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ESTIMATING PERFORMANCE CHARACTERISTICS

THROUGH OBSERVED NASH EQUILIBRIA

KJETIL K. HAUGEN

Abstract. This article uses simple game models to investigate penalty kick shoot-
outs in soccer. As opposed to existing research, which mainly focuses on empiri-

cal/experimental problems, the game itself is the main focus here.

Interesting findings include a proposed Nash equilibrium invariance for possible
preference differences between penalty kick Executors and Keepers as well as iden-

tification and demonstration of how game models may be used in order to estimate

player performance characteristics through observed Nash equilibria outcomes.
A non-mixed strategy Nash equilibrium is also shown to be possible with poten-

tial interesting consequences for goal keepers.

1. The penalty kick

The penalty kick in soccer is both the most decisive as well as the simplest sub-
game arising in European football (soccer). The reason for its simplicity (in game
theoretic terms) is the limited number of players (two1) as well as a relatively small
and well defined strategy space. Its decisiveness is also easy to accept, bearing in
mind a significant number of decisive penalty-kick shoot-outs both in previous
World and European championships. The famous David Beckham miss in the
EURO 2004 quarter final against Portugal may stand as a good example of match
outcome importance.

The sports economic relevance of the penalty kick may of course also be ques-
tioned. The impact of the penalty kick on relevant sports economic variables such
as uncertainty of outcome, fan demand or player wages is perhaps limited. How-
ever, its potential importance in match outcome and (most certainly) its game
theoretical potential makes it a relevant example of applied game theory in sports
economic theory. This view is supported by the fact that very serious scientific
publishing channels such as “The American Economic Review” [1] and “Econo-
metrica” [6], [7] have published papers on the topic. However, it seems pointless
trying to hide the fact that the practical importance and relevance may be far
more obvious in a tactical or coaching perspective than in a descriptive sports
economic context.

MSC (2010): primary 91A05, 91A80.
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1The number of players in a penalty kick can obviously be a matter of discussion. The referee,

the audience, the coaches, media and so on may surely have decisive impact on strategic choices

and player performance. However, in order to keep complexity at a reasonable level, two-players
are assumed.
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2. Literature

As briefly indicated above, several economists have shown considerable interest in
analysing penalty kicks. Especially, I. Palacias-Huerta [6], [7], [8], who in a series of
relatively recent papers has treated the concept of mixed strategy Nash equilibria
in penalty kicks mainly within an empirical/experimental setting. Among other
interesting results, Palacias-Huerta claims that professional players do randomize,
and randomize well.

Other types of penalty kick research are related more to the psychological ef-
fects/stress involved in taking penalties in decisive matches [9], [2], [3], or focusing
more on achievement of some kind of optimal/technical performance strategies [10].

3. Outline

In the following sections, a model alternative to that of Chiappori et al [1] and
Palacias-Huerta [6], [7], [8], mainly captured from Haugen [5], will be presented.
The main difference between Haugen’s and the other models is the simplicity; in
the sense that the strategy space is at an absolute minimum. This opens up for
some more game theoretic judgements and this paper will hence focus more on
the game theoretic aspects of the penalty kick than on the empirical/experimental
parts.

Firstly, the basic model is outlined, then the mixed strategy Nash equilibrium
is established, and then finally, the paper returns to some “reverse engineering”
empirical questions on how such game models may be used in a practical setting.
At the very end, a discussion on the possibility of extending these concepts into
more advanced game modelling will be conducted, among other aspects involving
incomplete and asymmetric information.

4. The basic model

The following assumptions are made:

i) The game includes two players, Executor and Keeper2.
ii) Both the Executor and the Keeper must make all decisions simultaneously

before the penalty kick3.
iii) The strategy space is simplified (perhaps oversimplified) to two possible

decisions; a middle shot M , or a wide shot W . Both players may choose
from this strategy set only4.

2This may, as indicated in Section 1, be a questionable assumption. Especially, fans at the
match may in certain cases play an important role in explaining the outcome of penalty kicks.

