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Abstract
The aim of this work is to propose scalable methods for reducing non-deterministic finite
automata used in network traffic filtering. We introduce two approaches of NFAs reduc-
tion based on states elimination. To achieve a substantial reduction of automata, we use
language non-preserving techniques with a primary focus on language over-approximation,
since language preserving methods may not provide sufficient reduction. We implemented
the methods and evaluated the accuracy of the reduced automata on real traffic. Our ap-
proach does not provide any formal guarantee wrt unseen input traffic, but on the other
hand, it can be smoothly used on automata of any size, which is a significant problem for
existing methods that have very high time complexity and cannot be applied on really large
automata.

Abstrakt
Cieľom tejto práce je navrhnúť škálovateľné metódy pre redukciu nedeterministických ko-
nečných automatov používaných vo filtrácii paketov. Uvádzame dva prísty redukcie au-
tomatov založené na elminácii stavov. Aby sme dosiahli významnú redukciu automatu,
používame techniky nezachovávajúce jazyk so zameraním na nad-aproximáciu, keďže re-
dukcie so zachovaním pôvodného jazyka nemusia byť dostatočne účinné. Implementovali
sme dané metódy a vyhodnotili presnosť redukovaných automatov na reálnych vzorkoch.
Náš prístup neposkytuje žiadne formále záruky vzhľadom na nepoužité dáta, ale može byť
hladko použitý na automaty akejkoľvek veľkosti, čo je hlavný problém existujúcich metód,
ktoré majú vysokou časovou zložitosťou a nemôžu byť aplikované na veľké automaty.
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Chapter 1

Introduction

In the past years, there has been a considerable increase in cybercrime, including intrusion
into Internet networks. This fact has aroused a need for using network intrusion detection
systems, which try to detect and prevent such malicious activities. Often, this detection is
carried out by deep packet inspection, which searches for a particular pattern in the packet
payload. The patterns are usually described by regular expressions (RE). Due to increasing
speed of networks and the need of real-time packet inspection, it is necessary to implement
these systems in hardware or used hardware packet preprocessing. Detection systems are
required to analyze a packet and invoke a corresponding reaction immediately after it has
been received with minimal latency.

In general, REs are represented in hardware as finite automata. However, huge automata
take a lot of space on a chip. Hence, their hardware realization would be very expensive
or even not possible. Moreover, the hardware implementation of the automaton has to
be copied several times if we want to achieve a higher speed of packet processing (e.g.,
for filtering the network traffic at 400 GiB per sec. approximately 63 copies of the base
automaton were used in [19]). To tackle this problem, we propose reductions which attempt
adjust the size of automata with a reasonable trade-off between the classification error and
the number of states of the automaton.

If we limit ourselves to deterministic automata, one can use Hopcroft’s algorithm [14], to
obtain minimal deterministic automata. Nevertheless, a problem appears when one wants
to deal with immense non-deterministic automata (NFA), where state explosion during
determinization may occur. On the other hand, there also exist algorithms of reducing
the size of non-deterministic automata directly, without need of determinization. These
approaches are based on various simulation techniques discussed, e.g., in [9, 15]. Although
a reduced automaton using the mentioned techniques can be several times smaller than the
original ones, the reduction may still not be as sufficient as it is desired, which is illustrated
in our experiments too.

There are not many language non-preserving reduction methods. Out of them, the clos-
est to this work is described in [8]. This approach is driven by the probabilistic distance
between regular languages and we will shortly discuss it in a later chapter. The method
provides a formal guarantee wrt unseen data. However, there are two major drawbacks.
Firstly, the method has high time complexity which makes it hard to apply on large au-
tomata. Secondly, it relies on general network traffic model represented by a probabilistic
automaton. Acquiring of an exact model is extremely difficult because of the diversity of
traffic containing various content. The algorithms for learning probabilistic automata are
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not suited for such samples including a lot of noise represented by binary and tunneled data
as we also discuss in the work.

To significantly reduce the size of automata in a fast and flexible way, we propose a dif-
ferent approach based on language over-approximation. Although the language of reduced
the automaton is not the same as the language of the original one, we can considerably
decrease the number of states and transitions. Note that there undoubtedly will be some
false positives. However, the language over-approximation assures that filtering based on
the reduced automaton omits no malicious packets which should be classified by the orig-
inal automaton. In practice, the hardware devices serve as a traffic prefilter, which sends
suspicious packets for further inspection to software. In other words, once a packet has
been classified, either correctly or incorrectly, it is subsequently validated in software to
achieve that all packets are handled faultlessly.

Our proposed methods modify the structure of an input automaton in order to find
sequences of states, which principally contributes to the classification process. These states
are retained, and the rest is modified based on algorithm’s parameters, including the reduc-
tion rate. To decide which states are more important, the packet frequency is used, which
is basically computed on some training samples.

The proposed methods were carried out and tested on various automata. The vast
majority of datasets we used was supplied by the ANT@FIT research group. The rest of the
samples were acquired from the DARPA traffic dumps [2]. We achieved quite encouraging
results, which have shown a great potential of our approach. Moreover, we also managed
to reduce huge automata in quite reasonable time.

This work is organized as follows. First and foremost, we give some preliminaries in
Chapter 2, which introduces the reader to a basic background of the theory of automata
and regular languages. Further, Chapter 3 briefly discusses the network traffic filtering
and involvement of finite automata in this process. Following this, in Chapter 4, we give
a detailed account to proposed reduction methods including their algorithmic description.
In Chapter 5, besides describing the implementation of the proposed reductions, we also
talk about error evaluation used after reduction. Furthermore, Chapter 6 provides an
experimental evaluation of the proposed reduction techniques, primarily their error and the
reduction rate. Finally, a summary of acquired results and future ideas of our approach
can be found in Chapter 7.
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Chapter 2

Preliminaries

This chapter covers fundamental definitions, which are used throughout the thesis. If all
these concepts are familiar to the reader, the chapter can be freely skipped. Definitions
in this section are mostly inspired by books and online references, which can be found
in [16, 23, 10].

Just before we jump into the main concepts, we describe the most fundamental basics of
the considered area, which are strings and languages. Then, we introduce finite automata
which are one of the possible representation of regular languages. We also discuss regular
expressions, including a formal definition, and give some examples. Finally, we describe
automata reductions and other types of automata such as probabilistic ones.

2.1 Strings and Languages
Definition 1. An alphabet is any finite set, which is denoted as Σ. We call elements of
an alphabet symbols or letters. A string or word over Σ is any finite-length sequence of
symbols of Σ.

An example of a string could be 𝑥 = 𝑎𝑏𝑏𝑎 over the alphabet Σ = {𝑎, 𝑏}. Next, the
length of a string 𝑤 is denoted as |𝑤| and represents the number of symbols in the string.
For example |𝑎𝑏𝑏𝑎| = 4. There exist a unique empty string over Σ. It is denoted by the
Greek letter 𝜀 and has the length equal to zero (|𝜀| = 0).

Further, we denote the set of all strings over alphabet Σ as Σ*. A formal language
𝐿 over the alphabet Σ is then any subset of Σ*. There also exist a special kind of language,
called the empty language, which contains no strings at all, and we write 𝐿 = ∅.

Besides basic set operations (intersection, union, symmetric difference . . . ) , which can
be applied on languages, there are other common operations:

∙ Concatenation 𝐿1𝐿2: the set of strings that can be obtained by concatenating a string
in 𝐿1 and a string in 𝐿2. For instance, {𝑥𝑦,𝑤}{𝑎, 𝑏𝑐} = {𝑥𝑦𝑎, 𝑥𝑦𝑏𝑐, 𝑤𝑎,𝑤𝑏𝑐}.

∙ Kleene star 𝐿*: this is the set containing all strings that can be acquired by concate-
nating any finite number (including zero) of strings from 𝐿. For example, {𝑥, 𝑦}* =
{𝜀, 𝑥, 𝑦, 𝑥𝑦, 𝑦𝑥, 𝑥𝑥, 𝑦𝑦, . . . }.
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2.2 Automata
Next, we give a definition about one of possible representation of regular languages, which
is a finite automaton.

Definition 2. Formally, a finite automaton is defined as a structure 𝑀 = (𝑄,Σ, 𝛿, 𝑠, 𝐹 ),
where

∙ 𝑄 is a finite set of states,

∙ Σ is an input alphabet,

∙ 𝛿 : 𝑄× Σ → 2𝑄 is a transition function,

∙ 𝑠 ∈ 𝑄 is an initial (start) state,

∙ 𝐹 ⊆ 𝑄 is a set of final (accepting) states

We are often interested in strings and their relations with finite automata (FA). For
that we give a definition of the function ̂︀𝛿.

Definition 3. We define a function ̂︀𝛿 : 𝑄× Σ* → 2𝑄 from 𝛿 by induction on the length 𝑥:

∙ ̂︀𝛿(𝑞, 𝜀)
def
= 𝑞,

∙ ̂︀𝛿(𝑞, 𝑥𝑎)
def
= 𝛿(̂︀𝛿(𝑞, 𝑥), 𝑎).

