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Abstract

This work addresses verification of infinite-state systems, more specifically, ver-
ification of programs manipulating complex dynamic linked data structures.
Many different approaches emerged to date, but none of them provides a suffi-
ciently robust solution which would succeed in all possible scenarios appearing
in practice. Therefore, in this work, we propose a new approach which aims at
improving the current state of the art in several dimensions. Our approach is
based on using tree automata, but it is also partially inspired by some ideas
taken from the methods based on separation logic. Apart from that, we also
present multiple advancements within the implementation of various tree au-
tomata operations, crucial for our verification method to succeed in practice.
Namely, we provide an optimised algorithm for computing simulations over
labelled transition systems which then translates into more efficient compu-
tation of simulations over tree automata. We also give a new algorithm for
checking inclusion over tree automata, and we provide experimental evaluation
demonstrating that the new algorithm outperforms other existing approaches.
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Abstrakt

Tato prace se zabyva verifikaci nekoneéné stavovych systému, konkrétné, ve-
rifikaci programu vyuzivajich slozité dynamicky propojované datové struktury.
V minulosti se k feSeni tohoto problému objevilo mnoho ruznych pristupu,
avsak zadny z nich doposud nebyl natolik robustni, aby fungoval ve vsech pii-
padech, se kterymi se lze v praxi setkat. Ve snaze poskytnout vyssi uroven
strukturami v této praci navrhujeme novy piistup, ktery je zalozen zejména
na pouziti stromovych automatu, ale je také castecné inspirovan nékterymi
myslenkami, které jsou prevzaty z metod zalozenych na separa¢ni logice. Mimo
to také predstavujeme nékolik vylepSeni v oblasti implementace operaci nad
stromovymi automaty, které jsou klicové pro praktickou vyuzitelnost navrho-
vané verifikacni metody. Konkrétné uvadime optimalizovany algoritmus pro
vypocet simulaci pro prechodovy systém s navéstimi, pomoci kterého lze efek-
tivnéji pocitat simulace pro stromové automaty. Dale uvadime novy algoritmus
pro testovani inkluze stromovych automatu spolecné s experimenty, které uka-
zuji, ze tento algoritmus prekonava jiné existujici ptristupy.
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Résumé

Les travaux décrits dans cette these portent sur le probleme de vérification des
systemes avec espaces d’états infinis, et, en particulier, avec des structures de
données chainées. Plusieurs approches ont émergé, sans donner des solutions
convenables et robustes, qui pourrait faire face aux situations rencontrées dans
la pratique. Nos travaux proposent une approche nouvelle, qui combine les
avantages de deux approches tres prometteuses: la représentation symbolique
a base d’automates d’arbre, et la logique de séparation. On présente également
plusieurs améliorations concernant l'implementation de différentes opérations
sur les automates d’arbre, requises pour le succes pratique de notre méthode. En
particulier, on propose un algorithme optimise pour le calcul des simulations
sur les systemes de transitions étiquettes, qui se traduit dans un algorithme
efficace pour le calcul des simulations sur les automates d’arbre. En outre, on
présente un nouvel algorithme pour le probleme d’inclusion sur les automates
d’arbre. Un nombre important d’expérimentes montre que cet algorithme est
plus efficace que certaines des méthodes existantes.
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1 Introduction

Traditional approaches for ensuring quality of computer systems such as code
review or testing are nowadays reaching their inherent limitations due to the
growing complexity of the current computer systems. That is why, there is an
increasing demand for more capable techniques. One of the ways how to deal
with this situation is to use suitable formal verification approaches.

In case of software, one especially critical area is that of ensuring safe me-
mory usage in programs using dynamic memory allocation. The development of
such programs is quite complicated, and many programming errors can easily
arise here. Worse yet, the bugs within memory manipulation often cause an
unpredictable behaviour, and they are often very hard to find. Indeed, despite
the use of testing and other traditional means of quality assurance, many of the
memory errors make it into the production versions of programs causing them
to crash unexpectedly by breaking memory protection or to gradually waste
more and more memory (if the error causes memory leaks). Consequently, using
formal verification is highly desirable in this area.

Formal verification of programs with dynamically linked data structures
is, however, very demanding since these programs are infinite-state. One of the
most promising ways of dealing with infinite state verification is to use symbolic
verification in which infinite sets of reachable configurations are represented
finitely using a suitable formalism. In case of programs with dynamically linked
data structures, the use of symbolic verification is complicated by the fact
that their configurations are graphs, and representing infinite sets of graphs is
particularly complicated (compared to objects like words or trees).

Many different verification approaches for programs manipulating dynami-
cally linked data structures have emerged so far. Some of them are based on
logics [MS01, SRW02, Rey02, BCCT07, GVA07, NDQCO07, CRN07, ZKR08S,
YLB108, CDOY09, MPQ11, DPV11], others are based on using automata
[BHRVO06b, BBH11, DEGO6], upward closed sets [ABCT08, ACV11], as well
as other formalisms. The approaches differ in their generality, efficiency, and
degree of automation. Among the fully automatic ones, the works [BCC*T07,
YLB108] present an approach based on separation logic (see [Rey02]) that is
quite scalable due to using local reasoning. However, their method is limited to
programs manipulating various kinds of lists. There are other works based on
separation logic which also consider trees or even more complex data structu-
res, but they either expect the input program to be in some special form (e.g.,
[GVAOQ7]) or they require some additional information about the data structu-
res which are involved (as in [NDQC07, MTLT10]). Similarly, even the other
existing approaches that are not based on separation logic often suffer from
the need of non-trivial user aid in order to successfully finish the verification
task (see, e.g., [MS01, SRWO02]). On the other hand, the work [BHRV06b] pro-
posed an automata-based method which is able to handle fully automatically
quite complex data structures, but it suffers from several drawbacks such as



a monolithic representation of memory configurations which does not allow this
approach to scale well.

Another issue with many existing automata-based approaches for symbolic
verification of infinite-state systems (such as programs with dynamically linked
data structures) is that they are based on using deterministic finite automata
(DFA). This allows them to take advantage of the relatively simple and well-
established algorithms for computing standard operations such as language
union, language inclusion, minimisation, complementation, etc. However, some
of these operations internally produce nondeterministic finite automata which
then need to be immediately determinised. This is not difficult in theory, but
in practice, the size of the automata for which the operation can be computed
is very limited as the size of the corresponding deterministic automata can
be exponential in the size of the original nondeterministic ones. As a result,
verification methods based on using DFA do not perform that well when they
are forced to work with automata of bigger size.

