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Abstract: Detailed analysis of the function of multilayer perceptron (MLP) and its neurons together
with the use of time-varying neurons allowed the authors to find an analogy with the use of structures
of linear differential operators. This procedure allowed the construction of a group and a hypergroup
of artificial neurons. In this article, focusing on semihyperstructures and using the above described
procedure, the authors bring new insights into structures and hyperstructures of artificial neurons
and their possible symmetric relations.
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1. Introduction

As mentioned in the PhD thesis [1], neurons are the atoms of neural computation. Out of those
simple computational units all neural networks are build up. The output computed by a neuron
can be expressed using two functions y = g( f (w, x)). The details of computation consist in several
steps: In a first step the input to the neuron, x := {xi}, is associated with the weights of the neuron,
w := {wi}, by involving the so-called propagation function f . This can be thought as computing the
activation potential from the pre-synaptic activities. Then from that result the so-called activation
function g computes the output of the neuron. The weights, which mimic synaptic strength, constitute
the adjustable internal parameters of the neuron. The process of adapting the weights is called
learning [1–18].

From the biological point of view it is appropriate to use an integrative propagation function.
Therefore, a convenient choice would be to use the weighted sum of the input f (w, x) = ∑

i
wixi, that is

the activation potential equal to the scalar product of input and weights. This is, in fact, the most
popular propagation function since the dawn of neural computation. However, it is often used in a
slightly different form:

f (w, x) = ∑
i

wixi + Θ. (1)

The special weight Θ is called bias. Applying Θ(x) = 1 for x > 0 and Θ(x) = 0 for x < 0 as
the above activation function yields the famous perceptron of Rosenblatt. In that case the function Θ
works as a threshold.

Let F : R→ R be a general non-linear (or piece-wise linear) transfer function. Then the action of
a neuron can be expressed by

y(k) = F

(
m

∑
i=1

wi(k)xi(k) + b

)
,
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where xi(k) is input value in discrete time k where i = 0, . . . , m, wi(k) is weight value in discrete time
where i = 0, . . . , m, b is bias, yi(k) is output value in discrete time k.

Notice that in some very special cases the transfer function F can be also linear. Transfer function
defines the properties of artificial neuron and this can be any mathematical function. Usually it is
chosen on the basis of the problem that the artificial neuron (artificial neural network) needs to solve
and in most cases it is taken (as mentioned above) from the following set of functions: step function,
linear function and non-linear (sigmoid) function [1,2,5,7,9,12,16,19].

In what follows we will consider a certain generalization of classical artificial neurons mentioned
above such that inputs xi and weight wi will be functions of an argument t belonging into a linearly
ordered (tempus) set T with the least element 0. As the index set we use the set C(J) of all continuous
functions defined on an open interval J ⊂ R. So, denote by W the set of all non-negative functions
w : T → R forming a subsemiring of the ring of all real functions of one real variable x : R → R.
Denote by Ne(~wr) = Ne(wr1, . . . , wrn) for r ∈ C(J), n ∈ N the mapping

yr(t) =
n

∑
k=1

wr,k(t)xr,k(t) + br

which will be called the artificial neuron with the bias br ∈ R. By AN(T) we denote the collection of all
such artificial neurons.

Neurons are usually denoted by capital letters X, Y or Xi, Yi, nevertheless we use also notation
Ne(~w), where ~w = (w1, . . . , wn) is the vector of weights [20–22].

We suppose - for the sake of simplicity - that transfer functions (activation functions) ϕ, σ(or f )
are the same for all neurons from the collection AN(T) and the role of this function plays the identity
function f (y) = y.

Feedforward multilayer networks are architectures, where the neurons are assembled into layers,
and the links between the layers go only into one direction, from the input layer to the output layer.
There are no links between the neurons in the same layer. Also, there may be one or several hidden
layers between the input and the output layer [5,9,16].

