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Abstract: In this study a device for automatic electrochemical analysis was designed. A 

three electrodes detection system was attached to a positioning device, which enabled us to 

move the electrode system from one well to another of a microtitre plate. Disposable carbon 

tip electrodes were used for Cd(II), Cu(II) and Pb(II) ion quantification, while Zn(II) did not 

give signal in this electrode configuration. In order to detect all mentioned heavy metals 

simultaneously, thin-film mercury electrodes (TFME) were fabricated by electrodeposition 

of mercury on the surface of carbon tips. In comparison with bare electrodes the TMFEs 

had lower detection limits and better sensitivity. In addition to pure aqueous heavy metal 

solutions, the assay was also performed on mineralized rock samples, artificial blood 

plasma samples and samples of chicken embryo organs treated with cadmium. An artificial 
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neural network was created to evaluate the concentrations of the mentioned heavy metals 

correctly in mixture samples and an excellent fit was observed (R2 = 0.9933). 

Keywords: automation; electrochemical detection; artificial neuronal network; robotic 

device; metal ions; environmental analysis 

 

1. Introduction 

Metals mainly occur in the Earth’s crust, however, urbanization and industrialization lead to their 

releasing into the biosphere, where they have become part of the air, soil, water and biota [1–3]. As a 

consequence of the metabolic similarity of toxic metals with non-toxic elements, they bind to the 

sulfhydryl groups of proteins causing negative effects, including mutagenesis [4,5]. Some metals, such 

as copper (Cu) and zinc (Zn), are essential micronutrients, although they are also toxic in higher 

concentrations. On the other hand, other metals as cadmium, lead and mercury can damage numerous 

biochemical pathways, even at low concentration. Due to this fact and the fact that the one-half of the 

World’s population lives now in urbanized areas, metals continue to present a serious issue for  

public health [6].  

Several methods have been developed to detect trace amounts of heavy metals. Conventional heavy 

metal detection methods include atomic absorption spectrometry (AAS), inductively coupled plasma mass 

spectrometry (ICP-MS) or inductively coupled plasma optical emission spectroscopy (ICP-OES) [7–9]. 

However, they do not meet the demands for portable, easy-to-use, quick and cheap analysis. In this 

field, electrochemical analysis of heavy metals is an alternative to conventional methods and provides 

a few attractive properties, in addition to a high degree of sensitivity [10–12]. Electrochemistry offers 

unique application possibilities in the field of heavy metal analysis due to the compact, simple and 

portable instrumentation, electrode miniaturisation and easy electrode modification [13–15]. 

Electrochemistry was also proved to be suitable method to analyse heavy metal contents in biological 

and environmental samples like body fluids, tissues or rocks [16–18]. Gallus domesticus hen and its 

embryos are broadly used as a model organism [19], where the liver represents the organ of initial Cd 

accumulation and recent study shows that high levels of Cd can be presented also in brain [20].  

Among other electrode materials suitable for these purposes, mercury and carbon have been used 

the most frequently. In spite of the fact that mercury has unique physico-chemical properties and are 

widely used in trace heavy metal analysis, neither the dropping mercury electrode nor the hanging 

mercury drop electrode are suitable for automated analysis methods because of their mechanical 

instability (the mercury drop is easily dislodged). High consumption of metallic mercury in these cases 

also does not correspond with current trends in heavy metal analysis, since much attention has been 

focused on the use of more eco-friendly solid materials like carbon and chemical modification of its 

surface to improve sensitivity [21,22]. Thin-film mercury electrodes (TFMEs) are able to resolve these 

limitations [23]. They decrease mercury consumption, enable electrode manipulation and preserve the key 

mercury electrode properties like a wide cathodic potential window. In this case, mercury is 

electrodeposited from a solution with low mercury concentration on the surface of a solid electrode, 

which serves as a mechanical support and enables easier manipulation. In the case of heavy metals 
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analysis, anodic stripping voltammetry (ASV) exhibits remarkable sensitivity [24,25]. A more negative 

potential than the standard redox potential of the heavy metal ions is used to preconcentrate them on 

the mercury surface. A subsequent linear increase of the potential stripps them back into the solution 

represented by increased current at a specific potential. Pulse techniques like differential pulse or 

square wave voltammetry suppressing the background current were successfully combined with ASV 

to lower the limits of detection [26]. The only alternatives to mercury for stripping techniques are  

Bi-modified electrodes, however, their limitations are low anodic potential [27]. 

