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ABSTRACT

Modelling of turbine performance is a prerequisite for detailed simulation of gas
exchange in turbocharged combustion engines. At the same time, the possibility
to determine efficiency and mass flow capacity at arbitrary operating points is key
to comparing different turbine stages. The objective of this work is to propose a
single method for both purposes, so it is possible to do the comparison using
exactly the same turbine performance model as in subsequent engine working
cycle simulation. The source of input data is typically a gas stand measurement,
which enables capturing of limited turbine operating range only. In this work,
methods are proposed to improve the fidelity and robustness of turbine
performance extrapolation, while optimization is employed to find the best fit in
terms of agreement between the model and the input data.

ABSTRAKT

Modelovani turbinovych charakteristik je nutnym pfedpokladem pro detailni
simulaci vymény naplné valce turbodmychadlem prepliovanych spalovacich
motor(. Kromé toho je moznost stanoveni ucinnosti a prutokové kapacity
v libovolnych pracovnich bodech kliCova pro porovnani riznych turbinovych
stupnu. Cilem této prace je predlozit jednotnou metodu pro oba ucely tak, aby
bylo mozné provést porovnani pouzitim pfesné stejnych modelu turbin jako pfi
nasledné simulaci pracovniho ob&hu motoru. Zdrojem vstupnich dat je obvykle
meéfeni na plynove zkusebné, které vSak umoziuje zachyceni pouze omezeného
pracovniho rozsahu turbiny. V této praci jsou navrzeny metody umoznujici
zvySeni vérohodnosti a robustnosti extrapolace turbinovych charakteristik,
pfi¢emz optimalizace je vyuzita k ur€eni takovych parametri hledanych funkci,
které vedou k nejlepsi shodé mezi modelem a vstupnimi daty.
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ROZSIRENY ABSTRAKT

DisertaCni prace se zabyva problematikou prokladani a extrapolace charakteristik
turbodmychadlovych turbin. Tyto mohou byt ziskany napfiklad méfenim na
plynovém zkuSebnim zafizeni (tzv. gas stand), turbinovém dynamometru nebo
predikci prostfednictvim CFD. Ve v8ech uvedenych pfipadech je vystupem
soubor ustalenych pracovnich bodud mapuijici urcity rozsah provoznich podminek.
Inzenyrské aplikace vSak vyzaduji, aby bylo mozné stanovit vlastnosti turbiny
v libovolném pracovnim bodé. Typickym pfikladem je porovnani u€innosti dvou
raznych turbin, které je tfeba provést pro ur€ity expanzni pomér a korigované
otacky. Extrapolace pak hraje zasadni roli zejména pfi simulaci pracovniho obéhu
pfepliovaného spalovaciho motoru. Turbodmychadla automobill zpravidla
pracuji s vyrazné pulsujicim pfivodem spalin, ktery je dan poctem valcl a
otaCkovou frekvenci motoru. V takovém pfipadé béhem jednoho pracovniho
cyklu vyrazné kolisa expanzni pomér na turbiné, zatimco jeji otacky se kvali
vysoké rychlosti celého déje téméF neméni. Simulacni software proto musi mit
moznost ur€it ucinnost a hmotnostni prutok turbinou v Sirokém rozpéti pracovnich
podminek, které zpravidla vyrazné prekrauje méfitelny rozsah na konvencénich
zkuSebnich zafizenich.

Cilem prace je vytvofit aplikaci, ktera umozni uzivateli automatizovanou tvorbu
modelu turbiny na zakladé zadanych méfrenych dat a nasledné zpracovani vSech
udaju. To zahrnuje, mimo jiné, vizualizaci extrapolovanych charakteristik, jejich
porovnani a export pro pouziti v simulaCnich programech. Jako vyvojové
prostredi je zvolen MATLAB™. Mezi jeho vyhody patfi podpora navrhu aplikaci s
grafickym uzivatelskym rozhranim, knihovna pfedpfipravenych ovladacich a
zobrazovacich prvkd nebo moznost spusténi kddu bez pfedchozi kompilace.

V prvnim kroku je analyzovana metoda extrapolace turbinové mapy vyuZzivana
v prumyslové rozsifeném nastroji pro simulaci pracovniho ob&hu pfeplfiovaného
spalovaciho motoru GT-SUITE™. Vzhledem ke komercéni povaze daného
software v8ak neni pfislusny algoritmus detailné zdokumentovan v dostupnych
informacénich zdrojich. Proto je nutné implementovat jednotlivé faze procesu
s pouzitim vhodnych numerickych postupu.

Klicovym aspektem zkoumané metody je identifikace pracovnich bodd, ve
kterych turbina pracuje s maximalni ucinnosti. Vystupem je zavislost optimalnich
korigovanych otacek na expanznim poméru. Tyto body v8ak obecné& nejsou
obsazeny mezi vysledky méfeni na zkuSebnich zafizenich, a proto musi byt
parametry prokladanych funkci odhadnuty. Pfedmétny model turbiny je tvofen
péti charakteristickymi funkcemi, ze kterych tfi popisuji provoz s maximalni
ucinnosti a dvé extrapolaci do oblasti s nizSi u€innosti. Zatimco parametry
uréujici extrapolaci do sub-optimalnich pracovnich rezimu Ize odhadnout pomoci
linedrni regrese, zavislosti spojené s provozem pfi maximalni ucinnosti jsou
nelinearni a musi byt stanoveny pomoci optimalizacnich metod.

V navrzené implementaci vychozi metody prokladani a extrapolace turbinovych
map je vyuzivan postup cyklické optimalizace, pfi které jsou nejprve hledany
parametry linearni funkce aproximujici optimalni rychlostni pomér turbiny
v zavislosti na expanznim poméru. V druhém kroku je zpfeshovan splajn
charakterizujici maximalni ucinnost v zavislosti na korigovanych otackach. Treti
krok zahrnuje tutéz proceduru pro optimalni korigovany prutok. Cely proces se



opakuje, dokud neni splnéna podminka pro ukondéeni optimalizace. Ugelovou
funkci je stfedni kvadraticka odchylka méfenych pracovnich bodu od modelu
turbiny, ktera je postupné& minimalizovana.

Kvalita ziskaného modelu turbiny je hodnocena metodami statistické analyzy a
vizualni kontrolou pIné extrapolovanych map ucinnosti a korigovaného
hmotnostniho pratoku. V prvnim pfipadé je studovan rozdil mezi méfenymi daty
a numerickym modelem, pfiemz jsou vyhodnoceny minimalni, maximailni,
prumérna, medianova, pramérna absolutni a stfedni kvadraticka odchylka.
Vizualni kontrola pak slouzi pfedevSim k odhaleni pfipadné deformace
oCekavanych pribéht sledovanych veli€in v extrapolovanych oblastech
vygenerovanych map. Pravé druhy z uvedenych postupl umoznil identifikaci
nezadouciho zkresleni prutokové charakteristiky vzorové radialni turbiny v oblasti
nizkého expanzniho poméru, kde se oCekava vyrazny pokles hmotnostniho
prutoku s rostoucimi otackami plsobenim odstfedivych sil (vstupni data byla
ziskana méfenim na plynovém zkuSebnim zafizeni).

V dusledku vySe popsaného pozorovani je prozkoumana moznost pouziti teorie
radialni rovnovahy v rotujici tekutiné pro stanoveni zavislosti expanzniho poméru
na otackach turbiny pfi nulovém hmotnostnim prutoku. Timto zplsobem Ize
analyticky vycislit jeden ze dvou nezavislych parametrii charakteristické funkce
ur€ujici extrapolaci korigovaného hmotnostniho pratoku. Sou¢asné vSak dochazi
u vzorové turbiny ke zkresleni extrapolace pfi vysokém expanznim pomeéru.
Zatimco odchylka méfenych bodl od modelu zlstava nizka, kfivky konstantnich
otaCek jsou v této oblasti zhustény, coz opét odporuje ocekavanému trendu
s uCinkem odstfedivych sil (korigovany hmotnostni prutok by mél klesat
S rostoucimi otaCkami turbiny).

Pro hlubSi pochopeni sledovaného fenoménu je zkoumana analogie mezi
prutokem turbinou a izoentropickym vytokem idealni tryskou. Zasadni roli zde
hraje pfedevSim bod zahlceni, ktery souvisi s dosazenim rychlosti zvuku
v nejuzSim misté idealni trysky a ma za nasledek limitaci korigovaného
hmotnostniho pritoku. Realna turbina sice nema parametry idealni trysky, Ize
vSak konstatovat, Zze pfi ur€itém expanznim poméru dosahne proudici plyn
v nékteré Casti turbinového stupné rychlosti zvuku a s tim souvisejiciho zahlceni.
PFfi nulovych otackach turbiny navic hmotnostni pritok neovliviiuje ucinek
odstredivych sil v rotoru. Soucasné Ize poukazat na skutecnost, ze korigovany
hmotnostni pratok pfi nulovych otackach je uréen jako nasobek optimalniho
korigovaného hmotnostniho pratoku. Ve stavu zahlceni tudiz musi mit korigovany
hmotnostni pritok konstantni prabéh jak pro nulové, tak pro optimalni otacky
turbiny. Tento zavér je vSak v rozporu s topologii charakteristické funkce modelu
turbiny popisujici optimalni rychlostni pomér. Vzhledem k tomu, Ze se jedna
zpravidla o neklesajici linearni funkci, optimalni korigované otacky rostou
S expanznim pomérem.

Aby mohl korigovany hmotnostni prutok pfi optimalnich otackach zustat
konstantni, kfivky konstantnich korigovanych otacek turbiny by se musely
asymptoticky sblizovat s rostoucim expanznim pomérem, coZz neodpovida
provedenému méfeni. Navic, pokud by byla teorie radialni rovnovahy pouzita pro
aproximaci ucinku odstfedivych sil za podminek nenulového hmotnostniho
prutoku, vysledny vztah by byl nezavisly na expanznim poméru (tzn. kfivky
konstantnich korigovanych otacek by byly pfi zahlceni turbiny paralelni). Jedinou



moznosti, jak soucasné splnit vSechny uvedené podminky, je limitace optimalnich
korigovanych otacek v okamziku zahlceni pritoku turbinou.

Druha Cast prace se zabyva navrhem novéeho modelu turbiny, ktery zohlednuje
rezim zahlceni a umoznuje limitaci maximalnich korigovanych otacek. Hlavni
zménou oproti referencnimu modelu je nahrada linearni charakteristické funkce
popisujici optimalni rychlostni pomér splajnem, jehoz hodnota je nad kritickym
expanznim pomérem konstantni. SoucCasné je upravena funkce pro vypocet
rychlostniho poméru tak, Ze se v okamziku zahlceni vyuziva kriticka izoentropicka
vytokova rychlost. Diky tomu jsou konstantni také optimalni korigované otacky
turbiny za konstantniho optimalniho rychlostniho poméru pfi zahlceni.

Na tomto misté je vhodné poukazat na skute€nost, Ze rychlostni pomér je také
méfitkem pro zatiZeni turbiny. Tedy optimalni rychlostni pomér Ize interpretovat
jako optimalni otacky pro urcity expanzni pomeér, které spolecné predstavuji
optimalni zatizeni. Zména otacek naopak vede ke zhorseni u€innosti, coz je dano
zejména odchylenim od idealniho nabézného uhlu proudéni na lopatkach turbiny.
V rezimu zahlceni prutoku je rychlost proudéni vstupujiciho do turbinového kola
nezavisla na celkovém expanznim pomeéru, takze pro dosazeni idealniho uhlu
nabéhu by mély byt konstantni také otacky turbiny. Z toho divodu |ze povazovat
postup limitace optimalnich korigovanych otacek turbiny pfi zahlceni prutoku za
opravnény.

Novy model turbiny je testovan v péti fazich. Nejprve je pouzit pro aproximaci
vzorovych dat ziskanych méfenim na plynovém zkusebnim zafizeni. V tomto
pfipadé doslo k podstatnému sniZeni stfedni kvadratické odchylky mezi zadanou
a modelovanou ucinnosti, na strané hmotnostniho prutoku se odchylka mirné
zvySila. Zasadni je v3ak prubéh extrapolovaného korigovaného hmotnostniho
prutoku, ktery nyni splfiuje pozadavky na rozliSeni ucinku odstfedivych sil a
rezimu zahlceni.

V druhém kroku je algoritmus ovéfen na datech ziskanych méfenim na
turbinovém dynamometru, kdy byla opét dosazena velmi dobra shoda s modelem
vCetné ocCekavanych prubéhd extrapolovaného korigovaného hmotnostniho
prutoku.

Treti fazi je vykresleni slozenych grafll mapujicich G¢innost a pritokovou
kapacitu pro ruzné velikosti turbinovych stupfiCl. Timto zpUsobem je novy
aproximacni algoritmus ovéfen na desitkach map, pficemz ziskané prubéhy
sledovanych veli€in potvrzuji oCekavané trendy maximalni ucinnosti v zavislosti
na velikosti rozvadéci spiraly (tzv. A/R parametru) a turbinového kola.

Ctvrtou fazi je import ziskanych modelG vzorové turbiny méfené na plynovém
zkuSebnim zafizeni a dynamometru do programu pro simulaci pracovniho obéhu
pfepliiovaného spalovaciho motoru (GT-SUITE). Na zakladé porovnani
extrapolovanych charakteristik ziskanych modelovanim vychozi metodou
programu GT-SUITE a navrzenym algoritmem Ize konstatovat, Ze obé metody
dosahly podobného vysledku v pfipadé dat pochazejicich z plynového
zkuSebniho zafizeni, vétsi rozdil je vSak patrny u mapy méfené na dynamometru.
S vychozim algoritmem |ze u obou map pozorovat zhusténi kfivek konstantnich
korigovanych otacek v pratokovych charakteristikach pfi nizkém expanznim
poméru, coz znacCi potlaCeni efektu odstfedivych sil. V pfipadé mapy ziskané
méfenim na dynamometru je navic patrny nahly propad ucinnosti v oblasti



nizkych korigovanych otacek, ktery je zpusobeny absenci mé&fenych pracovnich
bodl s maximalni ucinnosti. Dale jsou mezi obéma metodami patrné odchylky
v extrapolaci korigovaného hmotnostniho prutoku pfi vysokém expanznim
pomeéru, coz lze pfiCist absenci rezimu zahlceni u vychoziho algoritmu.

V posledni fazi testovani jsou pfipravené modely turbiny vyuzity pro simulaci
pracovniho obéhu pfeplhovaného spalovaciho motoru pracujiciho ustalené pri
plném zatiZzeni a v pfechodovych reZimech. V pfipadé map ziskanych méfenim
na plynovém zkuSebnim zafizeni lze konstatovat dobrou shodu vykonovych
parametrd motoru v obou pracovnich rezimech pro novou i vychozi metodu
aproximace. Pfi pouziti dat obdrzenych méfenim na turbinovém dynamometru
vSak dochazi k vyraznému zpomaleni nartstu toCivého momentu motoru
v pfechodovych rezimech s vychozim modelem turbiny, které je dano zkreslenim
ucinnosti  pfi nizkych korigovanych otackach. Rozdily jsou vSak patrné i
mezi dosazenym toCivym momentem motoru pfi ustaleném provozu s plnym
zatizenim v nizkych otackach.

Vytvofena metodika umoznuje pfipravu numerickych modelud turbinovych stupiu
na zakladné experimentalnich dat ziskanych méfenim na plynovém zkuSebnim
zafizeni nebo turbinovém dynamometru. Pro usnadnéni celého procesu byla na
platformé& MATLAB vyvinuta aplikace s grafickym uzivatelskym rozhranim, ktera
disponuje nastroji jak pro vizualizaci a porovnani samotnych charakteristik, tak
pro jejich export za ucelem nasledné simulace pracovniho obéhu pfeplriovaného
spalovaciho motoru ve specializovanych programech. Proces tvorby modelu je
pfitom automatizovany a robustni vic¢i proménlivosti méfenych dat. Diky
implementaci SQLite databaze je navic aplikace pfipravena pro spravu vétsiho
mnozstvi vstupnich Udajl i hotovych modell, které lze kombinovat s cilem
mapovani trendu napfi¢ produktovym portfoliem.

V ramci budouciho rozvoje prace se ofekava zejména zpfesnéni charakteristické
funkce modelu turbiny, ktera popisuje optimalni rychlostni pomér v zavislosti na
expanznim poméru. Podle souasné definice je pfisludny splajn slozen ze ffi
Casti, pricemz zakfiveni stfedniho Useku je fizeno pouze predepsanymi prvnimi
derivacemi v koncovych bodech daného intervalu. DalSim krokem bude
rozSifeni podporovanych technologii na strané turbiny, jako jsou variabilni
geometrie rozvadécich lopatek, zdvojena rozvadéci spirala apod. V SirS§im
C¢asovém horizontu bude pfinosné navazat na soudoby trend oddéleného feSeni
nékterych aspekti modelovani turbodmychadla. Jedna se pfedevsim o prestup
tepla mezi jednotlivymi souCastmi, pracovnimi médii a okolim, ale také o treci
ztraty v uloZeni rotoru. Uginky t&chto procest jsou za normalnich okolnosti
obsazZeny v mapach ziskanych mérenim na plynové zkusebné, a proto musi byt
odebrany pfed zahajenim takto rozsSifenych simulaci.
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INTRODUCTION

Turbocharged combustion engines represent, as of today, the main building block of
most road vehicle powertrains. Ranging from the smallest to the largest, they can be
found in all passenger and freight means of transport, as well as in off-highway and
stationary applications. In the context of increasing climate protection efforts, it is of
high importance to sustain continuous improvement of our technologies. This is only
made possible by means of accurate simulation tools, which allow engineers to predict
the impact of their innovative ideas.

Modelling of turbocharger performance is an important part of combustion engine
development. Although working solutions are integrated in existing commercial
software to enable simulations of boosted engine working cycles, tools for post-
processing of measured or CFD predicted data are less common. Therefore, the main
objective of this work is to develop an application that will allow engineers to visualize
and compare the performance of different turbine stages. To study the trade-offs
between efficiency and corrected mass flow rate at equal operating conditions,
however, the scattered input data must be fitted by a mathematical model.

Contemporary industrial solutions include algorithms of diverse complexity. Simple
algebraic models (e.g. Jensen et al. [17]) are commonly applied for control purposes,
because they can be evaluated quickly even on low-power machines such as engine
ECU’s. Non-linear models, on the other hand, are used in simulation software (e.g. GT-
SUITE™ [23]) and their biggest advantage is more accurate extrapolation. The most
complex type is based on a mean-line turbine design theory (e.g. RITAL™ [26]), which
uses physics principles to determine the average flow conditions in each part of a turbine
stage. While such models enable physically accurate extrapolation, their biggest
disadvantage is the requirement of detailed geometrical inputs.

The application in development will be equipped with a non-linear turbine performance
model, the properties of which will be identified using optimization techniques.
MATLAB™ is selected as the development environment, because it is suitable for both
functional coding and graphical user interface design. In addition, an SQLite database
will be used as storage for raw measured data and fitted models to facilitate database
operations such as searching, filtering, or aggregation. To make sure engine
performance is predicted using the same turbine model, an export function will be
integrated. By this, it will be possible to generate fully extrapolated maps to be imported
in engine simulation software (in the so-called grid format in the case of GT-SUITE).

Another advantage of the implementation of a database system is that it will make it
possible to study trends spanning multiple turbine stages of varying properties, like e.g.
the relationship between the maximum efficiency and the wheel size within the
portfolio of certain aerodynamic design. To enable the creation of such a chart,
however, the database will have to be filled with a set of fitted turbine maps covering
not only the complete range of wheel diameters, but also some span of volute sizes
(described by the so-called A/R parameter). Due to this, it will be possible to estimate
the maximum efficiency achievable with each wheel size.

Finally, engine performance will be simulated using turbine models fitted by both the
default and proposed methodologies.
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1 THEORETICAL BACKGROUND

Modelling of turbine performance of automotive turbochargers is a complex, multi-
disciplinary task. It spans the fields of turbomachinery, combustion engines,
mathematics and computer programming. The product is, nevertheless, indispensable
for engineering simulations and related operations, like the comparisons of turbine
efficiency and mass flow capacity. In this work, an application is developed, the purpose
of which is to facilitate pre-processing of measured turbine characteristics, so it is easier
to select the best candidate for matching to a combustion engine. The basic concepts
required to achieve this goal are explained in the following chapters.

1.1 Turbocharging

Turbochargers belong to a group of machines called turbomachinery. Their purpose is
to transform the available energy of a flowing fluid into mechanical work on a shaft and
vice versa. While the earlier is done by a turbine, the latter is the job of a pump (liquids)
or a compressor (gases). A typical turbocharger consists of a turbine and a compressor,
both of which are mounted on the same shaft (see Figure 1).

1.Compressor

Cover 8. Actuator

3.Compressor
Backplate

L e

7. Heat Housil
Shield ™

11. Piston
Ring Seals

Figure 1: Turbocharger section view [21]

The task of a turbocharger is to push air into the cylinders of a combustion engine, so it
can burn more fuel and produce more power. The proportion between the amounts of
air and fuel in the mixture is given by the stoichiometric ratio and the excess air ratio.
Under these conditions, the engine power output can be expressed as [1, 3, 5]

(1)

P, = nemy;y ﬁ
t

where P, [W] is the engine brake power, 1, [-] is the overall engine efficiency, 1, [kg/s]
11
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is the air mass flow rate, H, [J/kg] is the fuel lower heating value, L; [-] is the
stoichiometric ratio and A [-] is the air excess ratio. While a stoichiometric ratio
determines the ideal amount of fuel that can be completely burned with a certain
amount of air, a lambda is the extent to which the actual air charge exceeds or falls
behind the theoretical demand. It is common that petrol engines (spark-ignited) are
operated mostly close to the stoichiometric conditions, whereas diesel engines
(compression-ignited) are always running lean (with air excess). The average air mass
flow through a piston engine depends on several factors, including the intake air density
and the total cylinder displacement [1, 2, 3]

. ne
Myir = 7717pierd E (2)

where 1, [-] is the volumetric efficiency, p;,; [kg/m?3] is the intake air density, V; [m3] is
the total cylinder displacement, t [-] is the number of crankshaft revolutions per one
engine cycle (a four-stroke engine needs two revolutions) and n, [1/min] is the engine
speed. Volumetric efficiency is a factor that represents the effect of valve timing
combined with the dynamics of the intake and exhaust gases, all of which influence the
amount of charge trapped in the cylinders. It can be determined either experimentally,
or by simulation (e.g. using 1D engine gas dynamics software). The quantity that can be
influenced by a turbocharger is the intake air density. Based on the ideal gas equation
of state, it depends on the pressure and temperature of the intake air [1, 2, 3, 5, 9]

Pint

Tair Tint

Pint = (3)
where p;,,; [Pa] is the intake air pressure, ;- [J/(kg:K)] is the specific gas constant and
Tine [K] is the intake air temperature. A compressor adds energy to the intake air flow
by increasing its pressure and temperature. A common practice is to cool the flow down
in a heat exchanger placed upstream of the cylinder head, making the density grow even
higher (see Figure 2). The power needed to drive the compressor is generated by the
turbine, which is propelled by exhaust gases created as a product of combustion in the
engine. The transfer of mechanical power is performed by a shaft. [2, 3, 5]

— |ntake

|
L
—\/V\V Intake manifold

Intercooler @ Q <>

Exhaust manifold

-a— Exhaust

Figure 2: Turbocharged engine gas flow scheme [3]
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1.1.1 Working principle of turbomachinery

Turbomachinery enables power transfer between a flowing fluid and the shaft. The solid
parts in interaction with the working gas or liquid are typically the blades; however,
bladeless machines exist too (e.g. the Tesla turbine). A blade row forms channels
between each pair of blades that the working fluid must pass through and, due to the
blade curvature, changes its direction of flow (see Figure 3). By that the vector of

momentum of the flowing fluid is changed, which is linked to a force according to
Newton’s second law of motion [2, 4]

_ 4H;

I dt @

where Fg [N] is the vector of force acting on the fluid, H [kg:m/s] is the vector of
momentum of the fluid passing through the blade channels, t [s] stands for time.

