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1 Motivation

Nowadays, digital images are omnipresent; starting with outputs from digital cameras and
scanners, and ending with optical cuts provided by confocal microscopes, serving for various
biological and medical purposes (the study of the complicated architecture of neural net-
works, the space structure of cells and tissues, etc.). With the increasing quality of digital
images and their expanding applications, the requirements of the quality and the speed of
their processing are increasing as well.

With the contrast of 1:300, which is typical for a computer monitor in a medium-lit room,
a human eye is capable to distinguish about 150 – 200 levels of brightness. (Although more
modern monitors offer theoretically a higher contrast, it is usually unachievable due to
non-ideal observing conditions. The contrast of various printing techniques is even lower.)
The eight-bit representation of an image offers 28 = 256 levels of brightness so that this
representation is fully sufficient. However, in practice, we often encounter sixteen- and even
more bit images (i.e., 216 = 65, 536 and more levels of brightness). In these images, there
is most of information unexploitable for human sight. That is why it is necessary to use
mathematical algorithms to visualize such images.

2 Aims of the Ph.D. Thesis

The main aims of the Ph.D. thesis are following:

• Proper and mathematically correct description of fast algorithms of 2-D image en-
hancement procedures, their extension and improvement with new approaches, and
their generalization into 3-D. The 3-D image enhancement procedures have not been
described in literature yet. With suitable data, e.g., with a series of optical cuts,
these procedures represent a very interesting and unexplored way, which is supposed
to contribute to digital images processing significantly. If the 2-D processing does
not yield a satisfying outcome, the 3-D processing will be the next step. Biologi-
cal applications, described at the end of the thesis, can benefit from the enhanced
outputs.

• Complex software implementation of the procedures discussed above. Especially the
3-D adaptive image enhancement procedures represent a difficult challenge, due to
their high computational costs. An efficient and fast implementation of 3-D object
reconstruction from a series of optical cuts is another important part of this software.
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3 Visualization of High Dynamic Range Images

In image processing, computer graphics, and photography, high dynamic range imaging
(HDRI or just HDR) is a set of techniques that allows a greater dynamic range between
the lightest and darkest areas of an image than current standard digital imaging techniques
or photographic methods. The two main sources of HDR imagery are computer render-
ings and merging of multiple low-dynamic-range (LDR) or standard-dynamic-range (SDR)
photographs.

Comparison with Traditional Digital Images

Information stored in HDR images typically corresponds to the physical values of luminance
or radiance that can be observed in the real world. This is different from traditional
digital images, which represent colours that should appear on a monitor or a paper print.
Therefore, HDR image formats are often called „scene-referred“, in contrast to traditional
digital images, which are „device-referred“ or „output-referred“. Furthermore, traditional
images are usually encoded for the human visual system (maximizing the visual information
stored in the fixed number of bits). The values stored for HDR images are often gamma
compressed (power law) or logarithmically encoded, or floating-point linear values, since
fixed-point linear encodings are increasingly inefficient over higher dynamic ranges.

HDR images often use a higher number of bits per colour channel than traditional images
to represent many more colours over a much wider dynamic range. 16-bit or 32-bit floating
point numbers are often used to represent HDR pixels.

Representing HDR Images on LDR Displays

Popular tone-mapping techniques reduce the dynamic range, or contrast ratio, of the en-
tire image, while retaining localized contrast (between neighbouring pixels), tapping into
research on how the human eye and visual cortex perceive a scene, trying to represent the
whole dynamic range while retaining realistic colour and contrast. However, these images
have often their range over-compressed, creating a surreal low-dynamic-range rendering of
a high-dynamic-range scene.

This thesis is concerned with visualization of HDR images using various mathematical
algorithms. Let us emphasize that the target of these procedures is to create a suitable
image for human sight, not for purposes of a further mathematical analysis. If we want to
mathematically analyze the resulting image, it is necessary to maintain the original data
and work with them.
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4 Image

„Image“ is a quite difficult term to be defined precisely and it is used in various vague
and unclear ways in many computer science publications. In the following chapters, digital
images will be handled and processed and that is why it is necessary to define the term
image correctly. This chapter was elaborated using [7].

4.1 Digital Space

Throughout this section, k ∈ {1, 2, . . . , n}, n ∈ N, holds. The following definitions also
contain a few basic terms (equidistant partition of an interval, partition of a set, factor set,
vector space, basis, etc.) from the functional analysis. You can find them, e.g., in [16].

Definition of Digital Space

Definition 4.1 (multi-index set). Let kI = {0, 1, . . . , ik, . . . ,mk} be index sets. The set

I(n) =
n⊗

k=1
kI is called a multi-index set and its element i = [i1, i2, . . . , ik, . . . , in], i ∈ I(n), is

called a multi-index.

Definition 4.2 (support of a digital space). Let kJ = 〈ak, bk) be intervals. The set

J(n) =
n⊗

k=1
kJ is called an n-dimensional support of a digital space.

Definition 4.3 (multi-partition). Let kD = {kx0, kx1, . . . , kxik , . . . , kxmk
} be equidistant

partitions of intervals kJ = 〈ak, bk). The set D(n) =
n⊗

k=1
kD is called an equidistant multi-

partition of the support J(n).

Definition 4.4 (digital space, resolution). Let J(n) =
n⊗

k=1
kJ be a support of a digital space,

and let D(n) =
n⊗

k=1
kD be its equidistant multi-partition. The ordered pair D(n) =

(
J(n),D(n)

)
is called an n-dimensional digital space. The ordered n-tuple r = (m1, m2, . . . ,mk, . . . ,mn)

is called the resolution of the space D(n).

Physical Domain, Physical Space

Definition 4.5 (physical domain). A subset F(n) ⊂ J(n) of a support J(n) of a digital space
D(n) =

(
J(n),D(n)

)
is called a physical n-D domain if, and only if,

F(n) = 〈 1xi1 , 1xi1+1)× · · · × 〈 kxik , kxik+1)× · · · × 〈 nxin , nxn1+1) =
n⊗

k=1

〈 kxik , kxik+1) .

We write F(n) =
n⊗

k=1

〈 kxik , kxik+1) = F
(n)
[i1,i2,...,ik,...,in] = F

(n)
i . The number kvi = kxik+1− kxik ,

ik ∈ i, is called the k-th dimension of the physical n-D domain F(n).
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Theorem 4.1. k-th dimensions kvi of all physical n-D domains F
(n)
i ∈ D(n) are equal.