2. Preliminaries on Hyperstructures

From an algebraic point of view, it is useful to describe the terms and concepts used in the field of
algebraic structures. A hypergroupoid is a pair (H, ·), where H is a (nonempty) set and

· : H × H → P∗(H)(= P(H)− {∅})

is a binary hyperoperation on the set H. If a · (b · c) = (a · b) · c for all a, b, c ∈ H (the associativity
axiom), the the hypergroupoid (H, ·) is called a semihypergroup. A semihypergroup is said to be a
hypergroup if the following axiom:

a · H = H = H · a

for all a ∈ H (the reproduction axiom), is satisfied. Here, for sets A, B ⊆ H, A 6= ∅ 6= B we define
as usually

A · B =
⋃
{a · b; a ∈ A, b ∈ B}.

Thus, hypergroups considered in this paper are hypergroups in the sense of F. Marty [23,24].
In some constructions it is useful to apply the following lemma (called also the Ends-lemma having
many applications—cf. [25–29]). Recall, first that by a (quasi-)ordered semigroup we mean a triad
(S, ·,≤), where (S, ·) is a semigroup, (S,≤) is a (quasi-)ordered set, i.e., a set S endowed with a
reflexive and transitive binary relation "≤" and for all triads of elements a, b, c ∈ S the implication
a ≤ b⇒ a · c ≤ b · c, c · a ≤ c · b holds.
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Lemma 1 (Ends-Lemma). Let (S, ·,≤) be a (quasi-)ordered semigroup. Define a binary hyperoperation

∗ : S× S→ P∗(S) by a ∗ b = {x ∈ S; a · b ≤ x}.

Then (S, ∗) is a semihypergroup. Moreover, if the semigroup (S, ·) is commutative, then the semihypergroup
(S, ∗) is also commutative and if (S, ·,≤) is a (quasi-)ordered group then the semihypergroup (S, ∗) is
a hypergroup.

Notice, that if (G, ·), (H, ·) are (semi-)hypergroups, then a mapping h : G → H is said to be the
homomorphism of (G, ·) into (H, ·) if for any pair a, b ∈ G we have

h(a · b) ⊆ h(a) · h(b).

If for any pair a, b ∈ G the equality h(a · b) = h(a) · h(b) holds, the homomorphism h is called the
good (or strong) homomorphism—cf. [30,31]. By EndG we denote the endomorphism monoid of a
semigroup (group) G.

Concerning the basics of the hypergroup theory see also [23,25–28,32–41].
Linear differential operators described in the article and used e.g., in [29,42] are of the

following form:

Definition 1. Let J ⊆ R be an open interval, C(J) be the ring of all continuous functions ϕ : J → R.
For pk ∈ C(J), k = 0, . . . , n− 1, p0 6= 0 we define

L(pn−1, . . . , p0)y(x) = y(n)(x) +
n−1

∑
k=0

pk(x)y(k)(x), y ∈ Cn(J)

(the ring of all smooth functions up to order n, i.e., having derivatives up to order n defined on the interval
J ⊆ R).

Definition 2 ([41,49]). Let (G, ·) be a semigroup and P ⊂ G, P 6= ∅. A hyperoperation ∗P : G×G → P(G)

defined by [x, y]→ xPy, i.e., x ∗ y = xPy for any pair [x, y] ∈ P× P is said to be the P-hyperoperation in G. If

x ∗P (y ∗P z) = xPyPz = (x ∗P y) ∗P z

holds for any triad x, y, z ∈ G, the P-hyperoperation is associative. If also the axiom of reproduction is satisfied,
the hypergrupoid (G, ∗P) is said to be a P-hypergroup.

Evidently, if (G, ·) is a group, then also (G, ∗P) is a P-hypergroup. If the set P is a singleton,
then the P-operation ∗P is a usual single—valued operation.

Definition 3. A subset H ⊂ G is said to be a sub-P-hypergroup of (G, ∗P) if P ⊂ H ⊂ G and (H, ∗P) is a
hypergroup.

Now, similarly as in the case of the collection of linear differential operators [29], we will construct
a group and hypergroup of artificial neurons, cf. [29,32,42–44].

