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ON SOME BASIC CONSTRUCTIONS IN CATEGORIES

OF QUANTALE-VALUED SUP-LATTICES

RADEK ŠLESINGER

Abstract. If the standard concepts of partial-order relation and subset are fuzzified,

taking valuation in a unital commutative quantale Q, corresponding concepts of
joins and join-preserving mappings can be introduced. We present constructions

of limits, colimits and Hom-objects in categories Q-Sup of Q-valued fuzzy join-

semilattices, showing the analogy to the ordinary category Sup of join-semilattices.

1. Introduction

In the standard concept of a fuzzy set [11], the relation “x is an element of X” is
fuzzified, and replaced by a mapping X → [0, 1] assigning to each element of X its
“membership degree”. As further generalization, the membership degree can be
evaluated in structures more general than the real unit interval, typically frames,
residuated lattices, or quantales.

In our paper, the concept of a set remains unchanged, and it will be the partial
order relation and the notion of a subset that will be replaced by suitable mappings
to a quantale. Instead of considering on X a partial order relation ≤, we employ
a unital quantale Q and mappings M : X → Q and e : X×X → Q, which quantify
the “degree of truth” of membership in a subset and of being less or equal.

Sets equipped with quantale-valued binary mappings were initially investigated
in the so-called quantitative domain theory [4]. A number of papers on the topic
of sets with fuzzy order relations valuated in a complete lattice with additional
structure have been published in recent years. Among many others, articles [9,
10, 12] may be used as a reference. There are various structures used for fuzzy
valuation in the literature, e.g., frames [3] and complete residuated lattices [12],
both being just special cases of quantales. Also terminology has not settled yet,
and differs among authors. As the multiplicative unit of a quantale need not be
its top element, even truth can have more degrees in Q. This is different from
valuation using frames or residuated lattices where the unit is the top element as
well.

The basic properties of the category of complete join-semilattices as well as
the fundamental constructions in this category such as limits and colimits have
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been known for a long time. Despite quite an intensive investigation in recent
decades, to the author’s knowledge, these constructions in categories of Q-valued
join-complete semilattices (Q-sup-lattices) have not been investigated. This paper,
therefore, aims to fill this small gap.

In our paper the matter will be presented in relation to the standard concepts of
the theory of posets and sup-lattices. This should convince the reader that fuzzy
structures behave in strong analogy to their crisp counterparts. Throughout the
text, we will try to highlight an important fact: that a fuzzy concept (e.g., subset
or partial order relation) need not be treated as something more general than its
crisp variant, but rather as the crisp concept satisfying an additional property.

Based on a fuzzy order relation and subset membership, fuzzy counterparts to
order-theoretic concepts can be defined, such as monotone mappings, adjunctions,
joins and meets, or complete lattices. After introducing these required concepts, by
presenting constructions of limits and colimits, we prove that, for any commutative
quantale Q, the category of Q-sup-lattices is both complete and cocomplete, and
we show that it can be endowed with an internal Hom functor, which provides
a new example of so-called Q-quantales.

2. Preliminaries

We just need to recall a few basic concepts related to posets, sup-lattices and
quantales. The book [8] and the chapter [6] can be used as a better reference.
A concise overview of constructions in the category of sup-lattices can also be
found in [5, Chapter I].

2.1. Posets and sup-lattices

Two monotone mappings f : X → Y and g : X → Y are adjoint if f(x) ≤ y ⇐⇒
x ≤ g(y) for all x ∈ X, y ∈ Y (f is a left adjoint, g is a right adjoint). A right
adjoint to f , if it exists, is unique and denoted f∗ (likewise, the left adjoint to g
is g∗).

By a sup-lattice we mean a complete join-semilattice (actually a complete lat-
tice), with its least and greatest elements denoted by ⊥ and >, respectively. Join-
preserving mappings are taken for sup-lattice homomorphisms (which makes a
difference from the category of complete lattices, in which objects are the same,
but morphisms are supposed to preserve both joins and meets). Preservation of
arbitrary joins implies that f(⊥) = ⊥, the join of the empty set, for any sup-lattice
homomorphism f .

For a join-preserving map f : X → Y between two sup-lattices X and Y , there
exists its right adjoint f∗ : Y → X, which preserves arbitrary meets. The mapping
f∗ can be defined explicitly as f∗(y) =

∨
{x ∈ X | f(x) ≤ y}.

The Cartesian product
∏
i∈I Xi of posets Xi, i ∈ I, can be equipped with the

standard product partial order (xi)i∈I ≤ (yi)i∈I iff xi ≤ yi for each i ∈ I.
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2.2. Quantales

A quantale is a sup-lattice Q endowed with an associative binary operation (mul-
tiplication) · that distributes over arbitrary joins, i.e.,

a ·
∨
B =

∨
b∈B

(a · b)∨
B · a =

∨
b∈B

(b · a)

for any a ∈ Q, B ⊆ Q. A quantale Q is unital if there is a unit element for
multiplication, denoted by 1. Distributivity of multiplication over arbitrary joins,
including that of an empty set, implies that the least element ⊥ also acts as a
multiplicative zero. A quantale is commutative if the binary operation is commu-
tative. If all elements of a quantale are idempotent, satisfying x · x = x, we call
the quantale idempotent.