The previous theorem allows omitting the multi-index from the dimensions of physical n-D
domains, i.e., we can write just kv. If there is no danger of misunderstanding, we will also
omit the n-D specification, i.e., we will write just domain.

Theorem 4.2. The set F(n) =

{
F

(n)
i =

n⊗
k=1

〈 kxik , kxik+1) , ik ∈ kI

}
of all physical domains

of the support J(n) of a digital space D(n) =
(
J(n),D(n)

)
is a partition of the support J(n).

Corollary. Let D(n) =
(
J(n),D(n)

)
be a digital space, and let A, B ∈ J(n) be arbitrary

points of its support. The relation ρ ⊂ J(n) × J(n), defined as ρ(A, B) ⇔ ∃Fi ∈ F(n) : A ∈
Fi ∧B ∈ Fi, is an equivalence on J(n).

Definition 4.6 (physical space). The factor set F(n) = J(n) /ρ from the previous corollary
is called a physical space of a support J(n), or, of a digital space D(n) =

(
J(n),D(n)

)
. The

resolution of the physical space F(n) is understood as the resolution of the digital space D(n).

Let us note that two important terms will be used throughout the thesis: a pixel, as the
smallest displayable element on a given output device, and a voxel, as the smallest volume
element. According to the theory above, both of these objects are just special cases of
domains; a pixel is a physical 2-D domain, and a voxel is a physical 3-D domain.

Logical Domain, Logical Space, Mapping

Definition 4.7 (logical space, logical domain). Let F(n) be a physical space of a digi-
tal space D(n), and let kv be dimensions of its physical domains. Let C ∈ J(n) : C =

[c1, c2, . . . , ck, . . . , cn], ck ∈ 〈0, kv). The set

CL(n) =
n⊗

k=1

{ krik ∈ R | ∀k ∈ {1, 2, . . . , n} : krik ∈ 〈 kxik , kxik+1) ∧ ( krik − kxik = ck)}

is called a logical space of the digital space D(n) =
(
J(n),D(n)

)
, and its elements CLi,

i = [i1, i2, . . . , ik, . . . , in], are called logical domains. The resolution of the logical space

CL(n) is understood as the resolution of the digital space D(n).

Theorem 4.3. Let F(n) be a physical space and CL(n) a logical space of the same digital
space D(n) =

(
J(n),D(n)

)
. A mapping Cϕ : F(n) → CL(n) such that Cϕ (Fi) = CLi ⇔

CLi ∈ F(n) is bijective.

Definition 4.8 (mapping of physical space, control point). The mapping Cϕ : F(n) →
CL(n) from the previous theorem is called a mapping of the physical space F(n). The point
C ∈ J(n) : C = [c1, cs, . . . , ck, . . . , cn], ck ∈ 〈0, kv), is called its control point.
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As a corollary of Theorem 4.3, for each mapping Cϕ : F(n) → CL(n), there exists the
inverse mapping, i.e., Cϕ−1 : CL(n) → F(n). Thanks to this it is possible to assign a unique
logical domain C Li to each physical domain Fi using the mapping Cϕ, and, vice versa, to
assign a unique physical domain Fi to each logical domain C Li using the mapping Cϕ−1.

Definition 4.9 (vertex and central mapping). The mapping Vϕ : F(n) → VL(n) with the
control point V = [ 0, 0, . . . , 0 ] is called the vertex mapping. The mapping Sϕ : F(n) →
SL(n) with the control point S =

[
1v
2
, 2v

2
, . . . , kv

2
, . . . , nv

2

]
is called the central mapping.

Definition 4.10 (global coordinate system). Let D(n) =
(
J(n),D(n)

)
be a digital space, kv

the dimensions of its domains, and Cϕ : F(n) → CL(n) an arbitrary mapping. Let Rn be the
n-dimensional real vector space with the basis {ek}n

k=1, ek = (0, 0, . . . , kv, . . . , 0). The or-
dered (n+2)-tuple L(n) =

〈
L(n),S, e1, e2, . . . , ek, . . . , en

〉
is called a global coordinate system

of the logical space L(n). The ordered (n + 2)-tuple F (n) =
〈
F(n),S, e1, e2, . . . , ek, . . . , en

〉
is called a global coordinate system of the physical space F(n) induced by the mapping Cϕ.
The ordered (n+2)-tuple D(n) =

〈
D(n),S, e1, e2, . . . , ek, . . . , en

〉
is called a global coordinate

system of the digital space D(n) induced by the mapping Cϕ.

Let us note that the digital space D(2) is called the digital plane, its physical and logical
spaces F(2) and L(2) are called physical and logical planes, and their elements F

(2)
i and L

(2)
i

are called physical and logical pixels.

Digital Space Metrics

Theorem 4.4. Let F(n) be a physical space, ck ∈ R+, and E (n)
F , P(n)

F , C(n)
F mappings F(n) ×

F(n) → R such that E (n)
F

(
F

(n)
i ,F

(n)
j

)
=

√
n∑

k=1

c2
k(ik − jk)2, P(n)

F

(
F

(n)
i ,F

(n)
j

)
=

n∑
k=1

ck|ik−jk|,

C(n)
F

(
F

(n)
i ,F

(n)
j

)
= max {ck|ik − jk|}n

k=1. Then E (n)
F , P(n)

F , C(n)
F are metrics on F(n).

Definition 4.11 (weighted Euclidean, taxicab and maximum metric of physical space).
The metrics E (n)

F , P(n)
F , C(n)

F from the previous theorem are called the (weighted) Euclidean,
taxicab and maximum metric of the physical space F(n), respectively.

Theorem 4.5. Let L(n) be a physical space, ck ∈ R+, and E (n)
L , P(n)

L , C(n)
L mappings L(n) ×

L(n) → R such that E (n)
L

(
L

(n)
i ,L

(n)
j

)
=

√
n∑

k=1

c2
k(ik − jk)2, P(n)

L

(
L

(n)
i ,L

(n)
j

)
=

n∑
k=1

ck|ik−jk|,

C(n)
L

(
L

(n)
i ,L

(n)
j

)
= max {ck|ik − jk|}n

k=1. Then E (n)
L , P(n)

L , C(n)
L are metrics on L(n).