In other words, the function maps a state 𝑞 ∈ 𝑄 and a string 𝑤 to a new set of stateŝ︀𝛿(𝑞, 𝑤). Furthermore, we say that the automaton 𝑀(𝑄,Σ, 𝛿, 𝑠, 𝐹 ) accepts or recognizes a
language 𝐿, we write 𝐿(𝑀), when for all 𝑤 ∈ 𝐿 ̂︀𝛿(𝑠, 𝑤) ⊆ 𝐹 .

We also recognize two types of a finite automaton: deterministic (DFA) and nondeter-
ministic (NFA). If a finite automaton is a DFA, it holds that |𝛿(𝑞, 𝑎)| ≤ 1 for 𝑞 ∈ 𝑄 and
𝑎 ∈ Σ (note that |𝑆| denotes a cardinality of the set 𝑆). In general, instead of having one
initial state an NFA can have a set of initial states. However, a DFA can only have a single
initial state.

For every regular language, there exists a minimal deterministic automaton that ac-
cepts it. However, for some regular languages, there are NFAs whose size can be even
exponentially smaller than that of the minimal DFA recognizing the same language. The
transformation of an NFA to a DFA is called determinization, which is done by subset
construction. The application of the subset construction method on an NFA creates states,
which are subsets of 𝑄. Thus, in the worst case, the number of states is equal to 2|𝑄|.

Figure 2.1 shows the difference between DFAs and NFAs. Concerning the NFA (the
automaton on the right), we see that there are more transitions under one symbol leading
from one state (in this case, symbol 𝑎 and state 𝑞0).
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𝑞0

𝑞1

𝑞2

𝑏

𝑎

𝑎

𝑎

𝑞0

𝑞1

𝑞2

𝑎, 𝑏

𝑎 𝑎

Figure 2.1: DFA (on the left) and NFA (on the right) accepting the same language. Note
that 𝑞0 in NFA can reach two states after reading symbol 𝑎 (that is why it is called non-
deterministic).

Definition 4. We call 𝑀 ′ = (𝑄′,Σ, 𝛿′, 𝑠′, 𝐹 ′) a subautomaton of 𝑀 = (𝑄,Σ, 𝛿, 𝑠, 𝐹 ) iff

∙ 𝑄′ ⊆ 𝑄,

∙ 𝛿′ = 𝛿 restricted to 𝑄′,

∙ 𝑠′ ∈ 𝑄′,

∙ 𝐹 ′ = 𝐹 ∩𝑄′.

Generally speaking, a subautomaton is some interconnected subset of states of an au-
tomaton. Naturally, a FA can have several subautomata.

2.3 Regular Expressions
Formally, regular expressions (RE) are defined as follows (taken from [1]).

Definition 5. Let Σ be an alphabet. The regular expressions over Σ and languages they
denote are defined as follows:

∙ ∅ is an RE denoting the empty set,

∙ 𝜀 is an RE denoting {𝜀},

∙ 𝑎, where 𝑎 ∈ Σ, is an RE denoting {𝑎}.

Let r and s be regular expressions denoting languages 𝐿𝑟 and 𝐿𝑠, in turn; then

∙ (𝑟 · 𝑠) is an RE denoting 𝐿 = 𝐿𝑟𝐿𝑠,

∙ (𝑟 + 𝑠) is an RE denoting 𝐿 = 𝐿𝑟 ∪ 𝐿𝑠,

∙ (𝑟*) is an RE denoting 𝐿 = 𝐿*
𝑟

Use of REs is very popular in computer science and engineering because even with a
small string expression, we can describe a quite complex language. Moreover, REs can be
handled in an effective way, typically by translation to automata. For instance, example
of RE describing the same language as the automaton in Figure 2.1 can be written as
(a|b)*aa. Besides standard RE symbols mentioned in the definition above, there have been
added several special symbols and flags for simpler language description. These symbols
are for instance ˆ (matches start of the string), [] (set of characters), etc.
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2.4 Automata Reductions
Concerning DFA reductions, we can use algorithms based on the Myhill-Nerode relations.
These methods distinguish states of the DFA into equivalence classes. However, the size
of a minimized DFA can be exponentially larger than the size of an NFA accepting the
same language. Nevertheless, there also exists approaches for reducing an NFA directly.
One of those approaches is based on merging states according to the simulation equivalence
relation. The definition of the simulation equivalence is given below [13].

Definition 6. A (forward) simulation on an NFA 𝐴 = (𝑄,Σ, 𝛿, 𝑠, 𝐹 ) is a binary relation
𝑅 ⊆ 𝑄×𝑄 such that, for any state 𝑝, 𝑞 ∈ 𝑄 and 𝑎 ∈ Σ, (𝑝, 𝑞) ∈ 𝑅 holds, iff

∙ 𝑝 ∈ 𝐹 =⇒ 𝑞 ∈ 𝐹 , and

∙ for every 𝑝′ ∈ 𝛿(𝑝, 𝑎) there exists 𝑞′ ∈ 𝛿(𝑞, 𝑎) such that (𝑝′, 𝑞′) ∈ 𝑅

For each NFA there also exist a unique largest simulation, called simulation preorder.
The simulation equivalence for the simulation preorder ⪯ is then given as ⪯ ∩ ⪯−1. These
methods reduce the NFA just by state merging, but they can be combined, e.g., with
removing of transitions as used in [9].

2.5 Probabilistic and Frequency Automata
In the following chapters, we will often use a term frequency. Generally, we consider fre-
quency as the number of times an event occurs, typically over some period of time. For
example, it could be the number of sunny days in the previous week. In terms of regular
languages, we can also have a frequency finite automata (FFA), which is defined as follows.

Definition 7. A frequency finite automaton is a tuple 𝐴 = (𝑄,Σ, 𝛿, 𝛿𝑓𝑟, 𝐼𝑓𝑟, 𝐹𝑓𝑟) where

∙ 𝑄, 𝛿,Σ are the same as in the definition of a finite automaton,

∙ 𝐼𝑓𝑟 : 𝑄 → N are initial-state frequencies,

∙ 𝐹𝑓𝑟 : 𝑄 → N are final-state frequencies,

∙ 𝛿𝑓𝑟 : 𝑄× Σ ×𝑄 → N is the transition frequency function.

For a deterministic frequency finite automaton (DFFA) should hold that for each state
the sum of the entering frequencies is equal to the sum of the leaving frequencies. DFFAs
are often used for learning some distributions over regular languages by some learning
algorithm such as Alergia, MDI or DSAI [12]. The result is then a probabilistic automaton,
which can be defined similarly as an FFA, where instead of frequencies we have probabilities
(relative frequencies).
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Chapter 3

Network Traffic Filtering

Here, we introduce the area of network traffic filtering, including its possible HW-acceleration,
and a use of automata involved in this process. The most of this part is inspired by [18, 21,
22, 20]. First and foremost, we remind basic concepts related to network architecture and
packet classification. Following this, deep packet inspection and intrusion detection systems
are briefly discussed. Finally, we describe the purpose of automata in pattern matching
and its hardware realization.

3.1 Network Architecture
In general, the Internet consists of thousands of smaller networks. These networks are
composed of nodes (computers, routers, etc.) connected together. The communication on
the Internet then proceeds by sending data (packets) between nodes using various protocols
in several network layers.

Today, we can distinguish network layers in the five-level model (sometimes called
TCP/IP model). This model was developed primarily empirically as people gained ex-
perience with the actual problems of working with computer network connections and with
the solutions to those problems. Firstly, the lowest layer is called the physical layer. It
consists of hardware devices and some medium (cables, radio waves) which connects them.
Ethernet, FDDI, and Token Ring are the most common technologies used in this layer.
Secondly, link layer connects nodes within local area network (LAN) and provides routing
based on MAC addresses. Thirdly, we have the Internet layer, which extends LAN to a
wider network so that computers can communicate remotely outside their local network.
Nowadays IPv4 protocol still dominates the Internet but is being slowly replaced with its
newer version IPv6. Next, the transport layer assures that data is delivered either with
some guarantee (TCP) or with none (UDP). Finally, we have the application layer, where
we can find myriads of various application protocols, including the most popular HTTP.

According to the Cisco model, the application layer further consists of three levels,
including presentation, session, and application layer which are denoted as L5, L6, and L7
respectively.

If we look into a packet structure, we can recognize these layers by protocols. For
instance, an HTTP packet may consist of an HTTP, TCP, IP, and finally, Ethernet header.
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3.2 Classification
One of the primary tasks of network devices (routers, switches) is packet classification.
Besides packet routing based on IP address, classification also serves for traffic filtering
in firewalls. Filtering splits the traffic into several categories, which are then handled by
a specific function which determines what happens next with the packet.