A use of nondeterministic finite automata (NFA) was proposed in [BHHT08]
in an effort to address the issues of scalability of symbolic automata-based ve-
rification methods. Despite the fact that this approach cannot improve the
theoretical worst-case complexity, it turns out that the use of nondeterministic
automata can greatly improve the scalability of automata-based verification
approaches in practice. However, in order to be able to efficiently use NFA in
the given context, one needs to have available suitable algorithms for certain
critical automata operations that will perform these operations without ne-
cessarily determinising the automata. This is in particular the case of language
inclusion, minimisation (or, more precisely, size reduction), and complemen-
tation (if needed). Some of these algorithms have already been proposed (e.g.,
[DWDHRO06, BHH"08] use antichains to deal with the problem of language
inclusion), but there remained a significant space for improvement. In particu-
lar, within the algorithms for language inclusion presented in [ACH™10, DR10]
(which further optimise the work of [DWDHR06, BHH*08]) and size reduction
presented in [ABH'08], one has to compute the maximal simulation relation
over the set of states of an automaton. It turns out that the computation of
the simulation relation often takes the majority of the time, especially in the
case of size reduction. Hence, efficient techniques for computing simulations
are needed. Moreover, the technique of [ACH*10] for antichain-based inclusion
checking of TA uses upward simulations which are especially costly to com-
pute and often very sparse. Hence, there is also a need of still better inclusion
checking on NTA.

1.1 Goals of the Work

Above, we have argued that development of programs with dynamically linked
data structures is difficult, error-prone, and the errors arising in this kind of
programs are difficult to discover using traditional approaches for quality assu-
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rance. Hence, there is a strong need for formal verification approaches in this
area. However, most of the existing formal verification techniques for programs
with dynamically linked data structures are either not fully automatic, or they
can handle only a limited class of data structures. On the other hand, those
techniques that can automatically handle complex data structures are usually
computationally very expensive. Therefore, our first goal is to develop an effici-
ent and fully automatic approach for verification of this kind of programs. The
new approach is intended to be able to verify programs manipulating more com-
plex data structures than those that can be efficiently handled by existing fully
automatic methods. We, in particular, focus on combining automata-based ap-
proaches (which are rather general and which come with flexible and refinable
abstraction) with some principles taken from the quite scalable methods based
on separation logic, which is especially the case of local reasoning.

The second goal is to further improve the available algorithms implementing
the operations that one needs to perform over nondeterministic automata when
using them in some method for symbolic verification of infinite-state systems
such as the one proposed within the first goal. Concretely, our aim is to improve
algorithms for inclusion checking by considering the so-far neglected top-down
approach and to improve automata reduction by providing a better algorithm
for computing simulations.

1.2 An Overview of the Achieved Results

In this section, we summarise the contributions that we have achieved within
the particular areas marked out by the goals of the work.

Verification of Heap Manipulating Programs. We propose a novel me-
thod for symbolic verification of heap manipulating programs. The main idea
of our approach is the following. We represent heap graphs via their canoni-
cal tree decomposition. This can be done thanks to the observation that every
heap graph can be decomposed into a set of tree components when the leaves
of the tree components are allowed to refer back to the roots of these com-
ponents. Moreover, given a total ordering on program variables and pointer
links (called selectors), each heap graph may be decomposed into a tuple of
tree components in a canonical way. In particular, one can first identify the
so-called cut-points, i.e., nodes that are either pointed to by a program variable
or that have several incoming edges. Next, the cut-points can be canonically
numbered using a depth-first traversal of the heap graph starting from nodes
pointed to by program variables in the order derived from the order of the
program variables and respecting the order of selectors. Subsequently, one can
split the heap graph into tree components rooted at the particular cut-points.
These components should contain all the nodes reachable from their root while
not passing through any cut-point, plus a copy of each reachable cut-point,

3



labelled by its number. Finally, the tree components can then be canonically
ordered according to the numbers of the cut-points representing their roots.

We introduce a new formalism of forest automata upon the described de-
composition of heaps into tree components in order to be able to efficiently
represent sets of such decompositions (and hence sets of heaps). In particular,
a forest automaton (FA) is basically a tuple of tree automata. Each of the tree
automata within the tuple accepts trees whose leaves may refer back to the
roots of any of these trees. A forest automaton then represents exactly the set
of heaps that may be obtained by taking a single tree from the language of
each of the component tree automata and by gluing the roots of the trees with
the leaves referring to them.

Further, we show that FA enjoy some nice properties, which are crucial for
our verification approach. In particular, we show that relevant C statements can
be easily symbolically executed over forest automata. Moreover, one can im-
plement efficient abstraction on FA as well as decide language inclusion (which
is needed for fixpoint checking) The latter can in particular be implemented
by an easy reduction to the well-known problem of language inclusion of tree
automata.

Next, in order to extend the class of graphs that can be handled in our
framework, we extend FA to hierarchically nested FA by allowing their alphabet
symbols to encode sets of subgraphs instead of plain hyperedges. These sets
of subgraphs are again represented using hierarchically nested FA. For the
hierarchical FA, we do not obtain the same nice theoretical properties, but we
at least show that the needed operations (such as language inclusion checking)
can be sufficiently precisely approximated (building on the results for plain
FA).

In our symbolic verification approach, a symbolic state is thus composed
of a finite number of program variable assignments, a forest automaton which
is able to represent infinitely many heaps, and a program counter specifying
which instruction of the verified code is to be executed in the next step. We have
implemented the approach in a tool called Forester in order to experimentally
evaluate our method. The results show that the tool is very competitive when
compared to other existing tools for verification of dynamic data structures
while being quite general and fully automatic.

Simulations over Labelled Transition Systems and Tree Automata.
We address the problem of computing simulations over a labelled transition
system (LTS) by designing an optimised version of the algorithm proposed
in [ABH'08, AHKVO08] (which is itself based on the algorithms for Kripke
structures from [HHK95, RT07]). Our optimisation is based on the observation
that in practice, we often work with LTSs in which transitions leading from
particular states are labelled by some subset of all alphabet symbols only.
By a careful analysis of the original algorithm, we have identified that one
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can exploit this irregular use of alphabet symbols in order to improve the
performance of the computation.