Cr1
1 control volume

A)

Quantities: Indices:

u —wheel circumferential velocity at the mean-flow radius 1 —wheel inlet

¢ - absolute gas velocity (stationary frame of reference) 2 —wheel outlet
w - relative gas velocity (rotating frame of reference) r —radial

F —aerodynamic force acting on the blade row u - circumferential

a -—axial

Figure 3: Radial turbine wheel cross-section (A) and velocity triangles in an unfolded
blade row view (B)

According to Newton’s third law of motion, the fluid and the blade channel walls are
subjected to forces of the same magnitude, yet acting in opposite directions [2, 4]

where F [N] is the vector of force acting on the blade channel walls. To get the full
information about the aerodynamic pressure distribution on the blades, a CFD solver
would be needed. In the early stages of turbomachinery design, the aim is usually to
determine the overall force acting on the blading, which can be obtained as the sum of
momentum fluxes entering or exiting the control volume (see Figure 3) [2, 4]
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Ff_overall = Z Hfi (6)
i

where F¢ oyerqu [N] is the vector of force acting on the fluid in the control volume, i [-]
is the index of each control volume inlet or outlet area. A momentum flux is defined as
the amount of momentum entering or leaving the control volume per unit of time [2, 4]

where Hf [kg:m/s?] is the momentum flux, m [kg/s] is the mass flow rate, ¢ [m/s] is the
vector of fluid velocity in the stationary frame of reference (assumed constant). In the
case of a blade channel, there is one inlet and one outlet flow (see Figure 3). For the
initial aerodynamic assessment, it is common to reduce the inlet and outlet areas to the
so-called mean-flow points (see points 1 & 2 in Figure 3). The average fluid velocity and
density are considered in each. This is also referred to as the mean-flow design. The
overall momentum flux through the control volume is calculated as [2, 4]

Hf_overall = 1My€; + Mmyc, (8)

where Hy operqu [k8'm/s] is the overall momentum of the fluid enclosed in the blade
channels, m, [kg/s] is the inlet mass flow rate, m, [kg/s] is the outlet mass flow rate,
¢, [m/s] is the vector of speed in the inlet to the control volume, ¢, [m/s] is the vector
of speed in the outlet from the control volume. In engineering applications, power
transfer on the shaft is sought for in the first place. It can be calculated as a product of
torque acting on the rotor and the angular velocity of the shaft [2, 4]

Pshaft = Mw (9)

where Pgp, ¢ [W] is the shaft power, M [N-m] is the vector of torque acting on the rotor,
w [rad/s] is the rotor angular velocity. The torque on the blading is of the same size, but
acting in the opposite direction compared to the overall torque acting on the working
fluid. Following the mean-flow design approach, it can be determined at the inlet and at
the outlet points as (see Equations 5, 6 and 8) [2, 4]

M = —(Tf’ll(,'l X r + m2C2 X rz) (10)

where 1, [m] is the vector of inlet mean-flow radius and 7, [m] is the vector of outlet
mean-flow radius. In the case of a radial turbine, the inlet mean-flow radius is one half
of the maximum wheel diameter (see Figure 3). At the outlet, however, the mean-flow
radius divides the annulus section in two parts of the same area (even distribution of
mass flow is assumed). As each part is again an annulus, the mean-flow radius can be
determined as a quadratic mean of the minimum and maximum radii [2, 4]

1
r, = E (rz_min2 + rz_maxz) (11)

where 1, i, [m] is the vector of hub radius at the outlet and 7, [m] is the vector of
blade tip radius at the outlet. Based on Equations 9 & 10, the shaft power is
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Psparr = —(My€y X Ty + M6, X T3)@ (12)

Since vectors r; and 1, are perpendicular to the shaft axis of rotation, Equation 12 can
be simplified as follows

Pspape = —(Mycyquy + mycuy) (13)

where ¢,; [m/s] is the circumferential component of fluid speed in the inlet to the
control volume, u; [m/s] is the circumferential speed of the blading at the inlet to the
control volume, c¢,;, [m/s] is the circumferential component of fluid speed in the outlet
from the control volume and u, [m/s] is the circumferential speed of the blading at the
outlet from the control volume. Due to the conservation of mass

Tfll = _mz (14)

Putting Equations 13 and 14 together yields the Euler equation, which is also referred to
as the basic equation of turbomachinery [2, 4]

Pshaft

= —Ah,,, = C,iU; — Cyoll (15)
s tot = Cu1lly — CyuoUp

where m [kg/s] is the mass flow rate through a blade row, Ah;,; [J/kg] is the change of
total enthalpy of the working fluid (at stagnation conditions, see Chapter 1.1.3). From
Equation 15 follows that the power produced or consumed by a turbomachine depends
on the change of swirl of the working fluid and the rotor speed. While the direction of
flow is largely driven by the inlet and the outlet blade angles, the circumferential velocity
of the rotor is closely related to the geometry of the stage.

1.1.2 Main turbomachinery stage design features

A typical automotive turbocharger consists of a radial compressor and a radial turbine,
but there are other types of machines too, the distinguishing parameter of which is the
main flow direction (see Figure 4).

§\\
%
§\
§

Figure 4: Turbine wheel types according to the main direction of flow (A — radial,
B — mixed-flow, C — axial)

In the case of a radial turbine, the inlet point is located at a bigger radius than the outlet,
where the blade circumferential velocity is lower. It means that if there were an axial
and a radial turbine with the same inlet point radii, gas and rotor angular velocities, the
radial turbine would produce a larger specific power. [2, 3, 4, 5]
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Another important implication of Equation 15 is that shaft power is proportional to the
change of state of the working fluid, which is related to the total specific enthalpy
difference. As the fluid is a gas on both the compressor and turbine sides, the process
can be generally described as polytropic. In the engineering praxis, however, it is desired
to identify an ideal case to compare the real process with, so one can establish a gauge
of efficiency. For this purpose, the isentropic process is usually used. [2, 3, 4, 5]

Apart from the main flow direction, the volute design has a major implication on the
overall performance of a turbomachine too. The so-called A/R parameter indicates the
ratio between the volute cross section area and the distance from its centre of gravity
to the axis of rotation (see Figure 5). It determines mainly the flow capacity, but there is
certain impact on the efficiency too (see Chapter 5.3). [2, 3, 4, 5]

Cross-sectionai

Y area A

; “‘

Figure 5: Definition of the A/R parameter of a turbine volute (r is the distance from the
axis of wheel rotation to the centre of gravity of the area A) [3]

Another feature, which is widely used to calibrate the stage flow capacity of both
turbines and compressors, is the trim. It indicates the blade length at the smaller end of
the wheel (compressor inlet or turbine outlet) and impacts the complete shroud contour
(see Figure 6). [2, 3, 5]

maximum contour
normal contour inlet channel

» )

minimum contour B height

T — = d
discharge
diameter

L H

Figure 6: Definition of the wheel trim [5]

Numerically is the wheel trim defined as the ratio between the squares of the smaller
and the bigger wheel diameter [2, 3, 5]

16



INSTITUTE OF AUTOMOTIVE ENGINEERING Department of Combustion Engines

d2
Trim = 100 —5 (16)
DW

where Trim [%] is the wheel trim, dy,, [mm] is the smaller wheel diameter and Dy, [mm]
is the bigger wheel diameter.

1.1.3 Static versus total quantities

In thermodynamics, state quantities of fluid flows can be divided in two main groups,
namely the static and the total (also referred to as stagnation). The concept of the total
fluid property is derived from the idea of isentropic stopping of the flow, which,
according to the Bernoulli’s principle, is related to an increase of potential energy. In
terms of enthalpy, the relationship can be written as [2, 9]

c2
h’tOt == h + — (17)
2
where h;,; [J/(kg:K)] is the total (or stagnation) specific enthalpy, h [J/(kg:K)] is the static
specific enthalpy and ¢ [m/s] is the flow velocity. For ideal gases applies [2, 9]

h=c,T (18)

where c,, [J/(kg-K)] is the specific heat capacity at constant pressure. Therefore, the total
temperature can be derived from Equation 17 [2, 9]
Tooe =T 45 (19)

where Ti,: [K] is the total (or stagnation) temperature and T [K] is the static
temperature. The formula for the total pressure can be derived from Equation 19 based
on the relationships of the isentropic process [2, 9]

v
Ptot — (Ttot>y_1 (20)
p T

where p,; [Pa] is the total (or stagnation) pressure, p [Pa] is the static pressure and
y [-] is the specific heat ratio (the Poisson’s constant). Finally, the total density is
obtained with help of the ideal gas equation of state [2, 9]

1
Ptot _ (Ttot)y_l (21)

p \T

where p;,; [kg/m?3] is the total (or stagnation) density and p [kg/m?] is the static density.

It is needed to emphasize that the above described relationships are representative of
an ideal gas behaviour only. In the case of real gases, the molecular size is not negligible,
which means they are not perfectly compressible. Furthermore, the latent heat of
vaporization is absorbed or released during phase changes. For both these reasons, the
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specific gas constant r, the specific heat ratio y and the specific heat capacities ¢, and
¢, are generally functions of the pressure and the temperature with real gases. [9]

Turbochargers process two different gas mixtures. The atmospheric air is pressurized by
the compressor, while turbines are propelled by the products of combustion (see
Chapter 1.1). These are both gas phases, the state variables of which attain values far
enough from the respective condensation points. Furthermore, the operating pressures
are way below the order of magnitude, where the limited compressibility starts to be
significant. Therefore, using of ideal gas models is reasonable and adopted throughout
this work. Nevertheless, water vapor included in the atmospheric air may impact the
actual change of enthalpy during experimental compressor characterizations (see
further in Chapter 1.1.4). Humid air models can be used to account for this effect.

1.1.4 Turbocharger performance mapping

Performance mapping is a common way to assess the efficiency and the flow capacity
of turbomachines. It can be done either experimentally or with help of simulation tools
(e.g. CFD). The output is an indispensable resource for important engineering
calculations, including the matching of a turbocharger to a combustion engine.

Hot gas stand measurement is an industry standard process, in which a complete
turbocharger is mounted on the test rig (see Figure 7). An electrically driven compressor
delivers fresh air to a combustion chamber, where natural gas is burnt (600°C or more).
Pressurized hot fumes propel the turbine making the rotor spin up, while the load of the
compressor is controlled by throttling of its outlet flow. The final speed is a result of
power balance on the shaft. [2, 3, 5]

Air Chimney
v /A
W o
|

Screw
COMpressor

—1 P3, Pars I3

. Pias Taay
Combustion v

chamber 6-22bar @ Venturimeter % Motorized valve
Drum (for fuel pressure _ Exhaust gas path K Vvalve
control) .
25 bar — Air path . .
| —{ Measuring point

Intake

Fuel pump bl/_
Figure 7: Hot gas stand scheme [12]
The test data is acquired at steady state conditions covering the largest feasible

operating range of the attached turbocharger. Here, the primary limiting factor is the
18
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compressor aerodynamic stability, which is constrained by the surge boundary in the
low-flow region and by the choke on the opposite side. Mechanical properties of the
wheel restrict the maximum spinning speed and the related maximum achievable outlet
pressure. In the typical visualization of a compressor performance map, the total
pressure ratio is plotted over the corrected mass flow rate (see chapter 1.1.7), however
the volumetric flow rate can be assigned to the x-axis too (see Figure 8). On top of that,
the isentropic efficiency is displayed as a contour or in the form of iso-lines. [2, 3, 4, 5]

max. permissible
A TC - speed

choke limit

Pressure ratio p,/ py

Volume flow V

Figure 8: Compressor performance map, showing highlighted boundaries of the stable
operating range, speed lines and iso-efficiency islands [5]

The danger of the surge phenomenon is related to mechanical loading of turbocharger
components. A loss of aerodynamic stability in one or more blade channels results in an
unsteady local reversal of flow that is followed by oscillations of both mass flow rate and
pressure ratio. Not only does this impact the stability of the attached engine operation
but induces vibration and increased load on the bearing system too. A hard surge (high
pressure ratio and speed) can even lead to a fast system failure caused by a contact
between the compressor or the turbine wheels with their housings. [2, 3, 4, 5]

In the case of a turbine, reduced mass flow rate (see Chapter 1.1.7) and efficiency are
usually displayed as functions of expansion ratio in two separate diagrams (see Figure 9
and Figure 10 respectively). Nevertheless, turbine efficiency can be plotted as a contour
in the mass flow rate map too (see Figure 17). It is worth noting that the mass flow rate
reduces with the increasing spinning speed at a constant expansion ratio. This effect is
a consequence of the centrifugal force acting on the gas. It is most pronounced with
radial turbines, where the main direction of flow is centripetal (see Figure 4). However,
certain impact can be identified with axial turbines too, which is driven by the
contraction of streamlines near the shroud wall (the blade tip area). [2, 3, 4, 5]

An important aspect of the turbocharger mapping on a hot gas stand is the fact that
turbine load is derived from a power balance with the compressor. It means that only
such operating points can be measured, which allow the compressor to work steadily in
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its stable operating area (see Figure 8). This typically restricts the measurable turbine
performance map to narrow intervals of expansion ratio at each speed line.
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Figure 9: Turbine mass flow rate map with extrapolated speed lines obtained on a hot
gas stand [15]
In Figures 9 and 10, extended speed lines are displayed to illustrate the extrapolation

into the full range of expansion ratio.
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Figure 10: Turbine efficiency map with extrapolated speed lines (hot gas stand) [15]

Turbine dynamometer is often utilized as an alternative to the hot gas stand
measurement for its advantage in the complete independence of the compressor. A
turbine stage alone is mounted on an electric generator, which controls the load (see
Figure 11). The output performance map is, however, not directly comparable to the
one obtained on a hot gas stand due to the large difference in the turbine operating
conditions. Firstly, the propellant gas is usually a moderately heated air (~100°C to avoid
freezing at the outlet). Furthermore, the lower temperature gradient results in a lower
heat loss to the environment. On a hot gas stand, turbine efficiency is calculated based
on the power balance with the compressor, the efficiency of which is determined using
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the boundary pressures and temperatures (see Equation 26). The measurement of the
compressor outlet temperature is, however, influenced by the heat transfer from the
coolant, oil or the turbine stage. As a result, the compressor efficiency at low spinning
speeds appears lower (the compressed air temperature is lower than the coolant
temperature) and the calculated turbine efficiency appears higher (see [19]). Bearing
friction is typically included in the so-called turbine thermo-mechanical efficiency, as it
is difficult to be isolated on a hot gas stand. A dynamometer, on the contrary, enables
direct shaft power measurement, so the output efficiency corresponds more closely to
the actual turbine aerodynamic performance. [3]
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Figure 11: Turbine dynamometer with a pulse flow generator [3]

The main benefit of a turbine dynamometer measurement, nonetheless, is the
possibility to capture the performance in much wider range of expansion ratio at each
speed line (see Figure 12). As there is no compressor with constrained stability of
operation, the true limit is the measurable range of required thermodynamic quantities
(the temperature, the pressure and the mass flow rate).
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Figure 12: Turbine map obtained on a dynamometer (source: Garrett Motion Inc.)

CFD simulation is the third most common way a turbine performance map can be
produced. In contrast to the first two options, numerical assessment is not limited by
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the machine size, nor measurable operating conditions. On the other hand, predicted
turbine performance is always only an approximation of reality and must be used with
caution. Despite that, it is a convenient way to assess different designs in early stages of
development mainly for the possibility to isolate the aerodynamic performance from
any disturbances related to the actual machine operation. Furthermore, the detailed
spatial resolution of flow conditions across the complete fluid domain makes it possible
to identify local irregularities that potentially contribute to the overall efficiency loss,
which would otherwise be difficult in real world conditions.

Figure 13: CFD meshes of a turbine volute and the wheel [13]

1.1.5 Compression process

The real thermodynamic process in gas compressors is compared to the isentropic
compression with an associated isentropic efficiency. The outlet pressure is determined
by the operating point (driven by boost demand), while the outlet total temperature
includes the effect of irreversibility, which is linked to an increase of entropy. [2, 3, 4, 5]

h Poz

Isentropic work
Actual work

S

Figure 14: The ideal and real compression in the h-s diagram [3]

From the h-s diagram in Figure 14 follows that an increase of entropy for a constant
outlet pressure is linked to an increase of enthalpy and the corresponding gas
temperature [2, 3, 4, 5, 9]
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Ahior = CpATior (22)

where ATy, [K] is the change of total temperature. Therefore, a real compression is
always more demanding in terms of power input than the ideal (isentropic) process.
Isentropic efficiency is defined as the ratio between the ideal and the actual power
inputs [2, 3, 4, 5]

— P C_is
Pc

Nc (23)

where 7 [-] is the isentropic compressor efficiency, P¢ ;s [W] is the isentropic
compressor power input and P [W] is the real compressor power input. Since the real
power input cannot be measured directly on a hot gas stand, it is calculated using the
boundary conditions [2, 3, 4, 5]

P = mCCp_air(TZC_tot - TlC_tot) (24)

where 1 [kg/s] is the compressor mass flow rate, ¢, 4 [J/(kg-K)] is the specific heat
capacity of air at constant pressure, T,c o [K] is the outlet total temperature and
Tic tor [K] is the inlet total temperature. The isentropic power input can be calculated
using the same formula (see Equation 24), however, the outlet total temperature must
be derived from the isentropic process [2, 3, 4, 5]

Yair—1
P2c_tot | Yair (25)

TZC_tot_is = TlC_tot <
Pic_tot

where Ty tor is [K] is the isentropic total outlet temperature, p,c o [Pa] is the total
outlet pressure, pic tor [Pa] is the total inlet pressure and yg;,- [-] is the specific heat
ratio of air. The final expression for the isentropic compressor efficiency is a ratio
between the ideal and the measured changes of total temperatures [2, 3, 4, 5]

Yair—1
1% Yair
Tc_ror <(pig:§) - 1) (26)

TZC_tOt - TlC_tOt

Ne =

The important consequence of Equation 26 is that the isentropic efficiency is fully
defined by the ratio of total pressures and by the total temperatures of the entering and
the exiting gas. Due to its importance, the ratio of total pressures is often referred to as
the Pressure Ratio on Compressor (PRC) [2, 3, 4, 5]

P2c_tot

PRC = (27)

Pic_tot

An example of a complete compressor performance map for a common turbocharger is
shown in Figure 8.
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1.1.6 Expansion process

The real thermodynamic process in gas turbines is compared to the isentropic expansion
with an associated isentropic efficiency. In automotive applications, the outlet pressure
is usually higher than the atmospheric due to a pressure loss induced by the exhaust
aftertreatment systems. The outlet total temperature, on the other hand, includes the
effect of irreversibility, which is linked to an increase of entropy. [2, 3, 4, 5]

Pos Py

Actual work

Isentropic work

Figure 15: The ideal and real expansion in the h-s diagram [3]

From the h-s diagram in Figure 15 follows that the increase of entropy for a constant
outlet pressure is linked to an increase of enthalpy and the corresponding gas
temperature (see Equation 22). Therefore, a real expansion is always less useful in terms
of power output than the ideal isentropic process. Isentropic efficiency is defined as the
ratio between the actual and the ideal power outputs [2, 3, 4, 5]

Pr
P T_is

nr (28)

where 1 [-] is the isentropic turbine efficiency, Py [W] is the real turbine power output
and Pr ;s [W] is the isentropic turbine power output. According to the convention, total-
to-static turbine operating conditions (inlet-to-outlet) are usually considered with
automotive turbochargers. Therefore, expansion ratio, which is also referred to as the
Pressure Ratio on Turbine (PRT), is defined as [2, 3, 4, 5]

D1t _tot
Por

PRT = (29)

where p;r o¢ [Pa] is the total inlet pressure and p,r [Pa] is the static outlet pressure.
Since the real power output cannot be measured directly on a hot gas stand, it is
calculated using the boundary conditions [2, 3, 4, 5]

Pr = mTCp_exh(TZT - TlT_tot) (30)
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where mq [kg/s] is the turbine mass flow rate, Cp_exh [J/(kg:K)] is the specific heat
capacity of burnt gas at constant pressure, T, [K] is the outlet static temperature and
Ti7 tor [K] is theinlet total temperature. Isentropic power output can be calculated using
the same formula (see Equation 30), however, the outlet static temperature must be
derived from the isentropic process [2, 3, 4, 5]

Yexn—1

Par Yexh
TZT_is = TlT_tot ( > (31)

PiT_tot

where T,r ;5 [K] is the isentropic static outlet temperature and y,,, [-] is the specific
heat ratio of burnt gas. Theoretically, isentropic turbine efficiency can be determined
based on the measured inlet and outlet temperatures [2, 3, 4, 5]

TlT_tOt - TZT
Yexn—1
T 1— Dot Yexh (32)
1T tot Pit_tot

It is, however, difficult to measure an accurate turbine outlet temperature on a hot gas
stand, because it is affected by the irregularity of temperature distribution within the
exiting gas, as well as by the heat transfer to the walls of the turbine housing and the
outlet piping. As a result, the measured turbine outlet temperature is usually lower than
it should be, which yields an optimistic apparent turbine efficiency (even above 100%).
Therefore, turbine power output is determined based on the power balance with the
compressor of known performance as [2, 3, 4, 5]

Nr =

1 d(l)TCZ

O=PT—PC—Pm—EITC 7 (33)

where P, [W] is the bearing loss, I [kg-:m?] is the rotor inertia, wy¢ [rad/s] is the rotor
angular velocity. The inertia term can be omitted in steady-state measurements, but the
bearing loss power is typically unknown and remains in the equation. As per common
industrial practise, mechanical losses are lumped together with the turbine power,
which produces a so-called turbine thermo-mechanical efficiency [2, 3, 5]

P,
Nrm = — (34)
PT_is

Examples of turbine mass flow rate and efficiency maps for a common turbocharger are
shown in Figure 9 and Figure 10 respectively.