The basic classification looks into headers on the IP and transport layer and searches
for specific fields. Following this, with respect to the set of filtering rules, the next action
takes place. For instance, the packet is thrown away, redirected, analyzed, processed, etc.
However, there are also classifications which do not parse the packet header, but its content
(packet payload). This kind of classification is called deep packet inspection (DIP) and is
described in the following section.

3.3 Deep Packet Inspection
In general, DPI is an advanced approach, which examines the contents of packets passing
through a particular node and makes real-time decisions based on the set of rules assigned
by an Internet service provider (ISP) or network manager, depending on what a packet
contains.

Besides extensive use in Intrusion Detection Systems (IDS), which are described in the
next section, it can also be used in network management to streamline the flow of network
traffic. For example, a message tagged as high priority can be routed to its destination
ahead of less important or low-priority messages or packets involved in casual Internet
browsing. DPI can also be used for throttled data transfer to prevent peer-to-peer abuse,
therefore, improving network performance.

According to [20], DPI has at least three significant limitations. First , while protecting
against some existing vulnerabilities it can create new ones. For instance, while effective
against buffer overflow attacks, certain types of malicious software, and (D)DoS1 attacks,
DPI can also be exploited to facilitate attacks in those same categories.

Second, deep packet inspection contributes to the complexity and cumbersome nature
of existing firewalls and other security-related software. Deep packet inspection systems
require periodic revisions and updates to remain optimally effective again newly developed
attacks.

Third, DPI can reduce network speed because it increases the burden on firewall pro-
cessors. This is also a reason why there is a need to implement DPI systems in hardware
(often based on the FPGA architecture2). Hardware processing is inevitable in routers in
high-speed networks.

3.4 Intrusion Detection System
An intrusion detection system is a system for monitoring suspicious activity in network
traffic and providing alerts once such behavior has been discovered. Besides detection
and reporting of malicious activity or anomalous traffic, some IDSs are capable of taking
counteractions when an intrusion is detected, including blocking traffic sent from suspicious
IP addresses.

1(Distributed) Denial-of-Service
2Field Programmable Grid Array
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Intrusion detection systems monitor network traffic in order to detect when an intrusion
is being carried out by unauthorized entities. IDSes do this by providing some or all of the
following functions to security professionals:

∙ reacting to violators by blocking them,

∙ monitoring the operation of routers, firewalls, key management servers, and files that
are needed by other security controls aimed at detecting, preventing, or recovering
from cyberattacks,

∙ providing a user-friendly interface so non-expert staff members can assist with man-
aging system security,

∙ providing administrators a way to tune, organize and understand relevant operating
system audit trails and other logs that are often otherwise difficult to track or parse,

∙ recognizing and reporting when the IDS detects that data files have been altered,

∙ including an extensive attack signature database against which information from the
system can be matched,

∙ generating an alarm and notifying that security has been breached.

3.5 Finite Automata Used in Filtering
DPI filtering rules for pattern matching are represented by regular expressions and are
implemented as an FA. Due to increasing the throughput of network devices the solutions
based solely on software processing are not sufficient. To obtain speeds suitable for real-
time pattern matching it necessary to implement automata in hardware. In hardware, an
FA is a sequential circuit, which compared to a combinatorial circuit has its own memory.

There are two primary architectures based on DFAs or NFAs. Concerning DFAs, we
can have only one active state at once, which allows us to store the transition function
into RAM memory. This is also useful when we want to change the transition function
because there is no need to make any changes in hardware. However, as we mentioned in
the previous chapter, the size of a DFA can be exponentially larger than an NFA accepting
the same language.

When using NFA-based approach, the automata are implemented in hardware includ-
ing the transition function because we can have more active states. Although NFAs can
be relatively small compared to DFAs the problem occurs when we want to update the
transition function.

Another solution is to use delayed input DFAs (D2FA), which are DFAs with some non-
deterministic features [17]. In D2FA, each state may have at most one unlabeled outgoing
default transition. These automata have the same advantage as DFAs, so their transitions
can be stored in RAM. Moreover, they consist of fewer transitions than DFAs, which is the
main reason why they are used.
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3.6 Filtering Rules
We obtained regular expressions from the the research group ANT@FIT in the PCRE3

format. This format is widely used in many programming languages including Perl and
PHP. In the following subsection, we describe systems and software products, which these
REs come from.

Snort

Snort is an open source network-based intrusion detection system capable of real-time traffic
analysis and packet logging on Internet networks [7]. The Snort main features are protocol
analysis, content searching and matching. In particular, it is used to detect attacks and
other malicious activities such as operating system fingerprinting attempts, semantic URL
attacks, buffer overflows, (D)DoS, server message block probes, and stealth port scans.

An example of REs from Snort is given in Figure 3.1 below. After the REs were con-
verted to an automaton, we obtained an NFA with around 1 300 states and 8 000 transitions.

/awstats.pl?[^\r\n]*configdir=\x7C/Ui
/awstats.pl?[^\r\n]*logfile=\x7C/Ui
/calendar(|[-_]admin)\.pl/Ui
/db4web_c(\.exe)?\/.*(\.\.[\#\/]|[a-z]\:)/smiU
/evtdump\x3f.*?\x2525[^\x20]*?\x20HTTP/i
/instancename=[^&\x3b\r\n]{513}/smi
/itemid=\d*[^\d\&\;\r\n]/i
/pwd=(\!|\%21)CRYPT(\!|\%21)[A-Z0-9]{512}/i
/ShellExample.cgi\?[^\n\r\&]*\x2a/Ui
/SoftCart.exe\?[^\s]{100}/Usmi

Figure 3.1: Regular expressions in the PCRE format of web-cgi.rules. These REs are
searching for a suspicious content of a packet. For instance, the rule ShellExample...
detects remote attackers attempting to list arbitrary directories via a URL with the desired
path and a * (asterisk) character.

Besides Snort, there are plenty of other products providing similar capabilities. A system
developed by Bro4 is an example of such framework for network security monitoring.

L7-filter

L7-filter is a software product that provides a classifier for Linux’s Netfilter subsystem which
can categorize Internet Protocol packets based on their application layer data (thus the L7
layer) [5]. The major goal of this tool is to make possible the identification of peer-to-peer
programs, which use unpredictable port numbers in TCP or UDP source and destination
port fields. The program uses regular expressions for the network protocol identification.
This technique, used in conjunction with Linux’s QoS (Quality of Service) system, allows

3Perl Compatible Regular Expressions https://pcre.org/
4https://www.bro.org/

12

https://pcre.org/
https://www.bro.org/


application-specific yet port-independent traffic shaping. An example of some rules are
shown in Figure 3.2.

/<html.*><head>/
/User-Agent: DA [678]\.[0-9]/
/User-Agent: FreshDownload\/[456](\.[0-9][0-9]?)?/
/http\/(0\.9|1\.0|1\.1).*(user-agent: itunes)/

Figure 3.2: An example of filtering rules obtained from L7-filter. We can see that the first
rule is searching for an html content, while the other rules are used for analyzing user-agent
request headers. In general, user-agent headers contain a characteristic string that allows
the network protocol peers to identify the application type, operating system, software
vendor or software version of the requesting software user agent.
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Chapter 4

Automata Reduction

In this chapter, we describe our solution of approximate automata reduction. Initially, the
basic concept of approximate reduction will be discussed. Next, we explain some important
difference between regular NFAs and NFAs used in network traffic filtering. Then, we will
introduce our initial proposal of approximate reduction. After this, we describe a refinement
of this reduction method and discuss its advantages and disadvantages.

4.1 Approximation
As regards NFA reduction methods which preserve language of the orignial automaton, they
can yield excellent results. For instance, the number of states can be even more than twice
lower than in the original automaton. However, one may want to shrink an automaton to
a greater extent, but the reduction is limited by retaining the original language. For that
reason, other methods which do not preserve the language are necessary. Although they
would certainly yield some error, they allow us to achieve more significant reductions.

If we want our reduction to modify the original language, we have basically three op-
tions. First, we can under-approximate the language, e.g., by neglecting several rules (sub-
automata) in a given NFA. To decide which subatomata to remove, we can choose those
which final states were the least visited. However, following this approach, we would lose
the opportunity to handle many attacks. Therefore, our IDS would be vulnerable against
particular attacks, which is too dangerous.

Secondly, we can change the language that it will neither be under-approximation nor
over-approximation of the target language. Then the erroneously classified packets would
lie in the symmetric difference of the reduced and the original language. Despite the fact
that we could obtain a quite low error, there still would be unsolved issues in the system.
These issues include false alarms and undetected attacks.