However, this assumption is kept, primarily for simplicity, but also in accordance with the existing

research cited.
3This assumption is probably even more questionable than the previous one, especially if the

1997 FIFA penalty kick rule change is considered. According to [4], this rule change implied the
possibility for Keeper movement (along the line though) before the penalty execution. Surely,
this opens up for sequential actions both for the Keeper, but also for the Executor, making the

classical result of unique mixed strategy equilibria questionable
4This assumption sums up to a dual choice for both players, the Executor could either shoot

(deliberately) in the middle (M) or wide (W ). That is, all possible wide shots, left, right high
low, hard soft etc. are summed up in the single decision variable W . If the Keeper chooses W ,
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iv) The Executor always hits the goal if he chooses his strategy M . However,
if strategy W is applied, a probability q of missing the goal is introduced.

v) If both the Keeper end the Executor chooses the M strategy, all shots are
saved5.

vi) If the Keeper and the Executor choose different strategies, all shots yield
a goal6.

vii) If both players choose the W strategy, some shots are saved (basically if
the Keeper chooses to throw himself in the same direction as the shot),
and some yield a goal – if the opposite occurs.

ix) The probability of a goal hence exists, and is denoted p.
x) The utility of a goal or no goal is assumed symmetric as outlined in Table 1

and the players obey Von-Neuman-Morgenstern utility theory7.

GOAL NO GOAL
EXECUTOR 1 0
KEEPER 0 1

Table 1. Utilities for each player in the Penalty kick game.

xi) All information above is visible and known to both players before the
penalty kick (a game of complete information).

For obvious reasons, it should be noted that the modelling frame outlined
through assumption i) to xi) fits a penalty shoot-out far better than an ordi-
nary in-game penalty kick. This seems reasonable by two arguments. Firstly,
because a penalty shoot-out is significantly simpler – there is only one attempt.
An ordinary penalty opens up for rebounds by the Executor, as well as other
players on the team, greatly enhancing the complexity of the game. Secondly,
a shoot-out is (normally) significantly more decisive, putting more pressure on the
Executor (primarily) and hence probably makes our assumption on simultaneity
more realistic.

Given assumptions i) to xi) above, it is straightforward to construct a pay-off
matrix for the two-player simultaneous complete information penalty kick game
as shown in Figure 1.

Using the notation (X,Y ) representing the Executor choosing action X and the
Keeper choosing Y , it is straightforward to explain the contents of Figure 1. In
the (M,M) case, all shots are saved (by assumption v)) and hence a certain utility

he decides to go (throw himself) in any direction. A choice of M for the Keeper implies standing

still in the middle, awaiting the shot and possibly reacting to it after observing the angle and

speed of the ball.
5The tiny probability of actually achieving a goal in this situation is omitted for simplicity

reasons
6The tiny probability of missing the goal in this situation is also omitted (for the time being)

by an argument similar to the previous footnote.
7For practical purposes, this implies acceptance of the expected utility maximization hypoth-

esis. Note also that this assumption opens up for a direct substitution between expected utilities

and probabilities as EU (Executor) = P (GOAL) · 1 + (1 − P (GOAL) · 0 = P (GOAL). We will
discuss relaxations of this assumption later.
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Figure 1. The penalty kick game in normal form.

of 1 for the Keeper and 0 for the Executor. In the (M,W ) case, assumption vi)
secures a certain goal, and hence utility 1 for the Executor and 0 for the Keeper.
In the (W,M) case, a sure goal is the case unless the Executor misses the goal
(assumption iv)), the probability of a hit is (1−q) and that of a miss is q, hence the
observed pay-off in Figure 1. Finally, in the (W,W ) case, two things must happen
simultaneously for the realization of a goal. The Keeper must not save the shot
(probability p), and the Executor must hit the goal (probability (1−q)). The total
probability must hence (given an inherent assumption of statistical independence)
be p(1− q). Consequently, the probability of a save (or no goal) must be 1 minus
the former probability.

5. Some preliminary results

The natural next step is (obviously) to establish Nash equilibrium characteristics
of the game of Figure 1. The Best reply functions8 (or mappings) are shown by
circles and squares for the Executor and the Keeper respectively.

In order to achieve the best reply functions of Figure 1, a limited (and accept-
able) set of assumptions on p and q are necessary.
p, is the probability of a goal given the choice of (W,W ) for both players. Hence,

a p of 0 or 1 means either never goal, or always goal, so the following assumption
on p seems natural:

0 < p < 1 (5.1)

8A best reply function (or mapping in this case) is constructed by maximising pay-off for any
player as a function of the opponent’s actions.