1.1.7 Corrected and reduced parameters

Turbomachinery performance maps are measured or predicted at certain boundary
conditions that can be significantly different during real-life operation. For example, a
compressor may be working at high altitude, where the atmospheric pressure and
temperature are comparatively lower. A turbocharger turbine, on the other hand, is
supplied with pulsating burnt gas, the properties of which oscillate within a large range

25



Ing. Adam Vondrak Fitting and Extrapolation of Turbocharger Turbine Maps

(including potentially the chemical composition). To make sure the same measured map
can be used to describe the performance at any operating conditions, the theory of
turbomachinery similarity must be applied.

Equivalent aerodynamic conditions are achieved, when the rotor inlet velocity triangle
is similar in both modes of operation. The criteria of similarity include the flow angles
and the Mach number (see Figure 3). These are satisfied if the Mach numbers of both
the inlet flow and the wheel circumferential speed are conserved. The flow Mach
number at the rotor inlet can be expressed as [4]
Ma, = 2
a. = —
= (35)
where Ma, [-] is the Mach number of the rotor inlet flow, ¢; [m/s] is the flow speed at
the rotor inlet in the stationary reference frame and a, [m/s] is the speed of sound at
the conditions of the rotor inlet flow. The average flow speed can be determined based
on the conservation of mass criterion [2, 3, 4, 5, 9]
_om mrTy (36)
p141 P14y

C1

where m [kg/s] is the mass flow rate, p; [kg/m3] is the rotor inlet gas density, A; [m?] is
the effective cross section area in the rotor inlet, r [J/(kg-K)] is the specific gas constant,
T, [K] is the static gas temperature at the rotor inlet and p; [Pa] is the static gas pressure
at the rotor inlet. The definition of the speed of sound is [2, 3, 4, 5, 9]

a, =.JyrTy (37)

With the above mentioned, the Mach number of the rotor inlet flow in the stationary
reference frame can be rewritten as [2, 3, 4, 5]

L L (38)
Pl | ¥

Ma,

Measurement of flow conditions at the rotor inlet is, however, difficult, so it is usually
done in the inducer. It can be shown that if the Mach number in the inducer is
conserved, the Mach number at the rotor inlet is conserved too (under the assumption
of isentropic flow). Nevertheless, the industry standard procedure uses total gas
properties in the inlet, which, as per the definition, are representative of a standing flow
condition. Because the corresponding Mach number would equal zero, the so-called
reduced mass flow rate is used as a replacement criterion of similarity [2, 3, 4, 5]

m rTl_tot

— (39)
P1_tot )4

Myeq =

where m,..q [(kg/s)-(K*/Pa)] is the reduced mass flow rate, T; ;o¢ [K] is the total
temperature in the stage inlet and p; ¢, [Pa] is the total pressure in the stage inlet. It
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can be shown that the conservation of the reduced mass flow rate results in the
conservation of the rotor inlet Mach number (under the assumption of isentropic flow).
Furthermore, the final formula is independent of the flow area (see Equation 39).
Nevertheless, one drawback is that the reduced mass flow rate has a different unit from
the original physical mass flow rate. Therefore, it is commonly referred to the standard
atmospheric conditions, so that the comparison of a measured mass flow capacity with
the intended application requirement is easier. This way, the corrected mass flow rate
is established [2, 3, 4, 5]

T r
mcor —m pref 1_tot yref (40)
P1_tot Tref Trer V

where m,, [kg/s] is the corrected mass flow rate, p; s [Pa] is the reference pressure
(usually 100 kPa for the compressor and 101.325 kPa for the turbine), T,.s [K] is the
reference temperature (usually 298 K for the compressor and 288 K for the turbine),
Trer [J/(kg:K)] is the reference gas constant (usually 287 J/(kgK) for the air and
289 J/(kg'K) for the burnt gas) and y,..s [-] is the reference specific heat ratio (usually 1.4
for the air and 1.35 for the burnt gas).

The other criterion of similarity, that must be conserved, is the Mach number related to
the wheel circumferential speed. It is defined as [4]

Uq

Ma,, (41)

= o
where Ma,, [-] is the Mach number of rotor circumferential speed, u; [m/s] is the wheel
circumferential speed at the inlet mean-flow radius. As it is more practical to measure
the frequency of rotation and the temperature, the formula can be rewritten [2, 3, 4, 5]

n
D, , <
— ™60 (42)

VyrTy

where D,,,; [m] is the mean-flow diameter at the wheel inlet and ny [1/min] is the rotor
speed. In line with the principles mentioned earlier, the inlet flow temperature is usually
measured in the inducer. It can be shown that the conservation of the Mach number
related to the rotor circumferential velocity calculated using the speed of sound in the
inducer leads to the conservation of the same at the rotor inlet conditions (assuming an
isentropic flow). Like in the case of the mass flow rate, the industry standard procedure
uses the total inlet temperature, while the constants are omitted (including the wheel
diameter, see Equation 42). By that, the so-called reduced speed is established as a
replacement criterion of turbomachinery similarity [2, 3, 4, 5]

Ma,,

n _ Nrc (43)
red —
v Y11y tor

where n,.4 [1/(min-K%°)] is the reduced rotor speed. It can be shown that the
conservation of the reduced speed results in the conservation of the Mach number of
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wheel circumferential velocity (under the assumption of an isentropic flow). Reference
to the standard atmospheric conditions gives the corrected rotor speed [2, 3, 4, 5]

Tref Vref rr_ef

(44)
Tl_tot y r

Neor = Nrc

where n.,, [1/min] is the corrected rotor speed. For the sake of universal applicability,
the standard turbomachinery performance maps present either the reduced or the
corrected mass flow rate and rotor speed (see Figures 8, 9, 10 & 12).

1.1.8 Blade speed ratio

Blade Speed Ratio (BSR) is defined as the proportion between the circumferential
velocity of a turbine wheel and the isentropic spouting velocity that would be obtained
by an ideal expansion of the working gas between the entry and the exit pressures of
the stage. It is a non-dimensional parameter that can be interpreted as a factor of
turbine load. The lower the BSR, the higher the turbine load and vice versa [2, 3, 4, 5]

Nrc
u Dy =5
BSR = —= 60
Co Vg]e/xh_l (45)
ZCP ethlT tot 1- ( Par ) e ]
- - P1T_tot

where BSR [-] is the blade speed ratio, u [m/s] is the turbine wheel inlet circumferential
velocity, ¢y [m/s] is the isentropic spouting velocity and Dy [m] is the mean-flow
diameter at the wheel inlet. From the above equation follows that the turbine load
depends on three operating parameters, namely the angular velocity, the expansion
ratio and the inlet total temperature (usually controlled to remain constant on a hot gas
stand). Radial turbines work with the highest efficiency typically at BSR~0.7, which can
be interpreted as the optimum load. It means that for the best efficiency to be reached,
the angular velocity must increase together with the expansion ratio. This is well
recognizable in Figure 10, which shows an extrapolated turbine efficiency map. [2, 4]

It is important to note that the same value of blade speed ratio is obtained using both
the actual and corrected operating conditions (as measured or simulated). This can be
proved by substituting the physical turbine speed with the corrected one and the turbine
inlet temperature with its reference value in Equation 45

NT
BSR. .. = Dy 0
cor — __ -
Y
2¢p exnTir ref |1 — (ﬁ exh ]

where BSR ., [-] is the blade speed ratio obtained using the corrected speed and the
reference inlet total temperature. By inserting the expression for corrected speed (see
Equation 44) the following formula is obtained
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ﬂ Vi T1T_ref

T[DT
ok B 60 TlT_tot
cor — Yexn—1 (47)
Yex
2€p_exnTir ref [1 B (#jat) h ]

Further simplification leads back to Equation 45, which confirms the equality

BSR.,, = BSR (48)

1.1.9 Engine-turbocharger interaction

Turbochargers are propelled by exhaust gases produced by the attached combustion
engine (unless installed on a test stand). Piston engines, however, operate with an
intermittent working cycle, which is followed by strong pulsations in the exhaust system
upstream of the turbine (see Figure 16). With the opening of the exhaust valves,
instantaneous pressure and temperature increase rapidly in the ports and propagate
further in the form of a pressure wave. The subsequent expansion through a turbine
causes the pressure in the exhaust manifold to fall again until the next event begins. The
entire process repeats with a frequency corresponding to the engine speed and the
number of the attached cylinders. Furthermore, the longer the period, the more time is
available for the gas to exit through the turbine, which results in a higher pressure
amplitude. Such a situation is typical for the turbocharging of engines with a low number
of cylinders (three or less). On the contrary, a higher number of cylinders (four or more)
results in steadier turbine operation during one engine working cycle. [2, 3]
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Figure 16: Expansion ratio, corrected mass flow rate and corrected turbine speed traces
obtained as part of a small three-cylinder engine cycle simulation in GT-SUITE™
(TDCF — top dead centre firing, TDC — top dead centre, BDC — bottom dead centre)

While the expansion ratio follows the pulsating inlet pressure, the rotor speed changes
only a little due to inertia (see Figures 16 & 17). It means that for a turbocharged engine
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gas dynamics simulation to be enabled, turbine performance must be defined in a wide
range of expansion ratios at each speed line. This is, however, in a large contrast to the
outputs of a hot gas stand measurement (see Figures 9, 10 & 17). Therefore, a way to
substantially extrapolate the measured turbine performance is needed.
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Figure 17: Turbine mass flow rate map with a trace of instantaneous operating points
during one engine cycle simulated in GT-SUITE

The situation described above is typical for pulse turbocharging, where the system is
intentionally designed to maximize the pressure amplitude (by making the exhaust
manifold as compact as possible). This way, the turbine can use a certain portion of the
potential energy of compressed gases remaining in the cylinders at the time of opening
of the exhaust valves (see Figure 18).
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Figure 18: Pulse turbocharging [3]

Constant pressure turbocharging, on the contrary, uses exhaust manifolds of substantial

volume as a buffer, so the amplitude of pressure oscillation in the turbine inlet is

minimized (see Figure 19). On the one hand, the potential energy of the compressed

gases remaining in the cylinders at the end of combustion is largely lost due to the

expansion on the exhaust valves, but on the other hand, turbine operation is much
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steadier. This is beneficial for certain engines, because the cycle-average turbine
efficiency may be higher.
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Figure 19: Constant pressure turbocharging [3]

1.1.10 State-of-the-art turbine fitting process

As mentioned in Chapter 1.1.9, extrapolated turbine performance maps are needed for
engineering simulations of turbocharged combustion engine working cycles. Therefore,
state-of-the-art commercial software is equipped with fitting methods designed for this
purpose. To the established products in this group belong the GT-SIUTE™, the Ricardo
WAVE™ or the AVL BOOST™,

As the main goal of this work is to make the selection of suitable matching candidates
easier, it would be of an advantage to treat turbocharger maps in a way that is
compatible with the target program solution. Not only would it enable a transparent
performance prediction at extrapolated operating points but facilitate data import too.

Because the GT-SUITE is available to the author of this work, its turbine performance
map fitting algorithm is taken as the baseline and described in the following text. Based
on the available information sources, the properties of five characteristic functions are
determined in a process consisting of seven main steps. [10, 20]

Pre-processing of turbine performance data

Input data is loaded and blade speed ratio (BSR) calculated at every operating point (see
Chapter 1.1.8). Depending on the measurement/simulation procedure, operating points
are grouped either by corrected speed (speed lines) or by expansion ratio (expansion
ratio lines). A maximum-efficiency point is identified within each group. [10, 20]

Fitting the optimum blade speed ratio
The BSR’s at operating points of maximum efficiency per group are considered the
optimum ones. The fitting function is linear with respect to the expansion ratio. [10, 20]

Fitting the maximum efficiency

Operating points of maximum efficiency, which were identified in the first step of the
process, are fitted with respect to corrected speed (in the case of a grouping to speed
lines) or expansion ratio (a grouping to constant PRT lines). Then, normalized efficiency

31



Ing. Adam Vondrak Fitting and Extrapolation of Turbocharger Turbine Maps

is calculated at every operating point of the original map using the maximum efficiency
interpolated at the same levels of expansion ratio. [10, 20]

Fitting the normalized efficiency

All turbine operating points are supposed to lie on a single curve, when plotted in a
diagram of normalized efficiency versus normalized blade speed ratio. The optimum BSR
needed to normalize the BSR at each operating point is determined using the first fitting
function. [10, 20]

Fitting the optimum corrected mass flow rate

Corrected mass flow rate at the operating points of maximum efficiency within each
speed line or constant expansion ratio line is fitted with respect to corrected speed or
expansion ratio, respectively. Thereafter, a normalized mass flow rate is calculated at
every operating point of the original map using the optimum mass flow rate values
interpolated at the same levels of expansion ratio. [10, 20]

Fitting the normalized mass flow rate

All operating points are supposed to lie on a single curve, when plotted in a diagram of
normalized mass flow rate versus normalized blade speed ratio. The optimum BSR
needed to normalize the BSR at each operating point is determined using the first fitting
function. [10, 20]

Saving of turbine performance model

A complete turbine performance model consists of five fitting functions describing the
optimum BSR, the maximum efficiency, the normalized efficiency, the optimum
corrected mass flow rate and the normalized mass flow rate. [10, 20]

1.2 Interpolation

Interpolation is the name for a group of methods that are used to estimate functional
relationships described by sets of discrete points. An interpolant is a function that passes
through the original data points. The evaluation of it enables the creation of new points
at intermediate values of the independent variable(s). The main distinguishing feature
is the type of an interpolant used. A few common methods are selected and described
further in the following chapters.

1.2.1 Polynomial interpolation

Polynomials are a very popular type of interpolants, because they are easy to construct
and evaluate (in terms of computational demands). Furthermore, it is easy to obtain
their derivatives and integrals too. On the other hand, higher-order polynomials tend to
be oscillatory, which makes them unsuitable for fitting of bigger numbers of points. A
general expression for a polynomial interpolant is [7]

Paa() = ) Cax™! (49)
i=1
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where x [-] is the independent variable, n [-] is the number of known points (also called
knots) and C; [-] is the coefficient of an i-th polynomial term (i = 1, 2, ..., n). In this case,
the polynomial order is marked with n — 1, which corresponds to the fact that it is
determined by the number of knots. For example, two points are enough to fully define
a line in space, which can be described by a first-order polynomial (i.e. a linear function).
A common approach to the construction of a polynomial interpolant is the Lagrange
method. It can be described mathematically by a formula [7]

Lna(®) = ) yili) (50)
i=1

where y; [-] is the function value at an i-th knot and [; [-] is the so-called fundamental
polynomial. The definition of a fundamental polynomial is [7]

(x = x)(x = x2) oo (0 — x3-1) (0 = Xy41) o (X — xp)
fi(x) = (e — x) (g = x2) o (6 — 2320 (6 — X41) - (63 — X7) 1)

where x; [-] is the independent coordinate of an i-th knot.

From the other methods of polynomial interpolation, the Newton’s can be mentioned
for its benefit in simpler addition of new knots. The Hermit’s approach, on the other
hand, introduces derivatives at each knot that the interpolant must accommodate to.

1.2.2 Linear spline interpolation

The idea behind splines is that the independent variable domain, which contains a finite
set of knots, is divided into sub-intervals that the interpolant is defined on. This way a
piecewise polynomial is created. Linear spline is the simplest example, where each pair
of neighbouring knots is interpolated by a line [7]

Vi1 — Vi)

Si(x) =y; +
' Vi (41 — X;)

(x —x) (52)
where S;(x) [-] is the polynomial piece defined on an i-th interval (i = 1,2, ...,n — 1).
To the features of linear splines belong a zeroth order continuity (i.e. continuity in
value), but the derivatives are generally discontinuous. To cope with that, higher-order
splines must be used. The order of a spline is determined by the highest order of its
polynomial pieces, but the order of continuity can only be as high as the spline order
minus one (or smaller) [7]

S(x) € C*Ya, b) (53)

where k [-] is the spline order, a [-] and b [-] are the end-points of the complete interval
the spline is defined on. The interpretation of Equation 53 is that a spline S(x) belongs
to a set of functions defined on an interval (a, b), which are continuous together with
the derivatives up to the order of k — 1.
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1.2.3 Cubic spline interpolation

The advantage of a cubic spline over the linear is that it can have continuous derivatives
up to the second order.

Figure 20: Drawing of a spline using an elastic ruler [22]

Particularly popular is a form, in which the continuity of the second derivative is
enforced. In such a case, the shape of the spline is equivalent to that of a homogeneous
elastic beam with a constant cross section, which is bent to pass through several
predefined points (see Figure 20). It can be shown that this shape yields the lowest
potential bending energy, which is the naturally stable state every elastic object
converges to when subjected to external forces.

Generally, a cubic spline with prescribed first derivatives (also called the Hermit’s cubic
spline) can be formulated as [7]

3M_2di_di+1

Si(0) =y, + (x — x)d; + (x — x;)2 —r — X
(Xip1 — ;)
+ (x — x;)3 T et B
l (Xip1 — x;)?

where d; [-] is the first derivative of a spline at the i-th knot (i = 1,2, ...,n — 1).

To make sure even the second derivative is continuous, another condition must be
added [7]

(Kipz — X0 0d; + 2(xi52 — x)di1 + (X401 — X)) diy2
=3[tz = ) S g - 222 (55)

i+1 i Xit2 — Xi+1
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where i = 1,2,..,n— 2. With the above expression a system of n — 2 equations
containing n unknown variables (derivatives d;) is created. It means that two more
equations are needed to obtain a unique solution. These are the end-point first
derivatives, which can be interpreted as geometric constraints (see Figure 20).

In many cases, however, it is desired to construct a spline that corresponds to the shape
of a bent elastic beam with rotating supports at each end. This is the situation of the so-
called natural cubic spline, the second derivatives of which equal zero at each endpoint
(i.e. there is zero curvature). The formula for the second derivative of a cubic spline can
be obtained by derivation of Equation 54 [7]

[6Ceis —x) = 12(x = x)] FE =

17 _ Xiv1 — X
Sittx) = (Xip1 — x;)?
N [6(x — x;) — 4(xi41 — x)]d; (56)
(Xi41 — x;)?
4 [6(x —x;) — 2(xj41 — x)]di41
(Xig1 — x)?

By setting the second derivative to zero for indices i =1 and i =n — 1, which
correspond to the end-points x; and x,, respectively, an extended system of equations
is obtained. It has a single unique solution (see Equations 55 and 56).

1.3 Curve Fitting

The main difference between interpolation and curve fitting is that a fitted function does
not necessarily pass through the input data points. Instead, the goal is to capture the
overall trend using a typically rather simple function.
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Figure 21: lllustration of the least squares method [7]
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In statistics, this process is called a regression and the fitted model is supposed to
approximate the mean value of the experimental data, which has been obtained with
random errors. The same is true for the technical measurements, where the size of
deviations is related to the accuracy of applied sensors. A common goal of regression
algorithms is to find such a set of fitted function parameters that minimizes the overall
quadratic error between the model and the input data. This approach is also referred to
as the least squares method (see Figure 21).

The reason for modelling of empirical relationships is to enable an unbiased estimation
of the target quantity at any point of its domain of definition, potentially including areas
outside of the input data range. Depending on the model complexity, there can be one
or multiple parameters to identify. Two common methods applied for this purpose are
described in the following chapters.

1.3.1 Linear least squares fitting

The method of least squares is based on the principle that the sum of squared deviations
of data points from the fitted function is minimized [7]

n
Z r% - min. (57)
i=1
where 7, [-] is the deviation of the i-th data point from the fitted function (a residual)

and n [-] is the number of all data points. In the case of the linear least squares method,
the model can be described by a linear combination of the so-called basis functions [7]

RGO = ) B0 (0) (58)
j=1

where R(x) [-] is the fitted function (also called regression function), x [-] is the
independent variable, S [-] is the linear coefficient and ¢ (x) [-] is the basis function. The
number of basis functions (m) must be smaller than or equal to the number of data
points (n). The deviation at each data point is defined as [7]

Tai = ¥i — R(x;) (59)

where y; [-] is the dependent coordinate of the data point x; [-] identified by the index
i [-]. For the overall squared deviation applies [7]

2

n n m
llrall* = 272% = Vi — Zﬁj‘ﬂj(xi) (60)
=1 =1 =

where ||74]|? [-] is the overall squared deviation. At the minimum of the overall squared
deviation, the first derivative with respect to each basis function coefficient must equal
zero [7]
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0llrall?
9fk

= 2; Yi— ;ﬁj‘pj(xi) [—or(x)] =0 (61)

where k [-] is the index of a basis function coefficient (k = 1, 2, ..., m). By reorganizing
Equation 61 is obtained [7]

m
j=1

Equation 62 can be expressed in a matrix form [7]

n

z Vi (x)@;(x;)

i=1

Bj = Z O ()Y (62)
i-1

OTPp = dTy (63)

where @ [-] is the system of basis functions, B [-] is the vector of unknown coefficients
and y [-] is the vector of dependent coordinates of the known data points. For
completeness, the matrix ® is defined as [7]

P1(x1)  @2(x1) - Om(x1)
& = 401(:952) ‘Pz(:xz) QDmExz) (64)
©1(xn)  0200) - @m(xn)

If the columns of the matrix @ are linearly independent, Equation 63 has a unique
solution, which is such a vector B that yields the minimum overall squared deviation of
known data points from the fitted function.

The most common application of the linear least squares method is the fitting of a
polynomial to known data points. In such a case, the regression function has the
following form (compare to Equation 58) [7]

Ryoa(0) = ) fam~ (65)
=1

where the degree of the polynomial can only be as high as the number of known points
minus one (i.e. m — 1), which corresponds to the previously mentioned condition
m < n. In the case the polynomial degree is exactly by one smaller than the number of
known points (i.e. m = n), the function passes through all the data points with zero
deviation, which is equivalent to polynomial interpolation. This is, howeuver,
counterproductive, if the polynomial least squares fitting was intended to smooth out
the input data (e.g. obtained by measurement). Therefore, it is important to select such
a polynomial degree that is expected to model the behaviour of the measured system.