In particular, for two states p and ¢ within an LTS, p can simulate ¢ only if
for any transition leading from ¢ labelled by some symbol a, there is a transition
leading from p labelled by a. Using this fact, we refine the initial estimation
of the simulation relation within the first phase of the algorithm introduced in
[AHKVO08], and we show that, thanks to the initial refinement, certain iterations
of the algorithm can be skipped without affecting its output. Furthermore, we
show that certain parts of the data structures used by the original algorithm are
no longer needed when our optimisation is used. Hence, we obtain a reduction
of the space requirements, too. For our optimised algorithm, we also derive its
worst-case time and space complexity.

As shown in [AHKVO08], simulations over tree automata can be efficiently
computed via a translation into LTSs. Therefore, we also derive the complexity
of computing simulations over tree automata when our optimised algorithm
is applied on LTSs produced during the translation. In this case, we achieve
a promising reduction of the asymptotic complexity. Moreover, we validate
the theoretical results by an experimental evaluation demonstrating significant
savings in terms of space as well as time on both LTSs and tree automata.

Language Inclusion Checking for Tree Automata. For the purposes
of our verification technique for programs manipulating dynamically linked
data structures, we also investigate new efficient methods for checking langu-
age inclusion on nondeterministic tree automata. Originally, we intended to
build upon the bottom-up inclusion checking introduced in [ACH*10] which is
based on combining antichains with upward simulation. However, during our
experiments, we have realised that the particular combination does not yield
the expected improvements in the efficiency of inclusion checking because the
computation of upward simulation is often too costly. In reaction to this issue,
we have designed a new top-down inclusion checking algorithm which is of a si-
milar spirit as the one in [HVP05], but it is not limited to binary trees, and it
is optimised in several crucial ways as described below.

Unlike the bottom-up approach which starts in the leaves and proceeds
towards the roots, the top-down inclusion starts in roots (represented via ac-
cepting states) and continues towards the leaves. The approach is based on
generating pairs in which the first component corresponds to a state of the first
automaton, and the second component contains a set of states of the second
automaton. During the computation, the algorithm maintains a set of those
pairs for which the inclusion has been shown not to hold. A fundamental pro-
blem of this method is the fact that the number of successor pairs one needs
to explore grows exponentially with the level of the (top-down) nondetermi-
nism of tree automata. Due to this, the construction may blow up and run out
of the available time on certain automata pairs. We, however, show that it is
often possible to work around this issue by using the principle of antichains
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[DWDHRO06]. Moreover, we further improve the approach by combining it with
a use of downward simulation which greatly reduces the risk of the blow-up.
Finally, we also present a sophisticated modification of the algorithm which
allows us to remember and to exploit the pairs for which the inclusion holds
(apart from those in which it does not).

We have implemented explicit and semi-symbolic variants of the various,
above mentioned language inclusion algorithms. Our experiments with the
bottom-up and the top-down approaches for checking language inclusion of
tree automata show that the top-down inclusion checking dominates in most
of our benchmarks.

An Efficient Library for Dealing with NTA. The proposed algorithms
for inclusion checking and simulation computation have been incorporated into
a newly designed library (called VATA) for dealing with NTA, together with
some further operations such as simulation-based reduction, union, intersection,
etc. Various lower-level optimisations of the basic algorithms have been propo-
sed within the implementation of the library to make it as efficient as possible.
This, in particular, includes various improvements of the bottom up inclusion
checking of [ACH'10] which make it more efficient in practice. Another signifi-
cant improvement introduced in the implementation of VATA is a substantial
refinement of the internal representation of the data structures used in the al-
gorithm for computing simulations which further reduce its memory footprint.

1.3 Plan of the Thesis

Chapter 2 contains preliminaries on labelled transition systems, tree automata,
and simulations. Chapter 3 proposes the notion of forest automata which serves
as a theoretical basis for our verification technique for programs manipulating
dynamically linked data structures. In Chapter 4, we provide a detailed de-
scription of the verification procedure as well as the experimental evaluation of
our prototype tool Forester based on it. Our optimised algorithm for compu-
ting simulations on L'T'Ss is presented in Chapter 5. Chapter 6 describes several
variants of top-down inclusion checking algorithms. Essentials of our tree au-
tomata library based on the proposed algorithms are discussed in Chapter 7,
including various lower-level optimisations of the implementation of the algori-
thms discussed in Chapter 5 and Chapter 6. Finally, Chapter 8 concludes the
thesis.

2 Forest Automata
In this section, we introduce forest automata which is a new formalism for

representing sets of graphs. Our main motivation for creating this formalism has
been verification of programs manipulating dynamically linked data structures.
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For the purpose of the explanation, heaps may be viewed as oriented graphs
whose nodes correspond to allocated memory cells and edges to pointer links
between these cells. The nodes may be labelled by non-pointer data stored in
them (assumed to be from a finite data domain) and by program variables
pointing to the nodes. Edges may be labelled by the corresponding selectors.

In what follows, we restrict ourselves to garbage free heaps in which all
memory cells are reachable from pointer variables by following pointer links.
However, this is not a restriction in practice since the emergence of garbage
can be checked for each executed program statement. If some garbage arises,
an error message can be issued and the symbolic computation stopped. Alter-
natively, the garbage can be removed and the computation continued.

2.1 Basic Encoding of Heaps

It is easy to see that each heap graph can be decomposed into a set of tree
components when the leaves of the tree components are allowed to reference
back to the roots of these components. Moreover, given a total ordering on
program variables and selectors, each heap graph may be decomposed into
a tuple of tree components in a canonical way as illustrated in Figure 1 (a)
and (b). In particular, one can first identify the so-called cut-points, i.e., nodes
that are either pointed to by a program variable or that have several incoming
edges. Next, the cut-points can be canonically numbered using a depth-first
traversal of the heap graph starting from nodes pointed to by program variables
in the order derived from the order of the program variables and respecting
the order of selectors. Subsequently, one can split the heap graph into tree
components rooted at particular cut-points. These components should contain
all the nodes reachable from their root while not passing through any cut-point,
plus a copy of each reachable cut-point, labelled by its number. Finally, the tree
components can then be canonically ordered according to the numbers of the
cut-points representing their roots.

Our proposal of forest automata builds upon the described decomposition of
heaps into tree components. In particular, a forest automaton (FA) is basically
a tuple of tree automata (TA). Each of the tree automata accepts trees whose
leaves may refer back to the roots of any of these trees. An FA then represents
exactly the set of heaps that may be obtained by taking a single tree from the
language of each of the component TA and by gluing the roots of the trees with
the leaves referring to them.