For any element q of a quantale Q, the unary operation q · − : Q → Q is join-
preserving, therefore, having a (meet-preserving) right adjoint q → − : Q → Q,
characterized by q · r ≤ s ⇐⇒ r ≤ q → s. Written explicitly, q → s =

∨
{r ∈ Q |

qr ≤ s}.
Similarly, there is a right adjoint q ← − : Q → Q for − · q, characterized by

r · q ≤ s ⇐⇒ r ≤ q ← s, and satisfying q ← s =
∨
{r ∈ Q | rq ≤ s}. If Q is

commutative, the operations→ and← clearly coincide, and we will keep denoting
them by →.

Example 2.1. (1) The real unit interval [0, 1] with the standard partial
order and multiplication of reals is a commutative quantale.

(2) The set of all open subsets of a topological space with unions as joins
and binary meets as multiplication is a commutative idempotent quan-
tale, called a frame or locale (frames are exactly commutative idempotent
quantales).

(3) For any sup-lattice S, the set of its sup-lattice endomorphisms with map-
ping composition as multiplication and pointwise computed joins is a (gen-
erally noncommutative) quantale.

From the number of identities valid for commutative quantales, we will employ
the following:

(1) q →
∧
ri =

∧
(q → ri),

(2)
∨
qi → r =

∧
(qi → r),

(3) ⊥ → r = >,
(4) 1→ r = r.

2.3. Categories

For the required elements of category theory, the book [2] can be used for reference.

3. Q-sup-lattices

Definition 3.1. By a base quantale we mean a unital commutative quantale
Q.
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The base quantale is the structure in which Q-orders and Q-subsets are to be
evaluated. For developing the theory in the rest of this paper, let Q be an arbitrary
base quantale that remains fixed from now on. Note that we do not require the
multiplicative unit 1 of the base quantale to be its greatest element >, so there
might be more values of ‘being true’ in Q.

3.1. Q-ordered sets

Definition 3.2. Let X be a set. A mapping e : X×X → Q is called a Q-order
if, for any x, y, z ∈ X, the following are satisfied:

(1) e(x, x) ≥ 1 (reflexivity),
(2) e(x, y) · e(y, z) ≤ e(x, z) (transitivity),
(3) if e(x, y) ≥ 1 and e(y, x) ≥ 1, then x = y (antisymmetry).

The pair (X, e) is then called a Q-ordered set.

For a Q-order e on X, the relation ≤e defined as x ≤e y ⇐⇒ e(x, y) ≥ 1
is a partial order in the usual sense. This means that any Q-ordered set can be
viewed as an ordinary poset satisfying additional properties.

Vice versa, for a partial order ≤ on a set X and any quantale Q, we can define
a Q-order e≤ by

e≤(x, y) =

{
1, if x ≤ y,
0, otherwise.

The definition of a Q-order implies that, for any x, y ∈ X, e(x, y) = 1 ·e(x, y) ≤
e(x, x) · e(x, y) ≤ e(x, y), i.e., the elements e(x, x) act as local units with respect
to other elements of the form e(x, y), notably any e(x, x) is idempotent.

Also note that any subset Y of a Q-ordered set (X, eX) is itself a Q-ordered set
with the restricted Q-order eY = eX |Y .

Remark 3.3 (Q-duality principle). Let (X, eX) be a Q-ordered set. It can be
easily verified that the mapping eopX (x, y) = eX(y, x) is again a Q-order (the dual
Q-order to eX) on X. We denote the dual Q-ordered set to X by Xop.

Therefore, if a statement involving Q-orders is valid in all Q-ordered sets, then
its dual statement, obtained by replacing the Q-orders with their duals, is valid in
all Q-ordered sets too.

Definition 3.4. A Q-subset of a set X is an element of the set QX .
For Q-subsets M,N of a set X, we define the subsethood degree of M in N as

subX(M,N) =
∧
x∈X

(M(x)→ N(x)) =
∧
x∈X

(∨
{q ∈ Q |M(x) · q ≤ N(x)}

)
.

Then, (QX , subX) forms a Q-ordered set [1, Theorem 3.12]. In particular, Q
itself is a Q-ordered set with e(x, y) = x→ y.

Note that the definition of Q-subsets corresponds to viewing ‘ordinary’ subsets
of X as mappings from X to the quantale 2 = {0, 1}.

Definition 3.5. Let (X, eX), (Y, eY ) be Q-ordered sets.