Moreover, there are also demands on high throughput analysis in the field of environmental 

monitoring. The long-term monitoring of heavy metal pollution is the only way to meet national and 

international legislative measures implemented to decrease the anthropogenic pressure on the 

environment. The automatic handling of samples shortens time-consuming analysis, enables one to 

perform multiple analyses without continuous operator attention and is also consistent with current 

trends in analytical chemistry. Automatic flow-based voltammetric detections of heavy metals were 

proven to have good accuracy and reproducibility and succeeded in reducing analysis times [28,29]. Use of 

titre plates for automatic analysis enables one to avoid the need for complex microfluidics and 

electrochemical flow-cells [30]. The potential of the electrochemical robotic system for automated 

quantification of Ni2+ ion released from corroding nickel-titanium alloys was recently demonstrated [31]. 

The electrochemical robotic system was designed for automatically performing adsorptive stripping 

voltammetry in individual compartments of 24-well microtiter plates. Displacing the preloaded plates 

in the x and y directions, locating an electrode assembly into the solution in a selected well, 

conditioning the working electrode surface, and finally executing adsorptive stripping voltammetry are 

key actions that had to be automated for the sequential determination of Ni2+ concentrations in sample 

solutions in the different wells of the microtiter plate [31]. In another work, automatic ascorbic acid 

voltammetry was performed in 24-well microtiter plates. The automated assay used a movable 

assembly of a pencil rod working electrode, an Ag/AgCl reference electrode and a Pt counter electrode 

using differential pulse anodic stripping voltammetry (DPASV) for concentration-dependent current 

generation [30]. 

Data obtained by voltammetric sensors from multicomponent environments produces complex 

signals. To solve this problem, several electrode surface functionalizations were developed to improve 

the electrode selectivity [12,32]. Alternatively, a multivariate signal processing tool can be used. 

Among others, artificial neural network (ANN) software-based techniques were developed to analyse 

complex data sets, and they excel in modelling and calibrating complex analytical signals [33]. There 

are many types of ANNs that vary mostly in the architecture or in the way they learn. It was proved 

that using ANN data analysis interference between target heavy metals ions and the effect of sample 

matrix can be counterbalanced and this also enables evaluate overlapped voltammograms [34–36]. 

This paper describes a novel application of the electrochemical robotic device that provides a 

convenient electrochemical 24-well microtiter plate assay for the automated quantification of multiple 

heavy metal samples containing Cd(II), Cu(II), Pb(II) and Zn(II) in pure aqueous model solutions, 

mineralized rocks, chicken embryo liver and brain and human plasma samples spiked with metals. The 

choice of the carbon tip electrode modified with mercury film as a working electrode, signal stability 

and reproducibility of known metal solution levels are reported. Moreover, artificial neural networks 

software-based techniques developed to analyse the complex data sets were also used in this  
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study [37–40], because it was found that the presence of copper and zinc in samples may lead to the 

formation of intermetallic compounds on the mercury film and this affects analysis of both  

elements [41]. The correct zinc concentration in the presence of copper and vice versa can be, 

however, determined by ANN processing [42,43]. 

2. Experimental Section 

2.1. Chemicals 

ACS purity (i.e., chemicals meet the specifications of the American Chemical Society) sodium 

acetate trihydrate, acetic acid, Hg(NO3)2, water and other chemicals were purchased from  

Sigma-Aldrich (St. Louis, MO, USA) unless noted otherwise. 

2.2. Instrumentation 

An electrochemical robotic device (Sensolytics, Bochum, Germany) performed the automatic 

positioning of electrodes. Carbon tips (1 mL) were purchased from Tosoh Corporation (Tokyo, Japan) 

and were used as working electrodes after modification. Ag/AgCl/3M KCl as reference electrode 

(Metrohm, Herisau, Switzerland) and platinum wire (Metrohm, Herisau, Switzerland) as counter 

electrode were used. Electrochemical signals were recorded using a PGSTAT 101 potentiostat 

(Metrohm) and the NOVA 1.8 software (Metrohm) was employed for data evaluation. The electrode 

holder was printed by a PROFI 3D MARKER printing system (3Dfactories, Straznice, Czech 

Republic). Samples were measured in flat bottomed TPP tissue culture 24-well plates (Sigma-Aldrich). 