Definition 4.12 (weighted Euclidean, taxicab and maximum metric of logical space).
The metrics E (n)

L , P(n)
L , C(n)

L from the previous theorem are called the (weighted) Euclidean,
taxicab and maximum metric of the logical space L(n), respectively.
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Definition 4.13 (physical domain neighbour). Let F
(n)
i , F

(n)
j be two different physical

domains of the same physical space F(n), and F
(n)

i , F
(n)

i their closures. The domain F
(n)
j is

called a neighbour of the domain F
(n)
i if, and only if, F

(n)

i ∩ F
(n)

i 6= ∅.

Definition 4.14 (logical domain neighbour). Let F(n) be a physical space, CL(n) a logical
space of the same digital space D(n), and L

(n)
i , L

(n)
j ∈ CL(n) such that L

(n)
i = Cϕ

(
F

(n)
i

)
,

L
(n)
j = Cϕ

(
F

(n)
j

)
. The domain L

(n)
j is called a neighbour of the domain L

(n)
i if, and only

if, F
(n)
j is a neighbour of F

(n)
j .

Theorem 4.6. A physical domain F
(n)
j is a neighbour of a domain F

(n)
i if, and only if,

C(n)
F

(
F

(n)
i ,F

(n)
j

)
= 1.

Valuation and Digital Objects

Definition 4.15 (binary valuation of physical space). Let F(n) be a physical space. A
mapping βF : F(n) → {0, 1} is called a binary valuation of the physical space F(n).

Definition 4.16 (binary valuation of logical space). Let F(n) be a physical space and βF :

F(n) → {0, 1} its binary valuation. Let CL(n) be a logical space of the same digital space
D(n) and let Cϕ : F(n) → CL(n) be a mapping. A mapping βL : CL(n) → {0, 1} such that

∀L(n)
i ∈ CL(n) : βL

(
L

(n)
i

)
= 1 ⇔

(
Cϕ−1

(
L

(n)
i

)
= F

(n)
i

)
∧

(
βF

(
F

(n)
i

)
= 1

)
is called a binary valuation of the logical space CL(n).

Definition 4.17 (general valuation of physical space). Let A be any set with at least two
elements and let F(n) be a physical space. A mapping βF : F(n) → A is called a general
valuation of the physical space F(n).

Definition 4.18 (general valuation of logical space). Let A be any set with at least two
elements, let F(n) be a physical space and βF : F(n) → A its general valuation. Let CL(n) be
a logical space of the same digital space D(n) and let Cϕ : F(n) → CL(n) be a mapping. A
mapping βL : CL(n) → A such that

∀L(n)
i ∈ CL(n),∀a ∈ A : βL

(
L

(n)
i

)
= a ⇔

(
Cϕ−1

(
L

(n)
i

)
= F

(n)
i

)
∧

(
βF

(
F

(n)
i

)
= a

)
is called a general valuation of the logical space CL(n).

If there is no need to distinguish a logical and physical space, we will write β : D(n) → A

and call it a general valuation of the digital space. For practical purposes, valuations with
number sets are used.
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Definition 4.19 (numerical valuation of digital space). Let β : D(n) → A be a valuation
of a digital space. If A is a number set, the valuation β is called a numerical valuation.
In particular, if A ⊂ N (A ⊂ Z,A ⊂ Q,A ⊂ R,A ⊂ C), the valuation β is called natural
(integer, rational, real, complex).

Definition 4.20 (m-ary valuation of digital space). Let M be any set with m elements and
let D(n) be a digital space. A mapping β : D(n) → M is called an m-ary valuation of the
digital space D(n).

4.2 Digital Image

Definition 4.21 (discretized function). Let I(n) be a support of a digital space. A function
g(x), defined for every x = [x1, x2, . . . , xn] ∈ Rn, is called discretized if, and only if,
∀x ∈ I(n) : g(x) = g(bxc) where bxc = [bx1c, bx2c, . . . , bxnc].

Definition 4.22 (image). Let W = 〈0, w) ⊂ R, w ∈ N (Width), H = 〈0, h) ⊂ R, h ∈ N
(Height), and V = 〈v1, v2) ⊂ R (Value Set) be intervals. A function I : W × H → V is
called an (analog) image.

If the function I is discretized, we talk about a discretized image. If the domain W ×H of
the function I is a physical (logical) plane, we talk about a physical (logical) image. The
resolution of a physical (logical) image is understood as the resolution of its support. If the
function I is discretized and H ⊂ N, we talk about a digital image.

The last definition is very general and is fulfilled by any kind of „image“; a photo, a map, a
drawing, and even a real visual perception of the surroundings. Everything depends on the
codomain V of this image. If an analog image is supposed to be processed by a computer,
it has to be converted into a digital one at first. This process is called digitization of the
image.

Digitization occurs in two parts: discretization and quantization.

• Discretization means the reading of an analog signal, and, at regular time intervals
(frequency), sampling the value of the signal at the point. Each such reading is called
a sample and may be considered to have infinite precision at this stage.

• Quantization means the rounding of the samples to a fixed set of numbers (such as
integers).

According to the previous theory, a digital image is an m-ary valuation of a digital plane.

Throughout the following text, we will work with digital images only. That is why the word
„digital“ will be omitted.
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5 Digital Geometry Approach to 2-D Image

Enhancement

One of the main attributes of the human eye, comparing to digital cameras, is adaptivity,
i.e., local adjustment of the aperture, sensitivity, white balance, etc. Mathematical methods
based on this principle do not process the whole image but just some local neighbourhood
of each pixel. This local neighbourhood is constructed by means of methods that simulate
the attributes of the human eye; it is a set of pixels that belong together, according to a
chosen characteristic (e.g., intensity).

In this chapter, a description and explanation of various kinds of 2-D adaptive histogram
equalization procedures is given. These procedures are rarely described in the literature
available, and if they are, then in a very vague way. One of the main tasks and targets of
this thesis is to formalize the known theory, to extend it by introducing more compex algo-
rithms, thus improving the adaptive histogram equalization performance, and to implement
everything in the software developed as a part of this thesis.

Let us note that these 2-D procedures work within a single particular image. However,
with suitable data, e.g., a series of optical cuts provided by a confocal microscope, it is
reasonable to take into account also the adjacent images (cuts). This generalization into
3-D is discussed in Chapter 6 and constitutes the next task and target of this thesis.

5.1 Basic Concepts

Digital image I is an m-ary valuation β of the digital plane D(2) (see Definition 4.19).
Depending on m, an image can be eight-bit, sixteen-bit, grayscale, colour, etc.