1.3.2 Least squares fitting using optimization

It was mentioned in Chapter 1.3.1 that the principle of the least squares method is to
find such a set of model properties, which results in the minimum overall squared
deviation from the known data points. As such, it is a minimization task that can be

37



Ing. Adam Vondrak Fitting and Extrapolation of Turbocharger Turbine Maps

addressed by an optimization algorithm. This is particularly relevant in cases, when the
relationship between the fitting function and the unknown parameter(s) is non-linear
(also referred to as non-linear least squares). A commonly occurring example is the
exponential function [8]

R(x) = aef* (66)

where a [-] and S [-] are the unknown parameters. On the one hand, the expression in
Equation 66 can be linearized by logarithmic transformation as

In(R(x)) = In(a) + Bx (67)

On the other hand, the overall quadratic deviation in logarithmic coordinates would
differ from the one in linear coordinates

n

Irell? = ) NG = In(@) - fx]? (63)

i=1

It can be shown that the overall quadratic deviation in Equation 68 attains its minimum
for different values of a and B than the original function (without logarithmic
transformation). Therefore, applying an optimization method to find the non-linear
coefficients is a better solution.

There are many algorithms that can be used to find the optimum fit (see Chapter 1.4).
The top-level process, which is common to most optimization methods, starts from a set
of initial values of the unknown parameters. Subsequent iteration steps involve
incremental changes to the unknown parameters such that the objective function (the
overall squared deviation) decreases in value. Finally, the optimization process is
finished after termination criteria are met (these usually include the minimum iteration
step size and/or the minimum change in the objective function value).

1.3.3 Descriptive statistics

In the context of data fitting, the initial step of any statistical analysis is to determine the
error between each source data point and the model. This process is described
mathematically by Equation 59.

To the basic statistics belong the maximum, the minimum and the arithmetic mean
error. The latter can be calculated using a formula [8]

n

1
Tmean = EZ Tai (69)

i=1

where 75,.qn [-] is the arithmetic mean of the error and n [-] is the number of samples in
the source data set. The arithmetic mean error can be interpreted as a factor describing
how well the fit is centred with the source data. A positive value suggests that, on
average, the data is located above the fitted function and vice versa.
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Another quantity with a similar meaning is the median error. It is the middle value of an
ordered data set, where a half of the data has a bigger value and the other a smaller
one. In the case the number of samples is even, the median error is calculated as the
mean of the middle two values [8]

1

Tmedian = 2 (rd_orderedﬂoor(n+1) + rd_orderedceiling(n+1)> (70)
2 2

where Teg4ian [-] is the median of the error and Td ordered; [-] is the error at the i-th

data point (ordered from the smallest to the largest). In contrast to the arithmetic mean
error, the median error is not affected by the presence of a few points with very big error
in the source data set.

In mathematical regression, the most used measure of fit quality is the mean squared
error (MSE). It can be calculated as [8]

n

— l 2 1

TMsE = nZ(Tdi) (71)
i=1

The advantage of the MSE over the arithmetic mean is that it yields non-negative values.
In other words, the task of a fitting algorithm is to minimize it. On the other hand, errors
of big magnitude are more pronounced in it compared to the arithmetic mean. Also, the
unit of the MSE is different from the source data variable, which is commonly solved by
calculating its square root. By that, the root-mean-square error (RMSE) is obtained [8]

TRMSE = +/TMSE (72)

where 1yysg [-] is the root-mean-square error. The above described relationship is
analogical to the one between the variance and the standard deviation.

Another convenient way to visualize the distribution of error size is the histogram. It can
be described as a discrete function that counts the number of observations falling into
each of several pre-defined finite intervals (see Figure 22). These intervals are called bins
and they are distributed over the range of the observed variable. Mathematically
is a histogram usually formulated indirectly using the summation operator [8]

n; (73)

i
N

i=1

where k [-] is the number of bins and n; [-] is the number of samples falling into the
i-th bin. Although multiple methods can be found in the literature for the definition of
bin size, they are often distributed evenly in engineering applications. Also, their number
is usually determined iteratively based on the assessment of the resulting chart
usefulness.
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Distribution of baby weights
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Figure 22: Histogram of child birth weight with normalized y-axis [18]

1.4 Optimization

The goal of optimization methods is to find the minimum of the so-called objective
function, which is a mathematical operation on a set of independent variables. In the
case of curve fitting (see Chapter 1.3.2), the objective is to calibrate the fit properties,
such that the overall quadratic deviation from known data points is minimized.

Any function can have one global and multiple local minima. A global minimum is the
lowest achievable value of a function. It can be isolated or represented by an
n-dimensional area in the domain of definition. Local minima, on the other hand, may
be of any amount, while their function value is bigger than the global minimum.

A specific example is the convex function, which only has one minimum. In the case of
a strictly convex function, the minimum is isolated to a single point in the domain of
definition. The opposite is a strictly concave function that has exactly one maximum. As
per the definition, a convex function (generally n-dimensional) always lies below a line
segment constructed between any two points of the graph (see Figure 23).

7/

>

Xy g X Xy s ; X X X
b (et 2 TR (=T ; -
Figure 23: One-dimensional example of a convex function (left), a concave function

(middle) and a general case (right) [6]

The advantage of convex functions is that the applied optimization method does not
need to distinguish between global and local minima. Furthermore, it is common in
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many application fields that the objective function is convex at least in certain vicinity of
the optimum. Therefore, the convergence towards the true global minimum depends
on the convenient selection of the starting point. That is, why in some algorithms one
or more starting points are identified before the main optimization begins. One way to
do that is by mapping of the objective function using a discrete grid of points covering
the domain of definition. Then, local minima are located using standard optimization
methods (e.g. gradient-based); the lowest is suspected of being the global minimum.

One-dimensional optimization methods are applied to one independent variable only.
The solution is sought on an interval (a, b), which is also called the uncertainty interval.
The process is finished after the termination criteria are met. These usually involve the
minimum iteration step and/or the minimum change in the objective function value.

The purpose of multi-dimensional optimization methods is the same, just with multiple
independent variables. The extremum of the objective function is sought in an
n-dimensional space (x € R"). A handful of common one- and multi-dimensional
methods is described in the following chapters.

1.4.1 Golden-section search

As part of the golden-section search one-dimensional objective function is evaluated at
four points covering the entire initial interval of uncertainty. In each iteration step one
of the boundary points is removed, so the interval is narrowed down. A new point is
constructed in such a way that it is possible to reduce the new interval of uncertainty by
the same factor of size in the subsequent process (see Figure 24).

a, Ay Ky b,
A+ A+l His by
A+ At By by

Figure 24: Possible reductions of the interval of uncertainty as part of golden-section
search [6]

To make sure the factor of reduction of the uncertainty interval is constant in all
iterations, the internal points must be distributed according to the golden-section ratio.
It means that in a set of subintervals constructed from either of the boundary points,
dividing each ordered pair of nearest size yields the golden-section ratio. The same can
be described mathematically by the following system of equations [6]

Adk_ak=Mdk_akzﬂdk_bk_/1dk_bk=

= a (74)
Ugr — Ag by — ay Aak — by ay — by,

where a; [-] and by [-] are the boundary points, A4 [-] and p4p [-] are the internal points,
k [-] is the index of the iteration step and « [-] is the golden-section ratio (see Figure 24).
Assuming the initial boundaries are known, locations of the internal points can be
derived from Equation 74 as
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Aak = by + a(ay — by) (75)
and

Uar = ay + a(by — ay) (76)

The value of the golden-section ratio a can either be found in the literature, or obtained
by adding a simple identity

b — i + U — ag = b — ay (77)
A suitable treatment of Equations 74 and 77 produces an expression
a’l+a—-1=0 (78)
the solution of which is
a =0.618 (79)

Reduction of the interval of uncertainty in each iteration step is performed based on the
comparison of the function values at the internal points. If the lower value is obtained
at the point A, it suggests that the objective function decreases in the direction towards
the point a, so the other boundary b, can be removed and vice versa (see Figure 24).
A new internal point is determined using Equations 75 or 76. The algorithm is terminated
once the size of the uncertainty interval is smaller than a predefined threshold.

For the sake of robustness, it is convenient to consider an eventuality that the initial
boundaries of the uncertainty interval were selected too narrow, so it did not allow for
the true optimum to be found. If the minimum objective function value is obtained at a
boundary point (a;, or by), the algorithm needs to be capable of widening the
uncertainty interval. Following the golden-section rule, the new boundary can be
determined as either

1
br+1 = ap + P (b — ax) (80)

or

1
Ag4+1 = by + P (ay — by) (81)

Golden-section search is applicable on strictly quasi-convex functions only.

1.4.2 Quadratic fit method

The idea behind quadratic fit optimization is to approximate the unknown objective
function by a parabola, the peak of which is the estimated location of the optimum. To
construct a parabola, three distinct points of known function values are needed. The
corresponding polynomial interpolation can be obtained using the Lagrange method
(see Chapter 1.2.1) [6]
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(x — x2) (x — x3) (x —x1)(x — x3)
(1 — x2)(x1 — x3) T (3 — x1)(x2 — x3) (82)
+f(xs) (x —x1)(x — x3)

(x3 — x1)(x3 — x2)

L(x) = f(x1)

where L(x) [-] is the value of the Lagrange polynomial at point x [-]; f(xy) [-],
f(x2) [-], f(x3) [-] are the three known function values at the points x; [-], x, [-] and
x3 [-].

The minimum of the interpolant is located at such an x-coordinate, where the first
derivative of L(x) equals zero. It can be calculated as [6]

2x — (xy + x3) 2x — (x; + x3)
(21 — x2) (X1 — x3) *f0x) (x2 — x1) (X2 — x3) (83)

2x — (x1 — x3) _
) e T )

L'(x) = f(x1)

where L' (x) [-] is the first derivative of the interpolant. The x in the above equation can
be extracted as [6]

‘= 1f ()3 = x3) + fO) (xF — xF) + f(xa) (xf — x5)
2 flx)(xz —x3) + fx2) (x5 — x1) + f(x3) (%1 — x2)

The goal of the next optimization step is to refine the approximation of the objective
function near its optimum. If the triplet of points was ordered, such that x; < x, < x3,
the newly obtained candidate for the optimum can fit either in the first, or in the second
subinterval.

(84)

If x; < x < xyand f(x;) > f(x) < f(xy), the point x5 is omitted and the new triplet
is fitted as part of the next iteration step. In the case f(x) > x,, the points x, x, and x5
become the new triplet.

The other option is x, < x < x3. If f(x3) > f(x) < f(x3), the point x; is omitted and
the new triplet is fitted as part of the next iteration step. In the case f(x) > x,, the
points x4, X, and x become the new triplet.

Optimization is finished after the convergence criteria are met. This is typically the size
of the interval of uncertainty, but another condition limiting the maximum allowable
objective function difference within the triplet can be added too. The quadratic fit
method is applicable on strictly quasi-convex functions only.

1.4.3 Simplex method

Simplex method, also called the Nelder-Mead method, belongs to a group of derivative-
free algorithms. The direction of search is determined by the comparison of the
objective function value within a group of selected points. It is designed for searching
for a local minimum of a multi-dimensional objective function, so a starting point is
needed (xo, € R™). The main idea is that in each iteration step the objective function is
evaluated in vertices of the so-called simplex, which is an n-dimensional object
constructed from the starting point by adding the initial discretization distance § to each
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of its coordinates (one at a time). Therefore, it has exactly n + 1 vertices, which makes
it a triangle in 2D, a tetrahedron in 3D etc. [7]

0)
1
2)
3)
4)
9)

RERC[

Figure 25: The simplex method (Nelder-Mead) in 2D, where 0) is the original triangle, 1)
is expansion, 2) is reflection, 3) is external contraction, 4) is internal contraction, 5)
stands for reduction [7]

The vertex with the highest objective function value is labelled x,, (worst) and the one
with the lowest x;, (best). A new point of search X is constructed on the line connecting
the x,, with the centre of mass (Xx) of all remaining points belonging to the simplex. In
2D, for example, it is the line connecting the “worst” vertex and the centre of the
opposite side of the simplex triangle (see Figure 25). Then, the location of X is
determined in a few steps.

First, the objective function is evaluated at a point obtained by mirroring x,, with the
centre of symmetry in point X. This process is called reflection and it can be described
mathematically as x, = x+ (x — x,,). If f(x;) < f(x}), it means that this is a
direction of significant objective function value reduction. Therefore, one more point is
constructed further away from X. This is called expansion, which can be described
mathematically as x, = x + 2(x — x,,). If f(x.) < f(x},), then x, is selected as the
new vertex X = x,. Otherwise, X = x,- under the condition that f(x,) < f(xg), where
X4 (good) is any existing vertex other than x,,. [7]

In the case neither x, nor x, satisfy the criteria for becoming the new vertex, the new

simplex is contracted in one of the following ways. If f(x,) < f(x,,), the objective

1

function is evaluated at point X = 2 (X +x;). If f(xc) < f(x;), then X = x,
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(external contraction). The other possibility is that f(x,) = f(x,,) and the objective

function is evaluated at x.; = %(xw +x). If f(x;) < f(x,,), then X = x; (internal

contraction).

In the event none of the preceding candidates for the new vertex were successful, it
suggests that point x;, is reasonably close to the optimum. Therefore, the simplex is
reduced in such a way that point x;, remains in its location, while all other vertices are

moved closer to it by a half of the original distance. That is x; = %(xb + x;), where i is

the index spanning all vertices. All the five possible transformations of the simplex are
summarized in Table 1. [7]

Table 1: Modes of transformation of the simplex [7]

Mode Conditions New vertex

1 | Expansion [f () < flxp)] & [f(xe) < flxp)] | xe =X+ 2(X—xy)

2 | Reflection [F(x) < F(x,)] & (x4 # xy) X, = x+(Xx—x,)
External 1 _

3| contraction | ) < f(xw)] & [f(xee) < f(xr)] Xee = 5 (X + %)
Internal 1

4 contraction [f(xr) = f(xw)] & [f(xci) < f(xw)] Xci = E(x + xw)

1
5 | Reduction None of the preceding conditions is met i = 2 (p + ;)
Xi * Xp

1.4.4 Gradient descent method

The gradient descent method is suitable for the optimization of strictly convex multi-
dimensional functions. The initial step is to calculate the gradient of the objective
function at the starting point. Then, a new point is determined by searching for the
minimum in the direction of the steepest descent (one-dimensional optimization). The
process repeats until the termination criteria are met. The gradient of a function is the
vector of its first partial derivatives defined as [7]

of(x) of(x)  of (x)>

dx; = Ox, 0xy,

Vf(x) = ( (85)

where f(x) [-] is the function of x, x [-] is the vector of coordinates in an n-dimensional
space (the domain) and x; [-] is the i-th component of the vector x (i = 1,2, ..., n).

If the objective function cannot be expressed explicitly, each partial derivative in
Equation 85 must be computed numerically using finite differences. The most common
ones are the forward, the central and the backward. Using the forward difference, the
partial derivative in an n-dimensional space can be approximated as [7]

of(x) _fx+hau) — f(x)

86
axl- hd ( )

45



Ing. Adam Vondrak Fitting and Extrapolation of Turbocharger Turbine Maps

where h; [-] is the size of the discrete step and u; [-] is the standard unit vector in the
direction of the i-th cartesian coordinate. The formula using the backward difference is
obtained analogically as [7]

af (x) ~ f(x) — f(x — hqu;)

87
6xl- hd ( )
Finally, the derivative approximated by the central difference is [7]
hq hg

axi hd

Each evaluation of the objective function is linked to certain processing time. Therefore,
it is desirable to keep their number at the minimum. Calculation of the gradient using
the forward and the backward difference requires n+ 1 evaluations in an
n-dimensional space. The central difference method, on the other hand, involves 2n
evaluations, so it is less convenient (see Figure 26).

z z z
¢ y h y ® y
> > Y >
X X —YJ X
h h
o o
Forward differences Backward differences Central differences

Figure 26: Visualization of the finite differences in 3-dimensional space

For completeness, the ratio of the computational effort linked to the forward/backward
and the central difference depends on the number of dimensions in the following way

n+1 1 1
_ _1.1 89
K= T2 (89)

where k [-] is the ratio of the numbers of evaluations between the forward/backward
and the central difference methods. It can be noted that all methods are equally
demanding in a one-dimensional space.

The next step involves minimization of the objective function in the direction of the
gradient. The new coordinates of x are obtained as [6]

Vf(x)
IV (Ol

where A, [-] is the distance in the direction of negative gradient (to be optimized) and
k [-] is the index of the iteration step. A range of methods can be employed to find the

Xiy1 = Xx — Ag (90)
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value of the parameter A,;. The quadratic fit can be recommended for its fast
convergence, especially when the objective function has near parabolic shape in certain
vicinity of the optimum (see Chapter 1.4.2). The whole process is repeated until the
required resolution is achieved (usually defined as the maximum size of the gradient).

To the drawbacks of the gradient descent method belongs its tendency to zigzagging,
which significantly impacts the required number of iterations and the overall speed of
convergence (see Figure 27). It occurs in cases, when the objective function has the
shape of a long narrow valley. Since the gradient contains the information about the
slope in an isolated point only, the algorithm cannot react to its change along the way
to the local minimum. Among the methods addressing this issue, the Newton’s can be
named (see Chapter 1.4.5).

3

Figure 27: Zigzagging of the gradient descent method [6]

1.4.5 Newton’s multi-dimensional method

The Newton’s method is suitable for the optimization of strictly convex multi-
dimensional functions. In contrast to the gradient descent, the Newton’s algorithm uses
the quadratic approximation (the first two members of the Taylor series) of the objective
function to determine the next iteration point [6]

1
q(x) = f(x) + Vf(x)" (x — x5) + > (x — x)TH(xp) (x — xy,) (91)

where q(x) [-] is the quadratic local approximation of the objective function, H(x;,) [-]
is the Hessian of the objective function at coordinates defined by the vector x;. At the
optimum, the gradient of the quadratic function must equal zero (Vg(x) = 0; see
Equation 91). Therefore, the following condition must be fulfilled [6]

H(x)(x — x;) = =Vf(xy) (92)
In the next iteration step, the new coordinate of x can be derived from Equation 92 as
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X1 = X — H(x) 7'V (xy,) (93)

The Newton’s algorithm terminates as soon as the size of the Hessian is smaller than a
pre-defined threshold. While the process to determine the gradient has been explained
in the previous chapter (see Equation 85), the Hessian of f(x) is defined below [6]

0®) ) W)

ox?  0x,0x, 0x,0x,
0%f(x) 9*f(x) 0%f (x)
H(X) = 0x,0x0,  0x2 0x,0%, (94)

0f(x) @ | @

(0x,0x; 0x,0x, 0x3

The Hessian is a matrix of the second-order partial derivatives. Unidirectional derivatives
are present on the main diagonal, mixed derivatives can be found in the remaining
positions. In the case the evaluation must be done numerically, finite differences can be
employed (see Chapter 1.4.4 for the definition of the first partial derivatives). To
calculate a second-order derivative with respect to one variable numerically, a three-
point discretization of the function is needed. The formula using the central difference
can be recommended for its concentricity with respect to x. It can be expressed as [7]

02f (x) o f(x+ hqu;) = 2f(x) + f(x — hqu;)

ox? h3

(95)

The mixed second-order derivative can be interpreted as two subsequent derivations
with respect to two different variables. Therefore, four points with known function
values are needed to calculate it numerically. The forward, the backward and the central
difference are applicable again. However, to keep the necessary number of the objective
function evaluations at the minimum, the central difference method should be avoided.
The formula for the mixed second-order derivative using the forward difference can be
obtained by repeating the process described in Equation 86 twice in a row. The resulting
equation is

0°f (x)

0x;0x;

_f(x+ hgwi + hajwy) = f(x + hgjwy) = f(x + hgwy) + f(x)
- haihaj

(96)

where i [-] and j [-] are the indices of the space dimensions, while i # j.
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Figure 28: Discretization of the Hessian in 2D, A) is the forward difference in both
directions of the x- and y-axes, B) is the central difference in the direction of the x-axis
and the forward difference in the direction of the y-axis, C) is the central difference in

both directions of the x- and y-axes)

To calculate the Hessian per the modification (A), 2n+ 1 + (721

objective function are needed. If the central differences were used to calculate the
n
mixed derivatives, 2n + 1 + 2 (

2
and2n+1+4 (721) for the modification (C) (see Figure 28).

) evaluations of the

) evaluations would be needed for the modification (B)

’

Figure 29: lllustration of the Newton’s method [6]
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2 BASIC TURBINE FITTING METHOD

The top-level process of the turbine performance map fitting has been described in
Chapter 1.1.10. To verify it can be applied to solve real-life engineering tasks, its
implementation and testing in an interactive computational environment is needed.
MATLAB™ has been selected for this purpose, because it provides the required
functionality and it is available to the author of this work. In the first place, a satisfactory
agreement between the fitted turbine performance model and the raw data must be
confirmed. Also, the algorithm should be robust with respect to varying input data
source and quality. After the fully extrapolated performance maps are generated, they
will have to be validated in terms of expected thermodynamic behaviour at borderline
operating conditions.

2.1 Fitting the Performance Model

The turbine performance model, as described in the literature (see [10, 20]) and in
Chapter 1.1.10, consists of five characteristic functions for the key thermodynamic
properties of the turbomachine. These are the optimum blade speed ratio, the
maximum efficiency, the optimum corrected mass flow rate, the normalized efficiency
and the normalized mass flow rate. The process to determine the properties of each
function to best fit the source data is described in the following chapters. A sample hot
gas stand map produced at the Garrett Motion Inc. is used for this purpose. It must be
noted, however, that some aspects of the baseline algorithm are not explicitly described
in the available information sources. Therefore, custom solutions are suggested, which
proved to be working as part of the demonstrator MATLAB application.

2.1.1 Pre-processing of input data

A typical turbine map has the form of a text file with the operating points organized into
rows of data, where each column represents one characteristic variable. These include
the corrected or reduced speed, the expansion ratio, the corrected or the reduced mass
flow rate and the efficiency. Each operating point describes the turbine stage behaviour
at steady state conditions. The environments, in which the data is obtained, can be very
different though (see Chapter 1.1.4).