Below, we will mostly concentrate on a subclass of FA that we call canonicity
respecting forest automata (CFA). CFA encode sets of heaps decomposed in
a canonical way, i.e., such that if we take any tuple of trees accepted by the
given CFA, construct a heap from them, and then canonically decompose it,
we get the tuple of trees we started with. This means that in the chosen tuple
there is no tree with a root that does not correspond to a cut-point and that
the trees are ordered according to the depth-first traversal as described above.
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Figure 1: (a) A heap graph with cut-points highlighted in red, (b) the canonical
tree decomposition of the heap with x ordered before y

The canonicity respecting form allows us to test inclusion on the sets of heaps
represented by CFA by testing inclusion component-wise on the languages of
the TA constituting the given CFA.

Note, however, that FA are not closed under union. Even for FA having the
same number of components, uniting the TA component-wise may yield an FA
overapproximating the union of the sets of heaps represented by the original
FA. Thus, we represent unions of FA explicitly as sets of FA (SFA), which is
similar to dealing with disjunctions of conjunctive separation logic formulae.
However, as we will see, inclusion on the sets of heaps represented by SFA is
still easily decidable.

2.2 Hierarchical Encoding of Heaps

The described encoding allows one to represent sets of heaps with a boun-
ded number of cut-points. However, to handle many common dynamic data
structures, one needs to represent sets of heaps with an unbounded number
of cut-points. Indeed, for instance, in doubly-linked lists (DLLs), every node
is a cut-point. We solve this problem by representing heaps in a hierarchical
way. In particular, we collect sets of repeated subgraphs (called components)
containing cut-points in the so-called bozxes. Every occurrence of such compo-
nents can then be replaced by a single edge labelled by the appropriate box.
To specify how a subgraph enclosed within a box is connected to the rest of
the graph, the subgraph is equipped with the so-called input and output ports.
The source vertex of a box then matches the input port of the subgraph, and
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Figure 2: (a) A part of a DLL, (b) a hierarchical encoding of the DLL

the target vertex of the edge matches the output port.! In this way, a set of
heap graphs with an unbounded number of cut-points can be transformed into
a set of hierarchical heap graphs with a bounded number of cut-points at each
level of the hierarchy. Figures 2 (a) and (b) illustrate how this approach can
basically reduce DLLs into singly-linked lists (with a DLL segment used as
a kind of meta-selector).

In general, we allow a box to have more than one output port. Boxes with
multiple output ports, however, reduce heap graphs not to graphs but hyper-
graphs with hyperedges having a single source node, but multiple target nodes.
This situation is illustrated on a simple example shown in Figure 3. The tree
with linked brothers from Figure 3 (a) is turned into a hypergraph with binary
hyperedges shown in Figure 3 (c¢) using the box B from Figure 3 (b). The sub-
graph encoded by the box B can be connected to its surroundings via its input
port ¢ and two output ports ol, 02. Therefore, the hypergraph from Figure 3
(c) encodes it by a hyperedge with one source and two target nodes.

Sets of heap hypergraphs corresponding either to the top level of the repre-
sentation or to boxes of different levels can then be decomposed into (hyper)tree
components and represented using hierarchical FA whose alphabet can contain
nested FA.2 Intuitively, FA appearing in the alphabet of some superior FA play

!Later on, the term input port will be used to refer to the nodes pointed to by program
variables too since these nodes play a similar role as the inputs of components.

2Since graphs are a special case of hypergraphs, in the following, we will work with
hypergraphs only. Moreover, to simplify the definitions, we will work with hyperedge-labelled
hypergraphs only. Node labels mentioned above will be put at specially introduced nullary
hyperedges leaving from the nodes whose label is to be represented.



Figure 3: (a) A tree with linked brother nodes, (b) a pattern that repeats in the
structure and that is linked in such a way that all nodes in the structure are
cut-points, (c) the tree with linked brother nodes represented using hyperedges
labelled by the box B.

a role similar to that of inductive predicates in separation logic.? We restrict
ourselves to automata that form a finite and strict hierarchy (i.e., there is no
circular use of the automata in their alphabets).

The question of deciding inclusion on sets of heaps represented by hierar-
chical FA remains open. However, we propose a canonical decomposition of
hierarchical hypergraphs allowing inclusion to be decided for sets of heap hy-
pergraphs represented by FA provided that the nested FA labelling hyperedges
are taken as atomic alphabet symbols. Note that this decomposition is by far
not the same as for non-hierarchical heap graphs due to a need to deal with
nodes that are not reachable on the top level, but are reachable through edges
hidden in some boxes. This result allows us to safely approximate inclusion
checking on hierarchically represented heaps, which appears to work quite well
in practice.

2.3 Future Directions

An interesting area for the future work which has not been investigated so
far is a characterisation of the class of graphs (heaps) which can be described
by hierarchical forest automata. Moreover, even though our experiments show
that the approximate inclusion checking on hierarchical FA that we have pro-
posed is quite successful in practice, it would be interesting to know whether
(precise) inclusion checking on FA is decidable (and efficiently implementable).
A somewhat related problem, which we will come across in the next section,
is then the problem of computing intersections of FA. Finally, one can also

3For instance, we use a nested FA to encode a DLL segment of length 1. In separation
logic, the corresponding induction predicate would represent segments of length 1 or more.
In our approach, the repetition of the segment is encoded in the structure of the top-level FA.
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consider extending FA by recursively nested boxes. They would greatly incre-
ase the expressive power of the formalism, however, it is so far unclear how to
implement the required algorithms over such an extension.

3 Forest Automata-based Verification

In this section, we build on the notion of forest automata, and we propose
a forest-automata-based verification procedure for sequential programs manipu-
lating complex dynamically linked data structures. We concentrate on programs
manipulating various forms of singly- and doubly-linked lists (SLL/DLL), possi-
bly cyclic, shared, hierarchical, and/or having various additional selectors (e.g.,
head pointers, tail pointers, data, etc.), as well as various forms of trees. We,
in particular, consider C pointer manipulation, but our approach can be easily
applied to any other similar language. We focus on safety properties of the
considered programs, which includes generic properties like absence of null de-
references, double free operations, dealing with dangling pointers, or memory
leakage. Furthermore, to check various shape properties of the involved data
structures, one can use testers, i.e., parts of code which, in case some desired
property is broken, lead the control flow to a designated error location.