Physical pixel (the smallest displayable element on a given output device) F
(2)
i , i = [i1, i2],

is a physical 2-D domain (see Definition 4.5) and an element of the physical plane F(2).

Logical pixel L
(2)
i , i = [i1, i2], is a logical 2-D domain (see Definition 4.7) and an element of

the logical plane L(2). For each i ∈ I(2), the logical pixel L
(2)
i is uniquely assigned to the

physical pixel F
(2)
i using the central mapping Sϕ (see Definition 4.9).

Let us note that the simplest algorithm for constructing curves given by the equation
f(x, y) = 0 uses the difference between physical and logical pixels and the vertex mapping,
see [7], pg. 72, or [6]. For the purposes of this thesis, the algorithm of the line segment
construction using the central mapping will be sufficient; see [10].

Remark. If it is clear which digital space we are working with, the specification of its
dimension will be omitted. If the coordinates of the physical (logical) pixel F

(2)
i (L(2)

i ) are
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unknown and/or not decisive (i.e., we are only interested if a given pixel does or does not
belong to a certain set), a notation Fi (Li), i ∈ N0, will be used.

Image matrix is an M -by-N matrix, (M, N) is the resolution of the digital plane D(2) (see
Definition 4.4), whose elements are the values β

(
F

(2)
i

)
, β

(
L

(2)
i

)
of individual physical

(logical) pixels F
(2)
i , L

(2)
i , i = [i1, i2].

5.2 Adaptive Histogram Equalization

Histogram equalization provides a possibility of modifying the dynamic range and contrast
of an image by altering the image in the way that the output image contains a more uniform
distribution of intensities (the intensity histogram is flatter and covers the whole range of
the intensities). The transformation function is given by the cumulative histogram of the
original image.

Let us consider an image I, i.e., a valuation β : D(2) → N. The histogram equalization is
implemented as follows:

• The histogram of intensities is taken. Let us denote h(i) the number of pixels with the
intensity equal to i, i = 0, . . . , L, where L represents the maximum possible intensity
value, given by the codomain of the valuation β (most often, L = 255 or L = 65, 535).

• The cumulative histogram of intensities is calculated. Let us denote c(i) the number

of pixels with the intensity less or equal to i, i = 0, . . . , L, i.e., c(i) =
i∑

j=0

h(j).

• Now the histogram equalization assigns to the pixel F with the original intensity
β(F) = i the output value Fout(i) given by the formula

β(F)out = Round

(
c(i)− cmin

M ·N − cmin

· L
)

, i = 0, . . . , L

where cmin is the minimum non-zero value of c, and M , N represent the width and
height of the input image I.

However, this histogram processing method is global (in the sense that it applies a trans-
formation function based on the intensity level distribution of the entire image). Although
this method can enhance the overall contrast and dynamic range of the image (and thereby
making certain details more visible), there are many cases in which enhancement of details
over small areas (i.e., the areas with a negligible influence on the global transformation
function because their number of pixels is very small comparing to the number of pixels of
the entire image) is desired.

12



The solution is to derive the transformation function based on the intensity distribution
within the local neighbourhood of the processed pixel in order to simulate the adaptivity
of the human eye.

Definition 5.1 (local neighbourhood). Let I be a digital image in the spatial domain,

Sϕ : F(2) → L(2) the central mapping, F0 ∈ I a processed pixel, and r ∈ N. The set
O(2) =

{
F ∈ I : C(2)

L ( Sϕ (F) , Sϕ (F0)) ≤ r
}

is called a local neighbourhood of the pixel F0

of the size (radius) r.

Note that the maximum metric with c1 = c2 = 1 was used (see Definition 4.12).

5.3 Adaptive Histogram Equalization with Adaptive

Neighbourhood

The previous method works well only if strong interfaces do not appear in the original
image. If they do, it is necessary to use the adaptive histogram equalization with an
adaptive neighbourhood. The neighbourhood of the processed pixel has a variable shape
respecting the interfaces that appear in the original image.

In the literature available, there is very little information on these methods. Let us explore
now the adaptive neighbourhoods used most often, together with a suggestion of a few
improvements.

Definition 5.2 (V(α)-neighbourhood). Let O(2) be a (non-adaptive) local neighbourhood
(according to Definition 5.1) of a processed pixel F0, let β : D(2) → N be a natural
valuation of the digital plane D(2) (according to Definition 4.19), and α ∈ N. The set
O

(2)
V =

{
F ∈ O(2) : |β(F)− β(F0)| ≤ α

}
is called a V(α)-neighbourhood of the pixel F0.

Definition 5.3 (A(k)-neighbourhood). Let O(2) be a (non-adaptive) local neighbourhood
(according to Definition 5.1) with n elements of a processed pixel F0, let β : D(2) → N
be a natural valuation of the digital plane D(2) (according to Definition 4.19), and k ∈ N,
k ≤ n. Let us consider a sequence {Fi}n

i=0 such that Fi ∈ O(2) and |β(Fi) − β(F0)| ≤
|β(Fi+1) − β(F0)|, i = 1, . . . , n − 1. The set O

(2)
A = {Fi : i = 1, . . . , k} is called an A(k)-

neighbourhood of the pixel F0.

The software developed as a part of this thesis employs a combined neighbourhood, accord-
ing to the following definition.

Definition 5.4 (combined S(α, k, qV , qA)-neighbourhood). Let O(2) be a (non-adaptive)
local neighbourhood (according to Definition 5.1) with n elements of a processed pixel F0, let
β : D(2) → N be a natural valuation of the digital plane D(2) (according to Definition 4.19),
α, k ∈ N, k ≤ n, and qV , qA ∈ R, qV , qA ≥ 1. Let us consider a sequence {Fi}n

i=0 such
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that Fi ∈ O(2) and |β(Fi) − β(F0)| ≤ |β(Fi+1) − β(F0)|, i = 1, . . . , n − 1. Let O
(2)
V be the

V(α)-neighbourhood (according to Definition 5.2) of F0, and O
(2)
A the A(k)-neighbourhood

(according to Definition 5.3) of F0. The set O
(2)
S =

(
O

(2)
V ∩O

(2)
A

)
∪O′

S where

O′
S =


{
Fi ∈ O

(2)
A \O

(2)
V : |β(Fi)− β(F0)| ≤ qV · α

}
for O

(2)
V ⊂ O

(2)
A ,{

Fi ∈ O
(2)
V \O

(2)
A : i = k + 1, . . . , min{bqA · kc, |O(2)

V |}
}

for O
(2)
A ⊂ O

(2)
V ,

∅ for O
(2)
V = O

(2)
A ,

is called an S(α, k, qV , qA)-neighbourhood of the pixel F0. If O
(2)
S = ∅, the equalization is

not performed and the processed pixel F0 keeps its original value.

