
 

 

 

 

Pulsed EM Field Scattering From a Narrow 
Superconducting Strip: A Solution Based on the 
Marching-On-In-Time Cagniard-DeHoop Method 

 
ŠTUMPF, M.; LAGER, I.; ANTONINI, G.; VANDENBOSCH, G. 

 

Proceedings of the 15th European Conference on Antennas and Propagation 

eISBN: 978-88-31299-02-2 

DOI: https://doi.org/10.23919/EuCAP51087.2021.9411446  

 

Accepted manuscript 

 

 

 
 
 
 
 
 
 
 
 
 
 
 

©2021 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained 
for all other uses, in any current or future media, including reprinting/republishing this material 
for advertising or promotional purposes, creating new collective works, for resale or 
redistribution to servers or lists, or reuse of any copyrighted component of this work in other 
works. ŠTUMPF, M.; LAGER, I.; ANTONINI, G.; VANDENBOSCH, G.. "Pulsed EM Field Scattering From 
a Narrow Superconducting Strip: A Solution Based on the Marching-On-In-Time Cagniard-DeHoop 
Method", IECON 2021 – 47th Annual Conference of the IEEE Industrial Electronics Society, 2021. 
DOI: 10.23919/EuCAP51087.2021.9411446. Final version is available at 
https://ieeexplore.ieee.org/document/9411446 

dspace.vutbr.cz 

https://doi.org/10.23919/EuCAP51087.2021.9411446
https://ieeexplore.ieee.org/document/9411446


Pulsed EM Field Scattering From a Narrow
Superconducting Strip: A Solution Based on the
Marching-On-In-Time Cagniard-DeHoop Method
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Abstract—Pulsed electromagnetic (EM) scattering from a rel-
atively narrow superconducting strip is analyzed with the aid of
the EM reciprocity theorem and the Cagniard-DeHoop (CdH)
technique. The analysis yields a stable convolution-type equation
that is solved using the marching-on-in-time (MOT) technique for
coefficients representing the time-domain (TD) electric current
induced in the strip. Illustrative numerical examples are validated
with the help of the CdH method of moments (CdH-MoM).

Index Terms—computational electromagnetics, time-domain
analysis, time-domain integral equation technique, Cagniard-
DeHoop technique, transient scattering, superconductivity.

I. I NTRODUCTION

The CdH technique [1]–[5] is a joint transform method that
was originally developed to explain seismic data. Since the
CdH technique is capable of solving a large class of canonical
EM problems directly in TD, it has been found useful for
benchmarking purely numerical techniques, both in accuracy
and in speed of computation. More recently, a fundamentally
new TD integral-equation technique, referred to as the CdH-
MoM, has been put forward [6], [7], thereby demonstrating
the applicability of the CdH technique in computational elec-
tromagnetics (see also [8]). An illustrative application of the
CdH-MoM is also the subject of the present contribution,
where the EM plane-wave induced TD electric current in a
relatively narrow, planar superconducting strip is analyzed. For
a thorough discussion of applications of superconductors in
antenna and microwave engineering, the reader is referred to
[9], [10].

II. PROBLEM DEFINITION AND ITS FORMULATION

We shall analyze the TD response of a superconducting
planar strip that occupies{−w/2 < x < w/2,−δ/2 < z <
δ/2}, wherew > 0 denotes the strip’s width andδ > 0 its
(vanishing) thickness. The strip is located in the homogeneous,

isotropic and loss-free background medium described by (real-
valued, scalar and positive) parametersǫ0 and µ0 with the
corresponding EM wave speedc0 = (ǫ0µ0)

−1/2 > 0 and
wave admittanceY0 = 1/c0µ0. The time coordinate is{t ∈
R; t > 0}, H(t) denotes the Heaviside unit-step function and
δ(t) is the Dirac-delta distribution. The strip is irradiated bya
E-polarized, uniform impulsive EM plane wave,Ei

y(x, z, t) =
ei(t − p0x + γ0z), whereei(t) denotes its (causal) signature
and p0 = sin(θ)/c0 with γ0 = cos(θ)/c0 are the wave
slowness parameters in thex- and z-direction, respectively
(see Fig. 1). The EM properties of the superconducting strip
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Fig. 1. A narrow superconducting strip irradiated by the impulsive EM plane
wave.

are described by its two-fluid conduction relaxation function
(see [10, Sec. 1.2] and [11, Sec. 19.5])

κc(t) = σn(T/Tc)
4δ(t) +

[

1− (T/Tc)
4
]

Λ−1H(t) (1)

whereσn denotes the normal-state conductivity at the critical
temperatureTc, Λ = µ0λ

2 is the London parameter, in which
λ represents the penetration depth at temperatureT = 0 and,
finally, T/Tc is the reduced temperature. It is assumed that the
strip shows a high contrast with respect to the embedding such
that the equivalent TD layer conductanceGL(t) = δκc(t) is
of orderO(1). Then, the following TD cross-layer conditions



apply

lim
z↓δ/2

Ey(x, z, t)− lim
z↑−δ/2

Ey(x, z, t) = 0 (2)

lim
z↓δ/2

Hx(x, z, t)− lim
z↑−δ/2

Hx(x, z, t) = ∂J s
y(x, t) (3)

as δ ↓ 0, for all {−w/2 < x < w/2} and t > 0, where

∂J s
y(x, t) = GL(t) ∗

t
Ey(x, 0, t) (4)

has the meaning of contrast sheet electric current density [12,
Eq. (12)] and∗

t
denotes the time-convolution operator.