ESTIMATING PERFORMANCE CHARACTERISTICS 149

A similar assumption on q seems also reasonable, as a q of either 0 or 1 would
imply always or never hitting the goal respectively. Hence,

0 < q < 1. (5.2)

Given the above assumptions (5.1) and (5.2), it is straightforward to explain
the relevant best replies9 of Figure 1. As

1− q > 0⇔ q < 1

and
1− p(1− q) > q ⇔ 1− p > q(1− p)⇔ q < 1

as well as
p(1− q) < 1. (5.3)

Now, by the absence of pure strategy Nash equilibria (as observed in Figure 1),
the famous proof by John Nash [11] secures a unique Nash equilibrium in mixed
strategies of this game.

The intuition of such a solution is also relatively straightforward. It is obvious
(again given the assumption of simultaneity) that the Executor would maximise
his probability of getting a goal by executing his penalty by choosing strategy
W if the Keeper chooses M or the other way round. One first attempt would
perhaps (historically) be to vary the shots. However, deterministic variation is (at
least in principle) predictable. As such, the only way to secure unpredictability
in his actions, is to randomize. Obviously, the Keeper will have to follow up
such a strategy in order to maximise his probability of a save. Consequently, an
equilibrium outcome in mixed strategies seems very reasonable. The mathematical
expression10 of this Nash equilibrium is shown in equation (5.4) below:

{r∗, s∗} =

{
1− p(1− q)− q
2− p(1− q)− q ,

1− p(1− q)
2− p(1− q)− q

}
. (5.4)

In equation (5.4), r∗ refers to the probability of the Executor choosing M , while
s∗ refers to the same choice for the Keeper (in Nash equilibrium).

6. Further analysis

Let us start simplifying (5.4) by the added assumption of q = 0. That is, all
wide shots (The Executor choosing W ) hit the goal. Given this assumption, equa-
tion (5.4) still holds, and the special case of q = 0 can simply be entered into it
yielding:

{r∗, s∗} =

{
1− p
2− p ,

1− p
2− p

}
. (6.1)

The first thing to observe from equation (6.1) is the obvious fact that both
players (Executor and Keeper) randomize equally with respect to middle and wide
shots. Let us furthermore observe some empirical data from Chiappori et al [1]

9Best replies for Executor and Keeper are marked with circles and squares respectively in
Figure 1.

10The algebra behind the calculation is omitted here as it will be illustrated in a later case -
see appendix B.
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and Bar-Eli et al [3]. Chiappori et al [1] observed 459 penalty kicks over a two-
year and a 3 year period of the French and Italian first leagues respectively. Their
results show (among others) that 17.2% 11 of observed penalty kicks were aimed
at the middle. In contrast, Bar-Eli et al observed 286 penalty kicks (unfortunately
not linked to leagues) where 28.7%12 were aimed at the middle. The interesting
thing with the (way too simplified13) model returning equation (6.1) is that we can
use a reverse argument based on the empirical observations above and estimate p
through the Nash equilibrium. Table 2 shows the results of such an estimation.

1−p̂CH

2−p̂CH
= 0.172 p̂CH ≈ 0.792

1−p̂BE

2−p̂BE
= 0.281 p̂BE ≈ 0.609

Table 2. Estimated p-values for the Chiappori et al [1] data (p̂CH), and the Bar-Eli et al [3]

data (p̂BE).

The interesting point to observe here is the fact that observations on directional
proportions of penalty kicks, through simplified game theoretical analysis, can
provide skill-information14 for various leagues or groups of players. Unfortunately,
the data used here does not have the necessary disaggregated level, but still the
following can be observed: The French and Italian first leagues of Chiappori et
al [1] provide a p-value close to 80% as opposed to the Bar-Eli et al [3] data
providing a p-value close to 60%. Consequently, if one believes that the model leads
to (6.1), the conclusion of significant quality differences between the Executors and
Keepers of the 2 datasets can be drawn. A simple interpretation would be that
there are 20% more goals on penalty kicks aimed wide where the Keeper goes for
the ball in the Chiappori et al [1] dataset indicating significant penalty kick quality
differences either between Executors (positively) or Keepers (negatively).