Figure 1: S(20, 16, 1.4, 1.5)-neighbourhood with r=2 compared to the non-adaptive neigh-
bourhood, V(20)-neighbourhood and A(16)-neighbourhood

Figure 1 shows a comparison of all the neighbourhoods discussed so far. The non-adaptive
neighbourhood contains all the pixels within the chosen radius (r=2), including the values
that are significantly smaller or bigger than the value of the processed pixel F0. The V(20)-
neighbourhood correctly denies the outlying values but also three values (124, 121 and 119
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in the bottom-left corner) that could be used for the equalization because they differ from
the processed pixel much less than from the surroundings. On the contrary, the A(16)-
neighbourhood includes all the correct values but also two values (211 and 220) that should
not belong to the other ones. The combined S(20, 16, 1.4, 1.5)-neighbourhood removes the
imperfections of the previous cases.

Less formally, as a corollary of Definitions 5.2 and 5.3, one of the conditions given by α

and k is always „stronger“ than the other one, i.e., either O
(2)
V ⊆ O

(2)
A or O

(2)
A ⊆ O

(2)
V holds.

The combined neighbourhood contains the pixels that fulfill both conditions simultaneously
(O(2)

V ∩O
(2)
A ), together with the pixels that fulfill only the weaker condition and do not break

the stronger condition „too much“ (measured by qV and qA).

Let us note that if O
(2)
V = O

(2)
A , then also O

(2)
V = O

(2)
A = O

(2)
S . If qV = qA = 1, then

O
(2)
S = O

(2)
V ∩O

(2)
A .

Again, the application of this method to HDR images is shown in Section 6.4.

Fuzzy Neighbourhood

The previous sections introduced various kinds of local neighbourhoods. The question was
whether a certain pixel does or does not belong to a neighbourhood of the processed pixel,
i.e., to a set of pixels constructed according to the given conditions.

This section is concerned with another aspect: we suppose that the pixels lying closer to the
processed pixel (in the sense of the selected metric) are more reliable and more meaningful
than the pixels lying further away (within the selected radius r). It means that some local
neighbourhood is constructed, as before, and then the membership degree is assigned to
each pixel from this neighbourhood, according to its distance (again, in the sense of the
selected metric) from the processed pixel.

Definition 5.5 (fuzzy local neighbourhood). Let I be a digital image in the spatial domain,

Sϕ : F(2) → L(2) the central mapping, F0 ∈ I a processed pixel, r ∈ N, and µr ∈ R,
0 < µr ≤ 1. Let us consider a function µ : D(2) → R+ defined as

µ(F) = 1− 1− µr

r
· C(2)

L ( Sϕ (F) , Sϕ (F0)) .

Then the set Õ(2) =
{

[F, µ(F)] : F ∈ I, C(2)
L ( Sϕ (F) , Sϕ (F0)) ≤ r

}
is called a fuzzy local

neighbourhood of the pixel F0.
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6 Digital Geometry Approach to 3-D Image

Enhancement

All the methods described in Chapter 5 work in 2-D, i.e., they are always performed within
a single image. However, with suitable data, which can be understood as a 3-D image,
e.g., with a series of optical cuts obtained by means of a confocal microscope, an idea
on a generalization of these 2-D procedures into 3-D arises. In 3-D image enhancement
procedures, each pixel would be processed with regards not only to adjacent pixels in the
given optical cut, but also with regards to adjacent pixels in the previous and following
optical cuts.

These 3-D procedures have not been described in literature so far. Since they use more
input information, they are supposed to contribute to the quality of displaying cells and
other structures significantly (e.g., the visualization of tiny corpuscles, originally almost
imperceptible due to a bad contrast). The description and implementation of the 3-D
image enhancement procedures (especially various kinds of adaptive histogram equalization)
constitutes the next task and target of this thesis.

When dealing with 3-D image enhancement procedures, some problems have to be solved.
For example, it is necessary to consider the different scaling of the vertical axis, i.e., the
step of a confocal microscope that took the input images. This step varies and that is
why the parameters of adaptive neighbourhoods have to be adjusted accordingly. Another
challenging task is an efficient software implementation of these algorithms because of their
very high computational costs.

6.1 Basic Concepts

Digital 3-D image I is an m-ary valuation β of the digital space D(3) (see Definition 4.19).
Depending on m, an image can be eight-bit, sixteen-bit, grayscale, colour, etc.

Physical voxel (the smallest volume element) F
(3)
i , i = [i1, i2, i3], is a physical 3-D domain

(see Definition 4.5) and an element of the physical space F(3).

Logical voxel L
(3)
i , i = [i1, i2, i3], is a logical 3-D domain (see Definition 4.7) and an element

of the logical plane L(3). For each i ∈ I(3), the logical voxel L
(3)
i is uniquely assigned to the

physical voxel F
(3)
i using the central mapping Sϕ (see Definition 4.9).

Remark. If it is clear which digital space we are working with, the specification of its
dimension will be omitted. If the coordinates of the physical (logical) voxel F

(3)
i (L(3)

i ) are
unknown and/or not decisive (i.e., we are only interested if a given voxel does or does not
belong to a certain set), a notation Fi (Li), i ∈ N0, will be used.
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Image matrix is an M1-by-M2-by-M3 matrix, (M1, M2, M3) is the resolution of the dig-
ital space D(3) (see Definition 4.4), whose elements are the values β

(
F

(3)
i

)
, β

(
L

(3)
i

)
of

individual physical (logical) voxels F
(3)
i , L

(3)
i , i = [i1, i2, i3].

6.2 Adaptive Histogram Equalization in 3-D

Chapter 5 describes adaptive histogram equalization in 2-D with various kinds of adap-
tive neighbourhoods. Let us now extend this theory and introduce adaptive histogram
equalization that uses 3-D neighbourhoods.

Definition 6.1 (local 3-D neighbourhood). Let I be a 3-D digital image in the spatial
domain, Sϕ : F(3) → L(3) the central mapping, F0 ∈ I a processed voxel, and r ∈ N. The
set O(3) =

{
F ∈ I : C(3)

L ( Sϕ (F) , Sϕ (F0)) ≤ r
}

is called a local 3-D neighbourhood of the
voxel F0 of the size (radius) r.