Denote by δij Kronecker delta, i, j ∈ N, i.e., δii = δjj = 1 and δij = 0, whenever i 6= j.
Suppose Ne(~wr), Ne(~ws) ∈ AN(T), r, s ∈ C(J), ~wr = (wr1, . . . , wr,n), ~ws = (ws1, . . . , ws,n),

n ∈ N. Let m ∈ N, 1 ≤ m ≤ n be a such an integer that wr,m > 0. We define

Ne(~wr) ·m Ne(~ws) = Ne(~wu),

where
~wu = (wu,1, . . . , wu,n) = (wu,1(t), . . . , wu,n(t)),
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~wu,k(t) = wr,m(t)ws,k(t) + (1− δm,k)wr,k(t), t ∈ T

and, of course, the neuron Ne(~wu) is defined as the mapping yu(t) =
n
∑

k=1
wk(t)xk(t) + bu, t ∈ T,

bu = brbs. Further, for a pair Ne(~wr), Ne(~ws) of neurons from AN(T) we put Ne(~wr) ≤m Ne(~ws),
wr = (wr,1(t), . . . , wr,n(t)), ws = (ws,1(t), . . . , ws,n(t)) if wr,k(t) ≤ ws,k(t), k ∈ N, k 6= m and
wr,m(t) = ws,m(t), t ∈ T and with the same bias. Evidently (AN(T), ≤m) is an ordered set.
A relationship (compatibility) of the binary operation "·m" and the ordering ≤m on AN(T) is given by
this assertion analogical to Lemma 2 in [29].

Lemma 2. The triad (AN(T), ·m,≤m) (algebraic structure with an ordering) is a non-commutative
ordered group.

Sketch of the proof was published in [21].
Denoting

AN1(T)m = {Ne(~w); ~w = (w1, . . . , wn), wk ∈ C(T), k = 1, . . . , n, wm(t) ≡ 1}, 1 ≤ m ≤ n,

we get the following assertion:

Proposition 1 (Prop. 1. [21], p. 239). Let T = 〈0, t0) ⊂ R, t0 ∈ R ∪ {∞}. Then for any positive integer
n ∈ N, n ≥ 2 and for any integer m such that 1 ≤ m ≤ n the semigroup (AN1(T)m, ·m) is an invariant
subgroup of the group(AN(T)m, ·m).

Proposition 2 (Prop. 2. [21], p. 240). Let t0 ∈ R, t0 > 0, T = 〈0, t0) ⊂ R and m, , n ∈ N are
integers such that 1 ≤ m ≤ n− 1. Define a mapping F : ANn(T)m → LAn(T)m+1 by this rule: For an
arbitrary neuron Ne(~wr) ∈ ANn(T)m, where ~wr = (wr,1(t), . . . , wr,n(t)) ∈ [C(T)]n we put F(Ne(~wr) ) =

L(wr,1, . . . , wr,n) ∈ LAn(T)m+1 with the action :

L(wr,1, . . . , wr,n)y(t) =
dny(t)

dtn +
n

∑
k=1

wr,k(t)
dk−1y(t)

dtk−1 , y ∈ Cn(T).

Then the mapping F : ANn(T)m → LAn(T)m+1 is a homomorphism of the group (ANn(T)m, ·m) into
the group (LAn(T)m+1, ◦m+1).

Now, using the construction described in the Lemma 1, we obtain the final transposition
hypergroup (called also non-commutative join space). Denote by P(AN(T)m)∗ the power set of
AN(T)m consisting of all nonempty subsets of the last set and define a binary hyperoperation

∗m : AN(T)m ×AN(T)m → P(AN(T)m)
∗

by the rule
Ne(~wr) ∗m Ne(~ws) = {Ne(~wu); Ne(~wr) ·m Ne(~ws) ≤m Ne(~wu)}

for all pairs Ne(~wr), Ne(~ws) ∈ AN(T)m. More in detail if ~w(u) = (wu,1, . . . , wu,n), ~w(r) =

(wr,1, . . . , wr,n), ~w(s) = (ws,1, . . . , ws,n), then wr,m(t)ws,m(t) = wu,m(t), wr,m(t)ws,k(t) + wr,k(t) ≤
wu,k(t), if k 6= m, t ∈ T. Then we have that (AN(T)m, ∗m) is a non-commutative hypergroup. We say
that this hypergroup is constructed by using the Ends Lemma (cf. e.g., [8,25,29]. These hypergroups
can be called as EL-hypergroups. The above defined invariant (called also normal) subgroup
(AN1(T)m, ·m) of the group (AN(T)m, ·m) is the carrier set of a subhypergroup of the hypergroup
(AN(T)m, ∗m) and it has certain significant properties.