2.2.1. Electrochemical Robotic Device 

Electrodes were placed into the holder fabricated using the 3D printer. The electrochemical robotic 

device (Sensolytics) positioning the electrodes included three motorized units ST4118M1804  

(Nanotec, Munich, Germany) and positioning system (OWIS, Staufen, Germany). The first unit was 

rigidly connected to the vertical frame of the electrochemical robot. The electrode holder was attached 

to it and this enabled us to perform precise vertical (z) positioning of the electrode holder (up and 

down). The microtiter plate was placed on a horizontally (x/y) positioned board. Coordinates and the 

precise time of the holder and plate motion were controlled by the ELChemRo software  

(Sensolytics). We used the advanced settings of NOVA to prepare a script enabling us to set up the 

sequence of differential pulse voltammetric measurements with adjustable time intervals between 

individual measurements.  

2.2.2. Working Electrode 

Automatic electrochemical detection was performed using a three electrodes system. A pipette tip 

made from polymeric material and coated by graphite enabled us to use it as a working electrode due 

to its conductive resin. Based on the mentioned facts, these electrodes can be used for detection of 

substances undergoing reduction and/or oxidation on the surface of such electrodes. In this study, 

detection of Cd(II), Pb(II), and Cu(II) was carried out by a bare working electrode. Carbon tip 
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electrode modified with mercury film was employed for detection of Zn(II) ions (no reduction was 

observed using the bare electrode) and for detection of metal mixtures. 

2.2.3. Modification of Carbon Tips 

The carbon tips were inserted into 0.01 M Hg(NO3)2 solution, prepared by the dissolution of 0.086 g 

mecury(II) nitrate in 25 mL of acidified (5% HNO3, v/v) Milli-Q water. A −0.9 V potential was applied 

to the electrodes for 60 s, which resulted in the formation of a thin-film of mercury on the surface of 

the working electrode [44]. 

2.2.4. Method 

We used differential pulse voltammetry for all measurements and measurement parameters were as 

follows: deposition potential −1.6 V, initial potential −1.6 V, end potential 0.1 V, step potential 0.005 

(scan rate 50 mV·s−1), modulation amplitude 0.1 V, modulation time 0.004 s, interval time 0.1 s. All 

experiments were carried out at room temperature. Acetate buffer (0.2 M CH3COOH and 0.2 M 

CH3COONa) was used as the supporting electrolyte. The limit of detection was calculated as  

LOD = (3.3 × SD)/S, where SD = standard deviation of the response and S = slope of the calibration curve. 

2.3. Statistical Analysis 

First, simple regression was performed for each metal peak value–metal concentration pair. The 

following functions were tested: linear, logarithmic and exponential. The correlation of each regression 

was tested and then the optimal function for each metal was used. Based on these results, a nonlinear 

estimation using a user-determined regression function was created and the goodness of fit of the 

model was tested again. In the third step, an automated neuronal network was created. The following 

methods were tested: radial basis function and multilayer perceptron. The following activation functions 

were used for hidden and output neurons: identity, logistic, tan, and exponential. The number of hidden 

neurons was limited to 20 and was optimized during after the primary learning cycle. Weight decay was 

used to prevent overfitting using the following setting: 0.0001–0.001 (min–max) for both hidden and 

output layer. Data (645 samples in total) was randomly divided into a training group (70%), testing group 

(15%) and verification group (15%). A Broyden-Fletcher-Goldfarb-Shanno (BFGS) training algorithm 

was used. Unless noted otherwise, p-level 0.05 was considered significant. The software Statistica 12  

(StatSoft, Tulsa, OK, USA) was used for analysis. 

2.4. Sample Preparations 

Fertilized egg of ISA brown hen (Integra, a.s., Zabcice, Czech Republic) was incubated in a RCom 

50 MAX incubator (Gyeongnam,  Changwon, Korea) at 37.5 °C and humidity control (45% rH). After 

16 days of the incubation the embryo vitality was checked and then a solution of Cd(NO3)2•4H2O  

(4.5 mg·mL−1 in ACS water) was applied (500 µL) by injection using a Chirana T. injecta device (maximal 

volume: 1 mL, size: 0.33 × 12 mm) through a small hole in the egg shell into the air cell on the 

chorioallantoic membrane. After that the hole was covered by a plaster. The chicken embryo was 

incubated till the next day and then the brain and liver was extracted. From the chicken embryo, 10 mg 
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of tissue (brain, liver) was equally removed, weighed and added to 500 µL of a mixture consisting of  