The fact that the Nash equilibrium outcome of penalty kick games can be
applied to derive quality information on the players is in itself interesting. Surely,
in order to fine tune such estimates, a higher complexity in the game modelling is
needed.

Let us now return to the original model leading to equation (5.4). This slightly
more complex model shows significant differences compared to the special case
leading to (6.1). It is straightforward to observe that r∗ < s∗ as

s∗ = r∗ − q

2− p(1− q)− q .

11Exactly 79
459

.
12Exactly 82

286
.

13Surely, this model is extremely oversimplified. The simple fact that it predicts equal ran-
domizing behaviour between Executor and Keeper should indicate this. The data of Chiappori
et al [1] as well as Bar-Eli et al [3] shows significant differences in the randomizing pattern of the

two players – more on this later on.
14Again, our model is way too simple. The p-parameter, for instance, does not separate

quality between Executor and Keeper. Such a separation can, however, be introduced by a more
fine-grained modelling.
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Now, by (5.2) and (5.3), 2 − (p(1− q) + q) is positive. The same holds for q.
Consequently, q

2−p(1−q)−q > 0 and r∗ < s∗. Let us interpret this result. r∗ < s∗

means that the share of penalties aimed at the middle by the Executor is smaller
than the proportion of Keeper movement standing still. It is perhaps easiest to
explain this result if we look at the limiting case. Now let q → 1 (recall by (5.2)
that a q = 1 is denied through the initial assumptions). Then

lim
q→1

{
1− p(1− q)− q
2− p(1− q)− q ,

1− p(1− q)
2− p(1− q)− q

}
= {0, 1} .

The meaning of the limiting expression ({0, 1}) is that the less skilled Executors
will tend to shoot more wide while the Keeper will tend more to keep standing
still. On the limit (of course), the completely hopeless Executor will always shoot
wide (and always miss), while the Keeper will always stand still, saving no shots,
but neither letting any goals in. This may seem paradoxical – the worse you are
at shooting wide the more you will do it. But here, the “gaming” effect must
be considered. Keep in mind that the Keeper knows the (bad) quality of the
Executor15, and takes advantage of it.

The above facts may (with some good will) be interpreted in the following
manner: If a penalty shoot-out is observed, the above model (5.4) indicates that
a less skilled penalty kick executor to a larger degree (than the more skilled one)
would tend to shot more wide. The consequences will then be that less goals
are obtained as opposed to the skilled penalty shooters who tend to shoot less
wide. Surely, our model defines q as the ability to hit the goal, and in the original
modelling “language”, our interpretation is unsharpened. However, it should be
evident, than q may just as well be interpreted as a combined skill parameter
containing both the ability to hit the goal and the ability to get the ball past the
Keeper if the Keeper goes for the ball (i.e. chooses the W -strategy). As such,
the above results seem reasonable. Most of us have observed penalty shoot-outs
where the most skilled Executors (typically) start and in some cases choose the
M -strategy (of course not always with success). However, as the shoot-out moves
on, more unskilled players are forced to try, and in many cases one could observe
bad wide shots. In essence, this argument boils down to something like: Only
skilled penalty kick Executors choose to deviate from a wide strategy. Surely, this
kind of hypothesis is testable, unfortunately, data at the correct aggregation level
is not present.

At this point, it will prove worthwhile to revert back to the empirical observa-
tions of Chiappori et al [1] as well as Bar-Eli et al [3]. Recall that our two models
leading to (5.4) and (6.1) predict r∗ ≤ s∗. The above cited papers do however
indicate a quite different “real-world” behaviour. In fact, both articles show signif-
icant difference between r∗ and s∗ but in the opposite direction. That is r∗ � s∗.
This seemingly puzzling fact may not be that difficult to explain. Recall that our
basic modelling contained many simplifying assumptions and it may be of interest
to see if a simple relaxation of certain of these assumptions may produce results
closer to real world observations. Indeed, this is the case. It turns out that parts of
assumption vi) need to be relaxed – not the (W,M)-situation, it seems reasonable