After the map file is loaded, the first step is to calculate the blade speed ratio at every
operating point (see Chapter 1.1.8), so it can be used later in the fitting process.
Depending on the procedure that was followed to generate the data, operating points
might be grouped by either the corrected (or reduced) speed or the expansion ratio.
Each is expected to be non-decreasing with the row number, while the other must be
non-decreasing within a group.

In the most common case, the turbine map is generated using a hot gas stand rig and
the testing procedure is programmed to keep the corrected (or reduced) speed constant
within each group of operating points. Thus, speed lines can be recognized in the data.

The implemented fitting algorithm is programmed to read one row of the input map file
after another. As soon as the corrected speed increases by a bigger value than the
predefined threshold, a new speed line is marked. Once the end of the file has been
reached, the operating point with the highest efficiency is identified at each speed line
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and its index is saved for a later use. A similar approach would be followed, if the map
data was organized into groups of a constant expansion ratio.

-0-53201 rpm
67866 rpm
i 82462 rpm
97149 rpm
@ 111673 rpm
i -0 -126376 rpm
-0-140849 rpm
o O o o -0 -153633 rpm
o @ QO Peak Eta Points

i Qg

Qo

L 1 1 L 1 1 1 J

1 1.5 2 2.5 3 3.5 4 4.5 5
Expansion Ratio [-]

Thermo-Mechanical Efficiency

Figure 30: Efficiency vs. PRT with coloured speed lines and highlighted maxima

2.1.2 Fitting the optimum blade speed ratio

The relationship between the optimum blade speed ratio (BSR,,) and the expansion
ratio (PRT) is key to the fitting process (see Chapter 1.1.10). A BSR,,; is such a value of
BSR, at which the maximum turbine efficiency is reached at certain level of PRT (i.e. it
corresponds to the points of maximum efficiency identified in Chapter 2.1.1).
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Figure 31: Efficiency vs. BSR with coloured speed lines and highlighted maxima

It is apparent that a different value of BSR,,; is obtained at each speed line in
Figure 31. According to the literature, the relationship between BSR,,,: and PRT should
be linear [10, 20]

BSRyy; = kPRT + q (97)
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where BSR,,; [-] is the optimum blade speed ratio, k [-] is the slope and g [-] the
elevation of the fitted line. Constants k and q are determined using the least squares
method (see Chapter 1.2.1).
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Figure 32: Linear regression of the optimum BSR relative to PRT

As soon as the fitting function for BSR,, is known, the normalized blade speed ratio
(BSR,0rm) can be calculated at each operating point of the turbine map. BSR,,pym is
defined as the ratio between the BSR at given operating point and the optimum BSR
at the same level of PRT [10, 20]

BSR

BSRyporm = W
opt

(98)

2.1.3 Fitting the maximum efficiency

The maximum efficiency points identified at each speed line during the pre-processing
of the turbine map (see chapter 2.1.1) together form an envelope that all turbine
operating points must lie below. This relationship is modelled with respect to the
corrected speed, yet the available information sources do not suggest a specific function
(except that it should be smooth; see [10, 20]). A polynomial can be named as one of
the simplest options. However, with an increasing degree, the polynomial
approximation (in the least squares sense) tends to be oscillatory. A spline curve, on the
other hand, can be recommended for its stability and an easy definition of extrapolation
modes (due to its piece-wise polynomial form). As a conservative strategy, a flat
extrapolation can be applied, which is the default option in GT-SUITE too (see Figure 33).
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Figure 33: Maximum turbine efficiency as a cubic spline with flat extrapolation

With the fitting function for the peak efficiency available, the normalized efficiency can
be calculated at each operating point of the map. Normalized efficiency (ETATM,,pym)
is defined as the ratio between the efficiency at the given operating point (ETATM) and
the maximum efficiency at the same level of expansion ratio (ETAT M,,4,) [10, 20]

ETATM
ETATMnorm = W (99)
max

The maximum efficiency function is, however, defined relative to corrected speed, so
the optimum corrected speed at given expansion ratio must be found for each turbine
operating point first. To do that, the optimum BSR function (see Equation 97) can be
combined with the definition of BSR (see Equation 46). To make sure the corrected
speed is obtained, reference gas properties must be used (see Chapter 1.1.8)

Yexn—1

1 Yexh
j 2¢p exn it rer |1 — (PRT) ] (100)

Dy

60

NTope = (kPRT + q)

2.1.4 Fitting the normalized efficiency

According to the available information sources all turbine operating points should lie on
a single curve when plotted in the normalized efficiency versus normalized blade speed
ratio diagram. In GT-SUITE, the fitting function has two parts. For BSR,orm < 1,
exponentiation is defined in the form [10, 20]

ETATMyppm = 1 — (1 — BSR,0pm) it (101)

where the exponent by;; [-] is the fitted parameter. It needs to be noted that the linear
least-squares approach (as explained in Chapter 1.2.1) cannot be used to find the value
of bs;, because its relationship to the root-mean-square error is non-linear. The
guadratic fit optimization method can be recommended instead.
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The other part of the normalized efficiency curve, where BSR,,,,im = 1, is fitted by a
parabola of the form [10, 20]

ETATMyorm = 1 — Cfit(BSRnorm - 1)? (102)
where the coefficient cs;; [-] is related to the intercept with the x-axis and can be found

using the least-squares method. The value of BSR,,,,-m, at which the x-axis is crossed,
can be determined using the equation

BSRnorm_ETA_int =5+ 1

(103)
Crit

The complete curve of normalized efficiency versus normalized blade speed ratio passes

through the point with coordinates [1,1]. It can be interpreted as the generalized

optimum operating point that the turbine works with the highest efficiency at.

1.2
----- Low BSR fit
= = =High BSR fit
= 1r ",% O 53201 rpm
ng L “6 A 67866 rpm
2 v N 82462 rpm
@ 08 Pt N 97149 rpm
© e ’ 111673 rpm
i Vs ' O 126376 rpm
W6+ £ '
= P’ Y O 140849 rpm
@ o \ O 153633 rpm
E )" 1
© 041 ‘/’ \‘
g ,a" A
o "/ 1
Z02¢F '/' “
K \
g \
0 s i i i i i i i i i i

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
Normalized Blade Speed Ratio (-)

Figure 34: Normalized efficiency fitted with respect to normalized blade speed ratio

2.1.5 Fitting the optimum corrected mass flow rate

An optimum corrected mass flow rate is associated with each operating point of the
maximum efficiency at each speed line or constant expansion ratio line (see Chapter
2.1.1). Similarly to the case of the maximum efficiency (see Chapter 2.1.3), these points
are fitted with respect to the corrected speed, but the available information sources
only suggest the function should be smooth and pass through the origin of the
coordinate system (see [10, 20]). Therefore, a spline curve is recommended again.
Extrapolation is needed in the direction of high corrected speeds only. In line with the
conservative approach applied before (ETATM,,,,), the flat extrapolation is used (by
default in GT-SUITE).
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Figure 35: The optimum corrected mass flow rate fitted by a spline passing through the
origin of the coordinate system (flat extrapolation to high corrected speeds)

With the fitting function for the optimum corrected mass flow rate (WT,,;) available,
the normalized mass flow rate (WT,,,,m) can be calculated at each operating point of
the map. WT,,,,m is defined as the ratio between the corrected mass flow rate at given
operating point (WT) and the optimum corrected mass flow rate at the same level of
expansion ratio [10, 20]

wT

WThorm = W
opt

(104)

Similarly to the case of the maximum efficiency (see Chapter 2.1.3), the fitting function
for WT,,; is defined with respect to the corrected speed, so the optimum corrected
speed at each expansion ratio must be found first using Equation 100.

2.1.6 Fitting the normalized mass flow rate

According to the literature all turbine operating points should lie on a single curve when
plotted in the normalized mass flow rate versus normalized blade speed ratio diagram.
In GT-SUITE, the fitting function is exponentiation in the form [10, 20]

WThorm = Cm + BSRnormmﬁt(1 - Cm) (105)

where the constant ¢, [-] and the exponent my;; [-] are fitted parameters. Again, an
optimization method must be used to determine their values, because the mg;; is in the
exponent of BSR,,-m- As it is a curve fitting problem (the minimization of RMSE),
gradient based methods can be used (a convex objective function is expected), among
which the Newton’s can be recommended for its fast convergence and resistance to
zigzagging (see Chapter 1.4.5). At the same time, the c,, is the value of WT,,,,-n, Where
the y-axis is crossed. Similarly, the exponent my;; determines the curvature of the fitting
function and thus the intercept with the x-axis

1

c o
BSRnorm_WT_int = ( = ) e (106)
cm—1

55



Ing. Adam Vondrak Fitting and Extrapolation of Turbocharger Turbine Maps

where BSR, 5rm wr _int [-] is the value of BSR, ,,m, at which zero WT,, ., is reached. It
should be noted that normalized mass flow rate usually reaches zero at a much higher
value of BSR,,,m than normalized efficiency.
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Figure 36: Normalized mass flow rate as a function of normalized blade speed ratio

2.2 Back-Calculation of Turbine Performance

Once the model is fitted, it can be used to generate the turbine performance data at any
operating point from the supported range of speed and pressure ratio, which is the main
purpose it was developed for. Thanks to this functionality, it is possible to compare the
efficiency and the mass flow capacity of different turbine stages at equal operating
conditions, or to carry out a working cycle simulation of a turbocharged engine (see
Chapters 1.1.9 & 1.1.10). As the first step, however, it is convenient to visualize the fitted
model in the form of fully extrapolated efficiency and corrected mass flow rate maps.

The process of generating a fully extrapolated turbine performance map involves
evaluation of the fitted functions over a set of pre-defined operating points. A common
practice is to group them into speed lines (i.e. points with the same corrected speed). It
is convenient to select the same speeds that were identified in the source data, so it is
easy to assess their alignment with the fit. In the case the source map consists of lines
of a constant expansion ratio, an arbitrary set of corrected speeds covering the useful
turbine speed range can be selected.

Turbine efficiency (ETATM) is obtained as a product of the normalized efficiency
(ETATM,,-,) and the maximum efficiency (ETATM,,,,,) at certain expansion ratio (see
Equation 99). The fitting function for ETATM,,,,, is, however, defined with respect to
the optimum corrected speed, so it must be calculated using Equation 100 first.
ETATM,,rm, on the other hand, depends on the normalized blade speed ratio
(BSR,0rm) according to Equations 101 and 102. Finally, BSR,,m is defined by
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Equation 98 and depends on the BSR (see Equation 46) and the BSR,,,; (see Equation
97). The expansion ratio (PRT), therefore, remains the only independent variable and
enters the process as a generated set of equidistant values.
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Figure 37: Fully extrapolated turbine efficiency map with equally distributed PRT points

The same procedure can be followed to generate a fully extrapolated map of corrected
mass flow rate (WT), only with the difference that it is obtained as a product of the
normalized mass flow rate (WTy,4,,) and the optimum corrected mass flow rate (WT,,;)
at each expansion ratio (see Equation 104).
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Figure 38: Fully extrapolated mass flow rate map with equally distributed PRT points
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The fitting function for WT,,,; is defined with respect to the optimum corrected speed,
which must be calculated using Equation 100 first. WT,,,,-m, on the other hand, depends
on the normalized blade speed ratio (BSR,,,,,) according to Equations 101 and 102.
The remaining steps are the same for both the efficiency and corrected mass flow rate.
BSR,,,rm is obtained from Equation 98 and depends on BSR (see Equation 46) and
BSR,,: (see Equation 97). The expansion ratio (PRT) is the only independent variable
and enters the process as a generated set of equidistant values.

The map in Figure 38 was generated with a limitation of the minimum corrected mass
flow rate, which is the reason why all speed lines appear to meet at the expansion ratio
one and the zero corrected mass flow rate. At the same time it is apparent that the
distribution of operating points at low expansion ratios is disadvantageous for a good
resolution of both the efficiency and corrected mass flow rate in Figures 37 and 38. An
efficient way to improve this is by creating a set of equidistant isentropic spouting
velocity values, which are used to determine the corresponding expansion ratio.
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Figure 39: Fully extrapolated turbine efficiency map with PRT points derived from an
equally spaced set of isentropic spouting velocity (co)

A formula for the isentropic spouting velocity can be derived from Equation 46 as

Yexn—1
Yexh
Co = 2Cp exn 1T ref 1- < Par (107)
B B P1t_tot
A simple reorganisation gives the expansion ratio
’ 1)/exh
PRT = <1 —_ C—0> Vexh (108)
Cp_ethlT_ref
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In Figure 39, the number of points per speed line is the same or lower than in Figure 37.
The same approach can be followed to generate the corrected mass flow rate map.
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Figure 40: Fully extrapolated turbine mass flow rate map with PRT points derived from
an equally spaced set of isentropic spouting velocity (co)

2.3 Fit Quality Assessment

The quality of a turbine performance model can be evaluated in terms of the difference
between the source data and the fit. The corresponding values must be obtained using
the same set of independent variables (the corrected speed and the expansion ratio). A
common way to do the assessment is by means of descriptive statistics. Nevertheless,
performing a visual analysis of characteristic parts of each extrapolated map is
worthwhile too. The fitting algorithm is supposed to be applicable on a large scale of
engineering tasks, so it needs to be robust to varying type and quality of source data.

2.3.1 Statistical analysis

The two key turbine performance parameters are the efficiency and the corrected mass
flow rate. As the first step of a statistical analysis, the error between the model and the
source data must be evaluated at each operating point (see Equation 59 for the
definition of error and Chapter 2.2 for the interpretation of the model). Then, it is
convenient to quantify the overall fit error using suitable indicators, which are called the
statistics. To the basic ones belong the minimum, the maximum, the mean, the median,
the mean squared error (MSE) and the root-mean-square error (RMSE, see Chapter
1.3.3).
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Table 2: Statistics of the sample turbine map fit quality

Efficiency Corrected mass
flow rate

Minimum error -5.09% -1.28%
Maximum error 2.85% 0.50%
Mean error -0.42% -0.28%
Median error -0.27% -0.07%
Mean absolute error 0.77% 0.43%
MSE 1.48 0.34

RMSE 1.22% 0.58%

The fit is not perfectly centralized as both the mean and the median error are different
from zero for both the efficiency and corrected mass flow rate (see Table 2).
Nevertheless, the difference is lower than a half of a percentage point, which is one
tenth of the biggest efficiency deviation. The distribution of error sizes can also be
visualised by means of a histogram. Figure 41 shows that most of the efficiency errors
fall in the interval from -1% to 1%, which corresponds to approximately three quarters
of the total number of data points. The relative corrected mass flow rate error is even
less scattered with zero occurrence below -2% and above 1%.
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Figure 41: Histograms of fit error size for the efficiency (left) and the corrected mass
flow rate (right)

A few data points, on the other hand, fall into the bins of efficiency error bigger than
3%. It is useful to visualize, what speed lines they belong to. This can be done by plotting
the error values relative to the index of each operating point (see Figure 42).
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Figure 42: Fit error size as a function of data point index for the efficiency (left) and the
corrected mass flow rate (right)

From the assessment of Figure 42 follows that the biggest efficiency errors are mostly
connected with the lowest-speed lines. This is partly caused by the fact that the shape
of the low-speed lines is sharp in the efficiency map (see Figure 39) and steep in the
corrected mass flow rate map (see Figure 38). Therefore, a relatively small error in PRT
results in a big error of the dependent variable. Mass flow rate can be measured directly
on a gas stand, so this data is less noisy.

2.3.2 Analytical approach

Apart from the statistical evaluation, it is useful to visually check the shape of the
extrapolated turbine performance maps too. One way to do that is by examining the
maximum efficiency curve plotted over the expansion ratio in the fully extrapolated
efficiency diagram (see Figure 43).

A discrepancy can be seen between the location of the maximum efficiency points
derived from the model and those in the source map. The reason for the shift in the PRT
coordinates is that the optimum BSR function is defined by linear regression (in the
least squares sense) of the source-map operating points of the maximum efficiency, so
the fit does not necessarily pass through all of them (see Figure 32). The Corresponding
PRT coordinates at each maximum efficiency point can be determined using
Equations 97 and 108

Yexh

D NT 2 11~Yexn
s T 20
PRT = |1 —| (kPRT + ¢)™1 60 (109)

1/ Zcp_ehx TlT_ref

Further, the areas A and B in Figure 43 mark the points, where the maximum efficiency
curve transitions from the main spline part defined by the source map data to the
extrapolation regions (see Figure 33). One benefit of the flat extrapolation is that
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outlying input map points are still reasonably represented by the turbine performance
model (see operating points to the right of the area B in Figure 43). This is possible, since
end-point efficiencies of the main spline part were defined using the peak efficiency
points of the lowest and the highest speed line in the source map, so the extrapolated
curve must pass through them.
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Figure 43: Fully extrapolated efficiency map, showing the highlighted maximum
efficiency curve and points. The areas A and B mark the end-points of the main spline
part of the maximum efficiency curve; the tangential extrapolation is dashed

The disadvantage of the flat extrapolation is that two sharp break points can be
identified on the peak efficiency curve in Figure 43 (marked as the areas A and B), which
is unphysical. One way to cope with it would be a tangential linear extrapolation instead
of the flat one. The issue is, however, that the maximum efficiency curve may no longer
pass through the operating points of the maximum efficiency at the highest and the
lowest speed line, which impacts the agreement between the fitted model and the
source data (see the dashed lines in Figure 43). Furthermore, the extrapolated efficiency
may, in some cases, rise above one or fall below zero (where it is not desired).

The two areas of extrapolation can be identified in the corrected mass flow rate chart
too (see Figure 44). The optimum corrected mass flow curve is, however, defined for the
corrected speeds starting at zero (corresponds to PRT = 1), so the area A does not mark
any break point. Although the extrapolation to high corrected speeds is still flat, the
slope of the optimum corrected mass flow rate is almost zero there, so the transition is
smooth again in the area B in Figure 44.
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Figure 44: Fully extrapolated corrected mass flow rate map. The areas A and B mark
the end-points of the main spline part of the optimum corrected mass flow rate curve

2.3.3 Robustness check

The above described methodology proved to be reasonable for modelling the sample
turbine stage performance, the input data of which was acquired on a hot gas stand.
Now, it should be checked that the same process can be repeated for a different data
source too.
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Figure 45: Fully extrapolated efficiency and mass flow rate maps for the turbine data
obtained on a dynamometer

Another common way to obtain a turbine performance map is by means of a
dynamometer measurement. A turbine stage alone (without the compressor) is
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mounted on the rig, while the power output is measured directly on the shaft (see
Chapter 1.1.4). A sample fitted turbine dyno map is shown in Figure 45. The fitting
method failed in determining the maximum efficiency at low corrected speeds, where
the measured data include the sub-optimal operating points only (see Figure 45). As a
result, the extrapolated efficiency and mass flow rate maps include areas of significant
distortion. This makes the models useless for engine thermodynamics simulations or
other modes of use.

2.4 Sensitivity Study

Once the baseline fitting algorithm has been implemented, the relationship between
the properties of the turbine performance model and the shape of the corresponding
extrapolated maps can be studied. Out of the five fitted functions, two are determined
directly by the input map data. These describe the maximum efficiency and the optimum
corrected mass flow rate. Their modification would result in a proportional shift of the
corresponding maps. The normalized efficiency and the normalized mass flow rate
functions are linked to the first two and play the most important role in extrapolation.
Finally, the optimum blade speed ratio is central to the turbine performance model and
influences the complete shape of it.

The properties of the optimum BSR function are determined using the input map data
directly (least squares approximation). Nevertheless, only a few operating points are
selected for this purpose, which are supposed to capture the maximum efficiency at
each speed line (see Figures 31 & 32). However, the standard mapping processes (e.g.
on a hot gas stand) are not designed to look for the maximum turbine efficiency, so
a significant uncertainty is associated with the resulting fit.

2.4.1 The shape of the optimum BSR function

The function of the optimum blade speed ratio over the expansion ratio is key to the
turbine performance model. It influences the shape of both the efficiency and corrected
mass flow rate maps. The most significant is the relationship to the location of the peak
efficiency points at each speed line (see Figures 46 & 47). These can be interpreted as
the anchor points for extrapolation, which means that complete speed lines are affected
by any modification to the optimum BSR function.

It can be noted that the maximum efficiency curve is stretched with respect to expansion
ratio for the modified optimum BSR function (see Figure 46). Although it is defined the
same way in both cases, the independent variable of the maximum efficiency function
is the corrected speed, so the link to PRT is affected by a change of the optimum BSR
function. It is a general rule that lowering the BSR results in an increase of PRT (for a
constant speed). The same is true for the optimum corrected mass flow rate.
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Figure 46: Fully extrapolated efficiency map for the original (full lines) and the modified
(dashed lines) optimum BSR function

The shift of the optimum BSR function had a strong impact on the complete efficiency
map (see Figure 46). Also, the sensitivity is bigger with an increasing expansion ratio.
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and the modified (dashed lines) optimum BSR function
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Another important effect the modification of the optimum BSR fit has, is the altered
relationship between the normalized efficiency and the normalized blade speed ratio of

the map operating points. The maximum efficiency function is unchanged again in
Figure 48.
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Figure 48: Normalized efficiency diagrams for the original (left) and the modified (right)
optimum BSR function

The source map operating points displayed in Figure 48 are shifted towards the higher
normalized BSR in reaction to the previously described optimum BSR function
modification (corresponds with Equation 98 for the normalized BSR). Normalized
ETATM, on the other hand, changes because the maximum efficiency function is

defined relative to the corrected speed. Similar is the situation with the normalized mass
flow rate in Figure 49.
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Figure 49: Normalized mass flow rate diagrams for the original (left) and the modified
(right) optimum BSR function

From the presented analysis follows that it is possible to adjust a turbine fit by modifying
the optimum BSR function. This operation, as described above, had a positive effect on
the match between the source map points and the extrapolated efficiency at the lowest
speed lines, but negatively impacted the same at the high speed lines (see Figure 46 and
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Figure 47). Another issue is that the shape of the maximum efficiency and the optimum
corrected mass flow rate can be affected in a potentially unwanted way with respect to
the expansion ratio. One option to overcome this would be an appropriate scaling of the
corresponding functions to make sure the relationship to PRT remains unchanged.
Alternatively, the maximum efficiency and the optimum corrected mass flow rate can
be defined directly as functions of PRT.

2.4.2 The shape of the normalized ETATM function

The normalized efficiency fit plays the most important role in extrapolation. It defines
the slope of speed lines to the left and to the right from the maximum efficiency points
(see Figure 50). As per the definition, the function has two-pieces (see Chapter 2.1.4),
both of which can be modified independently.
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Figure 50: Fully extrapolated efficiency map for the original (full lines) and the modified
(dashed lines) normalized efficiency fit

Extrapolation into the low BSR area influences the level of efficiency above the
optimum expansion ratio for certain corrected speed and vice versa. Also, the
normalized efficiency intercept at high normalized blade speed ratio (see Chapter 2.1.4)
denotes the expansion ratio, at which the efficiency reaches zero for certain corrected
speed. These are the points, where speed lines cross the x-axis in Figure 50.