• A mapping f : (X, eX) → (Y, eY ) is called Q-monotone if eX(x, y) ≤
eY (f(x), f(y)).
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• Let f : (X, eX)→ (Y, eY ), g : (Y, eY )→ (X, eX) beQ-monotone mappings.
We say that (f, g) is a Q-adjunction, or a (Q-monotone) Galois connection
[10], if eY (f(x), y) = eX(x, g(y)). Then, f is called a left and g a right
Q-adjoint.

It is easy to show that the right and left Q-adjoint to a Q-monotone map-
ping f are unique if they exist. Then, f∗ denotes the right Q-adjoint, and f∗
denotes the left Q-adjoint to f . From the definition, it also easily follows that
when f : (X, eX)→ (Y, eY ) and g : (Y, eY )→ (Z, eZ) are left-adjoint Q-monotone
mappings, then (g ◦ f)∗ = f∗ ◦ g∗.

Remark 3.6. As with the definition of Q-ordered sets, it should be emphasized
that:

• any Q-monotone mapping (X, eX) → (Y, eY ) is an ordinary monotone
mapping (X,≤eX )→ (Y,≤eY ),
• any Q-adjunction (f, g) between (X, eX) and (Y, eY ) is a poset adjunction

between (X,≤eX ) and (Y,≤eY ).

Let (Xi, eXi) for i ∈ I be Q-ordered sets. On the set direct product
∏
i∈I Xi

we define a valuation

eX ((xi)i∈I , (yi)i∈I) =
∧
i∈I

eXi
(xi, yi).

Indeed, eX is a Q-order:

(1) eX((xi)i∈I , (xi)i∈I) =
∧
i∈I eXi

(xi, xi) ≥ 1 as each eXi
(xi, xi) ≥ 1,

(2) eX((xi)i∈I , (yi)i∈I) · eX((yi)i∈I , (zi)i∈I) =
∧
i∈I

eXi
(xi, yi) ·

∧
i∈I

eXi
(yi, zi)

≤ eXi(xi, yi) · eXi(yi, zi) ≤ eXi(xi, zi) for any i ∈ I, therefore
eX((xi)i∈I , (yi)i∈I) · eX((yi)i∈I , (zi)i∈I)
≤
∧
i∈I

eXi
(xi, zi) = eX((xi)i∈I , (zi)i∈I),

(3)
(
eX((xi)i∈I , (yi)i∈I) ≥ 1 and eX((yi)i∈I , (xi)i∈I) ≥ 1

)
⇐⇒

(∧
i∈I

eXi
(xi, yi) ≥ 1 and

∧
i∈I

eXi
(yi, xi) ≥ 1

)
=⇒ (eXi

(xi, yi) ≥ 1 and eXi
(yi, xi) ≥ 1) for any i ∈ I, therefore xi = yi

for any i ∈ I, hence (xi)i∈I = (yi)i∈I .

3.2. Q-sup-lattices

Definition 3.7. Let M be a Q-subset of a Q-ordered set (X, e). An element s
of X is called a Q-join of M , denoted

⊔
M if:

(1) M(x) ≤ e(x, s) for all x ∈ X, and
(2) for all y ∈ X,

∧
x∈X(M(x)→ e(x, y)) ≤ e(s, y).

By analogy, an element m of X is called a Q-meet of M , denoted
d
M , if:

(1) M(x) ≤ e(m,x) for all x ∈ X, and
(2) for all y ∈ X,

∧
x∈X(M(x)→ e(y, x)) ≤ e(y,m).

Note that also in the Q-fuzzy setting, the concepts of joins and meets are dual –
a Q-join of M with respect to the Q-order e is a Q-meet of M with respect to the
dual ordering eop.
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The following proposition provides an important characterization of Q-joins and
Q-meets:

Proposition 3.8. Let (X, e) be a Q-ordered set, s,m ∈ X and M ∈ QX .

(1) s =
⊔
M iff for all y ∈ X, e(s, y) =

∧
x∈X(M(x)→ e(x, y)),

(2) m =
d
M iff for all y ∈ X, e(y,m) =

∧
x∈X(M(x)→ e(y, x)).

Proof. The proof is a slightly modified version of the one provided in [12],
Theorem 2.2.

(1) (Necessity.) If s is a Q-join of M , then for every x ∈ X, M(x) ≤ e(x, s).
Therefore, for any y ∈ Y , we have M(x) ·e(s, y) ≤ e(x, s) ·e(s, y) ≤ e(x, y),
equivalently e(s, y) ≤ M(x) → e(x, y), hence e(s, y) ≤

∧
x∈X(M(x) →

e(x, y)). Since the converse inequality is assumed by definition, we get an
equality.