Finally, we can use over-approximation whose error would consist only of false positives.
Generally, ignoring an attack is a greater risk than having false alarms. This approach
ensures that no attacks are ignored, which is more desirable when protection is needed.
But what to do with these false alarms? By making our system too permissive with a great
rate of false alarms, we would block a large amount of casual network traffic. The solution
is subsequent processing in the CPU of a router or any other device where these systems
should be installed. Figure 4.1 illustrates the classification process and shows that after
a packet has been classified as potentially dangerous by hardware, it is then checked in
software for a false alarm.
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Figure 4.1: The diagram shows how the problem with false alarms is tackled. First, the
packet is processed in hardware (reduced automata). Then, if the packet is matched, it is
subsequently verified in the software running on the CPU of a network device.

The approach based on over-approximation can reduce the size of automata more sig-
nificantly than language-preserving reduction. Since we also want to reduce the possible
errors, we will focus on a language approximation illustrated in Figure 4.2. It shows how
the original and reduced language should be related with network traffic. The language of
reduced automata can extend a language vastly, but concerning the frequent traffic (red
dashed circle), it should remain very close to the original language.

Figure 4.2: Diagrams of languages of the original automaton, the reduced automaton, and
frequent traffic. The reduced automaton attempts to over-approximate the target with low
false positive rate (intersection with red ellipse outside the original language).

4.2 NFA Differences
In packet pattern matching, we can have several filtering rules which are represented by
different REs. In the automaton, the rules are represented by several smaller subautomata.
The final states of each subautomaton identify particular rules, which are used for classi-
fication, e.g., recognizing a type of attack or protocol. So the reduction should not merge
all final states, because we would lose the information about which filtering rule to apply.

In contrast to string acceptance in regular automata, the classification process is a bit
different. Since we search for substrings in packets, not a full matches, we only need to
know which finals states were reached by a packet during its processing. This allows us to
drop self-loops over the final state.
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Figure 4.3: Pruning of the automaton (a) to (b). The states 𝑞7, 𝑞8, 𝑞9 and 𝑞10 were severed
and their predecessors, states 𝑞5 and 𝑞6 became final states. Note that the transitions from
𝑞5 and 𝑞6 were removed too, since we are concerned only about which final states are visited
by a packet.

4.3 State Pruning
In this chapter, we will describe our first method used for NFA reduction, which we call state
pruning. This approach follows simple ideas and is not difficult for both understanding and
implementation. The following sections describe how our approach reduces an automaton
and how it modifies its language after reduction.

4.3.1 Basic Idea

The state pruning reduction identifies less important states of an automaton and removes
them appropriately. The removing of the states is quite straightforward. Once the states
have been marked as not important, we simply sever them from automaton, including
transitions which lead to them. Because we want to achieve over-approximation of the
input language, we mark immediate predecessors of the removed states as final states. We
may also add a self-loop over the alphabet1 to them, however, as we are only concerned
about which final states were visited we may neglect this step. Figure 4.3 illustrates this
approach, by showing the automaton before and after pruning.

To better understand this principle, imagine a simple regular expression 𝑟 over the
alphabet Σ = {𝑎, 𝑏, 𝑐} 𝑟 = 𝑎𝑏𝑐𝑎𝑏𝑐𝑐𝑐𝑎𝑎, whose NFA representation we want to reduce. Once

1A transition from a state over the alphabet to the state itself.
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it has been pruned, we may obtain something like 𝑎𝑏𝑐𝑎(𝑎|𝑏|𝑐)*. We see that we neglected
the last six characters and substituted them with a self-loop.

4.3.2 State Frequency

In order to decide which state to prune, we use packet frequency (or also state frequency
denoting the same). Its a non-negative number associated with each state of an NFA. This
number denotes how many packets from the input traffic sample went through a particular
state during the packets processing. The states with the low packet frequency are then
removed. The main difference between classic frequency and packet frequency is that we
do not compute frequency for each character, but for each packet. Figure 4.4 illustrates
a packet frequency heat map of some automaton. The states in the close proximity of
the initial state have higher frequency (red color), while the others are less visited (green
and blue color). This distribution of packet frequency is typical for the majority of NFAs
obtained from Snort.

Figure 4.4: The packet frequency heat map of the automaton (apparently without transition
labels). The red states are the most frequently visited, the green are medium frequent and
the blue one are almost not visited at all.

If we remove a state by pruning, we can compute the upper bound of an error (related
to an input traffic sample), which is equal to the sum of the frequencies of the pruned
states. It means that we will in the worst case make a mistake on this number of packets
wrt the input traffic sample. In addition, due to nondeterminism, we have to mark all paths
in the NFA that can be visited by a packet. Algorithm 1 shows how packet frequency is
used for deciding which states to remove. Besides the automaton we want to reduce, it has
two parameters a reduction ratio 𝑟 and a frequency mapping 𝑓𝑟𝑒𝑞. The reduction ratio
𝑟 specifies the number of state of the reduced automaton proportional to the number of
states of the input automaton (e.g., for 𝑟 = 0.2 the number of states of the reduced NFA
is 20 % of the original NFA). The parameter 𝑓𝑟𝑒𝑞 maps each state to its packet frequency
obtained from sample.

First, we sort the frequencies in the ascending order. In the next step we, mark states
we want to prune until we reach the desired number of states of the output automaton.
Finally, we sever marked states and propagate final states to their predecessor states.
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Algorithm 1: State Pruning Reduction
Input: NFA 𝑀 = (𝑄,Σ, 𝛿, 𝑠, 𝐹 ), state frequencies mapping 𝑓𝑟𝑒𝑞 : 𝑄 → N,

reduction ratio 𝑟
Output: NFA 𝑀 ′ obtained by reducing 𝑀 , where 𝐿(𝑀) ⊆ 𝐿(𝑀 ′)

1: 𝑠 := 𝑠𝑜𝑟𝑡(𝑀,𝑓𝑟𝑒𝑞) // sort according to frequency

2: 𝑐𝑛𝑡 := 0
3: 𝑚𝑎𝑟𝑘𝑒𝑑 := ∅
4: while 𝑟 > 𝑐𝑛𝑡/|𝑄| do
5: 𝑚𝑎𝑟𝑘𝑒𝑑 := 𝑚𝑎𝑟𝑘𝑒𝑑 ∪ {𝑠[𝑐𝑛𝑡]}
6: 𝑐𝑛𝑡 := 𝑐𝑛𝑡 + 1

7: end
8: 𝑀 ′ := 𝑅𝑒𝑚𝑜𝑣𝑒𝑆𝑡𝑎𝑡𝑒𝑠(𝑀,𝑚𝑎𝑟𝑘𝑒𝑑) // remove marked states

4.3.3 Discussion

The reduction based on removing states of the NFA with the lowest packet frequency is
a simple and effective approach. The time complexity depends on computing the packet
frequency and the pruning process. Due to non-determinism, computing of the packet
frequency can be hard, because we have to expand all reachable states for each symbol
read. This problem aggravates when an NFA contains a lot of self-loop transitions, mostly
close to the initial state (so they are visited often). So these states are continuously being
expanded, which slows down computing. This problem is addressed by joining these states
together (more details in Chapter 5). The pruning reduction itself is not time consuming.
We only sort an array of packet frequencies of states and remove selected states. Following
this step, we then propagate the final states to predecessors of erased states.

After applying state pruning reduction to some automata, we obtained quite good re-
sults. More detailed description about experiments including reduced NFAs evaluation is
provided in Chapter 6. In average, we could reduce NFAs to 20 % of their size with around
1 % error on traffic. The reduction was quite significant on automata obtained from Snort.
The main reason why reduction was so successful lies in the two following factors:

The first one is that the degree centrality of the states is quite low. The degree centrality
is a simple centrality measure in graph structures that count how many neighbors a node
has. If a graph is directed (NFA), we can either choose whether this number represents
the count of predecessor or successor nodes. Concerning NFAs, which can be considered as
a directed graph, we use degree centrality as the number of successor states. The pie charts
in Figure 4.5 shows the distribution of this feature on some automata obtained from Snort.
We can see that the most common degree centrality or a number of successors is equal to
one. This contributes to the fact, that if we remove a state it will not cause significant
modification to a language. On the other hand, if states had very high degree centrality,
the language would be changed more considerably after pruning, and thus the error would
be more increased.

The second factor which considerably contributes to the effectiveness of the pruning
reduction is that the most of the packets, which are accepted by automata for attack
detection, are rare in casual network traffic. For instance, if we look at the regular expression
in Figure 3.1, we can see the RE “instancename=[ˆ&\x3b\r\n]{513}”. This RE is both
quite specific (instancename followed by 513 characters in a set [ˆ&\x3b\r\n]) and also has
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Figure 4.5: The pie charts illustrating the degree centrality or the number of successor
states of several automata obtained from Snort. We can see that the majority of states has
the degree centrality equal to one.

meager degree centrality (no iterations, so subautomaton would consist of a long sequence
of states).

4.4 State Merging Refinement
Although the pruning reduction yields quite feasible results, it can be slightly improved
using the approach that we propose below. This improvement consists in state merging,
which is described in the following sections.

