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Abstract—Pulsed electromagnetic (EM) scattering from a rel- isotropic and loss-free background medium described aj-(re
atively narrow su_perconducting strip is anal_yzed with the ad of  yalued, scalar and positive) parametegsand o with the
the EM reciprocity theorem and the Cagniard-DeHoop (CdH) corresponding EM wave speeg = (60#0)—1/2 ~ 0 and

technique. The analysis yields a stable convolution-typegeation . _ . . -
that is solved using the marching-on-in-time (MOT) techniquie for wave admittancey, = 1/copo. The time coordinate ig¢ ¢

coefficients representing the time-domain (TD) electric cuent  R;¢ > 0}, H(t) denotes the Heaviside unit-step function and
induced in the strip. lllustrative numerical examples are \alidated  §(¢) is the Dirac-delta distribution. The strip is irradiated &y

with the help of the CdH method of moments (CdH-MoM). E-polarized, uniform impulsive EM plane WavE;(z, 2,t) =
Index Terms—computational electromagnetics, time-domain € (f — pox + 702), wheree!(t) denotes its (causal) signature

analysis, time-domain integral equation technique, Cagmird- and py = sin()/co with vo = cos(f)/co are the wave

DeHoop technique, transient scattering, superconductity. slowness parameters in the and z-direction, respectively

(see Fig. 1). The EM properties of the superconducting strip
I. INTRODUCTION

The CdH technique [1]-[5] is a joint transform method that Do {eo, o}
was originally developed to explain seismic data. Since the
CdH technique is capable of solving a large class of canbnica
EM problems directly in TD, it has been found useful for ;
benchmarking purely numerical techniques, both in acgurac 1 ng |
and in speed of computation. More recently, a fundamentally \ o J
new TD integral-equation technique, referred to as the CdH-

MoM, has been put forward [6], [7], thereby demonstratingjg 1. A narrow superconducting strip irradiated by the iitsjve EM plane
the applicability of the CdH technique in computationalcele wave.

tromagnetics (see also [8]). An illustrative applicationtioe

CdH-MoM is also the subject of the present contributiorare described by its two-fluid conduction relaxation fumcti
where the EM plane-wave induced TD electric current in @ee [10, Sec. 1.2] and [11, Sec. 19.5])

relatively narrow, planar superconducting strip is aneti;Zor

a thorough discussion of applications of superconductors i Ke(t) = on(T/T)YS(t) + 1 — (T/T) AT'H(E) (1)

antenna and microwave engineering, the reader is refeored t

[9], [10].

Y

whereo,, denotes the normal-state conductivity at the critical
temperaturdl,, A = ugA? is the London parameter, in which
A represents the penetration depth at temperafute( and,

We shall analyze the TD response of a superconductifigally, T'/T. is the reduced temperature. It is assumed that the
planar strip that occupie§—w/2 < = < w/2,—-§/2 < z < strip shows a high contrast with respect to the embeddinlg suc
§/2}, wherew > 0 denotes the strip’s width andl > 0 its that the equivalent TD layer conductanGé () = Jk.(t) is
(vanishing) thickness. The strip is located in the homogese of orderO(1). Then, the following TD cross-layer conditions

Il. PROBLEM DEFINITION AND ITS FORMULATION



apply To solve the resulting relation (8) iteratively via the MOT
approach, the unknown electric current is expanded in

lim E — lim FE — 2

Zilg/lz v (2, 2, 1) z’rlfl?/z y(z,2,t) =0 (2 "
lim Hy(xz,z,t) — lim Hi(x,z,t) =90J (x,t 3 fs(s) =~ Zk[\k(s) (10)

lim Ho(e,2,0) = i Ho(e,2,0) = 0J5(x,0) - (3) 2
asé |0, forall {—w/2 <z < w/2} andt > 0, where wherei, denotes the unknown coefficients (@) and the TD

original of the triangular function is defined by

has the meaning of contrast sheet electric current derfsty | Ax(t) = {1 +(E—te)/ALTOrE € [tha, bl
Eg. (12)] and«, denotes the time-convolution operator. L—(t—te)/At fort & [t tra]
Employing the TD cross-layer conditions, the EM recigjong the discretized time axit, = kAt, At > 0,k =
procity theorem of the time-convolution type [11, Sec. 282 1 2 ... M} c {t € R;¢ > 0}. Substituting Eq. (10) the
next applied to interrelate the (causal) scattered EM filtes s_domain reciprocity-based relation (8) and transforming t
(further denoted by superscrigtwith the (causal) testing field result to the TD, we obtain a convolution-type equation that
state (further denoted by superscript In this way, we arrive can be solved for the current coefficients using the MOT