Using certain generalization of methods from [42] (p. 283), we obtain, after we investigate the
constructed structures, the following result:
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Theorem 1. Let T = 〈0, t0) ⊂ R, t0 ∈ R ∪ {∞}. Then for any positive integer n ∈ N, n ≥ 2 and for any
integer m such that 1 ≤ m ≤ n the hypergroup (AN(T)m, ∗m),where

AN(T)m = {Ne(~wr); ~wr = (wr,1(t), . . . , wr,n(t)) ∈ [C(T)]n, wr,m(t) > 0, t ∈ T},

is a transposition hypergroup (i.e., a non-commutative join space) such that (AN(T)m, ∗m) is its subhypergroup,
which is

- invertible (i.e., Ne(~wr)/Ne(~ws) ∩ AN1(T)m 6= ∅ implies Ne(~ws)/Ne(~wr) ∩ AN1(T)m 6= ∅ and
Ne(~wr) Ne(~ws) ∩AN1(T)m 6= ∅ implies Ne(~ws) Ne(~wr) ∩AN1(T)m 6= ∅ for all pairs of neurons
Ne(~wr), Ne(~ws) ∈ AN1(T)m,

- closed (i.e., Ne(~wr)/Ne(~ws) ⊂ AN1(T)m, Ne(~wr) \ Ne(~ws) ⊂ AN1(T)m for all pairs
Ne(~wr), /, Ne(~ws) ∈ AN1(T)m,

- reflexive (i.e., Ne(~wr) AN1(T)m = AN1(T)m/Ne(~wr) for any neuron Ne(~wr) ∈ AN(T)m and
- normal (i.e.Ne(~wr) ∗AN1(T)m = AN1(T)m ∗ Ne(~wr) for any neuron Ne(~wr) ∈ AN(T)m.

Remark 1. A certain generalization of the formal (artificial) neuron can be obtained from expression of a
linear differential operator of the n-th order. Recall the expression of formal neuron with inner potential

y−in =
n
∑

k=1
wk(t)xk(t), where ~x(t) = (x1(t), . . . , xn(t)) is the vector of inputs, ~w(t) = (w1(t), . . . , wn(t))

is the vector of weights. Using the bias b of the considered neuron and the transfer function σ we can expressed

the output as y(t) = σ

(
n
∑

k=1
wk(t)xk(t) + b

)
.

Now consider a tribal function u : J → R, where J ⊆ R is an open interval; inputs are derived from

u ∈ Cn(J) as follows: Inputs x1(t) = u(t), x2 = du(t)
dt , . . . , xn(t) = dn−1(t)

dtn−1 , n ∈ N. Further the bias

b = b0
dnu(t)

dtn . As weights we use the continuous functions wk : J → R, k = 1, . . . , n− 1.
Then formula

y(t) = σ

(
n

∑
k=1

wk(t)
dk−1u(t)

dtk−1 + b0
dnu(t)

dtn

)
is a description of the action of the neuron Dn which will be called a formal(artificial) differential neuron.
This approach allows to use solution spaces of corresponding linear differential equations.

Proposition 3 ([41], p. 16). Let (G1, ·), (G2, ·) be two groups f ∈ Hom(G1, G2) and P ⊂ G1. Then the
homomorphism f is a good homomorphism between P-hypergroups (G1, ∗P) and (G2, ∗P).

Concerning the discussed theme see [26–28,30,32,36,39,45]. Now denote by S ⊆ C(T) an arbitrary
non/empty subset and let

P = {Ne(~wu(t)); u ∈ S} ⊆ AN(T).

