adopted and modified from a tutorial [7], while the RTSP server code in Rust was adopted from
GStreamer-rs repository [8]. Based on some experiments, the server should be launched only after
the UAV is commanded to begin streaming and with some delay.

3 RESULTS

3.1 BRIDGING DRONE CONTROL, STATUS, AND VIDEO STREAM

In the last section, three different approaches to implement bridging algorithms were described. The
first two were tested as a part of this paper and the preliminary testing showed that they work reason-
ably well. The ROS based approach was not directly tested, however it is believed to be thoroughly
tested by other ROS users as well as students of the DCI FEEC Robotics and AI research group [6].

3.2 DEVELOPING BRIDGING SOFTWARE IN RUST

Another part of this paper was testing the suitability of the Rust programming language for robotic
applications. During the work on this paper, an implementation of the Tello SDK (Software Develop-
ment Kit) in Rust was developed as well as both of the bridge implementations. The area where Rust
language stood out was memory safety in multi-threaded applications - the controller was checking
for data races, etc. Another strong suit of the language is interoperability with C which allowed the
use of the GStreamer Rust bindings, therefore allowing us to use an existing high-level library instead
of developing a custom one. A feature of the language that was also used was its fully-featured stan-
dard library which conveniently out of the box supports, for example, UDP sockets. The disadvantage
of the language was lack of remote development tooling which meant that the bridging code couldn’t
be run and debugged directly in the bridging computer.

87

4 CONCLUSIONS & FUTURE WORK

The aim of this paper was to explore approaches of integrating Tello UAVs into various multi-robot
systems and to test suitability of Rust programming language for robotic applications.

The paper describes three approaches of integration of the UAVs with their advantages and disad-
vantages. For easy testing, the first one seems to be an optimal solution as it simply retransmits all
communication. The other two approaches are suitable for integrating into an existing robotic system
- whether it uses ROS or a custom communication protocol.

As for the suitability of using Rust for robotic applications, so far the safety features have proven
useful in avoiding data races. C language interoperability was also successfully demonstrated and
tested by integrating GStreamer bindings library. Rust language’s standard library which already
contains prepared implementations of many useful features such as UDP sockets etc. is extremely
useful for jumpstarting software development.

In the future, the UAV will be implemented into the ATEROS robotic system and used for experi-
menting with indoor navigation and robotic swarms. As for the Rust programming language, it will
be further evaluated - more specifically in areas such as direct hardware interfaces, tools, and ROS
nodes.

5 ACKNOWLEDGEMENTS

The completion of this paper was made possible by the grant No. FEKT-S-20-6205 - “Research in
Automation, Cybernetics and Artificial Intelligence within Industry 4.0” financially supported by the
Internal science fund of Brno University of Technology.

REFERENCES

[1] Tello SDK Documentation EN 1.3 1122. In: DJI CDN [online]. Shenzen, China: SZ
DJI Technology Co., 2018 [ref. 2020-03-02]. Available at: https://terra-1-
g.djicdn.com/2d4dce68897a46b19fc717f3576b7c6a/Tello%20%E7%BC
%96%E7%A8%8B%E7%9B%B8%E5%85%B3/For%20Tello/Tello%20SDK%20Documen
tation%20EN_1.3_1122.pdf

[2] DJI RYZE Tello. In: Robot Advance [online]. Mornant, France: Robot Advance, 2019 [cit. 2020-
03-02]. Available at: https://www.robot-advance.com/EN/ori-drone-dji-ry
ze-tello-2609.jpg

[3] A Swarm of 800 Drones Create a Giant Airplane in the Sky. In: Interesting Engineering [on-
line]. San Francisco, California, USA: Interesting Engineering, 2019 [ref. 2020-03-02]. Available
at: https://interestingengineering.com/a-swarm-of-800-drones-crea
te-a-giant-airplane-in-the-sky

[4] Tello_driver. In: ROS Wiki [online]. Mountain View, California, USA: Open Robotics Founda-
tion, 2019 [ref. 2020-03-02]. Available at: http://wiki.ros.org/tello_driver

[5] Flock: ROS driver for DJI Tello drones. In: Github [online]. San Francisco, California, USA:
Github, 2018 [ref. 2020-03-02]. Available at: https://github.com/clydemcqueen/fl
ock

[6] PANSKÝ, Michal. Autonomous Unmanned Aircraft Tello. Brno, 2020. Semestral thesis. Brno
University of Technology. Thesis supervisor Ing. Petr Gábrlík.

88

https://terra-1-g.djicdn.com/2d4dce68897a46b19fc717f3576b7c6a/Tello%20%E7%BC%96%E7%A8%8B%E7%9B%B8%E5%85%B3/For%20Tello/Tello%20SDK%20Documentation%20EN_1.3_1122.pdf
https://terra-1-g.djicdn.com/2d4dce68897a46b19fc717f3576b7c6a/Tello%20%E7%BC%96%E7%A8%8B%E7%9B%B8%E5%85%B3/For%20Tello/Tello%20SDK%20Documentation%20EN_1.3_1122.pdf
https://terra-1-g.djicdn.com/2d4dce68897a46b19fc717f3576b7c6a/Tello%20%E7%BC%96%E7%A8%8B%E7%9B%B8%E5%85%B3/For%20Tello/Tello%20SDK%20Documentation%20EN_1.3_1122.pdf
https://terra-1-g.djicdn.com/2d4dce68897a46b19fc717f3576b7c6a/Tello%20%E7%BC%96%E7%A8%8B%E7%9B%B8%E5%85%B3/For%20Tello/Tello%20SDK%20Documentation%20EN_1.3_1122.pdf
https://www.robot-advance.com/EN/ori-drone-dji-ryze-tello-2609.jpg
https://www.robot-advance.com/EN/ori-drone-dji-ryze-tello-2609.jpg
https://interestingengineering.com/a-swarm-of-800-drones-create-a-giant-airplane-in-the-sky
https://interestingengineering.com/a-swarm-of-800-drones-create-a-giant-airplane-in-the-sky
http://wiki.ros.org/tello_driver
https://github.com/clydemcqueen/flock
https://github.com/clydemcqueen/flock

[7] YOUNG, Neil. How to make a Raspberry Pi an RTSP streamer and how to consume this? In:
Github Gist [online]. San Francisco, California, USA: Github, 2020 [ref. 2020-03-02]. Avail-
able at: https://gist.github.com/neilyoung/8216c6cf0c7b69e25a152fde
1c022a5d

[8] Rtsp-server.rs. In: Gitlab Freedesktop.org [online]. Freedesktop.org, 2019 [ref. 2020-03-02].
Available at: https://gitlab.freedesktop.org/gstreamer/gstreamer-rs/-
/blob/master/examples/src/bin/rtsp-server.rs

89

https://gist.github.com/neilyoung/8216c6cf0c7b69e25a152fde1c022a5d
https://gist.github.com/neilyoung/8216c6cf0c7b69e25a152fde1c022a5d
https://gitlab.freedesktop.org/gstreamer/gstreamer-rs/-/blob/master/examples/src/bin/rtsp-server.rs
https://gitlab.freedesktop.org/gstreamer/gstreamer-rs/-/blob/master/examples/src/bin/rtsp-server.rs