4.4.1 Basic Concept

The state pruning approach is quite efficient when packets visit a small part of the automa-
ton. In such cases, we can cut off many states of the automaton, while obtaining a relatively
small error. The state pruning is, however, not suitable for all REs, for instance, the regular
expression “GET HTTP 1.1 \x0d\x0a\x0d”. In this expression the prefix “GET HTTP 1.1”
is very common in the traffic, but the sequence of bytes “\x0d\x0a\x0d” is not. Therefore,
the reduction would not do much because many states of the NFA would have high packet
frequency.

To achieve a more significant reduction in cases similar to the above, we propose an
approach based on state merging. The fundamental idea is to maintain only parts of au-
tomata which are very specific, regardless of where they appear in the NFA. The reduction
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merges adjacent states if their packet frequency is similar wrt to some threshold. This
method approximates the language in a different way compared to pruning. It does not
just cut some parts of the NFA as pruning does, but adds iterations of some symbols to
the language. However, this modification of the language can cause a much higher error.
Therefore, the merging should be done carefully.

4.4.2 Merging Procedure

Firstly, we describe how we merge two states together into a single state while preserving
over-approximating the original language. For example, when merging a state 𝑝 with 𝑞 in
the automaton 𝑀 = (𝑄,Σ, 𝛿, 𝑠, 𝐹 ), we proceed as follows. Initially, we substitute 𝑝 for 𝑞 on
the left side of each rule in 𝛿 where 𝑞 appears. For instance, 𝛿(𝑞, 𝑎) → 𝑞′ will be changed to
𝛿(𝑝, 𝑎) → 𝑞′. Then we redirect all transitions to 𝑝, such that they lead to 𝑞, e.g., 𝛿(𝑞′, 𝑎) → 𝑞
is changed to 𝛿(𝑞′, 𝑎) → 𝑝. If 𝑞 was a final or initial state, we make 𝑝 final or initial as well.
Finally, we remove 𝑞 from the set of states 𝑄 and 𝐹 .

Figure 4.6 illustrates how the merging of two states is done. Notice that state 𝑞1 gained
a self-loop because of the former transitions to the merged state.
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Figure 4.6: The merging of the state 𝑞2 into 𝑞1 of the automaton on the left.

Now let us have a look at merging reduction of the automaton as depicted in Algorithm 2.
Besides the state frequency, we have two extra parameters a threshold th and a maximal
frequency ratio 𝑓𝑟𝑒𝑞𝑚𝑎𝑥. The threshold 𝑡ℎ says what the maximal difference between
frequencies of two states that we allow to be merge is. For example, if we want to merge
𝑞 into 𝑝, where 𝑓𝑟𝑒𝑞[𝑞] = 1000, and 𝑓𝑟𝑒𝑞[𝑝] = 970 the threshold must be less than 970/1000.
The second parameter, 𝑓𝑟𝑒𝑞𝑚𝑎𝑥, is a ratio between the maximal packet frequency and the
packet frequency of the state allowed to be merged. This parameter limits the merging
of states with the high packet frequency, which may yield a high error after merging. For
instance, setting this parameter to 0.1 means that only states which have less than 10 % of
total packets used for computing frequency are allowed to be merged.

The algorithm iterates over all states using the breadth-first search method. It starts
with the initial set of states actual, which contains the initial state of the NFA. We also
have the set visited representing visited states. We loop over the states in actual. Then, if
the frequency of a state is nonzero and not higher than the maximal frequency allowed for
merging, we iterate over this state successors states. If the packet frequencies of the states
are similar we mark them for merging. Next, we update sets actual and visited. Once the
main while loop ends, we merge marked states together.

The reduction ratio parameter in merging is not included in the algorithm. This is
because the merging reduces around 7 % of states on average in the automata we considered.
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Algorithm 2: State Merging Reduction
Input: automaton 𝑀 = (𝑄,Σ, 𝛿, 𝑠, 𝐹 ), state frequencies mapping 𝑓𝑟𝑒𝑞 : 𝑄 → N,

threshold 𝑡ℎ ∈ (0, 1), maximal frequency ratio 𝑓𝑟𝑒𝑞𝑚𝑎𝑥 ∈ (0, 1)
Output: NFA 𝑀 ′ obtained by reducing 𝑀 , where 𝐿(𝑀) ⊆ 𝐿(𝑀 ′)

1: 𝑎𝑐𝑡𝑢𝑎𝑙 := {𝑠}
2: 𝑣𝑖𝑠𝑖𝑡𝑒𝑑 := {𝑠}
3: 𝑚𝑎𝑟𝑘𝑒𝑑 := ∅
4: while 𝑎𝑐𝑡𝑢𝑎𝑙 ̸= ∅ do
5: 𝑛𝑒𝑥𝑡 := ∅
6: foreach state 𝑝 ∈ 𝑎𝑐𝑡𝑢𝑎𝑙 do
7: 𝑡 := 𝑓𝑟𝑒𝑞[𝑝]/𝑚𝑎𝑥(𝑓𝑟𝑒𝑞)

// get successor states of p

8: 𝑠𝑢𝑐 := 𝑠𝑢𝑐𝑐𝑒𝑠𝑜𝑟𝑠(𝑀,𝑝)
9: if 𝑡 ≤ 𝑓𝑟𝑒𝑞𝑚𝑎𝑥 AND 𝑓𝑟𝑒𝑞[𝑝] > 0 then

10: foreach state 𝑞 ∈ 𝑠𝑢𝑐 do
// compute frequency ratio between p and q

11: 𝑓𝑟𝑒𝑞_𝑟𝑎𝑡𝑖𝑜 := 𝑚𝑖𝑛(𝑓𝑟𝑒𝑞[𝑞], 𝑓𝑟𝑒𝑞[𝑝])/𝑚𝑎𝑥(𝑓𝑟𝑒𝑞[𝑞], 𝑓𝑟𝑒𝑞[𝑝])
12: if 𝑓𝑟𝑒𝑞_𝑟𝑎𝑡𝑖𝑜 > 𝑡ℎ then
13: 𝑚𝑎𝑟𝑘𝑒𝑑 := 𝑚𝑎𝑟𝑘𝑒𝑑 ∪ {(𝑞, 𝑝)}
14: end
15: end
16: end
17: 𝑛𝑒𝑥𝑡 := 𝑛𝑒𝑥𝑡 ∪ 𝑠𝑢𝑐

18: end
19: 𝑎𝑐𝑡𝑢𝑎𝑙 := 𝑛𝑒𝑥𝑡 ∖ 𝑣𝑖𝑠𝑖𝑡𝑒𝑑
20: 𝑣𝑖𝑠𝑖𝑡𝑒𝑑 := 𝑣𝑖𝑠𝑖𝑡𝑒𝑑 ∪ 𝑛𝑒𝑥𝑡

21: end
22: 𝑀 ′ := 𝑀𝑒𝑟𝑔𝑒𝑆𝑡𝑎𝑡𝑒𝑠(𝑀,𝑚𝑎𝑟𝑘𝑒𝑑)

After merging we use pruning, which is not constrained by any conditions (we can remove
as many states as we want). In practice, we reduce to around 10 - 30 % of the original size
of the NFA, so the reduction ratio parameter would be useless in merging.

We can also skip the merging states with final states. This is because, in the majority
of the obtained NFAs, the final states do not have any successor states. Thus merging a
state with its successor final state would mean pruning. Since we want to distinguish the
impact of the merging from the pruning in our experiments, we do not merge final states.

4.4.3 Iterative Merging

We can extend state merging by repeating this procedure several times on the same au-
tomaton. We call this approach iterative merging. The point is to merge more states, since
the pruning, which is applied after the merging, can yield higher errors. The merging can
end after reaching several iterations, or when no states were merged in the last step.

Concerning computing of the packet frequency, it can be either done by dividing a
dataset into equally large parts according to the number of merging steps, or by using the
same dataset again.
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After having performed some experiments with iterative merging, we found out that it
indeed improved the accuracy of the reduced NFAs in some cases. However, the improve-
ment was not so significant. For that reason, we decided to not focus on this approach.

4.5 Other Approaches
In this section, we describe several approaches, which are different from the state pruning
and merging discussed above. First, we describe in a nutshell a recently proposed method
for approximate reduction driven by a probabilistic distance. Subsequently, we discuss
a solution of state merging inspired by abstract regular model checking.

4.5.1 Probability Driven Approach

In general, our proposed state pruning and merging reduction do not provide any formal
guarantee wrt to traffic, so their capabilities, when used on a small dataset, are questionable.
Nevertheless, there is a method which supplies this guarantee, recently proposed in [11].
The approach is based on having a probabilistic automaton (PA) described by the traffic
and provides guarantee wrt this PA.

However, the problem is in obtaining a PA, which represents the traffic precisely. In
theory, one can build such PA manually, semi-automatically as used in [8] (give an FA and
learn the probabilities), or use a fully automatic approach using learning algorithms such
as Alergia.