Then defining
Ne(~wp(t)) ∗ Ne(~wq(t)) = Ne(~wp(t)) ·m P ·m Ne(~wq(t)) =

{Ne(~wp(t)) ·m Ne(~wu(t)) ·m Ne(~wq(t)); u ∈ S}

for any pair of neurons Ne(~wp(t)), Ne(~wq(t)) ∈ AN(T), we obtain a P-hypergroup of artificial time
varying neurons. If S is a singleton, i.e., P is a one-element subset of AN(T), the obtained structure is a
variant of AN(T). Notice, that any f ∈ EndG for a group (G, ·) induces a good homomorphism of the
P-hypergroups (G, ∗P), (G, ∗ f (P)) and any automorphism creates an isomorphism beween the above
P-hypergroups.

Let (Z,+) be the additive group of all integers. Let Ne(~ws(t)) ∈ AN(T) be arbitrary but

fixed chosen artificial neuron with the output function ys(t) =
n
∑

k=1
ws,k(t)xs,k(t) + bs. Denote by
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λs : AN(T) → AN(T) the left translation within the group of time varying neurons determined by
Ne(~ws(t), i.e.,

λs(Ne(~wp(t)) = Ne(~ws(t) ·m Ne(~wp(t))

for any neuron Ne(~wp(t)) ∈ AN(T). Further, denote by λr
s the r-th iteration of λs for r ∈ Z. Define the

projection πs : AN(T)×Z→ AN(T) by

πs(Ne(~wp(t)), r) = λr
s(Ne(~wp(t)).

It is easy to see that we get a usual (discrete) transformation group, i.e., the action of (Z,+) (as the
phase group) on the group AN(T). Thus the following two requirements are satisfied:

1. πs(Ne(~wp(t)), 0) = Ne(~wp(t)) for any neuron Ne(~wp(t)) ∈ AN(T),
2. πs(Ne(~wp(t)), r+ u) = πs(πs(Ne(~wp(t)), r), u) for any integers r, u ∈ Z and any artificial neuron

Ne(~wp(t)). Notice that, in the dynamical system theory this structure is called a cascade.

On the phase set we will define a binary hyperoperation. For any pair of neurons Ne(~wp(t)),
Ne(~wq(t)) define

Ne(~wp(t)) ∗ Ne(~wq(t)) = πs(Ne(~wp(t)),Z) ∪ πs(Ne(~wq(t)),Z) =

{λa
s (Ne(~wp(t)); a ∈ Z} ∪ {λb

s (Ne(~wq(t)); b ∈ Z}.

Then we have that ∗ : AN(T)×AN(T) → P(AN(T)) is a commutative binary hyperoperation and
since Ne(~wp(t)), Ne(~wq(t)) ∈ Ne(~wp(t)) ∗ Ne(~wq(t)), we obtain that the hypergroupoid (AN(T), ∗)
is a commutative, extensive hypergroup [20,27,29–31,34,35,38,43,46,47]. Using its properties we can
characterize certain properties of the cascade (AN(T),Z, πs). The hypergroup (AN(T), ∗) can be called
phase hypergroup of the given cascade.

Recall now the concept of invariant subsets of the phase set of a cascade (X,Z, πs) and the
concept of a critical point. A subset M of of a phase set X of the cascade (X,Z, πs) is called invariant
whenever π(x, r) ∈ M, for all x ∈ M and all r ∈ Z. A critical point of a cascade is an invariant
singleton. It is evident that a subset M of neurons , i.e., M ⊆ AN(T) is invariant in the cascade
(AN(T),Z, πs) whenever it is a carrier set of a subhypergroup of the hypergroup (AN(T), ∗), i.e., M is
closed with respect to the hyperoperation ∗, which means M ∗M =

⋃
a,b∈M

a ∗ b ⊆ M. Moreover, union

or intersection of an arbitrary non-empty systemM⊆ AN(T) is also invariant.

3. Main Results

Now, we will construct series of groups and hypergroups of artificial neurons using certain
analogy with series of groups of differential operators described in [29].