(2) (Sufficiency.) Suppose that for all y ∈ Y , e(s, y) =
∧
x∈X(M(x)→ e(x, y)),

and put y = s. Then 1 ≤ e(s, s) =
∧
x∈X(M(x) → e(x, s)), so for any

x ∈ X, 1 ≤M(x)→ e(x, s), equivalently M(x) = M(x) · 1 ≤ e(x, s).
The inequality

∧
x∈X(M(x) → e(x, y)) ≤ e(s, y) follows from the as-

sumption and s is therefore a Q-join of M .

�

The antisymmetry property of the Q-order implies that, if a Q-join (Q-meet)
of a Q-subset exists, it is unique.

Example 3.9. Consider aQ-ordered set (X, e) and its ‘Q-empty subset’ x 7→ ⊥.
Then its join s satisfies e(s, y) =

∧
x∈X(⊥ → e(x, y)) =

∧
x∈X > = > for any

y ∈ X, and we denote it by ⊥X if it exists. Similarly, for the meet m, we have
e(y,m) = > for any y ∈ X, and we denote it by >X .

Indeed, Q-ordered sets having all Q-joins and all Q-meets behave very much
like the usual complete lattices:

Definition 3.10. A Q-ordered set (X, eX) is called:

(1) Q-join-complete if
⊔
M exists for any Q-subset M of X,

(2) Q-meet-complete if
d
M exists for any Q-subset M of X,

(3) Q-complete if it is both Q-join-complete and Q-meet-complete.

Example 3.11. Using the definition of Q-joins and Q-meets, one can easily
derive that a single-element Q-ordered set ({∗}, e) is Q-complete iff e(∗, ∗) = >.
By Definition 3.7 (1.), e(∗, ∗) ≥M(∗) for any M ∈ Q{∗}. Then e(∗, ∗) = > clearly
satisfies condition (2.), as M(∗)→ > ≤ > always holds.

Proposition 3.12 ([10], Theorem 2.10, Corollary 2.11.). For a Q-ordered set
(X, e), the following are equivalent:

(1) (X, e) is Q-join-complete.
(2) (X, e) is Q-meet-complete.
(3) (X, e) is Q-complete.

Proof. We omit the proof as it proceeds exactly in the same way as the one
in [10], only considering the base quantale Q rather than a complete residuated
lattice L (in a residuated lattice 1 = >). �
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Proposition 3.13. Let (X, e) be a Q-complete Q-ordered set. Then (X,≤e) is
a complete poset, and, for any S ⊆ X, we have

∨
S =

⊔
ϕS where

ϕS(x) =

{
1 if x ∈ S,
⊥ otherwise.

Proof. Denote s =
⊔
ϕS . Then, 1 ≤ e(x, s) if x ∈ S, and for any y ∈ X,

e(s, y) =
∧
x∈X

(ϕS(x)→ e(x, y))

=
∧
x∈S

(ϕS(x)→ e(x, y))

=
∧
x∈S

(1→ e(x, y))

=
∧
x∈S

e(x, y).

For all x ∈ S, it is true that, if y ≥e x, then e(x, y) ≥ 1. It follows that
1 ≤

∧
x∈S e(x, y) = e(s, y), hence, y ≥e s. �

Corollary 3.14. If X is Q-complete, then e (
∨
S, y) =

∧
x∈S e(x, y). By a dual

argument, e (x,
∧
S) =

∧
x∈S e(x, y).

Proposition 3.15. If X is Q-complete, then its Q-order e(−,−) can be ex-
pressed by means of unary functions e(x,−) resp. e(−, x), i.e., for all y, z ∈ X,
we have

e(y, z) =
∧
x∈X

(e(x, y)→ e(x, z)) ,

e(y, z) =
∧
x∈X

(e(z, x)→ e(y, x)) .

Proof. We prove the first equality, the other follows from duality. Let y, z ∈
X be arbitrary, put ϕy ∈ QX as ϕy(x) = e(x, y), and denote

⊔
ϕy(x) = x0.

Then e(x0, z) =
∧
x∈L (ϕy(x)→ e(x, z)). In particular, ϕy(x0) = e(x0, y) =∧

x∈L (ϕy(x)→ e(x, y)) ≥ 1.
We also have ϕy(x) ≤ e(x, x0) for any x ∈ X, therefore, 1 ≤ e(y, y) = ϕy(y) ≤

e(y, x0), which implies y = x0. �

Since Q-joins and the mappings that preserve them will be of our primary
interest, we will denote such Q-complete set by (X, eX) by (X,

⊔
X).

Definition 3.16. Let X and Y be sets, and f : X → Y a mapping. We define
Zadeh’s forward power set operator [7] that maps Q-subsets of X to Q-subsets of
Y as:

f→Q (M)(y) =
∨

x∈f−1(y)

M(x).

There is also Zadeh’s backward power set operator f←Q : QY → QX defined for

f as f←Q (M) = M ◦ f .