Remark. Introduction of the 3-D neighbourhoods causes only a modification of the in-
put data set in the histogram equalization algorithm (see Section 5.2); the principle and
implementation of the algorithm itself remains unchanged.

The main difference here (compared to a 2-D neighbourhood) is a different scaling of the
third axis (given by the step of a microscope that took the input data). This fact has to be
considered when the distance of two logical voxels is calculated (as in Definition 6.1). The
definition of the weighted maximum metric

C(3)
L

(
L

(3)
i ,L

(3)
j

)
= max {ck|ik − jk|}3

k=1

(or another metric of a logical space – see Definition 4.12) enables us to use different weights;
c1 and c2 are chosen identically (usually c1 = c2 = 1), while c3 is chosen according to the
step of a microscope that took the original data (usually c3 ∈ N but any c3 ∈ R+ is feasible).
An example of a (non-adaptive) local 3-D neighbourhood is in Figure 2.

This basic local neighbourhood is non-adaptive, i.e., it has a fixed shape given by the metric
C(3)

L and the parameter r, thus not respecting any interfaces that appear in the processed
image.

For this reason it is necessary to define and implement adaptive 3-D neighbourhoods (anal-
ogously to Section 5.3). These neighbourhoods have a variable shape and are able to adjust
themselves to local features of the processed image.

Remark. While the extension into 3-D is quite straightforward in theory, the practical im-
plementation of the algorithm is another matter; especially due to very high computational
costs and usually a very high volume of data to be handled.
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6.3 Adaptive Histogram Equalization with Adaptive

Neighbourhood in 3-D

This section introduces three kinds of adaptive 3-D neighbourhoods and a fuzzy 3-D neigh-
bourhood, as an extension of the theory built in Section 5.3.

3-D V(α)-neighbourhood

Definition 6.2 (3-D V(α)-neighbourhood). Let O(3) be a (non-adaptive) local 3-D neigh-
bourhood (according to Definition 6.1) of a processed voxel F0, let β : D(3) → N be a
natural valuation of the digital space D(3) (according to Definition 4.19), and α ∈ N. The
set O

(3)
V =

{
F ∈ O(3) : |β(F)− β(F0)| ≤ α

}
is called a 3-D V(α)-neighbourhood of F0.

Figure 2 (right) illustrates the benefit of the 3-D V(30)-neighbourhood. As you can see,
all the outlying values (compared to the processed voxel) that belong to the non-adaptive
neighbourhood are correctly denied now; however, a few values that lie just outside the
boundaries given by the parameter α (e.g., 161 in the top right part of the middle layer)
and that could be used for the processing are denied as well.

Figure 2: Non-adaptive local 3-D neighbourhood (left) and 3-D V(30)-neighbourhood
(right), both with r=2 and c1 = c2 = 1, c3 = 2 (the gap between layers is made just
for the displaying purposes)
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3-D A(k)-neighbourhood

Definition 6.3 (3-D A(k)-neighbourhood). Let O(3) be a (non-adaptive) local 3-D neigh-
bourhood (according to Definition 6.1) with n elements of a processed voxel F0, let β :

D(3) → N be a natural valuation of the digital space D(3) (according to Definition 4.19), and
k ∈ N, k ≤ n. Let us consider a sequence {Fi}n

i=0 such that Fi ∈ O(3) and |β(Fi)−β(F0)| ≤
|β(Fi+1)−β(F0)|, i = 1, . . . , n−1. The set O

(3)
A = {Fi : i = 1, . . . , k} is called a 3-D A(k)-

neighbourhood of F0.

Figure 3 (left) illustrates the benefit of the 3-D A(50)-neighbourhood. Most of the outlying
values (compared to the processed voxel) is correctly denied; however, due to a fixed number
of elements (given by the parameter k), a few of the outlying values is still included (e.g.,
55 and 60 in the bottom right part of the upper layer).

Figure 3: 3-D A(50)-neighbourhood (left) and 3-D S(30, 50, 1.3, 1.3)-neighbourhood (right),
both with r=2 and c1 = c2 = 1, c3 = 2 (the gap between layers is made just for the
displaying purposes)

Combined 3-D S(α, k, qV , qA)-neighbourhood

Definition 6.4 (combined 3-D S(α, k, qV , qA)-neighbourhood). Let O(3) be a (non-adaptive)
local 3-D neighbourhood (according to Definition 6.1) with n elements of a processed voxel
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F0, let β : D(3) → N be a natural valuation of the digital space D(3) (according to Defi-
nition 4.19), α, k ∈ N, k ≤ n, and qV , qA ∈ R, qV , qA ≥ 1. Let us consider a sequence
{Fi}n

i=0 such that Fi ∈ O(3) and |β(Fi)− β(F0)| ≤ |β(Fi+1)− β(F0)|, i = 1, . . . , n− 1. Let
O

(3)
V be the 3-D V(α)-neighbourhood (according to Definition 6.2) of F0, and O

(3)
A the 3-D

A(k)-neighbourhood (according to Definition 6.3) of F0. The set O
(3)
S =

(
O

(3)
V ∩O

(3)
A

)
∪O′

S

where

O′
S =


{
Fi ∈ O

(3)
A \O

(3)
V : |β(Fi)− β(F0)| ≤ qV · α

}
for O

(3)
V ⊂ O

(3)
A ,{

Fi ∈ O
(3)
V \O

(3)
A : i = k + 1, . . . , min{bqA · kc, |O(3)

V |}
}

for O
(3)
A ⊂ O

(3)
V ,

∅ for O
(3)
V = O

(3)
A ,

is called a 3-D S(α, k, qV , qA)-neighbourhood of F0. If O
(3)
S = ∅, the equalization is not

performed and the processed voxel F0 keeps its original value.

The contribution of this combined neighbourhood is demonstrated in Figure 3 (right);
the imperfections described in the two previous examples are now rectified, given by the
properties of the combined neighbourhood.

The practical application of these methods to HDR images is shown in Section 6.4.

3-D Fuzzy neighbourhood

When constructing the adaptive 3-D neighbourhoods discussed so far, we are only interested
if a given voxel does or does not belong to the neighbourhood. However, we can also take
into consideration the actual distance of the given voxel from the processed one, and,
according to this distance, assign the membership degree to each voxel. The main point
is that the smaller the distance, the bigger reliability and relevance of the corresponding
voxel.