By modifying the normalized efficiency function, it is possible to adjust the efficiency fit
outside of the optimum point at each speed line (i.e. without affecting its position).
Nevertheless, such a change impacts all speed lines at once, so it cannot be used to
tweak local deviations.
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2.4.3 The shape of the normalized WT function

Analogically to the normalized efficiency, the function of normalized mass flow rate
versus normalized blade speed ratio defines the extrapolation outside of the optimum
operating point at each speed line. However, the value of expansion ratio, at which the
corrected mass flow rate reaches zero, is usually much lower compared to the case of
efficiency. That is because the intercept of normalized mass flow rate with the x-axis is
located at a much higher value of normalized BSR (see Chapter 2.1.6).
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Figure 51: Fully extrapolated corrected mass flow rate map for the original (full lines)
and the modified (dashed lines) normalized mass flow rate fit

The fact that mass flow rate can be zero or negative at PRT above one is caused by the
centrifugal force acting on the gas against its direction of flow in radial and mixed-flow
turbines. The higher the spinning speed, the bigger the force. One important conclusion,
which can be drawn from the comparison of Figures 50 and 51, is that for certain turbine
operating points with a positive mass flow rate the extrapolation of efficiency yields
already negative values (just after the speed lines cross the x-axis in Figure 50). It means
that although the flow direction remains unchanged, the turbine performs work on the
fluid. This is caused mainly by the friction in the working gas, which is related to the
gradient of speed between the wheel and the stator (e.g. in the gap between the wheel
back disk and the centre housing). Therefore, the friction power increases with the
wheel speed, as well as the pressure ratio, at which zero efficiency is reached (see Figure
50). Similar is the effect of bearing friction in the case of gas stand maps, where thermo-
mechanical efficiency is usually evaluated.
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3 OPTIMIZATION OF TURBINE MODEL PROPERTIES

A turbine performance model, as described in Chapter 1.1.10, consists of five
characteristic functions. Three define the operating properties at peak efficiency, the
other two control the extrapolation to sub-optimal conditions. It is, therefore, critical to
the fitting process that the location of the maximum-efficiency operating points with
respect to the independent variables (the expansion ratio and the corrected/reduced
speed) is identified correctly. The issue is that the input map data, typically obtained on
a hot gas stand, consist of scattered operating points that the peak efficiency is generally
not included in. For this reason, the corresponding functions of the performance model
must be estimated.

In the baseline fitting algorithm (see Chapter 2.1), the most efficient operating point is
identified at each speed line or constant-expansion-ratio line. The functions for the
maximum efficiency and the optimum corrected mass flow rate are defined by these
points directly (see Chapters 2.1.3 and 2.1.5). On the contrary, the optimum BSR, the
normalized efficiency and the normalized mass flow rate fits are determined using the
least-squares method (see Chapters 2.1.2, 2.1.4 and 2.1.6). There is, however, no
mechanism to check or fine-tune the quality of the resulting turbine performance
model. The application of optimization methods can bring an additional value.

3.1 Optimum BSR Function

The optimum BSR function is key to the fitting process (see Chapter 2.4.1). The highest-
efficiency operating points from the input map are approximated by a line in the least-
squares sense in the baseline algorithm (see Chapter 2.1.2). An optimization method can
be applied with the goal to minimize the root-mean-square error between the map
operating points and the model (see Chapters 1.3.2 and 2.3.1).

Since the optimum BSR function is linear (see Equation 97), there are two independent
parameters to be identified, so a multi-dimensional optimization method is needed.
Also, the relationship between the root-mean-square error and the independent
variables is strongly non-linear (five fitting functions must be evaluated), so the linear
least-squares method cannot be applied. Therefore, the simplex, the gradient descent
and the Newton’s method will be considered (see Chapter 1.4). The best algorithm
should not only find the solution but require the lowest number of the objective function
evaluations too (to minimize the computing time).

To get a better idea about the features of the optimization problem, it is convenient to
map and visualize the objective function in certain vicinity of the optimum. The
corresponding intervals of the independent variables can be defined relative to the
initial solution identified using the least-squares fit (see Chapter 2.1.2). The visualization
is further simplified by the fact that the fitting function has only two independent
parameters, so the response surface can easily be plotted in a 3D chart.

In the case of a data fitting, there is usually only one optimum that yields the lowest
root-mean-square error of the model, unless a complex fitting function is selected,
which can lead to the ambiguity of the solution. Furthermore, a monotonic increase in
the objective function is expected together with the increasing distance from the
optimum.

69



Ing. Adam Vondrak Fitting and Extrapolation of Turbocharger Turbine Maps

|© Objective Function|

20 ~

15 4

RMSD [%]
=

0.7

0.05 0.5

0.1 0.4

Constant k [-] Constant q [-]

Figure 52: Mapping of the objective function relative to the optimum BSR fit properties
In Figure 52, the objective function appears to be convex near the optimum. At the same

time, however, it seems to have the shape of a long narrow valley, which may lead to
zigzagging when the gradient descent method is applied.
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Figure 53: Performance of the simplex method (Nelder-Mead)
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The simplex method can find the optimum, but it does not follow the shortest route
from the starting point, which might suggest an unnecessarily high computing effort is
needed (see Figure 53). In the case of a convex objective function, the shortest way to
the optimum should follow the direction of the steepest descent. Therefore, the
gradient descent method might be a good candidate.
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Figure 54: Performance of the gradient descent method

The test case confirmed that the gradient descent method was successful in selecting a
convenient initial direction of search (see Figure 54). The subsequent iteration steps
were, however, impacted by the so-called zigzagging, which makes the process
significantly inefficient in terms of the speed of convergence and the computational
demands. It is expected that this drawback would be eliminated using the Newton’s
multi-dimensional method. By approximating the local curvature of the objective
function, it is possible to estimate, how the direction of the steepest descent changes
with an increasing distance from the last discretization point, and to adapt the direction
of search accordingly (see Chapter 1.4.5).
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Figure 55: Performance of the Newton’s multi-dimensional method

Based on the visualization of the Newton’s multi-dimensional optimization, it can be
concluded that the zigzagging is successfully mitigated (see Figure 55). Also, out of the
tested options, this is the most efficient method in terms of the required number of
iterations. The amount of overall objective function evaluations is comparable to the
simplex method, nonetheless (see Table 3).

Table 3: Computational demands of each optimization method

Total Final
Number objective objective
Method of J . J . Final k Final g
] R function function
iterations .
evaluations value
Simplex 26 51 0.783621% | 0.02308 0.55234
Gradient descent 20 241 0.783626% | 0.02250 | 0.55371
+ golden-section sr.
Gradient descent 11 178 0.783610% | 0.02284 | 0.55317
+ quadratic fit
Newton’s method 4 63 0.783612% | 0.02299 | 0.55266
+ golden-section sr.
Newton’s method 4 50 0.783610% | 0.02298 | 0.55285
+ quadratic fit

The best overall performance is delivered by the Newton’s method combined with the
guadratic fit search, which is used to find local minima in the directions identified by the
higher-level algorithm in each iteration step. The impact of the optimum BSR fit
optimization on the overall map fit quality is summarized in Table 4.
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Table 4: Fit quality statistics for the cases with and without optimization of the
optimum BSR function (simplex method)

With optimization Without optimization
Efficiency Mass flow Efficiency Mass flow

Minimum error -2.37% -0.64% -5.09% -1.25%
Maximum error 2.15% 0.60% 2.85% 0.49%
Mean absolute 0.62% 0.36% 0.77% 0.42%
error

Mean (raw) 0.15% 0.03% -0.42% -0.27%
error

Median (raw) 0.24% 0.13% -0.27% -0.07%
error

RMSE 0.78% 0.40% 1.22% 0.57%

It can be concluded that the optimization of the optimum BSR fit enables a significant
improvement of the overall fit quality with the sample measured turbine map. In the
case of the thermo-mechanical efficiency, the standard deviation from the input data is
lower by 0.44%. Comparison of extrapolated efficiency maps is included in Figure 56.
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Figure 56: Fully extrapolated efficiency maps for the baseline (dashed) and the

optimized (full lines) optimum BSR functions

The standard deviation of the corrected mass flow rate from the input data is lower by
0.17% with the optimized optimum BSR fit, however the overall appearance of the
extrapolated mass flow map changed rather significantly as shown in Figure 57. This
behaviour indicates low correlation between the standard deviation from the input data
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and the shape of the corrected mass flow rate extrapolation to sub-optimal operating
conditions. That is an important conclusion, which is discussed further in Chapter 4.
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Figure 57: Fully extrapolated mass flow rate maps for the baseline (dashed) and the
optimized (full lines) optimum BSR functions

3.2 Maximum Efficiency Function

Once the optimum BSR function has been identified, it can be checked, whether the
maximum efficiency curve enables the best overall fit quality. It has been shown in
Chapter 2.1.3 that a spline is a convenient interpolant, while the number of its nodes
corresponds to the number of speed lines identified in the source map data. An
optimization algorithm can be employed to minimize the root-mean-square error
between the map operating points and the model by shifting the node efficiencies. To
do that, a multi-dimensional method is needed. Therefore, the simplex, the gradient
descent and the Newton’s method will be tested.

Before the optimization begins, it is necessary to deal with the unphysical sharp bend of
the maximum efficiency curve at the point of extrapolation to high corrected speeds
(see Figures 56 & 43). On the one hand, the flat extrapolation approach is conservative,
which is useful at low pressure ratios, where there is a risk of running above 100% with
gas stand maps (see the area A in Figure 43). On the other hand, a linear extrapolation
of the maximum efficiency at high pressure ratios is of low risk as long as a reasonable
range is considered. A synergy with the maximum efficiency curve optimization should
eliminate the large fitting error at the highest speed line, which was identified in Chapter
2.3.2 (see the area B in Figure 43).
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Figure 58: Fully extrapolated efficiency map after the optimization of the maximum
efficiency spline (full lines) versus the initial fit (dashed lines)

In Figure 58, it can be seen that the optimization targeting the lowest RMS error caused
lowering of the maximum efficiency curve at certain points. This may be undesired
especially in the cases, where the efficiency at the actual measured points rises above
the maximum efficiency curve (see the low-speed lines in Figure 58). Therefore, it is
convenient to define an additional penalty function to make sure no measured point
shows a higher efficiency than the maximum efficiency function at the same expansion
ratio. To do that a sum of squared positive efficiency differences can be added to the
overall mean square error as shown in the following equation

MSE = Z(ETATMdatai - ETATMmOdeli)Z
i (110)
+ Z (ETATMggrq; — ETAT Mgy ,)?
ETATM gata;>ETATMmax;

where ETATMj,:4 [-] is the efficiency at a map data point, ETAT M54 [-] is the
modelled efficiency at the same operating conditions (corrected speed and expansion
ratio), ETATM,,,,, [-] is the maximum efficiency at the expansion ratio of the
corresponding map data point. Following this approach, a compromise between the
lowest overall fit error and the smallest maximum efficiency underestimation is targeted
by the applied optimization algorithm. The result can be assessed in Figure 59.
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Figure 59: Fully extrapolated efficiency map after the improved maximum efficiency
spline optimization (full lines) versus the initial fit (dashed lines)

The refined maximum efficiency optimization provides satisfactory results in terms of
both the overall extrapolated map shape and individual data point deviations (see
Figure 59). Further, the numerical performance of all the three tested optimization
algorithms can be compared in Table 5.

Table 5: Computational demands of each optimization method

Total objective

Final objective

+ quadratic fit

Number of . .
Method ) ) function function value

iterations . -

evaluations (efficiency/overall)

Simplex 136 215 0.7198% / 1.1198%
Gradient descent 24 446 0.7244% / 1.1244%
+ golden-section sr.
Gradient descent 21 337 0.7241% / 1.1241%
+ quadratic fit
Newton's 11 609 0.7214% / 1.1214%
+ golden-section sr.
Newton's 11 579 0.7219% / 1.1219%

From the outcomes of the numerical methods assessment follows that although the
simplex method required the highest number of iterations to converge to the optimum,
it needed the least objective function evaluations. A detailed view at each method’s

speed of convergence is provided in Figure 60.
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Figure 60: Convergence of the maximum efficiency spline optimization (the objective
function is a sum of the efficiency and corrected mass flow rate RMS deviations)
3.3 Optimum Corrected Mass Flow Rate Function

The optimum corrected mass flow rate fit can be optimized in a similar fashion as the
maximum efficiency function.
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Figure 61: Fully extrapolated corrected mass flow rate map after the optimization of
the optimum corrected mass flow rate spline (full lines) vs. the initial fit (dashed lines)
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A multi-dimensional algorithm is employed to find such a corrected mass flow rate at
each node of the corresponding spline that minimizes the overall root-mean-square-
error between the map operating points and the model. At the same time, a linear
extrapolation to high corrected speeds is applied to reduce the fit error of high-pressure-
ratio data points. Despite the agreement with all the input data points is good, a big
change in the overall corrected mass flow rate map appearance can be observed (see
Figure 61). This re-confirms the low sensitivity of the standard deviation from the input
data to the shape of the corrected mass flow rate extrapolation to sub-optimal operating
conditions mentioned in Chapter 3.1 and further developed in Chapter 4.

Table 6: Computational demands of each optimization method

Total objective Final objective
Number of . .
Method . . function function value
iterations .
evaluations (mass fl./overall)
Simplex 89 163 0.3609% / 1.1409%
Gradient descent 20 384 0.3623% / 1.1423%
+ golden-section sr.
Gradient glesFent 31 604 0.3624% / 1.1424%
+ quadratic fit
Newton's 7 386 0.3610% / 1.1410%
+ golden-section sr.
Newton S. . 18 950 0.3610% / 1.1410%
+ quadratic fit

The comparison of the different optimization algorithms leads to a conclusion that the
simplex method features the biggest robustness against variations in the task definition.
It required less than a half of the objective function evaluations of the next best
alternative among the tested algorithms (see Table 6). A detailed view at each method’s
speed of convergence is provided in Figure 62.
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Figure 62: Convergence of the optimum corr. mass flow rate spline optimization (the
objective function is a sum of the efficiency and corr. mass flow rate RMS deviations)

78



INSTITUTE OF AUTOMOTIVE ENGINEERING Department of Combustion Engines

3.4 Complete Turbine Fitting Algorithm

As the three main sources of uncertainty related to the turbine map fit quality have been
addressed one-by-one using optimization techniques, it is convenient to take a more
global look at the overall process. In the first place, all optimization steps cannot be
performed simultaneously, because they would influence each other and the algorithm
would diverge. On the other hand, as the subsequent optimization steps backward-
influence the earlier ones (in terms of the location of the optimum), higher fit quality
can be achieved by repeating the process multiple times. Therefore, the complete
turbine map fitting algorithm consists of three optimization tasks repeated in a loop, in
which the best properties of the functions describing the optimum BSR, the maximum
efficiency and the optimum mass flow rate are sought. This procedure finishes after the
change of the RMS deviations of both the efficiency and corrected mass flow rate
between two subsequent loops is lower than 0.001% (see Figure 63).
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Figure 63: Convergence of the complete turbine map fitting algorithm (the objective
function is a sum of the efficiency and corrected mass flow rate RMS deviations)

Plotting of the objective function value at the end of each main loop confirmes that
repeated optimization enables gradual reduction of the overall model error (see
Figure 63). An evaluation of the final map fit quality is provided in Table 7.

Table 7: Statistics of the map fit quality with the complete algorithm

With optimization Without optimization
Efficiency Mass flow Efficiency Mass flow

Minimum error -2.65% -0.208% -5.09% -1.25%
Maximum error 1.86% 0.146% 2.85% 0.49%
Mean absolute 0.50% 0.067% 0.77% 0.42%
error

Mean (raw) -0.19% 0.005% -0.42% -0.27%
error

Median (raw) -0.10% 0.010% -0.27% -0.07%
error

RMSE 0.710% 0.085% 1.22% 0.57%
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Based on the comparison with the initial map fit optimization (see Chapters 3.1, 3.2 and
3.3), it can be concluded that the repeated process helped to improve mainly the
corrected mass flow rate fit quality. Its RMS deviation lowered from 0.361% to 0.085%,
while the overall efficiency error reduced from 0.720% to 0.710% (see Chapters 3.3 and
3.2). The final and the original optimum BSR functions are compared in Figure 64.
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Figure 64: Comparison of the optimum BSR function at the end of the complete turbine
fitting process (full line) with the initial non-optimized one (dashed)

The corresponding fully extrapolated efficiency map is shown in Figure 65. It can be
noted that now the maximum efficiency curve is located further away from the data
points of the highest speed line (compare to Figure 59).
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Figure 65: Fully extrapolated efficiency map at the end of the complete turbine fitting
process (full lines) and the initial non-optimized one (dashed)
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The fully extrapolated corrected mass flow rate map is included in Figure 66. Compared
to the initial optimization (see Figure 61) the speed lines are even more condensed at
low expansion ratios. Also, the distance of the optimum corrected mass flow rate curve
from the data points of the highest speed line is increased again (like in the case of
efficiency).
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Figure 66: Fully extrapolated mass flow rate map at the end of the complete turbine
fitting process (full lines) and the initial non-optimized one (dashed)

3.5 Evaluation

After the complete turbine performance fitting algorithm has been implemented, it can
be concluded that optimization is a useful tool to improve the overall map fit quality.
Further, it has been demonstrated that among the tested options the simplex method
provides the biggest robustness, although the trajectory of search for the optimum is
not necessarily the shortest. Overall, the computing time needed to fit the sample gas
stand map using the above described procedure is less than half a minute on a
moderately powerful contemporary PC.

In terms of fit quality, the standard procedure (as inspired by the existing commercial
solution — see Chapter 1.1.10) shows a good performance with respect to capturing of
both the overall trend of efficiency and the corrected mass flow rate near the optimum
points. However, the shape of the corrected mass flow rate map in the extrapolated
regions is not always satisfactory, which is discussed further in the following chapter.
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4 NEW TURBINE FITTING ALGORITHM

Fitting a turbine map obtained by hot gas stand measurement is a particularly difficult
task mainly for the low range of measurable operating conditions (see Chapter 1.1.4). It
is, therefore, highly desirable to find ways to improve the accuracy of extrapolation
based on physics principles. In Figure 61, for example, the speed lines are highly
condensed at high expansion ratios, which is unexpected for a radial turbine. At the
same time, Chapter 2.4.3 shows a strong correlation between the shape of the
normalized mass flow rate function and the spread of speed lines in the corrected mass
flow rate map, so it would be convenient to refine it. One possibility is to focus on the
intercept of the normalized mass flow rate function with the normalized BSR-axis,
which is linked to the points where speed lines cross the PRT-axis in a corrected mass
flow rate map. In other words, it links the expansion ratio at zero mass flow rate to the
spinning speed. Since most automotive turbochargers use radial turbines, the expansion
ratio at zero mass flow rate increases with spinning speed due to the centrifugal force.
The theory of radial equilibrium can be used to describe this relationship (see [11]).

4.1 Radial Equilibrium

The main idea of the radial equilibrium theory is that the pressure at the inlet of
a turbine wheel is increased due to the centrifugal force acting on the mass of fluid
enclosed in blade channels (see Figure 67).
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Figure 67: Radial equilibrium of a fluid element in the turbine blade channel

As there is zero mass flow rate, the system is assumed to be in equilibrium state. This
simplifies the determination of the pressure distribution across the fluid, because the
only force to balance is the centrifugal. It acts on every fluid element only in the radial
direction (see Figure 67), so the equation of equilibrium can be written as [11]

d
(pR + ﬁdR) dxde — prdxde = dF, (111)

where p [Pa] is the pressure, pr [Pa] is the pressure at the radius R [m], x [m] is the axial
coordinate, ¢ [rad] is the polar coordinate and dF, [N] is the centrifugal force acting on
the fluid element. The latter can be calculated based on the second law of motion
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dF, = pdxdpdRw?*R (112)

where p [kg/m?3] is the local fluid density and w [rad/s] is the angular velocity. At this
point, it is good to emphasize that the objective of the centrifugal effect evaluation is to
improve the fidelity of extrapolation of corrected mass flow rate. Therefore, the
reference fluid properties are used in line with the theory of turbomachinery similarity.
Any differences from the actual working fluid properties are accounted for by the
correction of the mass flow rate and the wheel spinning speed (see Chapter 1.1.7).