As we have sketched already at the beginning of the previous section, in our
forest-automata-based representation, a heap is split in a canonical way into
several tree components such that roots of the trees correspond to cut-points.
The tree components can refer to the roots of each other. Using this decomposi-
tion, sets of heaps with a bounded number of cut-points are then represented
by forest automata. Moreover, we allow alphabets of FA to contain nested FA,
allowing us to also represent sets of heaps with an unbounded number of cut-
points, which is necessary in many practical cases (e.g., when one deals with
sets of DLLs). Finally, since FA are not closed under union, we work with sets
of forest automata.

3.1 Basic Principles of the Verification Procedure

A fundamental property of our newly proposed formalism of forest automata
is that C program statements manipulating pointers can be easily encoded as
operations modifying FA. Due to this and due to the fact that FA are based on
tree automata, we can build on the concept of abstract regular tree model chec-
king (see, e.g., [BHRVO06b]) to obtain a new symbolic verification procedure for
the considered class of programs. The procedure then works as follows: The al-
gorithm maintains a set of visited program configurations and a set of program
configurations which need to be processed. At the beginning, the set of visited
program configurations is empty, and the set of program configurations waiting
to be processed contains the initial configuration of the program to be analy-
sed which consists of the initial assignment of program variables, the empty
heap, and the program counter pointing to the first instruction of the program.
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Then, the algorithm iteratively picks one waiting program configuration and
performs a symbolic execution of the appropriate program statement. This es-
sentially means that one takes a forest automaton representing a set of heaps
and transforms it into a new forest automaton. The set of heaps represented by
the newly obtained forest automaton reflects the change within the heap caused
by the execution of the given program statement. In addition to that, one can
also apply abstraction in order to be able to obtain sets of all reachable confi-
gurations, which are typically infinite, in a finite number of steps. In the next
step, the algorithm checks whether the newly created program configuration is
covered by the set of already visited program configurations by means of testing
inclusion of languages represented by forest automata. If the newly obtained
symbolic configuration is not covered by the set of visited program configurati-
ons, it is inserted into the set of waiting program configurations. The process
then continues by picking another waiting configuration. During the symbolic
execution, the algorithm checks whether the verified code behaves properly, i.e.,
it does not dereference invalid pointers, it does not produce memory leaks, etc.
If the program does not operate properly, the procedure is immediately termi-
nated, and an error is reported. If the set of waiting configurations becomes
empty, the procedure terminates and outputs that the program is safe.

When an error is encountered, it remains to find out whether it is rea-
chable within the original program, or it was encountered due to an excessive
abstraction. In order to check, whether the error is indeed reachable, one can
execute the corresponding trace without the abstraction. If such trace cannot be
executed, then the set of reachable program configurations is over-approximated
too much, and the abstraction needs to be refined. The refinement can be done
globally which is, however, not very efficient. A better solution is to use the
counterexample-guided abstraction refinement as introduced in the framework
of abstract regular tree model checking (see again [BHRVO06b]). For that to
work, one needs to be able to execute the error trace backwards which is dis-
cussed later on.

Our approach has been implemented in a prototype tool called Forester as
a gcc plug-in. This allows us to demonstrate that the proposed approach is
very promising as the tool can successfully handle multiple highly non-trivial
case studies (for some of which we are not aware of any other tool that could
handle them fully automatically).

3.2 Future Directions

As of what concerns the future work, one of the most interesting areas is an im-
plementation of the proposed but not yet implemented abstraction refinement
which relies on the ability to perform a backward execution along the trace that
seems to lead to an error state. A part of this work should be an evaluation
of whether the proposed under-approximation of intersection is sufficient in
practice, or whether some more precise approach is needed.
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Furthermore, it would also be interesting to extend our approach such that it
could track some information about the data stored within dynamically linked
data structures. This would allow one to verify algorithms in which the memory
safety depends, for instance, on the fact that a certain sequence is sorted. As an
example, we can mention the algorithm for skip lists which we had to manually
modify in order to remove the dependency on the data. Another example is that
of dealing with red-black trees in which case one needs to distinguish red and
black trees. Apart from that, tracking of the data stored inside the dynamically
linked data structure would allow Forester to also check properties concerning
that data.

Another line of research is a generalisation of our approach to concurrent
programs. Here, an especially interesting case is that of lockless concurrent data
structures, which are extremely difficult to understand and validate.

Finally, some programs manipulating complex data structures—such as
trees with linked leaves—could be verified if one was able to work with recur-
sively nested boxes. Therefore, a generalisation of the algorithms proposed in
this thesis for such boxes is also an interesting topic for future work.

4 Simulations over LTSs and Tree Automata

The approach of abstract regular (tree) model checking, which we use in a novel
way also in our verification technique for programs with dynamic linked data
structures proposed in the previous chapter, crucially depends on the efficiency
of dealing with automata. AR(T)MC ([BHV04, BHRV06a]) was originally built
over deterministic finite tree automata. The need to determinise the automata
in every step of the computation has, however, turned out to be a significant
obstacle to practical applicability of the approach. That is why, in [BHHT08],
it has been proposed to replace their use by nodeterministic tree automata
(NTA). This, however, brings some problems to be solved. In particular, one
needs to be able to perform inclusion checking (in order to see when a fixpoint
is reached) and to reduce the of the automata obtained in the computation.
Unfortunately, both standard minimisation and inclusion checking algorithms
are based on first making the appropriate automata deterministic. Using de-
terminisation as an intermediate step would, however, destroy the advantage
of working with usually much smaller NTA. Hence, both of the operations are
to be done without determinisation. For checking inclusion, one can use me-
thods based on antichains, possibly combined with simulation as discussed in
Section 5 and in Section 6. For reducing the size of the automata, one can use
quotienting w.r.t. a suitable, typically simulation-based equivalence relation
(see [ABH'08]). For both of these problems, it is thus crucial to be able to
efficiently compute simulations on NTA. One of the most efficient ways to ob-
tain these equivalence simulation relations on NTA is via translating an NTA
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into a labelled transition system (LTS) as described in [AHKV08] and then
computing the simulation relation on this LTS.

