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Abstract )

The present approach to the diffractive element
design is based on Kirchhoff scalar theory of
diffraction. Predictions made by this theory become
unreliable if the diffraction of polarized light is
evaluated. The paper presents the vector correction
of Huygens-Fresnel principle and suggests a method
Jor fast evaluation of rapidly oscillating integrals.
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1. Introductioh

The crucial issue in designing any diffractive
optical element (DOE) is to find appropriate phase transfer
function of DOE so that given incoming beam of light is
properly (and efficiently) transformed to the desired
outcomming beam of light. As present technological
processes usually can not entirely reproduce the desired
shape of DOE (due to image resolution, quantization
limitations etc.), the designer must evaluate the influence
of the actual optical element to the incoming light beam.
The design process thus consists of several steps, each of
them corrects the errors of previous one. Possessing of
reliable tool for error estimation is therefore necessary.

The present approach to diffraction element design
is based mainly on the Kirchhoff scalar theory of
diffraction. This approximation holds for large apertures
and unpolarized light only. If DOE is used for polarized
monochromatic light handling, predictions made by

Kirchhoff theory become unreliable. The actual result is
not invariant to the rotation of polarization plane in
contrast to the theoretical evaluation of this problem. The
difference may have a significant influence to the proper
device functionality.

This paper presents computer study of DOE
influence to the light beam using "vector correction” to the
Kirchhoff scalar theory of diffraction and suggests a
quicker evaluation method for oscillating double integrals.

2. Scalar theory of diffraction

Kirchhoff scalar theory of diffraction has been
derived from the Green integral theorem for two scalar
functions inside and on a closed surface S. Assuming point
source of light the amplitude of the diffracted light U,
behind the phase-transforming DOE can be formulated by
following equation

eik(n.r)

U,,=—-%§T—,,—(n.n,-—n.n,)dS, 1)

where A is the initial amplitude of the light source,
k is the wave number, vector r connects initial source to
the DOE surface element, vector s connects point of
interest to the same element of DOE, n, , n, are their
respective unit vectors and n is outward normal to the
DOE. Function T describes the phase-transforming
characteristics of the DOE. To describe Fresnel zone plate
which focuses light from point in the distance -a to the
point in the distance +b the following function can be used

T=e™, 2

where

t=sgnsin[k(/p?+a® + [p?+b? —a=b)),  (3)

p is the distance between surface element and the
optical axis of the set-up.

3. Vector modification of Huygens
Fresnel principle

Following Huygens-Fresnel principle we can
consider every point of a wave-front to be an elementary
source of a secondary spherical wavelets, and the
wave-front at any later instant may be regarded as the
mutual interference field of these wavelets. Our attempt to
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overcome these limits in correct assessment of light-DOE
interaction is based on modified Huygens-Fresnel
principle:

Every point of a wave-front can be considered to
be an elementary dipole emanating electromagnetic
radiation. The wave-front at any later instant may be
regarded as the mutual interference field of these
wavelets.

Thus, in our modification the term electric dipole
replaces the original term elementary light source.

The field radiated by an elementary dipole is
rigorously described by the equation

E= o B - 2 k)~ po(h - £ - 12,9
H= S (R jpzytR . &)

For the sake of simplicity let us abandon the small
contribution to the overall field amplitude

2>>hss L (6)

After proprietary simplification the total field
amplitude and its derivative along the outward normal n is

E= LS00 - i B _y), Q)
¢luk2
2o SR )R, ®

where brackets {,] denote tenzor variables known
also as "diadic multiplication". Let us substitute into
Green's theorem

[(UAE~EAU)V = (U &~ E . Z)ig )

these equalities

= S ikyELE gy, (10)
L an
E= 50 i _g) (12)
OE _ ek cosm (13)

&= 2 i g).

After straightforward but tiring calculation the
final equation emerges

Ug = 22 (£22(E - ik) (k- ik (14)
- (5 -1D - (& [1](cos(m 3) - cos(a, F))} .

Further simplification gives quite tidy formula

= 3;::::0 f{ ik:np ([rr] [1p- ([u] [1].

.(cos(ﬁ,?) - cos(tﬁ"))}dS, (15)

Let us compare this equation with Kirchhoff
formula

Uy =24 4o cos(n, 3) - cos(@m, 1))dS. (16)

Both equations should give close results, as physical
reality is the same. The relation between radiation of point
source and elementary dipole is

pkz
= aneq an

Substitution reveals difference factor 3/2 between

Kirchhoff's description and vector modification. In our

opinion this factor might be an artifact of quite complex
simplification during derivation process of final formula.