By the combination of Equations 111 and 112 is obtained

d

ﬁdxdcde = pdxdpdRw?R (113)
Further simplification leads to an expression for the pressure difference in a fluid
element

dp = pw?RdR (114)

Local fluid density in Equation 114 can be approximated by the adiabatic compression
process [11]

1
Pz _ (@)m (115)
P1 P1

where p; [kg/m3] and p; [Pa] are the density and the pressure (respectively) at the
beginning of compression, p, [kg/m3 and p, [Pa] denote the corresponding quantities
at the end of compression. Introduction of the adiabatic process in Equation 114 gives

1

dp = ps (pﬂ)“’"’l W?RdR (116)

1

The complete pressure difference between the wheel inlet and outlet points can be
obtained by integration after the separation of variables

1 1

p_@dp = plpl_@szdR (117)

It needs to be emphasized that the fluids in the volumes adjacent to the turbine wheel
are assumed to be stationary, which means that there are no pressure gradients. This is
particularly important at the turbine wheel outlet, where the radius of the blade channel
spans from the hub to the blade tip (see Figure 67). To obtain the correct pressure
difference, mean-flow radii (both inlet and outlet) must be used as integration limits.
The mean-flow radius is defined as the root-mean-square of the minimum and the

maximum radii [11]
Rrus = 1/R12nin + Rfax (118)
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where R,,;, [m] is the radius of the blade channel at the hub and R,,,,, [m] is the blade
tip radius (see Figure 67). Integration of Equation 117 gives

Yexh Yexh—1 Yexn—1 1 -1
14 Zx— 1 <Pz Vexh —py Yexh | =2 p1Py Vernw? (RS pus — Ri rms) ~ (119)
ex

where R; pys [m] is the bigger mean-flow radius and Ry pys [m] is the smaller mean-
flow radius. Reorganization of Equation 120 enables the isolation of the expression for
the overall pressure ratio induced by the centrifugal force as follows

¥ p Yexn—1 p Yexn—1 1
exh ( 2) Yexh ( 1) Yexh _ —-1..2(p2 2
e [(= — (= =—p;p; tw?(R —R (120)
Yoxn — 1 [ P1 1 ] 2 1M1 ( 2_RMS 1_RMS)

Further simplification produces the final formula [11]

Yexh

P2 Yexn—1 1 Yexn—1
P2 _ |4 2(p2  _ p2 ] (121)
P1 [ * 2Vexn TexnT1 @ ( 2-RMS LRMS)

where T; [K] is the temperature at the turbine wheel outlet. It can be shown that the
same pressure ratio is obtained using the corrected turbine speed and the reference
outlet temperature, which are available in the standard turbine map. The modified
equation is

Yexh
b2 Yexn—1 1 (nNT)Z , , Vexh—-1 -
=11+ R _R ( )
P1 2Yexn TexnTir rer \ 30 ( 2_RMS 1_RMS)

The blade speed ratio at zero mass flow rate can be derived from Equations 46 and 122.
On top of that, a significant simplification of the resulting formula is possible as

Rl_RMS

2 2
\/ Rl_RMS - RZ_RMS

BSRwr int = (123)

where BSRy, 1 in: [-] is the blade speed ratio related to the intercepts of speed lines with
the x-axis in the corrected mass flow rate map. To implement the theory of radial
equilibrium in the turbine performance model, the normalized mass flow rate must
reach zero at the appropriate normalized blade speed ratio (see Figure 68). The latter is
obtained from Equation 98, while the optimum blade speed ratio is defined by
Equation 97 and the expansion ratio at zero mass flow rate for the highest corrected
speed in the map data (see Equation 122). The properties of the affected fitting function
are given by Equation 106.
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Figure 68: Normalized mass flow rate function with the intercept at zero mass flow rate
determined using the theory of radial equilibrium (full line) and the baseline fit (dashed)

Figure 68 shows that the shape of the normalized mass flow rate function changed
significantly after the introduction of the equilibrium point. The resulting fully
extrapolated corrected mass flow rate map is displayed in Figure 69.
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Figure 69: Fully extrapolated corrected mass flow rate map generated using the
updated algorithm constrained by the radial equilibrium point (full lines) versus the
baseline fit (dashed)

The newly extrapolated speed lines are condensed at high PRTs, which is not the desired
state (see Figure 69). Therefore, further research is needed to investigate the context of
the high-end corrected mass flow rate extrapolation. A convenient way is to compare
the actual turbine behaviour with that of an ideal nozzle.
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4.2 Ideal Nozzle Analogy

In the concept of ideal nozzle, the isentropic expansion of an ideal gas through an orifice
of a fixed cross section is assumed. The ratio of the inlet and outlet pressures is constant
and determines the spouting velocity (see Equation 106). The mass flow rate is obtained
as a product of flow velocity, orifice area and gas density (all referred to the critical cross
section). The latter can be derived from the isentropic expansion process (see
Equation 115)

1
) p2 \¥
My = CoAnpy < > (124)

1_tot

where m, [kg/s] is the mass flow rate and A,, [m?] is the orifice cross section. Corrected
mass flow rate is obtained according to Equation 40

. P2 2V Ty tor P
Mo _corr = CoAnpP1 ( > of Lref (125)

Pitot) Pitot Trer

NG

It must be emphasized that the actual spouting velocity cannot rise above the speed of
sound in the orifice, which is commonly referred to as choke. Under the conditions of
choke, further increase of the expansion ratio does not lead to any increase of the flow
velocity in the orifice, unless the gas temperature increases too. This effectively limits
the minimum static pressure in the orifice, which is commonly referred to as the critical
pressure. It can be determined using the formula for the critical pressure ratio [9]

y
2 v-1

_c (126)
y+1

Berit =

where B..i: [-] is the ratio of the static pressure inside the orifice and the inlet total
pressure. Although the maximum effective expansion ratio at choke is limited, the mass
flow rate still increases together with the inlet pressure due to the increasing gas density
(see Equation 124). The corrected mass flow rate, on the other hand, cannot increase
further, because the effects of the inlet gas pressure and temperature are eliminated in
it. This is shown by the following rearrangement of Equation 125

y L 1 1 pref
Mo_corr_crit = ZCp [1 — Berit ¥ ]An ;ﬁcn’ty— (127)

v Tref

where 1 [J/(kg-K)] is the specific gas constant (the inlet gas density is no longer part of
the formula). The relationship between the corrected mass flow rate through an ideal
nozzle and the expansion ratio is visualized in Figure 70.
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Figure 70: Corrected mass flow rate through the ideal nozzle

The fact that a real turbine cannot be modelled as the ideal nozzle has two major
implications. First, a real turbine is choked at a different expansion ratio. Second, the
corrected mass flow rate is affected by the centrifugal force and decreases with the
spinning speed at a constant expansion ratio. The latter effect is, however, negated at

zero turbine speed.
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Figure 71: Fully extrapolated corrected mass flow rate map with non-decreasing
optimum corrected mass flow rate (full lines) vs. the baseline fit (dashed)

Because the corrected mass flow rate at zero turbine speed is proportional to the
optimum corrected mass flow rate (see Equation 105), it can be concluded that the

87



Ing. Adam Vondrak Fitting and Extrapolation of Turbocharger Turbine Maps

optimum corrected mass flow rate must be non-decreasing with respect to expansion
ratio. Once this condition is implemented in the fitting algorithm, the fully extrapolated
corrected mass flow rate map shown in Figure 71 is obtained. At the same time,
however, the input data points at the highest speed line are no longer fitted. Although
the optimum corrected mass flow rate no longer increases above the expansion ratio at
choke, the optimum corrected turbine speed does, which is in alignment with the linear
shape of the optimum BSR function (see Figures 32 & 76). Therefore, every speed line
must cross the optimum corrected mass flow rate at certain expansion ratio, which
means that the corrected mass flow rate at every non-zero speed line must be
monotonically increasing with respect to expansion ratio. However, this behaviour is in
contradiction to the measurement. Furthermore, if the theory of radial equilibrium were
assumed to approximate the centrifugal effect at non-zero mass flow rates, it would
imply that the offset with respect to expansion ratio is independent of the turbine inlet
pressure (see Equation 122) and all speed lines should be parallel at choke. The only way
all these constraints can be satisfied at the same time is by keeping the optimum
corrected speed constant above the expansion ratio at choke.

4.3 Optimum Corrected Speed Limitation

Based on the findings introduced in Chapter 4.2, the optimum corrected speed should
remain constant above the expansion ratio at choke to enable proper fitting of the
corrected mass flow rate. This means that the optimum blade speed ratio no longer
depends on expansion ratio under the conditions of choke, because the corresponding
isentropic spouting velocity is limited (see Equation 45). Therefore, the topology of the
affected characteristic function of the turbine performance model must be updated. For
this purpose, a piece-wise polynomial is a convenient solution (see Figure 72).
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Figure 72: Optimum blade speed ratio spline with the limitation at choke

Also, the blade speed ratio at every operating point of the map must be calculated
respecting the isentropic spouting velocity limit too. On the contrary, normalized blade
speed ratio is independent of the isentropic spouting velocity and can be determined
simply as the ratio of the actual and optimum corrected speeds (see Equation 98)
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BSRyorm = (128)

Turbine operating points of the same speed line are associated with the same
normalized blade speed ratio under the conditions of choke. Furthermore, the
maximum turbine efficiency is defined relative to the corrected speed in the standard
algorithm introduced in Chapter 1.1.10 (see also Chapter 2.1.3). This would produce a
constant maximum efficiency at choke. To interpret such a behaviour, it is convenient
to take a closer look at the loss mechanisms in a turbine stage.

At choke, it is assumed that the wheel-inlet flow velocity and the absolute flow angle (in
stationary frame of reference) are independent of expansion ratio. Therefore, it can be
concluded that the highest efficiency is achieved at such a wheel circumferential speed,
which results in the most convenient relative flow angle at the leading edge of the
turbine blades (see Figure 3). On the one hand, this concept would support the idea of
a constant optimum corrected speed at choke, while on the other hand there are further
loss mechanisms, which must be considered too.

Most importantly, certain loss is always related to the velocity and density of the wheel
exiting gas, which take away otherwise useful kinetic energy. Although the fluid cannot
accelerate beyond the speed of sound in and upstream of the critical cross section, it
can do so in the downstream channel provided its cross-section area is larger. In such a
case, the working gas can either finish the expansion before exiting the turbine wheel,
or it can expand further in the outlet diffuser. Based on the specific turbine stage
geometry, this process is related to a bigger or a smaller overall efficiency loss.

Based on the above analysis, it can be concluded that the idea of a constant optimum
corrected speed at choke is feasible, but the maximum turbine efficiency must remain
variable with expansion ratio. This can be achieved by making the spline a function of
expansion ratio directly. Although the optimum corrected mass flow rate should stay
constant at choke, it is beneficial to be defined relative to the isentropic spouting
velocity, since a strong correlation is expected there (see Figure 73). Another advantage
of this approach is that the relationship between the isentropic spouting velocity and
expansion ratio involves a square root, so that the output is tangent to the vertical for a
zero-valued argument (with respect to the expansion ratio). That is very important,
because the curve of optimum corrected mass flow rate must be vertical at the intercept
with the expansion ratio axis (at PRT = 1, see Figure 71). This process can be
interpreted as a transformation of coordinates.

It needs to be emphasized that the expansion ratio at choke is unknown in the beginning
of the fitting process and must be obtained by optimization. An assumption that the
optimum corrected mass flow rate is tangent to the horizontal at choke determines the
required topology of the corresponding fitting function. The initial spline is defined by
two end-points and two end-slopes. The first end-point is placed in the origin of
coordinates and the second end-slope is set to zero (horizontal tangency). The first end-
slope, the isentropic spouting velocity at choke and the relative corrected mass flow rate
at choke are obtained using the simplex method, the objective of which is to minimize
the average squared deviation from the measured data (least squares fitting).
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Figure 73: Optimum corrected mass flow rate as a function of isentropic spouting
velocity (cq)

As an important consequence, there is no optimum expansion ratio associated with the
speed lines above the choke speed limit, so they cannot intersect with the maximum
efficiency curve (see Figure 74).
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Figure 74: Fully extrapolated efficiency map with a sharp limitation of the optimum BSR

A simple limitation of the optimum blade speed ratio results in sharp bends of speed
lines at the choke expansion ratio (see Figure 74). Therefore, the transition to the choke
region must be made smooth. The easiest way is to split the optimum blade speed ratio
curve in three intervals that a piece-wise polynomial is defined on.
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Figure 75: Extrapolated efficiency map with a smooth limitation of the optimum BSR

In Figure 75 it is shown that even a smoothed out optimum BSR function is no guarantee
for smooth speed lines in the fully extrapolated efficiency map.
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Figure 76: Optimum corrected speed for the smooth limitation of the optimum BSR
To avoid the sharp changes in normalized efficiency, there must be no sharp changes in
the normalized BSR (see Equation 128). Therefore, the optimum BSR function must be
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tangent to the curve of constant corrected speed at choke (see Figure 76). Nevertheless,
the optimum BSR must remain constant at the expansion ratios above the choke point
(see Figure 77).
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Figure 77: Fully extrapolated efficiency map with a tangential limitation of the opt. BSR

The impact on the corrected mass flow rate extrapolation can be assessed in Figure 78.
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It has been confirmed that the measured data points can be reasonably fitted using the
algorithm with the limited optimum corrected speed. Furthermore, the fully
extrapolated corrected mass flow rate map meets the requirements identified in
Chapter 4.2 (see Figure 78).

4.4 Fit Quality

After the sample turbine map obtained by a hot gas stand measurement is fitted, the
quality of the new performance model can be evaluated. The deviations of the efficiency
and the corrected mass flow rate at each operating point are evaluated to enable the
calculation of the standard statistics (see Table 8).

Table 8: Statistics of the sample turbine map fit quality (the new algorithm used)

Efficiency Corrected mass
flow rate

Minimum error -1.04% -0.29%
Maximum error 1.13% 0.40%
Mean error -0.04% 0.01%
Median error 0.00% -0.02%
Mean absolute error 0.31% 0.13%
MSE 0.18 0.03

RMSE 0.43% 0.16%

Compared to the initial non-optimized fitting of the sample turbine map (see Table 2),
the new algorithm enabled the reduction of the efficiency root-mean-square error from
1.22% to 0.43% and from 0.58% to 0.16% for the corrected mass flow rate. The
distribution of error size is displayed in Figure 79.
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Figure 79: Histograms of fit error size for the efficiency (left) and the corrected mass
flow rate (right)
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It can be concluded that the measured efficiency is noisier than the corrected mass flow
rate. Also, a more detailed view at the error at each operating point is provided in
Figure 80, where it is made possible to distinguish between each speed line.
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Figure 80: Fit error size as a function of data point index for the efficiency (left) and the
corrected mass flow rate (right)

The biggest uncertainty is related to the lowest speed lines (see Figure 80), which is a
similar conclusion as in the case of the initial fit (see Chapter 2.3.1). Nevertheless, almost
all operating points deviate by less than one percentage point on efficiency and by less
than zero-point-four percent on corrected mass flow rate, which is a very good fit.

4.5 Remarks on Implementation

The new turbine fitting algorithm is initialized by the identification of speed lines and
the operating points with the highest efficiency in the input data (see Chapter 2.1.1).
The five fitting functions model the same variables as in the baseline method, but the
way they are defined is different. First, the maximum efficiency and the optimum
corrected mass flow rate are functions of isentropic spouting velocity. The latter has a
topology adjusted according to the theory of choke with the critical expansion ratio
determined by optimization (see Chapter 4.3). The optimum BSR is initially fitted by a
line and transformed into a spline after the critical expansion ratio is introduced. The
linear part, nevertheless, retains its initial slope and the intersection with the y-axis (see
Figure 77). Then, the normalized efficiency and mass flow rate are fitted in the standard
way, except that the theory of radial equilibrium is accounted for with the latter (see
Chapter 4.1). Optimization is applied to find the best properties of the characteristic
functions, such that the minimum mean square error of the efficiency and the corrected
mass flow rate is obtained. The complete process is iterative as described in Chapter 3.4.
In the new algorithm, however, each main step consists of five successive optimization
loops.
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Maximum efficiency spline

The process of maximum efficiency spline optimization is described in Chapter 3.2. With
the new fitting algorithm, no optimum points are linked to the speed lines above the
corrected speed at choke, but the highest-expansion-ratio operating point at each speed
line can be used to substitute the missing spline nodes. Further, a linear extrapolation is
applied to cover the full range of expansion ratio. Only in the case the maximum
efficiency spline would have negative slope at its lower end, a flat extrapolation is used
to avoid the extension above one (see Figure 77).

Lower end-point of the optimum BSR spline

The three parts of the optimum BSR spline are identified in Figure 81. The slope of the
linear piece is determined by the key-points A and B, while the optimum BSR at the
expansion ratio one (the point A) is the value to be optimized. The y-coordinate of the
key-point B is defined by the optimum BSR at choke, which can be determined based
on the expansion ratio and the optimum corrected speed at choke. In the initial iteration
step, the expansion ratio (x-coordinate) at the second key-point is equal to the one at
choke. Later, it is determined by an independent optimization process.
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Figure 81: Optimum blade speed ratio spline

Choke point

Adjustment of the expansion ratio at choke has impact on the optimum BSR spline and
the optimum relative corrected mass flow rate spline. The optimization process involves
searching for both the expansion ratio and the optimum corrected speed at choke,
which are translated into the blade speed ratio at choke. Therefore, the optimum BSR
spline must be updated, but its linear part remains unaffected (the line connecting the
point A and the transition point in Figure 81). The control point B is newly defined as a
cross section between an extended linear part starting in the point A and a constant
BSR line passing through the choke point. Since the adjustment of the optimum
corrected speed at choke impacts the high-end corrected mass flow rate fit, the relative
corrected mass flow rate at choke must be part of the optimization process. Its new
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value is implemented in the corresponding spline in such a way that only the last piece
is affected. The current algorithm uses only a subset of the optimum operating points
linked to each speed line to define the nodes. By selecting the first four optimum points,
where the expansion ratio is lower than two, it is safeguarded that the optimum relative
corrected mass flow rate spline is non-decreasing (see Figures 72 & 78).

Control point B of the optimum BSR spline

To make sure the extended linear piece (the red dashed line in Figure 81) does not fall
below the BSR at choke at the corresponding expansion ratio, a constrained one-
dimensional optimization is applied (see Chapter 1.4.2). The x-coordinate of the control
point B can vary between the expansion ratio two and the one at choke, while the
y-coordinate is kept at the choke BSR level. By this, the slope of the linear piece is
updated (the control point A remains unchanged) and the coordinates of the transition
point are determined as the mid-point of the line segment AB.

Optimum relative corrected mass flow rate

The spline is defined on the interval delimited by the origin of the coordinate system
from the left and the choke point from the right. The breakpoints correspond to the
optimum operating points at each speed line. However, above the isentropic spouting
velocity at the expansion ratio two, no more breakpoints are included to make sure the
transition to choke is non-decreasing (see Figure 73).

4.6 Robustness Check

The new turbine map fitting algorithm proved to be reasonable at modelling the sample
turbine stage performance, the source data of which was acquired on a hot gas stand.
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Figure 82: Dyno data fitted using the new algorithm (fully extrapolated efficiency map)
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To check the robustness of the method, the same dyno map was fitted as in the case of
the baseline algorithm (see Chapter 2.3.3). Based on the assessment of the fully
extrapolated efficiency map, it can be concluded that a good fit quality is achieved with
the dyno map too (see Figure 82, the root-mean-square error is 0.38%). Furthermore,
the new algorithm demonstrated to be capable of predicting the maximum turbine
efficiency in areas, where sub-optimal measured data points only are available (see the
first two speed lines in Figure 82). This is made possible by the application of
optimization methods and the rule that all turbine operating points should lie on the
same curve in the normalized efficiency versus normalized blade speed ratio diagram.
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Figure 83: Fully extrapolated corrected mass flow rate map generated using the data
obtained on a turbine dynamometer (fitting with the help of the new algorithm)

The extrapolated corrected mass flow rate map in Figure 83 shows a good agreement
between the model and the input data too, although some points are deviated more
than in the case of efficiency (the root-mean-square error is 0.59%).

All'in all, the new turbine performance fitting algorithm proved to be effective at dealing
with both the hot gas stand and dyno maps. Especially in the latter case, a huge fit quality
improvement could be observed compared to the baseline algorithm, which did not use
optimization (see Chapter 2.3.3).
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5 APPLICATIONS OF FITTED TURBINE MAPS

A fitted turbine model makes it possible to interpolate or extrapolate the performance
properties at any operating point within its domain of definition. This is particularly
important in conjunction with engine thermodynamics simulations as explained in
Chapter 1.1.9. Another big advantage, though, is the possibility to compare different
turbine stages at equal operating conditions.

5.1 Map Database & Fitting Workflow

To compare multiple turbine stages at a time, the corresponding performance maps and
the fitted models must be available to the application. Required data can be stored
either as variables (e.g. using the .mat file) or in a database. The main difference is that
a database system is equipped with built-in data management tools, which provide
enhanced functionality. To the frequently used belong the searching, the filtering, the
merging of related entries or the ordering according to selected parameters. On top of
that, database systems include multi-access management, which makes it possible for
multiple users to work with the same database file in the same time.

In this work, the SQLite 3 database was selected for its availability and an easy
implementation in a MATLAB application (see [25]). It has a tabular structure, where
each type of input is represented by one table (e.g. gas stand maps, dyno maps, fitted
performance models). Within a table, variables are organized in columns, while the data
related to each entry is stored at a row. In the user interface, the database content is
listed to facilitate the selection of desired inputs (see the left-hand-side column in
Figure 87).
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Figure 84: User interface for the database interactions related to gas stand maps

The developed application is equipped with a dedicated interface for a user-friendly
creation of new database entries. In the case a measured map is needed to be entered,
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the user must provide information required to identify the origin and the features of the
related hardware. Then, measured operating points are inserted in a tabular format (see
Figure 84). Once raw data is fed into the database, it can be fitted by a turbine
performance model to enable all postprocessing features built in the application. The
initiation of this process takes one click, but the quality of the output must be checked
before saving (see Figure 85). In the case individual outlying points are identified, it
should be considered that they might be measurement errors (especially if there is a
clear misalignment with an overall trend). In such a situation, selected operating points
can be ignored to avoid model distortion after a repeated fitting. This feature supports
mouse picking, while the associated points are immediately marked in the database.
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Figure 85: Initial fit quality assessment with the possibility to ignore outlying operating
points (highlighted by the red circle)

The process of a gas stand map fitting takes about half a minute on a contemporary
personal computer. However, additional time is needed to feed the raw measured data
into the database (see Figure 84). Altogether, one measured map can be entered, fitted
and saved in the database in a couple of minutes. That is ok, unless a large number of
maps must be processed at once. Nevertheless, subsequent postprocessing operations
are automated and require only the selection of desired database entries (e.g. to
compare turbine efficiencies).

For the eventuality it is needed to apply a fitted turbine performance model outside of
the developed application, an export function is integrated. The output is a fully
extrapolated map in a tabular form, which can be copied and pasted in other software
tools. The user can define the number of speed lines to be generated, as well as the
number of operating points at each. Among the uses of this output is the simulation of
a turbocharged combustion engine working cycle. In the case of the GT-SUITE, the so-
called grid map format is used to import the data, see further in Chapter 5.5.
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Figure 86: Exporting of a fully extrapolated turbine performance map

5.2 Comparison of Turbine Performance

To the standard methods of turbine stage aerodynamic adaptation to specific engine
requirements belong the selection of the wheel size, the trim and the A/R parameter of
the volute (see Chapter 1.1.2). The purpose of each feature is mainly to define the mass
flow capacity (ordered from the most effective to the least effective), however there is
certain impact on the efficiency pattern too. In a typical case, turbine wheel diameter is
selected based on both the flow capacity requirement and the convenient speed
matching with the compressor. Further, turbine trim is usually an inherent property of
a specific blade design and cannot be easily changed (complete mechanical qualification
would be required). Adaptation of the A/R parameter, on the other hand, can be done
freely within certain range, which makes it the most frequently used method of turbine
flow capacity fine-tuning. Therefore, the visualization of its implications on turbine
performance is a commonly requested task.