Apart form that, many other automated verification techniques—such as
LTL model checking—are also directly or indirectly dealing with LTSs and as
such they are often limited by their size. One of the well-established approaches
to cope with this problem is the reduction of an LTS using a suitable equiva-
lence relation according to which the states of the LTS are collapsed. A good
candidate for such a relation is again simulation equivalence. It strongly preser-
ves logics like ACTL*, ECTL*, and LTL [DGG93, GL94, HHK95], and with
respect to its reduction power and computation cost, it offers a desirable com-
promise among the other common candidates, such as bisimulation equivalence
[PT87, SJO5] and language equivalence.

4.1 Original Algorithm for Computing Simulations

The currently fastest LTS-simulation algorithm (below denoted as LRT—i.e.,
labelled RT) has been published in [ABHT08]. It is a straightforward modifi-
cation of the fastest algorithm (in the following denoted as RT, standing for
Ranzato-Tapparo) for computing simulations over Kripke structures [RT07],
which itself improves the algorithm from [HHK95]. The time complexity of RT
amounts to O(|Ps;m||0]), the space complexity amounts to O(|Ps;y,||S]). In the
case of LRT, the time complexity is O(|Psin||d| + | 2| Psin]|S|) and the space
complexity is O(|X||Psin||S]). Here, S is the set of states of an LTS, ¢ is its
transition relation, ¥ is its alphabet, and Pk, is the partition of S according
to the simulation equivalence. The space complexity blow-up of LRT is caused
by indexing the data structures of RT by the symbols of the alphabet.

4.2 Improved Algorithm for Computing Simulations

We propose an optimised version of LRT (denoted OLRT) that lowers the above
described blow-up. We exploit the fact that not all states of an LTS have inco-
ming and outgoing transitions labelled by all symbols of the alphabet, which
allows us to reduce the memory footprint of the data structures used during the
computation. Our experiments show that the optimisations we propose lead to
significant savings of space as well as of time in many practical cases. Moreover,
we have achieved a promising reduction of the asymptotic complexity of algo-
rithms for computing tree-automata simulations from [ABH"08] using OLRT,
too.

4.3 Future Directions

As for future work, one can consider further optimisations of the proposed
algorithm. Here, an interesting question is whether the impact of the alphabet
size to the complexity can further be reduced. One of the possibilities is to
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represent internal data structures of the OLRT in a more efficient way, for
instance, using BDDs.

5 Efficient Inclusion over Tree Automata

As we have already mentioned, finite tree automata play a crucial role in
several formal verification techniques, such as (abstract) regular tree model
checking [AJMd02, BHRV06a|, verification of programs with complex dynamic
data structures [BHRVO06D], analysis of network firewalls [Boull], and imple-
mentation of decision procedures of logics such as WS2S or MSO [KMS01],
which themselves have numerous applications. In the context of verification of
programs manipulating dynamically linked data structures, let us also men-
tion (apart from our verification technique presented in Section 3, and many
others) the work in [MPQ11] which deals with the verification of programs
manipulating heap structures with data.

In Section 4, we argued that in order to successfully use nondeterministic
finite automata, one needs efficient algorithms for handling them. This is no-
tably the case of size reduction and language inclusion that are traditionally
done via determinisation. We have already said that determinisation-based size
reduction can be replaced by simulation quotienting and we have proposed the
algorithm for computing simulations to be used for this purpose. In this chapter,
we concentrate on the other problem, i.e., the problem of inclusion checking.
For that purpose, algorithms based on using antichains and antichains combi-
ned with simulations have been proposed in [BHH"08, ACH*10]. We further
improve the state of the art by proposing a new algorithm for inclusion checking
that turns out to significantly outperform the existing algorithms in most of our
experiments which we performed on two different automata representations. In
the first case, the transition function of automata are encoded explicitly, in the
second case, the transition function is encoded in a semi-symbolic way using
multi-terminal binary decision diagrams (MTBDDs) such that the states stay
explicit.

The classic textbook algorithm for checking inclusion £(Ag) C L(Ap) be-
tween two TA Ag (Small) and Ap (Big) first determinises Ap, computes the
complement automaton Ag of Ag, and then checks language emptiness of the
product automaton accepting £(Ag) N L(Ag). This approach has been opti-
mised in [TH03, BHH*08, ACH*10] which describe variants of this algorithm
that try to avoid the construction of the whole product automaton (which
can be exponentially larger than Ap and which is indeed extremely large in
many practical cases) by constructing some of its states and checking language
emptiness on the fly.

By employing the antichain principle within the construction of the product
automaton which allows for the given set of states to discard all its supersets,
the algorithm is often able to prove or refute inclusion by constructing a small
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part of the product automaton only. The work of [THO03] does, in fact, not
use the terminology of antichains despite implementing them in a symbolic,
BDD-based way. It specialises to binary tree automata only. A more gene-
ral introduction of antichains within a lattice-theoretic framework appeared in
the context of word automata in [DWDHRO06]. Subsequently, [BHH08] has
generalised [DWDHRO6] for explicit upward inclusion checking on TA and ex-
perimentally advocated its use within abstract regular tree model checking.

Additionally, the antichain algorithms can also be combined with using
upward simulation relations such as in [ACH'10] (see also [DR10] for other
combinations of antichains and simulations for word automata).

5.1 Upward Inclusion Checking

In general, we denote the above algorithms for TA as wupward algorithms to
reflect the direction in which they traverse automata Ag and Ap (i.e., they
start with leave transitions and continue upwards towards the accepting states).

The upward algorithms are sufficiently efficient in many practical cases.
However, they have two drawbacks: (i) When generating the bottom-up post-
image of a set S of sets of states, all possible n-tuples of states from all possible
products Sy X ... XS, S; € S need to be enumerated. (ii) Moreover, these algo-
rithms are known to be compatible with only upward simulations as a means of
their possible optimisation, which is a disadvantage since downward simulations
are often much richer and also cheaper to compute.

5.2 Downward Inclusion Checking

The alternative downward approach to checking TA language inclusion was
first proposed in [HVPO05] in the context of subtyping of XML types. This al-
gorithm is not derivable from the textbook approach and has a more complex
structure with its own weak points; nevertheless, it does not suffer from the
two issues of the upward algorithm mentioned above. We generalise the algori-
thm of [HVPO05] for automata over alphabets with an arbitrary rank ([HVPO05]
considers rank at most two), and, most importantly, we improve it significantly
by using the antichain principle, empowered by a use of the cheap and usually
large downward simulation. In this way, we obtain an algorithm which is com-
plementary to and highly competitive with the upward algorithm as shown by
our experimental results (in which the newly proposed algorithm significantly
dominates in most of the considered cases).