15Recall assumption xi).
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to keep the original structure. On the other hand, the opposite situation (M,W )
is somewhat too restrictive on Keeper’s abilities. It is surely possible though not
very possible that a Keeper going for the ball (choosing his W -strategy) may save
a shot aimed at the middle – for instance with his legs. given this relaxation, it
seems reasonable to add yet another probability say t defined as

t = P (Goal|Executor choose M and Keeper choose W ). (6.2)

Given the definition of (6.2), 1 − t denotes the relatively small probability of
a “save with the feet” discussed in the previous paragraph. It may seem sensible
(at first) to merely extend the original model with probabilities t, 1−t, but it turns
out that the algebraic complexity becomes unnecessary high. Consequently, the
special case of the model leading to (6.1) is used. Given these definitions, Figure 2
shows the revised model.
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Figure 2. The revised penalty kick game in normal form.

First, observing Figure 2, an important point needs to be stressed. As Figure 2
shows, the original game has changed considerably. Now, the possibility of an
added pure Nash equilibrium has emerged16. In practice, the added assumption
of t > p avoids this possibility, and this is definitely a reasonable assumption. The
interpretation is simple. The assumption t > p means that if the Keeper goes (to
any side) for the ball, it is easier to get a goal by aiming at the middle than aiming
wide.

However, this fact introduces some interesting information on the “nature” of
penalty kicks. Surely, for any given p, the Keeper can improve his abilities to “save
by the feet” by practising. The consequence would imply increasing 1−t and hence
decreasing t. If the Keeper is able to practice enough to reach the limit t < p,

16Observe the dotted circles (best replies) in Figure 2.
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the penalty kick will change structurally, from a game with a unique NE in mixed
strategies into a game with a unique pure (W,W ) NE. This kind of information
might be at least principally relevant for goalkeepers and their coaches.

Anyway, let us return to the main point at hand; the derivation of the NE
of Figure 2 given an added assumption of t > p. The tedious algebra is again
omitted, and the reader is again reffered to Appendix B for information on the
methodology. The solution is given in equation (6.3):

{r∗, s∗} =

{
1− p

t− p+ 1
,

t− p
t− p+ 1

}
. (6.3)

Inspecting (6.3), it is evident that the the following holds:

r∗ > s∗ ⇔ 1− p > t− p⇔ t < 1.

Consequently, the opposite situation of equations (5.4) and (6.1) is identified
if t < 1. This assumption is also evident, as the alternative t = 1 would imply
the original simplified model (6.1). Thinking somewhat practically should make
the sense of this argument. Note that the original two models to a certain extent
“underestimated” the abilities of a goalkeeper. The models outlined only opened
up for a save in the case of a wide shot. Surely, the new model of Figure 2 opens
up some more reality by allowing saves also if shots are aimed at the middle given
a choice of W by the Keeper. Obviously, even more realism would enter the model
if the possibility of a goal in the (M,M)-case was introduced as well as the original
q-probability. However, the main point with this (still very simplified model) was
to establish the existence of mixed NEs where r∗ > s∗.

Now, an argument similar to that leading to Table 2 can be applied (though
slightly more complex). The following equational system can be used to find
estimates for p (p̂i) and t (t̂i) by solving

1− p̂i
t̂i − p̂i + 1

= r∗i and
t̂i − p̂i

t̂i − p̂i + 1
= s∗i ∀i ∈ {CH,BE}. (6.4)

The solution17 is:

p̂i = 1− r∗i
1− s∗i

and t̂i =
1− r∗i
1− s∗i

. (6.5)

Table 3 sums up the application of equations (6.5) on the two data sets of
Chiappori et al [1] (CH) and Bar-Eli et al [3] (BE).

r∗i s∗i p̂i t̂i

CH 79
459

11
459 0.824 0.848

BE 82
286

18
286 0.694 0.761

Table 3. Estimated p- and t-values for the Chiappori et al [1], and the Bar-Eli et al [3] data.

First, comparing Table 2 and 3, we observe that the p-values differ between the
tables. This is of course expected as the two tables originate from two different
game models. Second, one observes significant differences between the datasets

17Refer to appendix A for the algebra.
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both for p- and t-values. Furthermore, the point here is perhaps not to infer too
much by this example, but rather to show how this technique can be applied in
order to obtain more “quality” information based on the latter model. Still, the
interesting point is of course the fact that observed shooting equilibrium strate-
gies (r∗i , s

∗
i ), can be used to infer quality information on players. Indeed, it should,

hence, be possible to extend the simple modelling frame introduced here even fur-
ther in order to derive more disaggregated performance information, for instance,
separating Executor and Keeper quality.