We denote by LAn(J) (for an open interval J ⊆ R) the set of all linear differential operators
L(pn−1, . . . , p0), p0 6= 0, pk ∈ Cn(J), i.e., the ring of all continuous functions defined on the interval J,
acting as

L(pn−1, . . . , p0)y(x) = yn(x) +
n−1

∑
k=0

pk(x)yk(x), y ∈ Cn(J)

and endowed the binary operation

L(qn−1, . . . , q0) ◦ L(pn−1, . . . , p0) = L(q0 pn−1 + qn−1, . . . , q0 p1 + q1, q0 p0).

Now denote by LAn(J) the set of all operators L(qn, . . . , q0), q0 6= 0, qk ∈ C(J) acting as

L(qn, . . . , q0)y(x) =
n

∑
k=0

qk(x)y(k)(x), q0 6= 0, qk ∈ C(J)
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with similarly defined binary operations such that LAn(J), LAn(J) are noncommutative groups.
Define mappings Fn : LAn(J)→ LAn−1(J) by

Fn(L(pn−1, . . . , p0)) = L(pn−2, . . . , p0)

and φn : LA(J)→ LAn−1(J) by

φn(L(pn−1, . . . , p0)) = L(pn−2, . . . , p0).

It can be easily verified that both Fn and φn, for an arbitrary n ∈ N, are group homomorphisms.
Evidently, LAn(J) ⊂ LAn(J), LAn−1(J) ⊂ LAn(J) for all n ∈ N. Thus we obtain complete

sequences of ordinary linear differential operators with linking homomorphisms Fn, φn :

LAn(J)
idn,n+1 // LAn+1(J)

idn+1,n+2// LAn+2(J)
idn+2,n+3// LAn+3(J)

idn+2,n+3// . . .

LAn(J)

idn

OO

LAn+1(J)
φn+1

ii

idn+1

OO

Fn+1

oo LAn+2(J)
φn+2

ii

idn+2

OO

Fn+2

oo LAn+3(J)
φn+3

ii

idn+3

OO

Fn+3

oo . . .
φn+4

ii

Fn+4

oo

Now consider the groups of time-varying neurons (AN(T)m, ·m) from Proposition 3 and above
defined homomorphism of the group (ANn(T)m, ·m) into the group (LAn(T)m+1, ◦m+1). Then we can
change the diagram in the following way:

ANn(T)m

id∗n,n+1// ANn+1(T)m

id∗n+1,n+2// ANn+2(T)m

id∗n+2,n+3// ANn+3(T)m

id∗n+2,n+3// . . .

ANn(T)m

id∗n

OO

ANn+1(T)m

φ∗n+1

ii
id∗n+1

OO

F∗n+1

oo ANn+2(T)m

φ∗n+2

ii
id∗n+2

OO

F∗n+2

oo ANn+3(T)m

φ∗n+3

ii
id∗n+3

OO

F∗n+3

oo . . .
φ∗n+4

ii

F∗n+4

oo

Using the Ends lemma and results the theory of linear operators we can describe also mapping
morphisms in sequences groups of linear differential operators:

LAn(J) LAn+1(J)
Fn+1

oo LAn+2(J)
Fn+2

oo LAn+3(J)
Fn+3

oo . . .
Fn+4

oo

as so analogy in sequences groups of time-varying neurons: (2)

ANn(T)m ANn+1(T)mF∗n+1

oo ANn+2(T)mF∗n+2

oo ANn+3(T)mF∗n+3

oo . . .
F∗n+4

oo

Theorem 2. Let T = 〈0, t0) ⊂ R, t0 ∈ R ∪ {∞} , n ∈ N such that n ≥ 2, m ∈ N such
that m ≤ n. Let (HANn(T)m, ∗m) be the hypergroup obtained from the group (ANn(T)m, ◦m) by
Proposition 2. Suppose that Fn : (ANn(T)m, ◦m) → (ANn−1(T)m, ◦m) are the above defined surjective
group homomorphisms. Then Fn : (HANn(T)m, ∗m) → (HANn−1(J)m, ∗m) are surjective homomorphisms
of hypergroups.