5.3 Dealing with Semi-Symbolic Encoding

Certain important applications of TA such as formal verification of programs
with complex dynamic data structures or decision procedures of logics such
as WS2S or MSO require handling very large alphabets. Here, the common
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choice is to use the MONA tree automata library [KMS01]| which is based on
representing transitions of TA symbolically using MTBDDs. However, the enco-
ding used by MONA is restricted to deterministic automata only. This implies
a necessity of immediate determinisation after each operation over TA that
introduces nondeterminism, which very easily leads to a state space explosion.
Despite the extensive engineering effort spent to optimise the implementation
of MONA, this fact significantly limits its applicability.

As a way to overcome this difficulty, we have participated on a proposal of
a semi-symbolic representation of nondeterministic TA which generalises the
one used by MONA, and we have developed algorithms implementing the basic
operations on TA (such as union, intersection, etc.) as well as more involved
algorithms for computing simulations and for checking inclusion (using simula-
tions and antichains to optimise it) over the proposed representation. We have
also conducted experiments with a prototype implementation of our algorithms
showing again a dominance of downward inclusion checking and justifying use-
fulness of our symbolic encoding for TA with large alphabets. However, the
symbolic encoding is beyond the scope of this work. More details can be found
in [HLSV11a] or in [HLSV11b]. Here, we only present experimental evaluation
in order to compare the inclusion algorithms.

5.4 Future Directions

Our experiments with downward inclusion show that the performance of the
algorithm is heavily dependent on the sequence in which one evaluates succes-
sors of pairs of states. In the future, it would be interesting to explore whether
a more efficient order of exploring these successors exists.

6 A Tree Automata Library

This section briefly describes the general-purpose tree automata library that
was designed within our research. The library contains an efficient implemen-
tation of many important algorithms for use of TA in symbolic verification such
as the algorithm for computing simulations over TA presented in Section 4 or
various inclusion checking methods described in [ACH"10] or in Section 5.

The main motivation behind the development of the library is to achieve
a better performance of the Forester verification tool presented in Section 3.
Apart from this tool, as we have already discussedthere are other formal verifi-
cation techniques relying on finite tree automata which often strongly depends
on the performance of the underlying implementation of TA.

6.1 Existing Libraries

Currently, there exist several available tree automata libraries, which are mostly
written in high-level languages such as OCaml (e.g., Timbuk/Taml [Gen03]) or
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Java (e.g., LETHAL [CJH'09]), and they do not always use the most advan-
ced algorithms known to date. Therefore, they are not suitable for tasks which
require that the available processing power is utilised as efficiently as possible.
An exception from these libraries is MONA [KMS01] implementing decision
procedures over WS1S/WS2S, which contains a highly optimised TA package
written in C, but, alas, it supports only binary deterministic tree automata.
As we have already mentioned, the determinisation is often a very significant
bottleneck, and a lot of effort has therefore been invested into developing effi-
cient algorithms for handling nondeterministic tree automata without a need
to ever determinise them.

6.2 VATA

In order to allow researchers focus on developing verification techniques rather
than reimplementing and optimising a TA package, we provide VATA?, an
easy-to-use open-source library for efficient manipulation of nondeterministic
TA. VATA supports many of the operations commonly used in automata-based
formal verification techniques over two complementary encodings: explicit and
semi-symbolic. The ezplicit encoding is suitable for most applications that do
not need to use alphabets with a large number of symbols. However, some
formal verification approaches make use of such alphabets, e.g., the approach
for verification of programs with complex dynamic data structures [BHRV06a]
or decision procedures of the MSO or WSKS logics [KMSO01]. Therefore, in
order to address this issue, we also provide a semi-symbolic encoding of TA,
which uses multi-terminal binary decision diagrams [CMZ197] (MTBDDs), an
extension of reduced ordered binary decision diagrams [Bry86] (BDDs), to store
the transition function of TA. In order to enable the widest possible range of
applications of the library even for the semi-symbolic encoding, we provide
both bottom-up and top-down semi-symbolic representations.

At the present time, the main application of the structures and algorithms
implemented in VATA for handling explicitly encoded TA is the Forester tool
for verification of programs with complex dynamic data structures which is
described in Section 3. The semi-symbolic encoding of TA has so far been used

mainly for experiments with various newly proposed algorithms for handling
TA.

6.3 Future Directions

In the future, it would be interesting to try to implement a simulation-aware
symbolic encoding of antichains using BDDs. Further, an implementation of
other TA operations, such as determinisation (which, however, is generally de-
sired to be avoided), or complementation (without a need of determinisation)

Yhttp://www.fit.vutbr.cz/research/groups/verifit/tools/libvata/
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could also be important for certain applications such as the decision procedures
of WSkS or MSO.

Finally, we hope that a public release of our library will attract more people
to use it and even better contribute to the code base. Indeed, we believe that
the library is written in a clean and understandable way that should make such
contributions possible.

7 Conclusions and Future Directions

Here, we summarise once more the main points and discuss possible future
directions of the research from a broader perspective.

7.1 A Summary of the Contributions

This thesis focuses on formal verification of programs manipulating complex
dynamic data structures. Inspired by the existing techniques based on using tree
automata ([BHRV06b]) and also techniques based on separation logic ([Rey02]),
we have developed a novel approach which tries to combine ideas from these
lines of research.

In particular, we have proposed an encoding of sets of heaps using an original
notion of forest automata. Essentially, a heap is split into a tuple of trees such
that non-tree links can be represented via explicit references to the roots of
the created trees. A forest automaton is then basically a tuple of ordinary tree
automata representing a set of heaps decomposed in this way. To obtain some
concrete heap out of this representation, one can pick a tuple of trees from
the languages of the tree automata which an FA consists of and replace the
non-local references by gluing the corresponding nodes.

Plain forest automata can represent sets of heaps which can be decomposed
into a finite number of tree components. In order to extend the expressive power
of the formalism, the original concept has been further extended by allowing
hierarchically nested forest automata to appear within the alphabet. We have
shown that hierarchical forest automata can indeed represent some sets of heaps
which would normally require an unbounded number of tree components and
that are important in practice (e.g., DLLs).