7. Preferences of Executors and Keepers

Certain practitioners might claim that the type of preference structure applied in
this article (see Table 1) is unrealistic. A typical argument would go something
like this:

“Keepers and Executors face different games in a penalty shoot-out. The Keeper
is not expected to save, he will be the hero if a save is the outcome. The Executor,
on the other hand, is expected to score on any penalty so he will the scapegoat in
the case of a miss”.

Surely, such an argument seems reasonable. The interesting question in this
setting is whether it makes any difference regarding the Nash equilibrium outcome.
The following proposition (under relatively strict assumptions) shows that it does
not.

Proposition. Given assumptions i) to xi) and the added assump-
tion of q = 0, a generalized preference difference between executor
and Keeper as defined by Table 4 does not change the Nash equi-
librium outcome of the game.

The proof for this proposition is left for Appendix B.
Table 4 defines the generalized preference differences between Keeper and Ex-

ecutor.

GOAL NO GOAL
EXECUTOR 1 0
KEEPER 1− µ 1 + ω

Table 4. Generalized utilities for each player in the Penalty kick game; (0 < µ ≤ 1 and ω ≥ 0).

It is readily observed from Table 4 and the range definitions of µ and ω in the
caption of the table that the following reasonable assumptions then hold (UK and
UE denote utilities for Keeper and Executor respectively):

UK(GOAL) ≤ UE(GOAL),

UK(NO GOAL) ≥ UE(GOAL),

UK(GOAL) ≥ UE(NO GOAL).

The result of the above proposition is interesting as it demonstrates that pref-
erence differences may mean nothing for how penalty kicks should be executed
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both for Executors and Keepers. It may even come as a surprise to practitioners
who seem (in some cases) to believe that Keepers have certain benefits in penalty
shoot-outs as opposed to Executors. That may of course be the case from a prefer-
ence point of view, but as the above proposition 1 indicates, the Nash equilibrium
outcome is invariant for the examined game model and preference structure.

8. Conclusions, model criticism and suggested further research

This paper has used various simple game models in order to strengthen the com-
mon understanding of the simple yet decisive penalty kick shoot-out sub game in
soccer. Several important features have been discussed. The most interesting is
perhaps the last point (Section 7) on preference difference invariance. This result
is non-trivial from a practitioner’s point of view and should, hence, be of interest
for practitioners, experts, or fans.

Furthermore, the demonstrated technique of deriving performance data through
observing the directional behaviour may seem trivial. However, the potential of
this (to the author’s knowledge not yet demonstrated technique) is promising.
Through more advanced game modelling, one could foresee a simplified technique
for gaining performance information as opposed to costly direct observation. The
fact that a penalty Executor’s abilities to execute penalties may be judged solely
on the basis of his choice of shooting direction is a beautiful and perhaps – for
certain practitioners – fairly unexpected result.

Finally, the possibility of a unique pure Nash equilibrium outcome, as shown
in Figure 2, contrasts much of the existing literature in the field. Though such an
outcome (as argued in the paper) might be improbable, the result is interesting
from a principal regulator’s point of view. As the penalty kick is so decisive in
soccer, increased understanding of what mechanisms might change this sub game
ought to be of relevance for regulating agents such as UEFA or FIFA.

The models may surely be criticised for their simplicity. After all, applying
two player two strategy games of complete information as modelling devices for
penalty kicks may seem as too much of a simplification. Many of the arguments
given in the paper will be valid if the strategy space is increased and the two-player
assumption is perhaps not too hard to accept. However, the inherent assumption
of complete information may be of greater importance when the models’ ability
to spawn reality is considered. Chiappori et al [1] discuss this topic and even try
to test such a question empirically. They conclude that incomplete and asym-
metric information should not be too much of a problem in penalty kicks. Such
a conclusion may be discussed. Surely, penalty kick information is readily avail-
able. Through many matches, many Executors and Keepers may be observed and
their quality should be observable. Unfortunately, the most decisive situations, the
shoot-outs, contain Executors who seldom take penalty kicks. As such, it seems
reasonable to accept that the most decisive penalty kicks could contain more asym-
metric information than the normal in-game ones. Consequently, moving towards
incomplete information formulations may definitely be adequate. Such a task may
be an interesting candidate for further research.
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Appendix A. Derivation of equations (6.5)