Definition 6.5 (fuzzy 3-D local neighbourhood). Let I be a 3-D digital image in the spatial
domain, Sϕ : F(3) → L(3) the central mapping, F0 ∈ I a processed voxel, r ∈ N, and µr ∈ R,
0 < µr ≤ 1. Let us consider a function µ : D(3) → R+ defined as

µ(F) = 1− 1− µr

r
· C(3)

L ( Sϕ (F) , Sϕ (F0)) .

Then the set Õ(3) =
{

[F, µ(F)] : F ∈ I, C(3)
L ( Sϕ (F) , Sϕ (F0)) ≤ r

}
is called a fuzzy 3-D

local neighbourhood of F0.

Again, the main difference here, compared to the 2-D case, is a different scaling of the
third axis, i.e., the decrease of the membership degree is different in this direction (usually
faster).

Analogously to Definition 6.5, 3-D V(α), 3-D A(k) and 3-D S(α, k, qV , qA)-fuzzy neigh-
bourhoods can be defined as well.
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6.4 Comparison of Results

The practical implementation and comparison of the methods described in Sections 5.3
and 6.3 is illustrated in Figures 4– 6. The precise specification is given underneath. All
computations were run on a PC with AMD Athlon 64 3500+ (2.2 GHz), RAM 1 GB.

Figure 4: Original TIF file „0006jan.tif“ contains 2 × 8 images, resolution 425 × 352
px. (DVD: 3-D Equalization\01); all the cuts were processed, the 8th one is shown here.
The original image (top left); equalized image by means of a 2-D (non-adaptive) local
neighbourhood with r = 4 (top right), computational time 38 sec. (4.8 sec. per image);
equalized image by means of a 2-D (non-adaptive) local neighbourhood with r = 6, adaptive
to additive noise (bottom left), computational time 39 sec. (4.9 sec. per image); and
equalized image by means of a 3-D (non-adaptive) local neighbourhood with r = 6, adaptive
to additive noise (bottom right), computational time 50 sec.

From this example we can see that the adaptivity to additive noise is a must. The contri-
bution of 3-D processing is also illustrated here – a lot of undesirable artifacts is removed,
in exchange for a modest increase of the computational time.
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Figure 5: Original TIF file „Pc201.tif“ contains 2 × 24 images, resolution 784 × 407 px.
(DVD: 3-D Equalization\02); all the cuts were processed, the 22nd one is shown here. The
original image (previous page, top); image with expanded contrast (previous page, middle),
computational time 2 sec. (0.1 sec. per image); equalized image by means of a 2-D A(k)-
neighbourhood with r = 6, k = 50, adaptive to additive noise (previous page, bottom),
computational time 2 min. 55 sec. (7.3 sec. per image); equalized image by means of a 2-D
V(α)-neighbourhood with r = 6, α = 30 · 256, adaptive to additive noise (this page, top),
computational time 6 min. 35 sec. (15.2 sec. per image); and equalized image by means of
a 3-D V(α)-neighbourhood with r = 6, α = 30 · 256, adaptive to additive noise (this page,
bottom), computational time 8 min. 3 sec.

23



Figure 6: Original TIF file „BParam6.tif“ contains 2× 13 images, resolution 1024× 1024 px.
(DVD: 3-D Equalization\03); all the cuts were processed, the 11th one is shown here. The
original image (top left); equalized image by means of a 2-D S(α, k, qV , qA)-neighbourhood
with r = 14, α = 35 · 256, k = 50, qV = qA = 1.4, adaptive to additive noise (top right),
computational time 7 min. 8 sec. (32.9 sec. per image); equalized image by means of a 2-D
S(α, k, qV , qA)-neighbourhood with r = 4, α = 35 · 256, k = 50, qV = qA = 1.4, adaptive to
additive noise (bottom left), computational time 4 min. 42 sec. (21.7 sec. per image); and
equalized image by means of a 3-D S(α, k, qV , qA)-neighbourhood with r = 4, α = 35 · 256,
k = 50, qV = qA = 1.4, adaptive to additive noise (bottom right), computational time 6
min. 32 sec.
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7 Three-Dimensional Object Reconstruction

Three-dimensional reconstruction of an explored object from a series of its optical cuts was
introduced in author’s diploma thesis [10] and published in author’s publication [9].

In this chapter, let us take a brief look at the basic ideas because this algorithm is also
included in the software developed as a part of this thesis. Moreover, new HDR data are
used now and the new software enables to perform various kinds of 2-D and 3-D image
enhancement procedures, according to the previous chapters, thus yielding better resulting
reconstructions.

Principle of 3-D Object Reconstruction

A series of optical cuts can be represented as a three-dimensional data grid. Let us choose
the Cartesian coordinate system 〈O, e1, e2, e3〉 in the following way: the point O is identified
with the centre of the last cut. The vectors e1, e2 are the direction vectors of the axes of
symmetry of the optical cuts and their size is equal to the dimensions of the physical pixels
of the input data, which are assumed to be unit. The vector e3 is orthogonal to e1, e2 and
is unit as well (see Figure 7). However, the distance of the optical cuts is generally not
unit. This distance is set by the user according to the step of the microscope that provided
the input data.

Figure 7: Principle of three-dimensional object reconstruction

Now it is necessary to place a screen (output window) on which the reconstructed object
will be displayed. The position of the observer is given by the point P and the central
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projection with the center at P is used. The vector d of the main ray (direction of view) is
set by the user. Hereby, the coordinates of the vector d in the base {e1, e2, e3} are given.

The plane of the screen is given by the point T and two direction vectors r, s. The point T

is determined as T = P + d. The vector r is orthogonal to the vector d and coplanar with
the vectors e1, e2. Its size is determined by the vector d and the angle of view α, which is
set by the user. The vector s is orthogonal to the vectors d, r and the ratio ||s||

||r|| is equal to
the height-to-width ratio of the output window; see Figure 8.

Figure 8: Output window (screen) serving for displaying of a reconstructed object

The base vectors i, j of the global coordinate system satisfy

i = − 2r

M
and j = −2s

N

where (M, N) is the resolution of the output window. Thus, the logical pixel of the output
window with global coordinates [i, j] is also a point Qi,j satisfying

Qi,j − P = qi,j = d + r + s + i · i + j · j.