As the next step, we have developed a new symbolic verification method in
which we finitely represent infinite sets of heap configurations using forest au-
tomata. During a verification run, program statements are interpreted directly
over forest automata such that we compute the effect of a particular program
statement on infinitely many configurations in one step.

Our verification technique is based on the use of non-deterministic finite
tree automata, and the performance of the approach strongly depends on the
efficiency of the tree automata operations used. Among them, size reduction
and language inclusion are especially critical since they used to be traditionally
implemented via determinisation and only recently started to be implemented
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directly on NTA (to avoid the exponential cost of determinisation as much as
possible). Therefore, we have also invested into improving the state-of-the-art
algorithms for these operations.

The size reduction algorithm that we use is based upon collapsing states of
an automaton according to a suitable preorder. We, in particular, use down-
ward simulation which can be computed via a translation of a TA into a labelled
transition system. The original algorithm for computing simulation over LTSs
presented in [ABHT08, AHKV08] is a straightforward extension of the algo-
rithm for Kripke structures presented in [HHK95, RT07]. We show that the
increase in its complexity caused by the introduction of transition labels can
be to a large degree eliminated, which is supported by our experimental results.

Furthermore, we have also intensively investigated methods for checking lan-
guage inclusion of tree automata which is indirectly used for checking inclusion
of forest automata. The approach of [ACH*10] shows how one can combine
simulations and antichains for checking language inclusion of finite word and
also tree automata. This allows to achieve great computation speedups, espe-
cially when finite word automata are considered. In the case of finite tree auto-
mata, bottom-up inclusion is considered in [ACH*10]. This can only be combi-
ned with upward simulation which is quite expensive to compute and usually
does not yield bigger gains in speed. In order to solve this problem, we have
generalised the top-down approach of [THO3] to tree automata of arbitrary
arity. Moreover, we have extended the algorithm by using antichains combined
with downward simulation which is cheaper to compute and allows for a better
speedup.

Finally, we have created a freely available tree automata library containing
an efficient implementation of many important general purpose algorithms for
explicitly and semi-symbolically represented tree automata. For this purpose,
the basic versions of the data structures and algorithms described in the above
works have been carefully optimised, which we have also described in Section 6.

7.2 Further Directions

There are numerous directions of further work in the areas covered by the
thesis. From the theoretical perspective, the expressive power of hierarchical fo-
rest automata is an interesting question which has not yet been systematically
discussed. In connection to that, there arises a question of allowing recursively
nested FA which would extend the expressive power to other interesting sets
of graphs. It is, however, not yet clear how such an extension should look like
such that it allows for the needed automata operations to be implemented over
it. Further, the proposed algorithm for backward symbolic execution should be
implemented and experimentally evaluated within the framework of predicate
language abstraction. One problem that could arise here is that of the preci-
sion of the intersection under-approximation. If it appears problematic in some
practical cases, some more precise solution will have to be sought. Likewise,
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if the precision of the currently used algorithm for inclusion checking of FA
appears insufficient on some examples (which has not yet happened), it may
turn out useful to increase its precision by taking into account the hierarchical
structuring of FA. A related theoretical question is whether or not the inclusion
is decidable (even if neglecting the cost of such a check).

A very broad area for further research is that of extending the proposed
techniques to be able to cope with data stored inside the dynamically linked
data structures (which is crucial for verification of programs over red-black
trees, unmodified skip lists, or various user-specific scenarios exploiting dyna-
mically linked data structures) as well as for dealing with concurrency and/or
recursion (without the restrictions imposed in Section 3).

Next, concerning the problem of computing simulations for LTSs, it would
be interesting to study whether the memory requirements of the algorithm
can be further reduced by using some sophisticated data structure—such as
BDDs—for storing internal data of the algorithm. Such an approach could
perhaps reduce the impact of the alphabet size of the LTS even more. Mo-
reover, an interesting subject for further work is to go beyond reduction of
automata based on collapsing simulation equivalent states. Indeed, sometimes,
it is useful to split some states allowing a subsequent collapsing to be much
more productive.

The problem of language inclusion of TA is also a possible subject of further
research focus. The bottom-up approach does not seem to benefit from the com-
bination with upward simulation. Therefore, it would be interesting to see whe-
ther there exists a different (and possibly cheaper to compute) relation which
could improve the performance of upward inclusion checking. On the other
hand, despite the optimisations that we proposed, the top-down approach can
suffer from an explosion of the number of downward successors of a given macro
state. Moreover, in many cases, not all the successors need to be examined if
one is able to explore them in a suitable order. Possibilities of optimising the
sequence of successors are therefore also an interesting subject of future work.

The further development of our general purpose TA library involves imple-
mentation of so far missing operations such as determinisation, complemen-
tation, general-purpose transduction, etc. Here, complementation is special in
that we are not aware of any existing efficient way how to implement it without
determinisation (although some initial ideas have appeared, e.g., in [Hos10]). At
the same time, complementation is crucial for some automata-based algorithms
such as the decision procedures of WSkS or MSO. For that reason, it would
be nice to either find some efficient way how to complement automata without
determinising them or to find ways how to avoid explicit complementation as
much as possible. Apart from that, specialized versions of algorithms working
specifically with finite word automata (which are themselves a special kind of
TA) could be introduced in order to handle them more efficiently.
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7.3 Publications and Tools Related to this Work

The verification technique for programs manipulating complex dynamic data
structures and the underlying formalism of forest automata were first intro-
duced in [HHR*11a]. An extended version of the original description appea-
red in [HHR'12]. The proposed improvements of the in algorithm for compu-
ting simulations over labelled transition systems were published in [HS09a]. An
extended version then appeared in [HS10]. The proposed top-down inclusion
checking algorithm combined with antichains and downward simulation was de-
scribed in [HLSVl la]. Finally, our work on the general purpose tree automata
library (and the optimised data structures and algorithms that it is based on)
was presented in [LSV12].

Apart from that, the full versions of some of the above mentioned papers
were published as technical reports [HHR*11b, HS09b, HLSV11b]. A detailed
description of the algorithms for computing abstraction as well as the automatic
discovery of nested FA have not yet been published (and are planned to be
published later on). The proposed techniques were implemented in the Forester
tool and the VATA library publicly available over the internet®®.

Shttp://www.fit.vutbr.cz/research/groups/verifit/tools/forester/
Shttp://www.fit.vutbr.cz/research/groups/verifit/tools/libvata/
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