The necessary first step is to gather a set of turbine maps of the same blade design and
wheel diameter that cover certain range of A/R (see Figure 87). In the next phase,
performance models are fitted to the measured data to enable all postprocessing
features, which is possible only under the conditions an agile data management system
is available. This requirement is addressed by the implementation of the SQLite 3
database, which proved to be advantageous in multiple ways (see [25]).
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Figure 87: Raw corrected mass flow rate linked to the selected database entries

Plotting of raw corrected mass flow rate for a common range of A/R shows that the flow
capacity of the largest option is roughly by a half bigger than the smallest (see Figure
87). The comparison of raw efficiency is less straightforward though (see Figure 88).
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Figure 88: Raw efficiency linked to the selected database entries

Since the maximum-efficiency operating points are generally not included among
measured data, it may be difficult to draw a clear conclusion about the performance
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trade-offs between multiple turbine options. That is where fitting may help to better
understand the overall trends provided the quality is sufficient for the required level of
resolution. An advantage worth mentioning is that a turbine performance model
inherently contains information about the location of the maximum-efficiency operating
points, which makes it easy to plot.

Thermo-Mechanical Efficiency

1 1 1 1 | 1 1 J

1 1.5 2 25 3 3.5 4 4.5 5
Expansion Ratio [-]

Figure 89: Fitted maximum efficiency vs. expansion ratio for a range of A/R

From the comparison in Figure 89 can be concluded that increasing value of A/R
parameter results in tilting of the maximum-efficiency curves. While at low expansion
ratios the highest maximum turbine efficiency can be achieved with the largest volute,
the opposite is true at the high end. An interesting behaviour can be identified near the
expansion ratio two, where the maximum turbine efficiency is almost independent of
the A/R parameter.

Another clear trend, that can be identified, is a sudden increase of the maximum
efficiency below the expansion ratio one point five. This is not a true behaviour of the
turbine, but an implication of heat transfer that influences the measured compressor
outlet temperature on a hot gas stand. The studied turbochargers are equipped with
water cooling, but the coolant temperature is kept at ninety degrees Celsius to emulate
on-engine conditions. That is higher than the compressed air temperature during low-
speed mapping. Therefore, higher compressor outlet temperature is measured due to a
heat inleak from the centre housing. As a result, the calculated compressor efficiency
appears lower and the turbine efficiency determined from power balance with the
compressor appears higher (see [19]).

Optimum corrected mass flow rate can be plotted over expansion ratio in a similar way
to the maximum efficiency. In this case, the appearance of such a chart is very similar to
the one showing the raw data (see Figures 87 and 90). Nevertheless, the constraints of
the constant optimum corrected mass flow rate at high expansion ratios and the
crossing of the origin of coordinates are well illustrated in it.
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Figure 90: Optimum corrected mass flow rate vs. expansion ratio for a range of A/R
To the remaining functions constituting a turbine performance model belong the

optimum BSR, the normalized efficiency and the normalized mass flow rate. They are
visualized for the same set of turbine maps like in the above charts (see Figure 91).
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Figure 91: Normalized efficiency (left) and normalized mass flow rate (right) vs.
normalized blade speed ratio for a range of A/R

The functions of normalized efficiency and normalized mass flow rate in Figure 91 show
the important turbine behaviour at sub-optimal operating conditions. The flatter the
normalized efficiency, the more robust is the turbine stage against variation of operating
conditions (pulsation, speed match, altitude etc.). In the case of the normalized mass
flow rate, a steeper relationship means a bigger variation of corrected mass flow rate
with the spinning speed (i.e. stronger centrifugal effect).
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Figure 92: Optimum blade speed ratio (left) and optimum corrected speed (right) versus
expansion ratio for a range of A/R

In some cases, however, it is desired to display these relationships in the physical scale
(not normalized). For this purpose, a fixed expansion ratio must be selected.
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Figure 93: Efficiency vs. blade speed ratio at the expansion ratio two for a range of A/R

Although there is blade speed ratio on the x-axis in Figure 93, a constant expansion ratio
causes that BSR is directly proportional to spinning speed (see Equation 46). Therefore,
a lower BSR at the peak means the maximum efficiency would be achieved at lower
spinning speed. Similar is the situation in the case of corrected mass flow rate (see
Figure 94).
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Figure 94: Optimum corrected mass flow rate vs. blade speed ratio at the expansion
ratio two for a range of A/R

5.3 Compound Charts

Another common way to compare different turbine stages is by combining the efficiency
and the corrected mass flow rate at the same operating conditions into a single chart
(sometimes referred to as an “eyebrow chart”). In a typical case, the maximum efficiency
is plotted against the optimum corrected mass flow rate at a constant expansion ratio
for a set of maps distinguished by the A/R parameter (see Figure 95).
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Figure 95: Max. efficiency vs. opt. corr. mass flow rate at PRT = 2 for a range of A/R

It is possible to generate a similar chart as in Figure 95, but extended by another
dimension for the expansion ratio (see Figure 96).
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Figure 96: Maximum efficiency vs. expansion ratio vs. A/R parameter
The comparison of maximum efficiency curves for a range of A/R parameter in Figure 96

confirms that their slope decreases together with the A/R. The corresponding optimum
corrected mass flow rate surface is displayed in Figure 97.
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Figure 97: Optimum corrected mass flow rate vs. expansion ratio vs. A/R parameter

Figure 97 shows an almost linear relationship between the flow capacity and the A/R
parameter. Also, the higher-positioned curves are notably sharper bent, which suggests
an increasing effect of centrifugal forces on the mass flow rate with larger volutes.
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5.4 Size Effect

After the relationship between the maximum turbine efficiency and the volute size has
been resolved, the investigation can be extended by another important parameter,
which is the wheel diameter. The product is sometimes referred to as the size effect.
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Figure 98: Composition of eyebrow charts generated at the expansion ratio two for
a range of turbine sizes sharing the same wheel aerodynamic design

The above diagram was created with the help of 53 fitted turbine maps. It is possible to
generate a similar chart for the optimum performance with the wheel size on the x-axis.
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Figure 99: The optimum corrected mass flow rate and the maximum efficiency vs. the
turbine wheel diameter at the expansion ratio two
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5.5 Engine Simulation

The ultimate application of a turbine performance model is an engine performance
simulation. In GT-SUITE™, which is a commonly used simulation tool, fitted turbine
maps can be imported in the so-called grid format. It consists of the same data as a
standard turbine map (corrected speed, expansion ratio, reduced mass flow rate and
efficiency), but it is extrapolated to the full operating range (see Chapter 2.2). Thanks to
that, the application can use this data to simply interpolate required turbine
performance properties without the need to perform any further fitting.

To compare the impacts of a default (GT-SUITE) and the proposed fitting algorithms on
engine performance, a 1.2 L three-cylinder engine model was selected. The example
turbine stage studied in the previous chapters (35.5 mm wheel diameter) well matches
to this engine and will continue to be used in the following paragraphs.

An important feature of the selected engine is that its low-end performance is limited
by the available turbine power (wastegate closed). Therefore, any difference in the
fitted turbine efficiencies is expected to have impact on the achievable break torque.

5.5.1 Steady-state performance with the gas stand map

For purpose of a steady state comparison, an engine simulation mapping the full load
performance was selected. At these conditions, the throttle valve is fully opened and
brake torque is controlled by the boost pressure. In the low-end region, the turbine is
supplied by an insufficient exhaust gas mass flow rate, which results in the power deficit
to drive the compressor and deliver the required boost pressure. Therefore, the
maximum torque cannot be reached. At higher engine speeds, boost pressure is
controlled by the wastegate (turbine by-pass regulation).
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Figure 100: Full load simulation with the fitted turbine maps obtained by a hot gas
stand measurement (red — the default fit, blue — the proposed algorithm)

The biggest difference in the full-load performance can be observed at 1600 rpm?,
where the default fit gives by 7 Nm lower brake torque compared to the proposed
algorithm (see Figure 100). That corresponds to an approximately 3% difference, which
can be evaluated as a good agreement between the two methods. Nevertheless, it is
worth tracking back the root cause for the difference.

! The unit rpm stands for revolutions per minute (equivalent to 1/min).
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Figure 101: Turbine efficiency (ETATM), expansion ratio & corrected mass flow rate
Although the proposed fit yields a lower average efficiency (isentropic power weighted)

at 1600 rpm, the expansion ratio is higher (see Figure 101). Corrected mass flow rate is
almost the same though, which suggests there is a difference between the maps.
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Figure 102: Comparison of the corrected mass flow rate maps generated using the
default (left) and the proposed (right) algorithms

Corrected mass flow rate map with the default fit features condensed speed lines at low
expansion ratios, where the proposed algorithm resolves the centrifugal force effect
(see Chapter 4.1 & Figure 102). This must be evaluated over a complete engine cycle.
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Figure 103: Instantaneous turbine operating points during one engine cycle (left) and
the extrapolated mass flow map as per the default fit (right)
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The analysis of instantaneous turbine operation confirms that the difference in average
expansion ratio is related to the resolution of centrifugal forces effect (see Figure 103).
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Figure 104: Efficiency maps for the default (full lines) & the proposed fits (dashed)

In terms of efficiency, the default and the proposed fits are similar (see Figure 104). The
biggest difference is in the shift of the peak efficiency operating points with respect to
expansion ratio, which is caused by the specific optimum blade speed ratio fitting.

5.5.2 Steady-state performance with the dyno map

Mapping using a turbine dynamometer is different from a hot gas stand as explained in
Chapters 1.1.4, 2.3.3 and 4.6. To compare the turbine models fitted using the default
and the proposed algorithms, the same engine simulation is used as in Chapter 5.5.1.
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Figure 105: Full load torque (green — the default fit, pink — the proposed algorithm)

The impact of a fitting method on the achievable low-end torque is bigger with the dyno

map compared to the case of the gas stand map in the previous chapter (see Figures 100

& 105). The biggest difference can be observed at 1500 rpm, where it is as high as

16.5 Nm or 7.7%. Such a gap is already significant and needs to be further analysed.
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Figure 106: Turbine efficiency (ETATM), expansion ratio & corrected mass flow rate

A non-negligible difference between the two map fits can be observed with respect to
both efficiency and mass flow rate (see Figure 106). In this case, however, an increased
expansion ratio corelates with a higher corrected mass flow rate, which suggests that
efficiency might be the main driver of the low-end torque misalignment.
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Figure 107: Comparison of the default (left) and the proposed (right) fits
Speed lines are condensed again at low expansion ratios in the default fit of corrected

mas flow rate (see Figure 107). The centrifugal effect is, therefore, not properly
captured, which was the case with the gas stand map too (see Figure 102).
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Figure 108: Instantaneous turbine operating points during one engine cycle (left) and
the extrapolated efficiency map as per the default fit (right)
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Plotting of the instantaneous turbine efficiency during one engine cycle showed that the
default fit features an unusual drop at low expansion ratios (see Figure 108).
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Figure 109: Efficiency maps for the default (full lines) & the proposed fits (dashed)

With the default algorithm, maximum turbine efficiency is fitted in such a way that the
highest measured point at any speed line is not exceeded. This enables a conservative
extrapolation, but it may be a disadvantage in the cases, when the maximum efficiency
is not captured by the measurement at one or more speed lines (see Figure 109).

5.5.3 Transient load step with the gas stand map

The speed of a turbocharged engine response to a load step request is critical to the
driver’s perception of a car’s dynamics. At the same time, simulation of transient
turbocharger performance is rather challenging, because the initial spinning speed is
low, while the turbine is fully loaded. This is a difficult-to-capture combination for
conventional mapping techniques and substantial extrapolation must be applied. For
consistency of the results, the same engine model is used as in the full-load simulations.
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Figure 110: Engine brake torque (left) and compressor operating points (right) at a
constant engine speed (gas stand map)
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Overall, the transient performance with the default and the proposed fitting of the gas
stand map is very similar, which, together with the steady-state comparison, confirms a
good agreement between both methods (see Figures 100 & 110). Despite that, a small
advantage can still be identified with the proposed fitting algorithm.
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Figure 111: Turbine performance during the transient operation (gas stand map)

A detailed analysis of the transient turbine operation leads to a conclusion that the
advantage of the grid map is caused by higher efficiency in the beginning of the load
steps and by higher expansion ratio in the end. The first is due to a difference in the
fitted efficiency at expansion ratios above the peak-efficiency point at each speed line,
where the turbine generates the biggest power during pulsating operation (see the
difference in Figure 104). Higher expansion ratio in the end of the transient engine load
steps with the grid map is caused by both higher spinning speed (the better performing
turbocharger spools up faster) and by the difference in corrected mass flow rate maps
(see Figure 102).

5.5.4 Transient load step with the dyno map

The same engine model is used for the simulation of transient engine load steps with
the dyno map (compare to Chapter 5.5.3). In this case, however, a much bigger
difference can be recognized between the speed of brake torque increase with the
default and the proposed fits. Nevertheless, an interesting conclusion is that the
transient engine performance simulated with the turbine maps obtained by the hot gas
stand and the dynamometer measurement is comparable (see Figures 110 & 112).
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Figure 112: Engine brake torque (left) and compressor operating points (right) at
constant engine speed (dyno map)

The default fitting of the dyno map results in a bit slower response at all engine speeds.
A detailed view at the instantaneous turbine performance during the transient load
steps is provided in Figure 113.
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Figure 113: Turbine performance during the transient operation (dyno map)

Turbine efficiency increases very slowly with the default fit in the beginning of the
engine load steps (see Figure 113). This is caused by the unwanted limitation of the
maximum efficiency at low corrected speeds as identified in Chapter 5.5.2. After the
rotor speed increases, turbine efficiency sharply recovers to an expected level. However,
the delay already caused the engine brake torque to rise more slowly compared to the
case of the dyno map fitted by the proposed algorithm.
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CONCLUSION

At the beginning of this dissertation project was the need for a tool that would facilitate
postprocessing of measured turbine maps of automotive turbochargers. This involves
performance data management in the first place, but also its visualisation and numerical
treatment to enable back-to-back comparisons. Furthermore, to assess the differences
at equal operating conditions, efficiency and corrected mass flow rate must be
interpolated or extrapolated depending on the distribution of measured operating
points. Therefore, the input data must first be fitted by a convenient turbine model.

The implementation of a turbine fitting algorithm is the main objective of this work. For
that purpose, a MATLAB™ application has been developed, which enabled testing of
different numerical procedures. The first step was to understand the existing industrial
practice and use it to establish the baseline method (also studied in [A1]). The algorithm
included in GT-SUITE™ was chosen, because it represents a state-of-the-art solution
that is widely used in the industry. However, the process is not exhaustively documented
in available information sources, so custom procedures had to be proposed where
necessary (see [10, 20]). Therefore, the baseline turbine fitting method, as implemented
in the MATLAB application, is not fully representative of the one integrated in GT-SUITE.
Nevertheless, it was possible to conclude that the declared linear relationship between
the optimum blade speed ratio and the expansion ratio does not allow the proper
extrapolation of the corrected mass flow rate. This was the main motivation for the
development of a custom process.

The main difference between the proposed and baseline turbine models is that the new
model features the choke phenomenon. Consequently, optimum blade speed ratio is
limited above the critical expansion ratio in such a way that optimum corrected speed
remains constant. Also, emphasis is placed on the implementation of physics principles
to improve the fidelity of extrapolation. The theory of radial equilibrium is used to
guantify the effect of centrifugal force on the corrected mass flow rate at low expansion
ratios. Further, by the new structure of characteristic functions, it is ensured that
corrected mass flow rate at each speed line is non-decreasing with expansion ratio. That
is the expected behaviour based on an analogy with the discharge through an ideal
nozzle.

Thanks to the application of optimization methods to identify the properties of turbine
performance models, it is possible to estimate the maximum efficiency in situations,
where this maximum is not included among input data points. The mechanism is based
on the assumption that minimization of fit error at sub-optimal operating points can be
used to determine the maximum efficiency at the same expansion ratio. Repetitive
refinement of this relationship during the complete fitting process ensures reasonable
results without impacting convergence.

Initial testing confirmed that the method is functional and robust when fitting the
outputs of hot gas stand and turbine dynamometer measurements. With the help of a
higher-level approximation, it is possible to visualize performance trends related to the
variability of the A/R parameter. A similar approach is followed to plot the relationship
between maximum efficiency and optimum corrected mass flow rate across multiple
turbine sizes. As the last step, exported turbine performance models are used within
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engine steady state and transient load step simulations in GT-SUITE (in the so-called grid
format). In the case of the sample gas stand map, both algorithms (GT-SUITE default and
the proposed one) result in similar engine performance at steady state and transients.
However, with the default fit of the dyno map, transient engine performance is
compromised by overly conservative efficiency extrapolation to low corrected turbine
speeds.

The further evolution of the proposed turbine fitting procedure will involve mainly a
refinement of the middle part of the optimum blade speed ratio spline (the section
between the transition and the choke points in Figure 81). As per the current definition,
the end-slopes are controlled, but the curvature is not. Besides, the MATLAB application
will be extended with additional post-processing features. As of now, variable nozzle
geometry, twin-scroll and sector-divided technologies are not supported, but the
proposed methodology is well suited for this extension. A strong new trend calls for a
separate treatment of the different aspects of turbocharger modelling. Namely, the heat
transfer and bearing friction, both of which are normally included in compressor and
turbine maps obtained by hot gas stand measurements. It will be advantageous to
remove and model these effects independently to use gas stand maps in simulations.
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DEFINITIONS/ABBREVIATIONS

Symbol Unit Meaning
a [-] lower boundary of an interval
a [m/s] speed of sound
A [m?] area (cross section)
Ay [m?] orifice cross section area
b [-] upper boundary of an interval
bgi¢ [-] exponent of normalized efficiency fit
BSR [-] blade speed ratio
blade speed ratio obtained using corrected
BSR o [-] speed and reference temperature
BSRyorm graint | [-] normalized BSR at zero efficiency
BSRyorm wr int [-] normalized BSR at zero mass flow rate
BSRyt int [-] blade speed ratio at zero mass flow rate
c [m/s] fluid velocity in stationary frame of reference
vector of fluid velocity in stationary frame of
c [m/s] reference
C [-] polynomial coefficient
Crit [-] coefficient of normalized efficiency fit
Co [m/s] isentropic spouting velocity
Cm [-] constant part of normalized mass flow rate fit
Cp [J/(kg-K)] specific heat at constant pressure
circumferential component of fluid velocity in
Cu [m/s] stationary frame of reference
d [-] first derivative of a function
smaller wheel diameter (turbine outlet or
dy [-] compressor inlet)
bigger wheel diameter (turbine inlet or
Dy, [m] compressor outlet)
Dy, [m] mean-flow diameter of a wheel
Dy [m] turbine wheel diameter (inlet, mean-flow)
ETATM [-] thermo-mechanical turbine efficiency
F [N] vector of fluid force acting on blades
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f(x) [-] function value at location x
F, [N] centrifugal force (acting on fluid element)
vector of force acting on the fluid in a blade
Fy [N] channel
vector of overall force acting on the fluid in a
Ff overan [N] control volume
h [J/kg] specific enthalpy
hg [-] discretization length
H(x) [-] Hessian matrix at location x
H, [kg'm/s?] vector of momentum flux
_ vector of overall momentum flux in or out of
Hy overan [kg'm/s2] a control volume
momentum vector of the fluid in a blade
Hg [kg'm/s] channel
H, [J/kg] fuel lower heating value
Irc [kg-m2] rotor moment of inertia
k [-] constant
L(x) [-] Lagrange’s polynomial value at location x
Lagrange’s fundamental polynomial value at
I(x) [-] location x
L¢ [-] stoichiometric air-fuel ratio
M [N'm] torque vector
m [-] natural number (summation limit)
Mgt [-] exponent of normalized mass flow fit
m [kg/s] mass flow rate
mg [kg/s] mass flow rate through an ideal nozzle
Meor [kg/s] corrected mass flow rate
[(kg/s)-
Myeq (K%5/Pa)] reduced mass flow rate
Ma, [-] Mach number of rotor inlet flow
Ma, [-] Mach number of rotor circumferential speed
n [-] natural number (summation limit)
Neor [1/min] corrected speed
Ne [1/min], [rpm] engine speed
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Nred [1/(min-K%5)] | reduced speed
NT [1/min] corrected turbine speed
Nre [1/min] rotor speed
P [W] power
p [Pa] pressure
P(x) [-] polynomial value at location x
P, [W] engine brake power
Dint [Pa] intake (manifold) air pressure
P, [W] bearing friction loss power
PR [Pa] pressure at radius R
PRC [-] pressure ratio on compressor
reference pressure (1 bar for compressor,
Pref [Pa] 1.01325 bar for turbine)
PRT [-] expansion ratio on turbine
Pshart [W] shaft power (of a turbomachine)
q [-] constant
q(x) [-] function value at location x
r [J/(kg'K)] specific gas constant
reference specific gas constant (287 J/(kg-K)
Tref [J/(kg'K)] for air and 289 J/(kg-K) for burnt gas)
T [m] location vector (radius)
R [m] radius
R(x) [-] regression function above x
T4 [-] data point deviation from fit (residual)
T4 ordered [-] ordered residuals (ascending order)
S(x) [-] spline interpolant
t [s] time
T [K] temperature
reference temperature (298 K for
Trer [K] compressor, 288 K for turbine)
Trim [-] wheel trim
circumferential (rotor) velocity in stationary
u [m/s] frame of reference
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u [-] unit vector
Vg4 [m3] engine displacement volume
wT [kg/s] corrected turbine mass flow rate
X [-] independent variable (e.g. in a polynomial)
x [-] vector of independent variables
y [-] function value
y [-] vector of function values
a [-] coefficient
B [-] coefficient
B [-] vector of unknown coefficients
Berit [-] critical expansion ratio
y [-] Specific heat ratio (Poisson constant)
Reference specific heat ratio (1.4 for air and
Vref [-] 1.35 for burnt gas)
K [-] ratio of numbers
n [-] efficiency
Ne [-] engine brake efficiency
Nrm [-] turbine thermo-mechanical efficiency
Ny [-] engine volumetric efficiency
A [-] air excess ratio
selected point of a function domain of
Ag [-] definition
selected point of a function domain of
Ua [-] definition
p [kg/m3] density
Pint [kg/m3] intake (manifold) air density
number of crankshaft revolutions per engine
T [-] cycle
P [-] system of basis functions
@ [rad] polar coordinate
o(x) [-] basis function value at location x
w [rad/s] angular velocity vector
Wre [rad/s] rotor angular velocity
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Subscripts
Index Meaning
1 inlet
2 outlet
i summation index
j summation index
k summation index
air for air
exh for exhaust/burnt gas
C compressor
T turbine
tot total
is isentropic
opt optimum
norm normalized
min minimum
max maximum
mean arithmetic mean
median median
RMS root-mean-square
MSE mean-square error
RMSE root-mean-square error
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