46 R. ŠLESINGER

Definition 3.17. Let (X, eX) and (Y, eY ) be Q-ordered sets. We say that
a mapping f : X → Y is Q-join-preserving if, for any Q-subset M of X such that⊔
M exists,

⊔
Y f
→
Q (M) exists and

f
(⊔

X
M
)

=
⊔

Y
f→Q (M).

By analogy for Q-meet-complete sets, the mapping f is Q-meet-preserving if, for
any Q-subset M of X such that

d
M exists,

d
Y f
→
Q (M) exists and

f
(l

X
M
)

=
l

Y
f→Q (M).

The following proposition provides a tool useful for verifying that a mapping f
between Q-complete sets is Q-join-preserving. Rather than calculating with joins,
one can check that f is Q-monotone and find its right adjoint.

Proposition 3.18 ([10], Theorem 3.5). Let (X, eX), (Y, eY ) be Q-ordered sets,
and f : X → Y , g : Y → X be two mappings. Then the following hold:

(1) If (X, eX) is Q-complete, then f is Q-monotone and has a right adjoint
iff f (

⊔
M) =

⊔
f→Q (M) for all M ∈ QX .

(2) If (Y, eY ) is Q-complete, then g is Q-monotone and has a left adjoint iff
g (

d
M) =

d
g→Q (M) for all M ∈ QY .

Any Q-join-preserving mapping f : X → Y between Q-complete sets (X, eX)
and (Y, eY ) thus has a Q-meet-preserving right adjoint f∗ : Y → X. This adjoint
mapping can be also regarded (and we will often do so) as a Q-join-preserving
mapping between the dual Q-ordered sets Y op and Xop. An analogous claim can
be made for Q-meet-preserving mappings and their left adjoints.

In what follows, the Q-joins will mostly be discussed. Because of the apparent
similarities between Q-join-complete sets and sup-lattices (we just recall that any
Q-join complete set is actually a sup-lattice), we make a change in our terminology:

Definition 3.19. A Q-sup-lattice is a Q-join-complete set. Homomorphisms
of Q-sup-lattices are Q-join-preserving mappings. By Q-Sup we will denote the
category whose objects are Q-sup-lattices, and morphisms are Q-sup-lattice ho-
momorphisms.

Definition 3.20. Let (X,
⊔

) be a Q-sup-lattice, Y ⊆ X, and M ∈ QY . We
define an extension M ′ ∈ QX of M as

M ′(x) =

{
M(x) if x ∈ Y,
⊥ if x 6∈ Y.

We say that Y is a sub-Q-sup-lattice of X if it is closed under Q-joins in the
following sense: for any M ∈ QY , the element

⊔
M ′ ∈ X also belongs to Y .

The above definition has an equivalent statement: A set Y ⊆ X is a sub-Q-sup-
lattice of X if, for any M ∈ QX such that M(x) = ⊥ for all x ∈ X \ Y , we also
have

⊔
M ∈ Y .

Since the sub-Q-sup-lattice Y can itself be regarded as a Q-sup-lattice, the
inclusion mapping Y ↪→ Y is clearly a homomorphism.
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3.3. Limits and colimits

In Sup, both the product and the coproduct of a family of sup-lattices Xi for
i ∈ I are carried by the Cartesian product

∏
i∈I Xi which is a sup-lattice with

joins calculated coordinatewise. We will show that, although Q-joins are not
given simply at the individual coordinates, the product and coproduct (equalizer
and coequalizer) constructions in the category Q-Sup are analogous to those in
Sup. Having products available enables us to talk about the Q-sup-lattice of
homomorphisms between two Q-sup-lattices.

Let I be a set, (Xi,
⊔
Xi

) be Q-sup-lattices for all i ∈ I, and M be a Q-subset

of the set
∏
i∈I Xi. For each j ∈ I and y ∈ Xj , we then define M̂j ∈ QXj as

M̂j(y) =
∨{

M((xi)i∈I) | (xi)i∈I ∈
∏
i∈I

Xi, xj = y

}
.

Proposition 3.21. Let (Xi,
⊔
Xi

) be Q-sup-lattices for all i ∈ I. Then
∏
i∈I Xi

is a Q-sup-lattice too, with
⊔
XM = (

⊔
Xi
M̂i)i∈I .