The majority of algorithms for learning a PA, firstly build a prefix tree acceptor, which is
a frequency automaton with a structure as an N-ary tree without loops. Then the prefix tree
acceptor is transformed to the probabilistic automaton usually by merging states defined
by learning algorithms.

Figure 4.7: The oriented graphs represent two prefix tree acceptors (frequency automata).
The circles are states and transitions are labeled with frequencies. The degraded tree is on
the right, while the model on the right suits better for learning algorithms.

When learning such models on packets, we encounter one big problem right at the
beginning. Just after a few thousands of packets, we are usually out of the computer
memory. The prefix acceptor is being degraded during learning, because of a high diversity
of network traffic. In other words, the frequency automaton has the majority of branches
with the frequency equal to one. Besides, some packets are too long (around 1 500 bytes),
which only aggravates the problem (more branches with low frequencies). Even if we use
computers with better parameters, the problem still remains, the tree degradation is notable
in a high degree. Learning algorithms are not suited for such samples. They expect samples
which were generated from some distribution. The difference between a prefix tree acceptor
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which works well with learning algorithms and the degraded prefix tree acceptor is depicted
in Figure 4.7.

To sum up, unless some other learning approach is used or one invests into manual mod-
eling of the traffic, which is itself very hard and challenging task, this reduction method may
yield inaccurate predictions about errors derived from the trained probabilistic automaton.

4.5.2 Merging Based on the Set of Prefixes

We made several experiments of automata reduction inspired by abstract regular model
checking described in the article [6]. The reduction proceeds as follows.

We take a sample 𝑆 of packets, which do not belong to the language recognized by the
input NFA we want to reduce. Let 𝑃 be the set of prefixes of the strings in 𝑆. We mark
each state state 𝑞 by the maximal subset 𝑃𝑞 ⊆ 𝑃 such that 𝑞 can be reached by each packet
𝑤 ∈ 𝑆. Then we merge the states with the same sets of prefixes, including empty sets. Since
there may be only few states with equal sets of prefixes, we can also merge states which
sets of prefixes are similar wrt some threshold. For instance, for the threshold equal to 0.9,
we merge states whose sets of prefixes have 90 % elements the same. When comparing the
two sets 𝑃1 and 𝑃2, we compute their intersection 𝐼. Then we calculate the similarity rate

𝑠 =
|𝐼|

𝑚𝑎𝑥(|𝑃1|, |𝑃2|)

and compare it to the threshold. If the similarity rate 𝑠 is higher or equal to the threshold,
we can merge the states.
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Chapter 5

Implementation

The design and implementation of the prototype tool based on the proposed methods
are described in this chapter. The whole software tool is called ahofa, which stands for
Approximate Handling Of Finite Automata. This tool consists of automata reduction,
packet frequency computation, and the reduced NFA error evaluation.

The NFA reduction is written in Python, while the NFA error evaluation and packet
frequency computation are written in C++. Both languages are object-oriented, which
allowed us to use class encapsulation and other useful features.

5.1 The Design
In this section, we focus on the architecture of the reduction tool ahofa. The diagram in
the Figure 5.1 shows the connection between several programs and data resources. Firstly,
we convert REs stored in PCRE format to non-deterministic automata. Then we sim-
plify the input automaton by removing states which burden further computation with the
automaton. Following this, we apply reduction on the simplified automaton using some
packet dataset for computing the packet frequency for each state. Once we have obtained
the reduced automaton, we can validate it by computing the error on some datasets. In the
end, we can use language-preserving reductions (e.g., Reduce [3]) to intensify the reduction
of the original automata.
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Figure 5.1: The architecture of the reduction tool ahofa.

5.2 Implementation Details
This section contains information about technical details of this work. The code related to
automata reduction and error evaluation can be found in ahofa1 repository. The structure
of this section is following. First, we describe the way how NFAs and samples are obtained.
Secondly, we explain what is done before the reduction, which we call automata simplifica-
tion. Next, we focus on the automata reduction algorithms and error evaluation of reduced
automata.

5.2.1 A PCRE Converter and PCAP Manipulation

The RE converter and tools for automata language-preserving reduction that we use are
external programs, which we did not implement. The transformation of an RE to a finite
automaton is provided by a NETBENCH tool2 developed by the research group ANT@FIT.
This tool is capable of converting the majority of REs to NFAs, except some complex REs.
The output of the original tool is an NFA in the Timbuk format [4], but we reimplemented
it to yield our own format.

This NFA format is line-based and has the extension .fa. We tried to make it as
intuitive and simple as possible with the following syntax:

<state> // initial state
<symbol> <state> <state> // transitions
...
<state> // final states
...

The symbols <state> can be any non-negative integral value, while <symbol> is a symbol
of the byte alphabet (28 values) and ranges from 0x00 to 0xff in hexadecimal. The prefix
0x must be included to distinguish it from state label. We neglect epsilon transitions since

1https://github.com/jsemric/ahofa
2https://github.com/vhavlena/appreal
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Figure 5.2: The stats 𝑞1 and 𝑞2 are redundant and can be merged together without changing
the language defined by the NFA. The label Σ denotes the transition over the all symbols
of the alphabet.

we do not work with them. A transition <symbol> <state> <state>, for instance, a line
0x32 0 1, means that from the state 0 there is a transition to the state 1 under a byte of
the hexadecimal value 0x34.

Packet capture files (PCAP files) are binary files, which store information about some
packets, including Ethernet headers, in the compressed format. For reading PCAP files we
use libpcap3 library. This library provides an API for manipulation with PCAP files in the
C or C++ programming languages. Nevertheless, payload extraction is missing, so we had
to implement it ourselves. Another solution could be the Python Scapy4 module which can
read the packet payload directly. However, since it is a way slower than libpcap, we decided
not to employ it.

5.2.2 NFA Simplification

Just before we run our approximation reduction on the automata, we remove some states
which slow down any computation with NFA. The PCRE converter yields an NFA that
contains a lot of redundant states. Moreover, it adds a state with self-loop over the whole
alphabet at the beginning of each subautomaton as illustrated in Figure 5.2. The problem
is not so obvious, but if we have, for instance, 100 rules, we have 100 additional states with
self-loop over the whole alphabet. When using NFA operations in software, we have to
expand transitions of these states after reading a single character, which is a large burden
when working with automata containing a lot of rules.

However, by merging these states into one, we can speed up NFA operations which
work with the given NFA and a string, e.g, computing the packet frequency. We measured
the time duration of computing packet frequency on 20 000 packets for a single automaton
with this adjustment and without it. The automaton we used had 154 rules and around
4 000 states. The duration of computing the packet frequency of the simplified NFA was
3.9 seconds, whereas the evaluation of the second one lasted approximately 6 minutes and
53 seconds on our system. We can see a remarkable improvement (almost 106 times faster)
in the performance in NFA operations with the described removal of redundant states at
the beginning of each subautomaton.

3http://www.tcpdump.org/
4http://www.secdev.org/projects/scapy/
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5.2.3 Approximate NFA Reduction

The Python script app-reduction.py serves for the NFA reduction. It is also possible to
evaluate the error of the NFA immediately after the reduction by running the program with
particular parameters.

Concerning reduction methods (pruning and merging), they are implemented as single
functions, since the class-oriented implementation was not necessary. Both functions use the
packet frequency of the input NFA obtained by calling C++ program state_frequency.
Then they mark states for merging. The merging is done by calling method merge_states
of the class Nfa, which is the class serving for manipulation with NFAs.

5.2.4 Error Evaluation

The validation of the reduced automata is done by computing their error wrt input traffic.
We usually run this operation on a great number of samples to get more information about
how the reduction changed the automaton. This evaluation is provided by the executable
file nfa_eval. It was designed to speed up the process of parsing packets by the automaton
and comparing packet classifications. It takes three or more positional arguments, in the
following order: the original automaton, the reduced automaton, and at least one PCAP
file. Besides, positional arguments there are some optional parameters such as output file
name or the number of threads to run in parallel.

For dealing with packets, we use the implementation of an NFA which stores transitions
in a single one dimensional array where each item is a set of states. The access to an item
then consists of the label of states plus the symbol value. Despite the fact that this solution
is very greedy on memory, it is much faster than using hash tables for manipulation with
transitions.
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Chapter 6

Experiments

In this chapter we present the experimental evaluation of the proposed reduction methods.
Besides the reduction results, we also show outcomes of applying state-of-the-art language-
preserving reduction techniques on reduced automata.

6.1 Reduction Results
In this section, we present the reduced NFAs statistics on real samples. The vast majority
of packets were obtained by research group ANT@FIT, while the rest was acquired from
DARPA training traffic dumps.

Concerning the obtained reduced automata, we were primarily interested in the following
statistics:

∙ Acceptance Error (AE) stands for the number of incorrectly accepted packets by the
reduced NFA which are not accepted by the original NFA over the the total number
of packets.