Remark 2. The second sequence of (2) can thus be bijectively mapped onto sequence of hypergroups

HANn(T)m HANn+1(T)mFn+1

oo HANn+2(T)mFn+2

oo HANn+3(T)mFn+3

oo . . .
Fn+4

oo

wit the linking surjective homomorphisms Fn. Therefore, the bijective mapping of the above mentioned sequences
is functorial.

Now, shift to the concept of an automaton. This was developed as a mathematical interpretation
of real-life systems that work on a discrete time-scale. Using the binary operation of concatenation of
chains of input symbols we obtain automata with input alphabets endowed with the structure of a
semigroup or a group. Considering mainly the structure given by transition function and neglecting
output functions with output sets we reach a very useful generalization of the concept of automaton
called quasi—automaton [29,31,48,49]. Let us introduce the concept of automata as an action of time



Symmetry 2019, 11, 927 8 of 12

varying neurons. Moreover, let system (A, S, δ), consists of nonempty time-varying neuron set of
states A ⊆ AN(T)m, arbitrary semigroup of their inputs S and let mapping δ : A× S→ A fulfill the
following condition:

δ(δ(a, r), s) = δ(a, rṡ)

for arbitrary a ∈ A and r, s ∈ S can be understood as a analogy of concept of quasi-automaton,
as a generalization of the Mealy-type automaton. The above condition is some times called Mixed
Associativity Condition (MAC).

Definition 4. Let A be a nonempty set, (H, ·) a semihypergroup and δ : A× H → A a mapping satisfying
the condition:

δ(δ(s, a), b) ∈ δ(s, aḃ) (3)

for any triad (s, a, b) ∈ A × H × H, where δ(s, aḃ) = {δ(s, x); x ∈ a · b}. The triad (A, H, δ) is called a
quasi-multiautomaton with the state set A and the input semihypergroup (H, ·). The mapping δ : A× H → A
is called transition function (or next-state function) of the quasi-multiautomaton (A, H, δ). Condition (3) is
called Generalized Mixed Associativity Condition (or GMAC).

The just defined structures are also called as actions of semihypergroups (H, ·) on sets A (called
state sets).

Neuron Ne(~w) acts as described above:

y(t) =
n

∑
i=1

wi(t)xi(t) + b,

where i goes from 0 to n, wi(t) is the weight value in continuous time, b is a bias and y(t) is the output
value in continuous time t. Here the transition function F is the identity function.

Now suppose that the input functions xi are differentiable up to arbitrary order n.
We consider linear differential operators

L(m, wn, . . . , w0) : Cn(T)× · · · ×Cn(T)→ Cn(T), i. e. Cn(T)× · · · ×Cn(T) = [Cn(T)]n+1,

defined
L(m, wn, . . . , w0)x(t) =

= mb +
n

∑
k=1

wk(t)
dkxk(t)

dtk , x(t) = (x0(t), x1(t), . . . , xn(t)) ∈ Cn(T)× · · · ×Cn(T) = [Cn(T)]n+1.

Then we denote by LNen(T) the additive Abelian group of linear differential operators
L(m, wn, . . . , w0), where for L(m, wn, . . . , w0), L(k, w∗n, . . . , w∗0) ∈ LNen(T) with the bias b we define

L(m, wn, . . . , w0) + L(s, w∗n . . . , w∗0) = L(m + s, wn + w∗n, . . . , w0 + w∗0),

where
L(m + s, wn + w∗n, . . . , w0 + w∗0)x(t) =

= (m + s)b +
n

∑
k=0

(wk(t) + w∗k (t))
dkxk(t)

dtk , t ∈ T and x(t) = (x0(t), x1(t), . . . , xn(t)) ∈ [Cn(T)]n+1.

Suppose that wk(t) ∈ Cn(T) and define

δn : Cn(T)×LNen(T)→ Cn(T)

by
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δn(x(t), L(m, wn, . . . , w0)) = mb + x(t) + m +
n

∑
k=0

wk(t)
dkx(t)

dtk , x(t) ∈ Cn(T), where

wn, . . . , w0 are weights corresponding with inputs and b is the bias of a neuron corresponding to the
operator L(m, wn, . . . , w0) ∈ LNen(T).