Figure 1: Model example set-up

Figure 2: Intensity profile calculated by the scalar theory

4. Model example

To compare the result predicted by the Kirchhoff
scalar theory with that one given by our vector
modification, we tried to evaluate a simple example. The

- square (lmm x Imm) Fresnel zone plate was taken and

placed at the beginning of coordinate system. It was
designed to focus light from point [0,0,-1 mm] to the point
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[0,0,2 mm] (Fig.1).* Computer evaluation of this problem
took about 120 hours of computer time (IBM-PC, 386SX +
387, 25 MHz). We used 10 PCs mutually interconnected to
speed up the whole process. The necessary computing time
restricted the maximum dimension of the evaluated Fresnel
zone plate. A simple calculation of computing time for
bigger lenses convinced us that this task can not be solved
by use of brutal force.

Fig.2 and Fig.4 show the intensity profile calculated
using equation (1). The displayed area is a square 10pm x
10um. We can see the symetricity of the profile. The
dimensions of the central maximum are about 3.5um x
3.5pm,

Fig.3 and Fig.5 show the same area, but calculated
using our vector modification. The source electromagnetic
dipole is oriented along the x-axis of the coordinate
system. We can see the central maximum is no longer
symetric, its dimensions are about 2.5pm x 1.5pm,

Figure 3: Intensity profile calculated by the vector modification
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Figure 4: The topographic map of the scalar intenéity profile

There are peculiar rectangular patterns visible on
these figures. The striking fact is totally different
orientation of them. While the scalar case has a rhombic
orientation, the vector one has the barrier perpendicular to
the aperture edges. It resembles to a kind of scaled-down
projection of the lens aperture to the plane of calculation.
The significantly different shape of the main central peak
is clearly visible. Following the intensity distribution along
the x-axis in Fig.3 we can see the dominant secondary
maxima; they are absent along the y-axis.

The projection of the aperture shape to the focal
plane and the shape of the main,k maximum support
reasonable hypothesis that there are different focal lengths
for x and y-directions. This hypothesis complies both with

the experiment and an intuitive theoretical model of
diffraction. Our vector modification evidences theoretically
that axially symetric diffractive lenses have an inherited
astigmatic aberration when focusing polarized light and
that the focal length in the plane of polarization is longer
than that one in the perpendicular plane.
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Figure 5: The topographic map of the vector intensity profile

S. Asymptotic expansion of integral

Method of the asymptotic expansion of integrals is
very prospective for speeding up calculation of diffraction
phenomena. Its application is not elementary, though. Not
only there is a need for quite complex mathematics, but
also there are omittings and mistakes at the papers of
foundators of this method. The extremely good feature of
this method is that it complexity and computer time
requirment are not depending on the size of DOE. The
method consists in replacement of whole integral by sum
of only few contributions that arise from certain specially
chosen critical points. Evaluation of the integral

w(Q) = [, gx,y)e ™D dedy (18)

shows that for large & the exponential varies so
rapidly that the contributions from the various elements dx,
dy to the integral almost completely cancel each other, so
that the net result is extremely small. This cancellation,
however, will not be effective if function f does not vary
with x and y. Therefore the contribution from the vicinity
of any point where f is stationary must be calculated
separately. Such points where

Z=2-0 A (19)

are called critical points of the first kind. In
addition, the cancellation may also become ineffective in
the neighborhood of the limits of integration, which gives
rise to critical points of the second and third kinds. Their
contributions represent the diffraction at the edge of the
aperture. By these considerations it is seen that the integral
(18) may be written as a sum of a number of contributions,
each arising from the vicinity of some critical point.
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To find the values of the contribution up of any
critical point P let functions f'and g be expanded into the
series around the point P;

Sy =foo+f10 S+ for t+fi1 - St+fao 82+ for - 2+
g(x,}’)=goo +g10°S+go01 'f+g11 °St+g20 'Sz"f"'

It is useful to eliminate the term f; in the
exponential. This can be done by means of linear
transformation, called affine transformation, of
coordinates. A second order polynom describes a conic.
Rotating of coordinate system to be parallel to conic axis
has a consequention in extinction of the term f1; . The right
angle of rotation « is given by equation

Ju

Jrofo2

. tg(2a) =

The calculation gives contribution from the critical
point of first kind in the form -

iMoo / '810 igm)
= 2 B
p k [;‘ &oo 2430 2Mn

Critical points of the second kind are points on the
curve C bounding the domain of integration Q at which

g_
a=0

where dl is an element of arc of the bounding curve
C. The appropriate transformation of the coordinate system
makes one axis parallel to the boundary at the critical
point. This rotation simplifies further calculations.
Complete contribution from the critical point of the second
kind is

.
k’fo,/fg

If boundary of the integration domain C is not an
analytic curve, it can not be taken as axis of ¢’ and we must
consider the non-analytic points of C separately. We
confine ourselves to the corner, i.e. the points where the
tangent varies discontinuously; they will be called critical
points of the third kind. Contribution is

upp = eWoo (goo glo,f gzoszz "‘8022,5/ ) (25)

_ —eMo , 4 /i /i
Up = gz &oo 80y t 8ot
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Application of this method to our purpose has
several limitations. Due to the function T the subintegral
function is not continuous within the integration domain,
this fact breaks the conditions of this method. Dividing the
whole domain to zones with constant phase shift we can
fulfill these conditions. Each zone of the DOE will be
therefore computed separately and the total effect will be
summed. Thus the necessary computing time is dependent
only to the number of Fresnel zones in the zone plate
which increases with the d/f ratio and not with the size of
the element.