∙ Classification Error (CE). Let Φ(𝑀,𝑤) be a subset of final states of the automaton
𝑀 visited during processing the string 𝑤. Then the classification error is the number of
packets 𝑤 such that Φ(𝑀,𝑤) ̸= Φ(𝑀 ′, 𝑤) where 𝑀 ′ is the reduction of the automaton
𝑀 , over the total number of packets. Since the NFA 𝑀 ′ is an over-approximation
of 𝑀 , and the number of final states is preserved after the reduction, for all packets
𝑤 holds that Φ(𝑀,𝑤) ⊆ Φ(𝑀 ′, 𝑤).

∙ Acceptance Precision (AP) is the ratio of correctly accepted packets to the all accepted
packets by the reduced NFA.

∙ Classification Precision (CP) is the ratio of correct packet classifications to the total
number of packets classified (at least one final state has been visited).

Further, it also holds that 𝐴𝐸 ≤ 𝐶𝐸, since all accepted packets are classified, but there
are many ways how a packet can be classified (visiting more final states than in the original
NFA). The CE is the most interesting variable, provided that there is subsequent processing
in software after a packet has been classified. However, if we do not have this processing,
then we might also be interested in CP. The variables AE and AP are used for showing the
relation between accepting and classifying a packet.
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6.1.1 Pruning Results

In this section, we present the results of the pruning reduction of the automaton sprobe.
After PCRE parsing and subsequent NFA simplification, the NFA has 168 states and 5 108
transitions.

Table 6.1: Error and precision of the pruning reduction of sprobe.

AE CE AP CP
ratio

0.14 0.277599 0.277609 0.000175 0.000140
0.16 0.170191 0.170197 0.000285 0.000251
0.18 0.084576 0.084580 0.000574 0.000532
0.20 0.015422 0.015424 0.003141 0.003010
0.22 0.005490 0.005492 0.008773 0.008446
0.24 0.002262 0.002264 0.021030 0.020356
0.26 0.000473 0.000475 0.093147 0.090241
0.28 0.000118 0.000119 0.292226 0.283616
0.30 0.000118 0.000119 0.292300 0.283688

Table 6.1 shows the statistics about the automaton reduced by the pruning reduction
with different reduction ratios. The results were acquired on the dataset consisting of 23
millions of samples, while the dataset used for computing the packet frequency consisted
of around 1 million of packets. If we look at details, we can see that there is only a small
difference between AE and CE. However, the difference between AP and CP is slightly
higher, but still not very high. Since the CE and AE are similar we will be interested only
in CE and CP in the rest of this chapter.

Figure 6.1: CE of pruning and BFS method of the NFA sprobe.

The pruning reduction with the reduction ratio 0.2 (20 % of the original NFA size in
terms of the number of states) yields the reduced NFA, which has less than 2 % error (CE).
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By using the Reduce tool for precise reduction, the resulting NFA has 128 states, where
the calculated reduction ratio is approximately 0.76. Although the pruning reduction yields
some inaccuracies, which is not a big problem when we subsequently use software processing,
the reduction is almost three times more significant than the precise reduction provided by
the Reduce tool. Moreover, we can apply the precise reduction after the pruning and achieve
even greater reductions.

The figure 6.1 shows the CE of the NFA reduced by the pruning and the BFS reduction.
BFS is a blind reduction technique, which uses breadth-first search for removing the states
of the input NFA. In other words, it starts removing the states, which have the largest
distance1 from the initial state in a same way as the pruning. Although, the BFS reduction
has lower CE with reduction ratio equal to 0.2, in all other cases is the pruning better (see
Table A.2 for lower reduction ratios).

Figure 6.2: CP of pruning and BFS of the NFA sprobe.

Looking at the CP values of the pruning and the BFS method illustrated in Figure 6.2,
we can see that the pruning has noticeable higher precision than BFS. With the increasing
reduction ratio, the precision in BFS rises negligibly, while the precision pruning grows
considerably.

Sometimes we want to know how the error of the reduced NFA is distributed. Figure 6.3
illustrates the dispersion of the CE. The small points represent CEs of the reduced NFA
computed on particular PCAP files. With the decreasing reduction ratio on the y-axis, we
can see that not only the average CE is increasing but also the dispersion of CE steadily
grows.

6.1.2 Merging Results

In this section, we show the results of the merging reduction (see Table A.2 for exact
numeric values). Here we also perform the reduction on the automaton sprobe and compare

1we consider the distance as the minimal number of symbols read to get from a particular state to a
given state
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Figure 6.3: The dispersion of the CE of the reduction of the NFA sprobe.

obtained results with the pruning reduction. The samples used for the packet frequency
and the error evaluation are the same as in the previous section.

Figure 6.4 shows the difference between pruning and merging in CE and CP. The merg-
ing outperforms the pruning by having two times smaller CE on average. Concerning CP,
the merging has also better results, e.g., having CP at around 0.27 at the reduction ratio
0.26, while the pruning has CP approximately 0.09, which is three times less.

Figure 6.4: CE and CP of the merging and pruning methods used on the NFA sprobe.

For the mentioned results, we used reduction parameters the threshold and the maximal
frequency equal to 0.995 and 0.1 in turn. However, we also made some experiments with
different merging parameters. For that the automaton backdoor.rules was used, which
has around 4 000 states. Figure 6.5 illustrates the values of the CP obtained by reducing
the NFA with the combination of the merging parameters. In the figure, the threshold
parameter is on the x-axis, while the y-axis consists of values of the maximal frequency
parameter. The reduction ratio 0.18 was the same for all reductions.
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We can see that changing these parameters indeed have some impact on CE. Moreover,
the threshold seems to have a greater influence than the maximal frequency parameter,
since the most of the values at the particular rows are the same. The yellow area shows
where the error was the highest. Primarily the combination of the high maximal frequency
parameter and the low threshold increases the error.

Figure 6.5: CE of merging with different the threshold and the maximal frequency param-
eters.

6.1.3 Merging Based on Similar Sets of Prefixes

The next experiments involve evaluation of the reduction method inspired by abstract
regular model checking. For computing the packet frequency and sets of prefixes we used
a dataset of 10 000 packets, while for the error evaluation we used 40 000 packets. The
automaton sprobe was used as the target of the reduction.

In Table 6.3 we can find the results of several methods. The reduction that merges states,
which have a similar set of prefixes including empty sets is denoted as armc. However,
this method is not scalable (we cannot set the reduction ratio) and yields very high error
(0.75). For that reason, we changed this method by merging only states with non-empty
sets. The other states are then removed by the pruning reduction. This reduction is
denoted as armc+prune and is also scalable with the reduction ratio parameter. By using
a different threshold parameter we obtained lower CE compared to the pruning with the
same reduction ratio. However, after we used the precise NFA reduction (Reduce), we
acquired larger NFAs than in the pruning reduction (column Reduce states). That was
presumably caused by the merging of the equivalent states wrt the language defined by
the target NFA. Then we used the pruning reduction with the 0.22 ratio and after precise
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reduction, we obtained both the smaller error and the smaller NFA than armc+prune
method.

Table 6.2: Comparison between pruning and merging based on set of prefixes.

method ratio threshold CE states Reduce states

armc - 0.7 0.7421 30 29
armc + prune 0.2 0.7 0.0088 34 32
armc + prune 0.2 0.5 0.0088 34 32
armc + prune 0.2 0.1 0.0113 34 29
prune 0.2 - 0.0149 34 26
prune 0.22 - 0.0071 37 29

One major drawback of the armc method is that it works with sets of prefixes, which
is computationally harder than calculating packet frequencies. For huge NFAs and large
datasets, there may also be a problem with not enough memory, because we have to remem-
ber each prefix label. Although the method did not bring better results than pruning for
the examined NFAs, it may be worthwhile to do some further investigation and evaluation
on more NFAs.

6.1.4 Large Automata Reductions

We picked four large automata (three from Snort, one from L7-filter) on which we per-
formed reduction and error evaluation. Table 6.3 shows their size consisting of the number
of states and the number of transitions. The sizes were computed after all NFAs have
been simplified (merging of some redundant states). We reduced the automata with both
merging and pruning reductions. Concerning the merging reduction, the threshold and the
maximal frequency parameters were set to 0.995 and 0.1 respectively. For computing packet
frequency we used one PCAP file consisting of around 1 million packets. The testing sample
on which the error was evaluated consisted from around 23 million packets with a payload.

Table 6.3: The size of NFAs.