Proof. Using Proposition 3.8, we show that the element (
⊔
M̂i)i∈I is the Q-join

of M ∈ Q
∏
Xi . Let (yi)i∈I ∈

∏
i∈I Xi, then

eX

((⊔
M̂i

)
i∈I

, (yi)i∈I

)
=
∧
j∈I

eXj

(⊔
M̂j , yj

)
=
∧
j∈I

∧
xj∈Xj

(
M̂j(xj)→ eXj (xj , yj)

)

=
∧
j∈I

∧
xj∈Xj


 ∨

(xi)∈
∏
i6=j

Xi

M((xi)i∈I)

→ eXj
(xj , yj)


=
∧
j∈I

∧
xj∈Xj

∧
(xi)∈

∏
i6=j

Xi

(
M((xi)i∈I)→ eXj (xj , yj)

)
=
∧
j∈I

∧
(xi)∈

∏
Xi

(
M((xi)i∈I)→ eXj

(xj , yj)
)

=
∧

(xi)∈
∏
Xi

∧
j∈I

(
M((xi)i∈I)→ eXj

(xj , yj)
)

=
∧

(xi)∈
∏
Xi

M((xi)i∈I)→
∧
j∈I

(eXj
(xj , yj))


=

∧
(xi)∈

∏
Xi

M
(
(xi)i∈I)→ eX((xi)i∈I , (yi)i∈I)

)
=eX

(⊔
M, (yi)i∈I

)
�
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We just note that, by Q-duality principle, an analogous claim holds for Q-meets.

Proposition 3.22. Let (Xi,
⊔
Xi

) be Q-sup-lattices for all i ∈ I. Then their

product is (
∏
i∈I Xi,

⊔
X) .

Proof. We show that the Cartesian product of Q-sup-lattices of the previous
proposition satisfies the universal property of the product. Let fi : Z → Xi for i ∈
I be Q-sup-lattice homomorphisms, and πj :

∏
i∈I Xi → Xj , πj((xi)i∈I) = xj be

the projections. The universal mapping g : Z →
∏
i∈I Xi given as g(z) = (fi(z))i∈I

satisfies πj ◦ g = fj , and this is a unique way to define it. We need to check the
following:

(1) All the projections πj :
∏
i∈I Xi → Xj are homomorphisms.

Let M ∈ Q
∏
Xi , j ∈ I, y ∈ Xj . We have

πj
→
Q (M)(y) =

∨
x∈π−1

j (y)

M(x) =
∨{

M(x) | x ∈
∏
i∈I

Xi, xj = y

}
= M̂j(y).

Therefore,

πj

(⊔
M
)

= πj

((⊔
Xi

M̂i

)
i∈I

)
=
⊔

Xj

M̂j =
⊔

Xj

πj
→
Q (M).

(2) The universal mapping g : Z →
∏
i∈I Xi, g(z) = (fi(z))i∈I is a homomor-

phism.
Let M ∈ QZ . We show that g(

⊔
M) = (fi(

⊔
M))i∈I is the Q-join of

g→Q (M) in
∏
i∈I Xi, that is, for each j ∈ I, fj(

⊔
M) =

⊔ ̂g→Q (M)j . Fix
any j ∈ I, and let y ∈ Xj be arbitrary. Then,

eXj

(
fj(
⊔
M), y

)
=eXj

(⊔
fj
→
Q (M), y

)
=
∧
x∈Xj

(
fj
→
Q (M)(x)→ eXj

(x, y)
)

=
∧
x∈Xj


 ∨
z∈f−1

j (x)

M(z)

→ eXj
(x, y)


=
∧
x∈Xj


 ∨

(xi)∈π−1
j (x)

 ∨
z∈g−1((xi))

M(z)


→ eXj (x, y)



=
∧
x∈Xj


 ∨

(xi)∈
∏
Xi

xj=x

 ∨
z∈g−1((xi))

M(z)


→ eXj

(x, y)



=
∧
x∈Xj


 ∨

(xi)∈
∏
Xi

xj=x

g→Q (M)((xi)i∈I)

→ eXj (x, y)
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=
∧
x∈Xj

(
̂g→Q (M)j(x)→ eXj

(x, y)
)

�

Proposition 3.23. The category Q-Sup has equalizers: Let f, g : X → Y be
two homomorphisms. Then their equalizer is ((Xfg,

⊔
X |Xfg

), ε) where Xfg =
{x ∈ X|f(x) = g(x)} and ε : Xfg → X is the set inclusion.

Proof. First we show that Xfg is a sub-Q-sup-lattice of X: let M ∈ QXfg

be arbitrary, consider its extension M ′ ∈ QX , which has its
⊔
M ′ in X. Then

f(
⊔
M ′) =

⊔
f→Q (M ′) =

⊔
g→Q (M ′) = g(

⊔
M ′) (since for any y ∈ Y , f→Q (M ′)(y) =∨

{M ′(x) | x ∈ X, f(x) = y} =
∨
{M ′(x) | x ∈ X, g(x) = y} = g→Q (M ′)(y)),

thus
⊔
M ′ also belongs to Xfg. As we have already shown, the inclusion map is

a homomorphism.
Let h : Z → X be a homomorphism satisfying f ◦ h = g ◦ h. Then h(z) ∈

Xfg for all z, so put k : Z → Xfg as k(z) = h(z). Take N ∈ QZ arbitrary,
and check that k is a homomorphism: k (

⊔
N) = h (

⊔
N) =

⊔
h→Q (N). The

element s =
⊔
h→Q (N) ∈ X satisfies for any u ∈ X: e(s, u) =

∧
x∈X(h→Q (M)(x)→

eX(x, u)) =
∧
x∈Xfg

(h→Q (M)(x) → eX(x, u)) =
∧
x∈Xfg

(k→Q (M)(x) → eX(x, u)),

hence s =
⊔
k→Q (N) ∈ Xfg.