The left equation of (6.4) is solved with respect to t̂i yielding

1− p̂i = r∗i
(
t̂i − p̂i + 1

)
⇒ t̂i =

1− p̂i
r∗i

+ p̂i − 1. (A.1)

Substituting this expression back into the right part of equation (6.4) yields

1− p̂i
r∗i

+ p̂i − 1− p̂i = s∗i

(
1− p̂i
r∗i

+ p̂i − 1− p̂i + 1

)
⇒ 1− p̂i

r∗i
− 1 = s∗i ·

1− p̂i
r∗i

or

p̂i = 1− r∗i
1− s∗i

. (A.2)

Finally, t̂i can be computed by substituting the expression for p̂i from equa-
tion (A.2) back into equation (A.1) giving

t̂i =
1−

(
1− r∗i

1−s∗i

)
r∗i

+ 1− r∗i
1− s∗i

− 1

⇒ t̂i =

r∗i
1−s∗i
r∗i
− r∗i

1− s∗i
=

1− r∗i
1− s∗i

.

Appendix B. Proof of proposition 1

Given the assumptions i) – xi) in Section 4, the added assumption of q = 0 as well
as the preference structure of Table 4, the normal form game of Figure 3 can be
constructed.

In Figure 3, x, y and z are defined as

x = 1 + ω

y = 1− µ
z = (1− p)(1 + ω) + p(1− µ)

Firstly, it is reasonable to check that the best replies (circles and squares in Fig-
ure 3) still maintain the structure securing a unique NE in mixed strategies. The
best replies for the Executor (circles) are obvious as 1 > 0 and p < 1.

Furthermore, as 1 + ω > 1 − µ by the given assumptions, the north-west best
reply for the Keeper is as indicated in Figure 3. Finally, as

z > x⇒ (1− p)(1 + µ) + p(1− µ) > 1− µ
⇒ ω(1− p) + µ(1− p) > 0

obviously holds, the game of Figure 3 has a unique NE in mixed strategies.
To derive this NE, Expected utilities (EE , EK for Executor and Keeper respec-

tively) are computed as:

EE = r(1− s) + (1− r)s+ (1− r)(1− s)p
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Figure 3. The penalty kick game in normal form with generalized preference differences.

and

EK = rsx+ r(1− s)y + (1− r)sy + (1− r)(1− s)z.

A necessary condition for this NE is:

∂EE

∂r
=
∂EK

∂s
= 0

giving

∂EE

∂r
= (1− s)− s− p(1− s) = 0⇒ s∗ =

p− 1

p− 2

and

∂EK

∂s
= rx− ry + (1− r)y − z(1− r) = 0⇒ r∗ =

z − y
x− 2y + z

.

Finally,

z − y
x− 2y + z

=
(1− p)(1 + ω) + p(1− µ)− (1− µ)

(1 + ω)− 2(1− µ) + (1− p)(1 + ω) + p(1− µ)
. (B.1)

The numerator N in (B.1) can be expressed as

N = (1− p)(1 + ω) + p(1− µ)− (1− µ)

= (1− p)(1 + ω) + (1− µ)(p− 1) = (1− p)[1 + ω − 1 + µ]

= (1− p)(ω + µ).
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In a similar fashion, the denominator D in equation (B.1) can be expressed

D = (1 + ω)− 2(1− µ) + (1− p)(1 + ω) + p(1− µ)

= (1 + ω)[1 + 1− p] + (1− µ)[p− 2]

= (1 + ω)[2− p]− (1− µ)[2− p]
= [2− p](1 + ω − 1 + µ) = (2− p)(ω + µ).

Now, the fraction of equation (B.1) becomes

N

D
=

(1− p)(ω + µ)

(2− p)(ω + µ)
=

(1− p)
(2− p) = r∗

and finally

{r∗, s∗} =

{
(1− p)
(2− p) ,

(1− p)
(2− p)

}
which equals (6.1). �
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