OJ3(w,t) = GU(t) %, Ey(x,0,t) (4)
(11)

at technique. This leads to
w/2 o
T S X
/ gt (008 % 0Ty B im = COALYpeH () /D(AL) — DAY S i
w/2 k=1
= / Ey(x,0,t) *, an(ac, t)yde  (5) X [@(tm — tp—1) — 2®(tm — ti) + P(tm — tir1)] (12)
r=—w/2
forallm={1,...,M}, wh
The TD reciprocity relation (5) with Egs. (4) and (1) is fugth orallm ={1,..., M}, where
solved for the induced electric-current response induced i ®(t) = [T(w,t) —27(0,t) + T (—w,t)] /w?
the superconducting strip. The TD solution presented ia thi + (A1/uow5)[1 _ eXp(ft/JlAl)]H(t) (13)

contribution is limited by the assumption that the stripiglth

is relatively small with respect to the spatial support aé thand o1 = o (T/Te)*, Ar = A/[1 — (T/T.)*] (see Eq. (1)),
exciting plane-wave signatué(t). and the TD functionY'(z, ¢) follows upon applying the CdH

technique as

I1l. PROBLEM SOLUTION 1/2
. . . 1 | a2 _1 { cot cotx cth
The EM scattering problem formulated in the previous Y(z,t) = 3172 cosh — | + — \ 5z 1
section is further solved via the CdH technique that employs T ] r
the one-sided time Laplace transformation c2t? 1/2
- — cot|x|tan™? <—2 - 1> H(t — |x|/co)
~ X
Ey(z,z,s) :/ exp(—st)Ey(x, z,t)dt (6)
=0 O b () 14
(2)H(1) (14)

with {s € R;s > 0} thus relying on Lerch’s uniqueness the- 2
orem [13, Appendix]. The temporal transformation is furthdor all z € R and¢ > 0.

combined with the wave slowness representation IV. NUMERICAL EXAMPLE

~ _ N B ~ In this section, the MOT solution (12) is validated with the
Ey(z,z,5) = (S/2m)/p exp(=spr) By (p, 2, 5)dp (7) aid of the CdH-MoM technique [6]. To that end, we shall

. . . . L I he TD fayYB = Yttri Bari -

that entailsd,, — —sp. Assuming the uniform spatial distri- analyze the response of a YBCO (= Yttrium Barium Cop

bution of the induced current density and introducing Ef}. (per Oxide) superconducting planar strip of wi 10 pn

. . . . ~and thicknes® = 0.5 um. Its conduction relaxation function
and (7) in (5), the resulting (transform-domain) reciptyci is described via parameters taken from [18]: = 77K,

relation can be readily cast into the following form T. = 925K, o — 1.7- 10°S/m and A = 0.3 um. The plane
[Zext(s) 4 1/wéL(S):| fS(S) — é(s)io(spow/2) (8) Wave is defined by its bipolar triangular signature

whereiy(z) denotes the modified spherical Bessel function of e'(t) = (2em/tw) {t H(t) = 2(t — tw/2)H(t - t/2)

=—ioco

the first kind and +2(t — Bty /2)H(t — 3ty /2) — (t — 2ty) H(t — 2tw)}
. s ico ) d
roe =32 [ Bepgts @ (15
p=mico Tolp with e;, = 1.0 V/m, ¢otw = 100w andd = 0. Figure 3 shows
has the meaning of external impedance [14], wheye) = the electric-current density induced in the center of theesu

(1/ct — p*)'/? with Re(vo) > 0. conducting strip. As can be seen, the results calculatetheia
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Fig. 2. Plane wave pulse shape.

MOT procedure agree well with the ones achieved using thié
CdH-MoM assuming the piecewise linear spatial distributio

over the strip divided into 2 nodes. Minor discrepancies caf?]
be attributed to the difference in the spatial basis fumgtio [10]

[11]
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= 100 [13]
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Fig. 3. Pulse shape of the electric-current density indumiethe center of
the superconducting strip.

V. CONCLUSION

Combining the time-convolution EM reciprocity theorem
with the CdH method, a novel TD integral-equation technique
for analyzing the TD plane-wave EM scattering from a rel-
atively narrow superconducting planar strip was introdice
The validity of the proposed computational methodology was
conclusively demonstrated with the aid of the CdH-MoM [6].
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