The homomorphism k is clearly defined in the only way to satisfy ε◦k = h. �

Corollary 3.24 ([2], Theorem 2.8.1). The category Q-Sup is complete.

Example 3.25. The category Q-Sup has a terminal object, the one-element
Q-sup-lattice ({∗}, e∗) with e∗(∗, ∗) = >.

Proof. We have already shown in Example 3.11 that the ordering valuation
e(∗, ∗) = > is necessary in a single-element Q-sup-lattice. The constant mapping
x 7→ ∗ is clearly unique and Q-join preserving for any Q-sup-lattice X. �

To demonstrate the cocompleteness of Q-Sup, we actually need not construct
the desired objects and homomorphisms. Instead, we make use of adjoints and
dual Q-orders. This is the same approach as can be found in [5, Section I.2] for
sup-lattices.

Proposition 3.26. The category Q-Sup has coproducts.

Proof. Let fi : Xi → Z, i ∈ I be homomorphisms. They all have their right
adjoints f∗i : Zop → Xop

i . We can take the product
∏
i∈I X

op
i with projections

πi :
∏
i∈I X

op
i → Xop

i for i ∈ I, so there is a homomorphism g : Zop →
∏
i∈I X

op
i

satisfying πi ◦ g = f∗i for any i ∈ I. Using the adjunctions again, we get a homo-
morphism g∗ : (

∏
i∈I X

op
i )op → (Zop)op = Z that satisfies fi = (πi ◦ g)∗ = g∗ ◦ π∗i

for all i ∈ I.
We can verify that (

∏
i∈I X

op
i )op =

∏
i∈I Xi since e(

∏
Xop

i )op((xi)i∈I , (yi)i∈I) =

e∏Xop
i

((yi)i∈I , (xi)i∈I) =
∧
i∈I eXop

i
(yi, xi) =

∧
i∈I eXi

(xi, yi)

= e∏Xi
((xi)i∈I , (yi)i∈I).
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The homomorphisms ιj = π∗j : Xj →
∏
i∈I Xi then provide the injections to the

coproduct. Note that

ιj(x)i =

{
x if i = j,

⊥Xi
otherwise.

�

Proposition 3.27. The category Q-Sup has coequalizers.

Proof. Let f, g : X → Y be two homomorphisms. They both have their right
adjoints f∗, g∗ : Y op → Xop, so there exists the equalizer (Y op)f∗,g∗ with a homo-
morphism ε : (Y op)f∗,g∗ → Y op satisfying the universal property. The mapping
ε also has its right adjoint ε∗ : (Y op)op = Y → ((Y op)f∗,g∗)

op, which yields the
coequalizer of f and g. �

Corollary 3.28 ([2], dual to Theorem 2.8.1). The category Q-Sup is cocom-
plete.

Example 3.29. The category Q-Sup has an initial object, the one-element
Q-sup-lattice ({∗}, e) with e(∗, ∗) = >.

Proof. By the construction presented above, the initial object as the coproduct
of an empty system is identical to the empty product, i.e., the terminal object. �

Note that the above statements imply that colimits in general are realized by
the same objects as their corresponding limits they are dual to.

3.4. Hom-objects

For Q-sup-lattices (X,
⊔
X) and (Y,

⊔
Y ), consider the set Hom(X,Y ) of all ho-

momorphisms f : (X,
⊔
X)→ (Y,

⊔
Y ). Then Hom(X,Y ) becomes a Q-ordered set

with
eHom(X,Y )(f, g) =

∧
x∈X

eY (f(x), g(x))

(the restriction of product Q-order on Y X). We will show that it is also a Q-
sup-lattice (a sub-Q-sup-lattice of Y X) with product Q-joins. We shall only verify
that, for M ∈ QHom(X,Y ), the Q-join of its extension to Y X ,

⊔
Y X M ′, is a homo-

morphism too, that is, for any N ∈ QX ,(⊔
Y X

M ′
)(⊔

X
N
)

=
⊔

Y

(⊔
Y X

M ′
)→
Q

(N)

(1) First we characterize the Q-join of M ′ ∈ QY X

, call it s. Let u ∈ X, then

s(u) = (
⊔
Y X M ′)u =

⊔
Y M̂

′
u where, for v ∈ Y , M̂ ′u(v) =

∨
{M ′(f) | f ∈

Y X , f(u) = v} =
∨
{M(f) | f ∈ Hom(X,Y ), f(u) = v}.