From the programmer’s point of view, the output window is an image created in the fol-
lowing way: a projection line

X = P + t · qi,j
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passes step by step through each logical pixel [i, j] of the output window. In the software
solution, this procedure is realized in the following way:

q0,0 = d + r + s

qi+1,j = qi,j + i (movement inside a row of the output window)

q0,j+1 = q0,j + j (movement to the next row in the output window).

Now we have to find the intersections of the projection line with the system of cuts and to
save the values of individual colour components of these intersections. Then, all the colours
acquired are mixed (see [10]) and the resulting colour of the currently processed pixel is
obtained.

Quick and efficient computation of the intersections of the projection line with the system
of cuts constitutes the biggest challenge. For this purpose, the so-called line segment
voxelization procedure (using the Bresenham’s algorithm and fast integer arithmetic only;
see [10] and [9]) was developed.

Line Segment Voxelization

Using the coordinates of the input and output voxel, we find out on which axis the biggest
difference between the original and the terminal coordinates appears. Let, for example, the
axis x be this axis (see Figure 9).

Figure 9: Principle of line segment voxelization

Now let us project the input and output voxel into the plane xy and let us use the Bre-
senham’s algorithm for the first time. It will proceed along the axis x and generate the
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y-coordinates of the pixels approaching the line segment connecting the original and ter-
minal pixel. Now, by analogy, let us project the input and output voxel into the plane xz

and let us use the Bresenham’s algorithm for the second time. In the final phase, these
partial results are combined and we obtain the logical coordinates of individual voxels. This
algorithm works with integer values only, which makes it very fast.

Two examples of reconstructed objects are given in Figures 10 and 11.

Figure 10: 3-D reconstruction of Tobacco cell; beginning of strangulation

Figure 11: Visible Human Project: 3-D reconstruction of a human head
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8 Applications

The broad range of applications available to laser scanning confocal microscopy includes
a wide variety of studies in neuroanatomy and neurophysiology, as well as morphological
studies of a wide spectrum of cells and tissues. In addition, the growing use of new fluores-
cent proteins is rapidly expanding the number of original research reports coupling these
useful tools to modern microscopic investigations. Other applications include resonance
energy transfer, stem cell research, photobleaching studies, lifetime imaging, multiphoton
microscopy, total internal reflection, DNA hybridization, membrane and ion probes, bio-
luminescent proteins, and epitope tagging. Some of these techniques are described in the
paragraphs below.

Another application that often works with HDR images is displaying of the solar corona.
Due to an enormous contrast between the brigthest part of the corona and its parts lying
further away, it is necessary to use mathematical algorithms to visualize coronal structures.

Figure 12 shows an example of visualization of a solar corona image. The original image
(left) was equalized by means of 2-D adaptive histogram equalization with adaptive neigh-
bourhood (right); as you can see, a lot of coronal structures, almost invisible in the original
image, is clearly visible in the resulting image.

Figure 12: Original image (left) and equalized image (right) by means of a 2-D (non-
adaptive) local neighbourhood with r = 4, computational time 3 sec.
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9 Conclusions

The thesis has been concerned with 2-D and 3-D adaptive filters for visualization of high-
dynamic range (HDR) images. The first part of the full thesis contains an introduction
of HDR images, a description of the principle of confocal microscopy and its comparison
with classic optical microscopy, a discussion about the point spread function, and a math-
ematically correct definition of digital image and other related terms (physical and logical
domains, vertex and central mapping, digital space metrics, valuation, etc.) that provide
the necessary theoretical background.

Author’s main results are contained in the second part of the thesis that explains the
frequency domain approach (using discrete Fourier transform and frequency filters) and
digital geometry approach (using adaptive histogram equalization) to 2-D and 3-D image
enhancement, and the principle of the 3-D object reconstruction.

The contribution of this thesis consists in the following points:

• Formalization of the known theory of adaptive histogram equalization; the algorithm
of histogram equalization itself is described, and the definitions of (non-adaptive) local
neighbourhoods, adaptive V(α)-neighbourhood and adaptive A(k)-neighbourhood are
given, based on the theory built in the first part of the thesis.

• Introduction of the combined S(α, k, qV , qA)-neighbourhood; this adaptive neighbour-
hood connects advantages of simpler methods in order to obtain a more broadly-usable
neighbourhood.

• Introduction of the fuzzy neighbourhood; this approach takes into account the dis-
tance of individual logical pixels/voxels from the processed one and assigns their
membership degree accordingly.

• Generalization of the previous theory into 3-D; with suitable data, e.g., with a series
of optical cuts that can be represented as a 3-D digital image, it is possible to employ
adaptive histogram equalization in 3-D in order to obtain better-looking outputs.

• Illustration of the benefits of the 3-D processing; by means of new HDR data provided
by the Olympus FluoViewTM FV1000 Laser Scanning Confocal Microscope, several
examples are given in order to prove the contribution of the 3-D adaptive histrogram
equalization with adaptive neighbourhood.

• Introduction and description of 3-D frequency filters and 3-D processing in the fre-
quency domain.
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All the results discussed above are also implemented in the software developed as a part
of this thesis. The software employs opening of images of various formats, 2-D and 3-D
adaptive histogram equalization with adaptive neighbourhood and adaptive to additive
noise, 2-D composition of optical cuts, 3-D object reconstruction, linear and non-linear
filters, 2-D discrete Fourier transform and inverse discrete Fourier transform, frequency
filters, etc.

Since this thesis targets primarily the visualization of HDR images provided by means
of confocal microscopes, the results can be applied especially in biological and medical
research. The broad range of applications includes studies of the complicated architecture
of neural networks, morphological studies of a wide spectrum of cells and tissues, studies in
neuroatonomy and neurophysiology, CT scans, stem cell research, resonance energy transfer,
etc. However, any application that needs to visualize HDR images can utilize the results
of the thesis.
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Abstract

The thesis is concerned with filters for visualization of high dynamic range images. In the
theoretical part of the full thesis, the principle of confocal microscopy is described and the
term digital image is defined in a mathematically correct way. Both frequency approach
(using 2-D and 3-D discrete Fourier transform and frequency filters) and digital geometry
approach (using adaptive histogram equalization with adaptive neighbourhood) are chosen
for the processing of images. Necessary adjustments when working with non-ideal images
containing additive and impulse noise are described as well. The last part of the thesis
is interested in 3-D reconstruction from optical cuts of an object. All the procedures and
algorithms are also implemented in the software developed as a part of this thesis.
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