To compare the significant difference between
diffraction patterns predicted both by Kirchhoff scalar
theory and modified Huygens-Fresnel principle we are
currently evaluating simple optical element using both
theories. The final judgement will be naturally made by
measurement of element optical properties. Taking into
account the required precision of measured values, we
decided to design, produce, compute and measure a
relatively simple dielectric grating fabricated of the
PMMA layer 0.628 micron thick placed on the silica vafer.
The periode of the grating is 1.2 micron, the distance
between two ridges is 0.6 micron. The grating is windowed
by the square aperture 3 x 3 milimetres and was designed
for operation with red He-Ne laser. Computational study of
polarized light interaction with this test grating is carried
out using workstation HP-712 running first version of our
C-language program. The software for diffraction
simulation will be tested in both full an asymptotic version.

The mutual comparison of results obtained by
several very different methods should bring new light to
the problem of diffractive phenomena on. dielectric
microstructures, cut off the blind ends of the research in
this field and definitely illuminate the prospective
directions of investigation.
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The Proceedings of Design and Diagnostics of Electronic Circuits and Systems '95 Seminar brought
the latest papers on research and development in the DDECS '95 branch. The DDECS '95 Seminar was
organised by the Department of Electronics, FEI, VSB-Technical University of Ostrava in September 1995 in
Roznov pod Radhotém. The opening anniversary of VSB in Ostrava in 1945 was celebration these days. This
was the opportunity to remember the history of school. The faculty of Electrical Engineering was the fifth
faculty established at the VSB - Technical University of Ostrava.

The history of Diagnostic Seminars is longer then ten years. The DDECS continues the ten-year
tradition of "Diagnostics of Microprocessors” initiated by Prof. Ing. Jan Hlavicka, DrSc., honorary chair of
DDECS '95 Seminar. The previous seminars were very useful and popular. The seminar Design and
Diagnostics of Electronic Circuits and Systems '95 wants to follow them. The DDECS '95 integrate the design
and diagnostics. The topics deal with both the traditional and the new areas...

The DDECS '94 was devoted to VHDL Design Tools. The DDECS '94 was held in the framework of
the TEMPUS project. The lecturer was Prof. Paul Raes, who works in the VHDL field from the beginning of
existence of IEEE Std 1076-1987. Under the influence of the lectures of DDECS '94 was in immediately
starting of, regular VHDL courses in pre-graduate as well as post-graduate education at the Department of

Electronics. These regular courses are instructed eve

year. The knowledge gained through proper scientific

research and intensive co-operation between the VSB-TU, the other technical universities and enterprises
which is even on the international level, are promptly integrated into the teaching of the courses.

The DDECS '95 had its own advantage and liability. For specialists more then ten-years tradition was
an advantage. However for organisers it was a liability because of the very good quality of previous seminars.
The Diagnostics of Microprocessors III (in 1981) had its own aim: Application of self-tests in the diagnostics.
All the seminars had their own objects. The DDECS '95 has the aim too: The VHDL modelling in diagnostics
and the Boundary-Scan Test by IEEE Std 1149.1-1990. The both aims are very frequently mentioned in
technical issues. In the six sections of the Seminar was concerned into areas (i) High-End Design and
Diagnostic Means for ASICs, (ii) Generation of External- and Self-Tests for ASICs, (iii) Design and
Diagnostics of FPLs, (iv) Special Diagnostic Methods and Means, (v) DSP Systems, and (vi) Reliability. In the

sections it was lectured more then thirty papers.

The DDECS '97 is planed on May 1997 as a part of TEMPUS Project "Education in Quality Control
in Electrical Industry” S_JEP 9468, which is collaborated by Department of Microelectronics, Faculty of
Electrical Engineering, Czech Technical University Prague (Contractor), Department of Microelectronics,
Faculty of Electrical Engineering and Computer Science, Technical University of Brno (Coordinator), and
Department of Electronics, Faculty of Electrical Engineering and Computer Science, VSB-Technical
University of Ostrava. The foreign co-operating universities: University Bournemouth, Metropolitan University
Leeds, University of Hull in Great Britain, and University of Grenoble in France. The DDECS '97 Seminar will

be held at the Northern Moravia in Beskydy Mountains.
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