350 µL 65% nitric acid (v/v) and 150 µL 30% hydrogen peroxide (v/v). The solutions were subjected to 

digestion in a microwave reaction system Anton Paar (Anton Paar GmbH, Graz, Austria) using the 

following conditions: time 40 min (10 min power 50, 30 min power 100 and 10 min power 0), 60 °C, 

Rotor-64MG5-16. Mineralized solutions (200 µL) were transferred to a 96-well Deepwell plate 96 

evaporation plate (Eppendorf, Hamburg, Germany) and evaporated. For evaporation of samples an 

Ultravap 96 nitrogen blow-down evaporator with spiral needles (Porvair Sciences, Leatherhead, UK) 

was used. Finally, the solutions were dissolved in 0.2 M acetate buffer (200 µL, pH 5.0) and were 

diluted 10-fold with the same acetate buffer prior to analysis. Rock samples (10 mg) were prepared in 

the same manner as chicken samples. For mineralization the following conditions were used: time  

110 min (100 min power-100 and 10 min power-0), 100 °C, Rotor-64MG5-16 and samples were 

diluted 1000-fold. The plasma samples with random heavy metal concentrations (0–6 µg·mL−1) were 

prepared as follows: to 10 µL of human plasma specific amount of metals ion stock solutions were 

added. Mineralized and evaporated samples were diluted to the original volume, then they were diluted 

10-fold with acetate buffer (0.2 M, pH 5.0) and used for ANN evaluation. 

2.5. Determination of Cadmium by Atomic Absorption Spectrometry 

Cadmium was also determined on an Agilent Technologies 80 Z atomic absorption spectrometer 

(Agilent, Santa Clara, CA, USA) with electrothermal atomization. The spectrometer was operated at 

the 228.8 nm resonance line with a spectral bandwidth of 0.5 nm. The sample volume (20 µL) was 

injected into the graphite tube. The flow of argon inert gas was 300 mL·min−1. Zeeman background 

correction was used with a field strength of 0.8 Tesla. The absorption signal was evaluated in peak 

height mode with seven point smoothing. 

2.6. X-Ray Fluorescence Analysis (XRF) 

The rock samples were measured on a Spectro Xepos apparatus (Spectro Analytical Instruments, 

Kleve, Germany) using an anode X-ray tube with Pd anode working at a voltage of 44.69 kV and a 

current of 0.55 mA. Signals were detected with Barkla scatter aluminium oxide for 300 s. For 

excitation three secondary targets (Mo, Al2O3 and high-ordered pyrolithic graphite crystal) were used. The 

excitation geometry was 90°. The crushed samples were measured through the PE bottle side wall 20 mm 

above the bottom. The Spectro Xepos software and TurboQuant method were applied for data analysis. 

3. Results and Discussion 

3.1. Automatic System for Heavy Metal Detection 

Automation or semi-automation of analysis reduces time-consuming manual operations and costs. 

We used an electrochemical detection method (differential pulse voltammetry) with all its known 

advantages (easy-to-use, good sensitivity, cheap instrumentation) for automatic simultaneous detection 

of cadmium, zinc, copper and lead ions in various types of real samples. The whole system consisted 

of detection and positioning parts. Detection was performed using a classical three-electrode system 

(working, reference and auxiliary electrode). Electrodes were fitted to a movable holder and positioned 



Sensors 2015, 15 598 

 

 

using an electrochemical robotic device schematically depicted in Figure 1A and photographed in 

Figure 1B. Scripts were created to precisely control the timing of electrochemical measurements and 

movements of the electrode holder with the electrodes. At first, we used a disposable carbon tip as a 

working electrode, nevertheless this electrode was not able to detect zinc ions. Hence, we fabricated 

thin-film mercury electrodes (TFMEs) by electrodeposition of mercury (II) ions from solution onto the 

carbon surface of electrodes (Figure 1C) and its sensitivity was compared with a disposable carbon tip 

electrode. Due to the fact that we focused on automation, the electrochemical robotic system was used 

to perform plating automatically and the automated pipetting device was used to prepare different 

heavy metal concentrations for calibration curve measurement and mixing samples with buffer. It is 

well known that oxidation/reduction of some metals on the surface of TFME can be affected by the 