By Proposition 3.8, we have, for any y ∈ Y ,

eY (s(u), y) =
∧
v∈Y

(
M̂ ′u(v)→ eY (v, y)

)

=
∧
v∈Y


 ∨
f : X→Y
f(u)=v

M ′(f)

→ eY (v, y)
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=
∧
v∈Y

 ∧
f : X→Y
f(u)=v

(M ′(f)→ eY (v, y))


=

∧
f : X→Y

(M ′(f)→ eY (f(u), y))

=
∧

f∈Hom(X,Y )

(M(f)→ eY (f(u), y))

(2) We make use of Proposition 3.18 and demonstrate an equivalent property
that s =

⊔
XY M is Q-monotone and has a right adjoint.

(a) Let x1, x2 ∈ X. Then, by the derivation above,

eY (s(x1), s(x2)) =
∧

f∈Hom(X,Y )

(M(f)→ eY (f(x1), s(x2))) .

As any f ∈ Hom(X,Y ) satisfies M(f) ≤ e(Y X)(f, s)
=
∧
x∈X eY (f(x), s(x)), we have M(f) ≤ eY (f(x2), s(x2)). Hence,

eX(x1, x2) ·M(f) ≤eX(x1, x2) · eY (f(x2), s(x2))

≤eY (f(x1), f(x2)) · eY (f(x2), s(x2))

≤eY (f(x1), s(x2)),

which is equivalent to eX(x1, x2) ≤ M(f) → eY (f(x1), s(x2)), and
therefore eX(x1, x2) ≤ eY (s(x1), s(x2)).

(b) Any g ∈ Hom(Y op, Xop) has a unique left adjoint f ∈ Hom(X,Y ),
so put M∗ : Hom(Y op, Xop) → Q as M∗(g) = M(f). Then, for any
y ∈ Y , we obtain

eY (s(x), y) =
∧

f∈Hom(X,Y )

(M(f)→ eY (f(x), y))

=
∧

g∈Hom(Y op,Xop)

(M∗(g)→ eX(x, g(y)))

=
∧

g : Y op→Xop

(
M∗′(g)→ eX(x, g(y))

)
=eX

(
x,
(l

M∗
)

(y)
)
,

and
⊔
M∗ is thus the right adjoint to s =

⊔
M . By the same proce-

dure as in step 2. (a), we can verify that
d
M∗ is Q-monotone too.

Corollary 3.30. For Q-sup-lattices X and Y , the set Hom(X,Y ) is also a Q-
sup-lattice.

Example 3.31. A Q-quantale is a Q-sup-lattice A endowed with an associative
binary operation · which is Q-join-preserving in both components, namely for any
a ∈ A and M ∈ QA, (⊔

M
)
· a =

⊔
(− · a)→Q (A)

a ·
(⊔

M
)

=
⊔

(a · −)→Q (A)
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(Q-quantales are semigroup objects in Q-Sup as quantales are semigroup objects
in Sup.) As a common example of Q-quantales, a commutative quantale Q with
e(x, y) = x → y is typically presented [13, Remark 4.4]. We are now able to
provide another instance: Let X be a Q-sup-lattice, then the set of all its endo-
morphisms End(X) = Hom(X,X) is a Q-quantale with composition of mappings
as the multiplication. We just need to verify that

⊔
(g ◦ −)→Q (M) = g ◦

⊔
M for

any M ∈ QEnd(X). Let k ∈ End(X) be arbitrary, and calculate:

eEnd(X)

(⊔
(g ◦ −)→Q (M), k

)
=

∧
h∈End(X)

(
(g ◦ −)→Q (M)(h)→ eEnd(X)(h, k)

)
=

∧
h∈End(X)

∧
f∈End(X)
g◦f=h

(
M(f)→ eEnd(X)(h, k)

)
=

∧
h∈End(X)

∧
f∈End(X)
g◦f=h

∧
x∈X

(M(f)→ eX(h(x), k(x)))

=
∧

f∈End(X)

∧
x∈X

(M(f)→ eX(g(f(x)), k(x)))

=
∧
x∈X

∧
f∈End(X)

(M(f)→ eX(g(f(x)), k(x)))

=
∧
x∈X

∧
f∈End(X)

(M(f)→ eX(f(x), g∗(k(x))))

=
∧
x∈X

eX

((⊔
M
)

(x), g∗(k(x))
)

=
∧
x∈X

eX

(
g
((⊔

M
)

(x)
)
, k(x)

)
=
∧
x∈X

eX

((
g ◦
⊔
M
)

(x), k(x)
)

=eEnd(X)

(
g ◦
⊔
M,k

)
The other equality,

⊔
(− ◦ g)→Q (M) =

⊔
M ◦ g, can be verified by the same

procedure.
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