Theorem 3. Let LNen(T), Cn(T) be the above defined structures and δn : Cn(T)×LNen(T)→ Cn(T) be
the above defined mapping. Then the triad (Cn(T), LNen(T), δn) is an action of the group LNen(T) on the
group Cn(T), i.e., a quasi-automaton with the state space Cn(T) and with the alphabet LNen(T) with the
group structure of artificial neurons.

Proof. We are going to verify the mixed associativity condition (MAC). Suppose x ∈ Cn(T) and
L(m, wn, . . . , w0), L(k, un, . . . , u0) ∈ LNen(T). Then we have

δn(δn(x(t), L(m, wn, . . . , w0), L(k, un, . . . , u0)) =

= δn(mb + x(t) + m +
n

∑
k=0

wk(t)
dkx(t)

dtk , L(k, un, . . . , u0)) =

= kb + mb + x(t) + m + k +
n

∑
k=0

wk(t)
dkx(t)

dtk +
n

∑
k=0

uk(t)
dkx(t)

dtk =

= (m + k)b + x(t) + m + k +
n

∑
k=0

(wk(t) + uk(t))
dkx(t)

dtk =

δn(x(t), L(m + k, wn(t) + un(t), . . . , w0)(t) + u0)(t)) =

δn(x(t), L(m, wn, . . . , w0) + L(k, un, . . . , u0)),

thus MAC is satisfied.

Consider an interval T ⊆ R and the ring C(T) of all continuous functions defined on the
interval. Let {ϕk; k ∈ N} be a sequence of ring-endomorphism of C(T). Denote An+kN(T)m the
EL-hypergroup of artificial neurons constructed above, with vectors of weights of the dimension
n + k ∈ N (= {1, 2, 3 . . . }). Let [C(T)]n+k = C(T)×C(T)× · · · ×C(T) (n + k− times) i.e., C(T)]n+k

is the n + k-dimensional cartesian cube. Denote by ϕ̄k : [C(T)]n+k → [C(T)]n+k−1 the extension of
ϕk such that ϕ̄k(~w) = ϕ̄k((w1, . . . , wn+k−1, wn+k)) = (w1, . . . , wn+k−1). Let us denote the mapping Fk :
An+kN(T)m → An+k−1N(T)m defined by Fk(Ne(~w) = Ne(~w1) with ~w1 = (w1, . . . , wn+k). Consider
underlying sets of hypergroups An+kN(T)m endowed with the above defined ordering relation:

for ~w = (w1, . . . , wn+k), ~u = (u1, . . . , un+k) ∈ [C(T)]n+k

we have ~w ≤ ~u if wr ≤ ur, r = 1, 2, . . . , n + k and wm ≤ um. Now, for Ne(~w), Ne(~u) ∈
An+kN(T)m such that ~w = (w1, . . . , wn+k), ~u = (u1, . . . , un+k), Ne(~w) ≤ Ne(~u), which means ~w ≤ ~u
(wm = um and biases of corresponding neurons are the same) we have ϕ̄k(~w) = (w1, . . . , wn+k−1) ≤
(u1, . . . , un+k−1) = ϕ̄k(~u),which implies Fk(~w) ≤ Fk(~u).

Consequently the mapping Fk : (An+kN(T)m,≤) → (An+k−1N(T)m,≤) is order-preserving,
i.e., this is an order-homomorphism of hypergroups. The final result of our considerations
is the following sequence of hypergroups of artificial neurons and linking homomorphisms:

AnN(T)m An+1N(T)m
F1oo . . .F2oo An+kN(T)m

Fkoo An+k+1N(T)m . . .
Fk+1oo

4. Conclusions

Artificial neural networks and structured systems of artificial neurons have been discussed by a
great number of researchers. They are an important part of artificial intelligence with many useful
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applications in various branches of science and technical constructions. Our considerations are based
on algebraic and analytic approach using certain formal similarity with classical structures and new
hyperstructures of differential operators. We discussed a certain generalizations of classical artificial
time-varying neurons and studied them using recently derived methods. The presented investigations
allow further development.
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