NFA name states transitions
backdoor.rules.fa 3,898 100,024

imap.rules.fa 5,637 1,348,955
spyware-put.rules.fa 12,809 279,275

l7-all.fa 7,280 2,647,220

The first NFA, whose results we present, is called backdoor.rules. Besides pruning
and merging reductions, we also added the results of the BFS method. The CE and CP
for various reduction ratios are illustrated in Figure 6.6. If we look at CE, we can see that
merging caused a smaller error than other two methods for reduction ratio ranging from
0.14 to 0.22. But from 0.22 the pruning reduction has a slightly better results than merging.
The CE of BFS is lower than pruning for the ratios from 0.2 down to 0.16. However, at 0.14
the error rockets above 0.5 (see Appendix A for the precise CE values). Another interesting
point is the CP in merging, where it grows slowly and then plummets from approximately
0.23 to almost 0.99.
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Figure 6.6: CE and CP comparison between merging, pruning, and the BFS method of the
NFA backdoor.rules. For the ratio 0.14 the exact value of CE of the BFS reduction can
be found in Table A.3

Let us move to larger NFAs. Figure 6.7 shows CE of two automata, imap.rules and
spyware-put.rules. The reduction of imap.rules is quite impressive. We managed to
reduce to 2 % of the original size and yield less than 5 % CE using the merging reduction.
The merging reduction is also better than pruning for spyware-put.rules, where, e.g., for
the reduction ratio 0.24 the CE is more than five times smaller. The numeric results of CP
for the both NFAs can be found in Table A.1 and Table A.4 in Appendix A.

Figure 6.7: CE of the reduction of NFAs imap.rules (ont the left) and spyware-put.rules
(on the right).

The automaton l7-all.fa is the NFA containing all L7 filtering rules. The reduction
results are illustrated in Figure 6.8. In the previous experiments, the merging reduction
had better results on average than pruning. However, in this case, the merging is not
appropriate. As we can see from the graph, the merging causes some big error around
0.28, which does not considerably improve with increasing the reduction ratio. Although
the pruning has worse results when reducing under 35 %, the error constantly declines,
reaching around 0.03 at the reduction above 45 %. Also, it is noticeable that the reduction
of this NFA is less significant than the reduction of the previous ones, where the trade-off
between the number of states and CE is better.
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Figure 6.8: Comparison of CE and CP statistics between the pruning and merging the
automaton l7-all. The numeric values can be found in Table A.5.

6.2 Precise Reductions
In this section, we describe experiments with language-preserving reductions, namely DFA
minimization and the NFA simulation reduction. Since the output of the PCRE parser is
an NFA with many redundant states, it is possible to diminish the size of the automata
considerably and still preserve the language. In the following experiments, we first reduced
the NFA named backdoor.rules with approximate reductions (pruning) and then applied
the precise reductions. The reason why we did not reduce the original NFA directly is that
we could not manage to perform such reduction on the most of NFAs, since we were limited
to our system resources.

For a DFA determinization and minimization we used the Symboliclib2 library, whereas
for the NFA reduction we used the Reduce tool. The chart in Figure 6.9 compares the data
about the number of states of the two mentioned precise reductions applied on the NFAs
reduced by the pruning with different reduction ratios.

Looking at the details, we can see that for the ratios 0.1 and 0.12, DFA determinization &
minimization caused a small growth in the state count. However, for higher reduction ratios
the number of states rapidly rose. Concerning the NFA reduction, the resulting NFAs were
on average twice time smaller than the NFAs obtained directly after approximate reduction.

We can also measure the number of transitions in all three cases and compare their
count. Table 6.4 shows the data, where the number of transitions in the DFAs were ex-
ponentially higher than in the NFAs. For instance, for the reduction ratio 0.18 the NFA
precise reduction yielded automata only with around 3 500 transitions, while the automata
obtained after DFA minimization had more than one million transitions.

2https://github.com/Miskaaa/symboliclib
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Figure 6.9: An impact on the count of states of NFA backdoor.rules, after applying the
language-preserving reductions on the reduced automata by the pruning.

NFA simulation reduced original DFA minimization
ratio

0.1 1,364 2,333 147,841
0.12 1,471 2,486 197,259
0.14 2,336 5,661 805,684
0.16 2,644 10,379 992,647
0.18 3,482 15,096 1,226,540

Table 6.4: The number of transitions of backdoor.rules for approximate reduction and
its DFA and NFA precise reductions.

To sum up, the applying of the Reduce tool after the approximate reduction gains
on reduction strength. Concerning DFAs, their size grows significantly and may not be
manageable even after transforming into delayed input DFAs.
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Chapter 7

Conclusion

In the work, we proposed several methods for approximate automata reduction based on
packet frequency. Namely, we proposed the pruning method and its refinement with state
merging. We saw that even the simple pruning method can produce impressive results and
can be improved by merging, which in many cases decreased error.

Although these methods do not provide any formal guarantee wrt input traffic, the
results are quite encouraging. Furthermore, we managed to reduce several automata to
around 4 % of original size, with the error below 1 %. Due to the low time complexity
of our approach, it is also possible to reduce huge automata with thousands of states,
which could not be achieved using previous methods. Moreover, the methods do not lack
intelligibility. In other words, we know precisely what they do, on what basis they remove
or merge states, and when they may fail. This comprehensibility is essential for people with
non-technical background involved in projects such as managers and stakeholders who have
the main say where money is invested.

The next step of this work will be to use reduced automata in real-time network traffic.
A quite cheap solution could be computing the error just in software on sampled traffic.
This approach will show us whether the packet frequency, on whose basis the reductions
were made, calculated on our datasets, was sufficient. Provided that it will be successful,
the automata can be synthesized to FPGA and tested more rigorously.
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Appendix A

Tables with Results

Table A.1: imap.rules

CE CP
method merge prune merge prune
ratio

0.02 0.0382 0.3373 0.0028 0.0002
0.04 0.0007 0.0019 0.1663 0.0596
0.06 0.0003 0.0011 0.3698 0.1156
0.08 0.0003 0.0005 0.3726 0.2646
0.10 0.0003 0.0004 0.3787 0.3310
0.12 0.0003 0.0003 0.3875 0.4075
0.14 0.0003 0.0002 0.4045 0.4543
0.16 0.0003 0.0002 0.4181 0.5399
0.18 0.0002 0.0001 0.5064 0.6130

Table A.2: sprobe

CE CP
method bfs merge prune bfs merge prune
ratio

0.14 0.2956 0.2449 0.2776 0.0001 0.0002 0.0001
0.16 0.2019 0.1296 0.1702 0.0002 0.0003 0.0003
0.18 0.1189 0.0166 0.0846 0.0004 0.0027 0.0005
0.20 0.0143 0.0077 0.0154 0.0031 0.0060 0.0030
0.22 0.0096 0.0023 0.0055 0.0047 0.0204 0.0084
0.24 0.0079 0.0005 0.0023 0.0057 0.0902 0.0204
0.26 0.0071 0.0001 0.0005 0.0064 0.2836 0.0902
0.28 0.0031 0.0001 0.0001 0.0150 0.3239 0.2836
0.30 0.0031 0.0001 0.0001 0.0151 0.3252 0.2837
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Table A.3: backdoor.rules

CE CP
method bfs merge prune bfs merge prune
ratio

0.14 0.5349 0.0747 0.0769 0.0007 0.0185 0.0180
0.16 0.0450 0.0419 0.0693 0.0319 0.0339 0.0201
0.18 0.0396 0.0220 0.0454 0.0363 0.0643 0.0313
0.20 0.0219 0.0078 0.0281 0.0657 0.1651 0.0506
0.22 0.0179 0.0055 0.0085 0.0793 0.2276 0.1531
0.24 0.0175 0.0051 0.0017 0.0825 0.2398 0.4901
0.26 0.0169 0.0050 0.0005 0.0855 0.2442 0.7690
0.28 0.0148 0.0000 0.0002 0.0963 0.9750 0.8898
0.30 0.0144 0.0000 0.0001 0.0988 0.9793 0.9613

Table A.4: spyware-put.rules

CE CP
method merge prune merge prune
ratio

0.14 0.0626 0.0626 0.2786 0.2786
0.16 0.0595 0.0626 0.2952 0.2786
0.18 0.0572 0.0595 0.3042 0.2952
0.20 0.0403 0.0595 0.3891 0.2952
0.22 0.0235 0.0572 0.5321 0.3042
0.24 0.0092 0.0572 0.7513 0.3042
0.26 0.0045 0.0572 0.8631 0.3042
0.28 0.0020 0.0491 0.9368 0.3405
0.30 0.0009 0.0292 0.9719 0.4732

Table A.5: l7-all

CE CP
method merge prune merge prune
ratio

0.26 0.2809 0.3909 0.3243 0.2377
0.29 0.2809 0.3360 0.3243 0.2813
0.32 0.2809 0.2819 0.3243 0.3228
0.35 0.2809 0.2305 0.3243 0.3780
0.38 0.2769 0.1810 0.3341 0.4506
0.41 0.2769 0.1296 0.3341 0.5375
0.44 0.2769 0.0799 0.3341 0.6571
0.47 0.2769 0.0268 0.3341 0.8574
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Appendix B

CD Content

The following contents can be found on the attached CD:

∙ bt_xsemri00.pdf – this thesis in PDF format

∙ tex/ – source files of this thesis

∙ reduction/ – source files of reduction tools
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