Employing the TD cross-layer conditions, the EM reci-
procity theorem of the time-convolution type [11, Sec. 28.2] is
next applied to interrelate the (causal) scattered EM field state
(further denoted by superscripts) with the (causal) testing field
state (further denoted by superscriptT). In this way, we arrive
at

∫ w/2

x=−w/2

ET
y (x, 0, t) ∗t

∂J s
y(x, t)dx

=

∫ w/2

x=−w/2

Es
y(x, 0, t) ∗t

∂JT
y (x, t)dx (5)

The TD reciprocity relation (5) with Eqs. (4) and (1) is further
solved for the induced electric-current response induced in
the superconducting strip. The TD solution presented in this
contribution is limited by the assumption that the strip’s width
is relatively small with respect to the spatial support of the
exciting plane-wave signatureei(t).

III. PROBLEM SOLUTION

The EM scattering problem formulated in the previous
section is further solved via the CdH technique that employs
the one-sided time Laplace transformation

Êy(x, z, s) =

∫ ∞

t=0

exp(−st)Ey(x, z, t)dt (6)

with {s ∈ R; s > 0} thus relying on Lerch’s uniqueness the-
orem [13, Appendix]. The temporal transformation is further
combined with the wave slowness representation

Êy(x, z, s) = (s/2πi)

∫ i∞

p=−i∞

exp(−spx)Ẽy(p, z, s)dp (7)

that entails∂x → −sp. Assuming the uniform spatial distri-
bution of the induced current density and introducing Eqs. (6)
and (7) in (5), the resulting (transform-domain) reciprocity
relation can be readily cast into the following form

[

Ẑext(s) + 1/wĜL(s)
]

Îs(s) = êi(s) i0(sp0w/2) (8)

wherei0(x) denotes the modified spherical Bessel function of
the first kind and

Ẑext(s) =
sµ0

2πi

∫ i∞

p=−i∞

i20(spw/2)
dp

2γ0(p)
(9)

has the meaning of external impedance [14], whereγ0(p) =
(1/c20 − p2)1/2 with Re(γ0) ≥ 0.

To solve the resulting relation (8) iteratively via the MOT
approach, the unknown electric current is expanded in

Îs(s) ≃

M
∑

k=1

ikΛ̂k(s) (10)

whereik denotes the unknown coefficients (inA) and the TD
original of the triangular function is defined by

Λk(t) =

{

1 + (t− tk)/∆t for t ∈ [tk−1, tk]

1− (t− tk)/∆t for t ∈ [tk, tk+1]
(11)

along the discretized time axis{tk = k∆t,∆t > 0, k =
1, 2, · · · ,M} ⊂ {t ∈ R; t > 0}. Substituting Eq. (10) the
s-domain reciprocity-based relation (8) and transforming the
result to the TD, we obtain a convolution-type equation that
can be solved for the current coefficients using the MOT
technique. This leads to

im = c0∆tY0e
i(tm)/Φ(∆t)− Φ−1(∆t)

m−1
∑

k=1

ik

×
[

Φ(tm − tk−1)− 2Φ(tm − tk) + Φ(tm − tk+1)
]

(12)

for all m = {1, . . . ,M}, where

Φ(t) =
[

Υ(w, t)− 2Υ(0, t) + Υ(−w, t)
]

/w2

+ (Λ1/µ0wδ)
[

1− exp(−t/σ1Λ1)
]

H(t) (13)

and σ1 = σn(T/Tc)
4, Λ1 = Λ/[1 − (T/Tc)

4] (see Eq. (1)),
and the TD functionΥ(x, t) follows upon applying the CdH
technique as

Υ(x, t) =
1

2π

{

x2

2
cosh−1

(

c0t

|x|

)

+
c0tx

2

(

c20t
2

x2
− 1

)1/2

− c0t|x| tan
−1

[

(

c20t
2

x2
− 1

)1/2
]}

H(t− |x|/c0)

+
c0tx

2
H(x)H(t) (14)

for all x ∈ R and t > 0.

IV. N UMERICAL EXAMPLE

In this section, the MOT solution (12) is validated with the
aid of the CdH-MoM technique [6]. To that end, we shall
analyze the TD response of a YBCO (= Yttrium Barium Cop-
per Oxide) superconducting planar strip of widthw = 10µm
and thicknessδ = 0.5µm. Its conduction relaxation function
is described via parameters taken from [15]:T = 77K,
Tc = 92.5K, σn = 1.7 · 106 S/m andλ = 0.3µm. The plane
wave is defined by its bipolar triangular signature

ei(t) = (2em/tw)
[

tH(t)− 2
(

t− tw/2
)

H
(

t− tw/2
)

+ 2
(

t− 3tw/2
)

H
(

t− 3tw/2
)

− (t− 2tw)H(t− 2tw)
]

(15)

with em = 1.0V/m, c0tw = 100w andθ = 0. Figure 3 shows
the electric-current density induced in the center of the super-
conducting strip. As can be seen, the results calculated viathe
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Fig. 2. Plane wave pulse shape.

MOT procedure agree well with the ones achieved using the
CdH-MoM assuming the piecewise linear spatial distribution
over the strip divided into 2 nodes. Minor discrepancies can
be attributed to the difference in the spatial basis functions.
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Fig. 3. Pulse shape of the electric-current density inducedat the center of
the superconducting strip.

V. CONCLUSION

Combining the time-convolution EM reciprocity theorem
with the CdH method, a novel TD integral-equation technique
for analyzing the TD plane-wave EM scattering from a rel-
atively narrow superconducting planar strip was introduced.
The validity of the proposed computational methodology was
conclusively demonstrated with the aid of the CdH-MoM [6].
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[7] M. Štumpf, “Pulsed EM field coupling between two narrow strips on
a dielectric half-space: A one-segment solution based on the Cagniard-
DeHoop method of moments,” inProc. 2020 Int. Symp. Antennas and
Propag. and North American Radio Science Meeting, July 2020, pp.
189–190.
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