presence of other metals by forming of intermetallic compounds [45]. Therefore, we used statistical 

methods (linear regression, multiregression model and finally a neural network) to reduce 

measurement errors and evaluate the detected concentrations of target heavy metals [42,43]. Complex 

analytical signals of mixture samples obtained by arrays of potentiometric electrodes or by 

voltammetric systems (not those based on specific receptors) mostly require application of 

chemometric tools [46,47]. We decided to use an artificial neural network for these purposes since it is 

an effective instrument to analyse these types of multivariate signals and is able to recognise specific 

patterns in data sets. It can be considered as one of the most important tools in this kind of analysis and is 

not only broadly used in evaluation of redox, but also optical signals [48,49]. Gutés et al. emphasized the 

need for voltammetric signal pre-processing before ANN modelling in order to reduce ANN training time 

and create a more accurate network [50]. A wavelet transform was previously used to extract the most 

relevant information from voltammograms [51]. We used individual ions peak heights as the ANN input 

data, because Cd(II) and Zn(II) ions in samples tended to affect the peak heights of each other instead 

of overlapping (peaks of Cd(II), Cu(II) and Pb(II) and Zn(II) are well separated) [41]. The neural 

network reliability was tested using 22 mineralized blood plasma samples with random heavy metal 

concentrations (0.0–6 µg·mL−1) and 20 randomly selected heavy metal mixtures (0.01–8 µg·mL−1). The 

automatic electrochemical robotic device and neural network were also used for evaluation of heavy 

metal content in rocks and chicken embryo tissues exposed to cadmium(II) ions. Addition of buffer to 

mineralized rock samples, chicken brain and liver and artificial plasma samples was performed by an 

automated pipetting device (Figure 1D). The way samples were treated is shown in Figure 1E. 

3.2. Optimization of the Automatic System for Heavy Metal Detection 

The automatic system for heavy metal detection was optimized for determination of the four  

metal ions (Cd(II), Cu(II), Pb(II) and Zn(II)). The optimization was focused on monitoring of the 

electrochemical response of the individual elements depending on the increasing accumulation time 

within the range from 0 to 300 s. Longer accumulation times were not investigated because of our 

desire to shorten the analysis to a maximum of 5 min. Thereafter, calibration curves were determined and 

limits of detection (LODs) were calculated. For values resulting from the calibration curve double-sided 

reliability bands were created, what is the part of the plane limited by straight lines, where the observed 

calibration points fall within with 95% probability [52]. Further, the sensitivity of the WE before and 

after modification with mercury film was compared by plotting the slopes of the calibration curves in 
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the column graph. Due to the fact that lower limits of detection were attained by the mercury-modified 

carbon tip, calibration curves were determined within a linear range of concentrations  

(0.6, 1.25, 2.5 and 10 µg·mL−1). This linear range is common for both unmodified and modified WE, 

and therefore all the slopes could be compared. Finally, the automatic system was verified by 

comparing the electrochemical results with atomic absorption spectrometry (AAS) data. 

 

Figure 1. (A) Scheme and (B) photo of robotic device with electrochemical three-electrode 

detection system; (C) Individual steps of thin mercury film preparation on the surface of 

carbon tip electrode; (D) Scheme of automated pipetting system epMotion 5075 desktop, 

which was used to add buffer to mineralized samples of rocks; (E) The samples of blood 

plasma, stone and chicken embryo organs preparation prior to heavy metals detection. 

At first, the electrochemical responses of the studied metals on the unmodified carbon tip WE were 

studied. Cd(II), Cu(II), and Pb(II) ion electrochemical signals were measured, but Zn(II) ions did not give 

any signal at the bare electrode. For this reason, the electrochemical optimization was performed only for 

the detected ions. The best electrochemical response of metal ions was achieved when using an 

accumulation time of 300 s. This accumulation was applied for all measurements. For the analysis of Cd(II) 

ions the electrochemical signal gave its maximum at a potential of −0.69 V and LOD was estimated as  

0.1 µg·mL−1 (Figure 2A). For the analysis of Pb(II) ions the peak maximum was detected at a potential of 

−0.51 V and LOD = 0.2 µg·mL−1 was estimated (Figure 2B). For the analysis of Cu(II) ions the peak 

maximum was detected at a potential of −0.29 V and LOD = 0.1 µg·mL−1 was found (Figure 2C). 

The next step was to estimate the LOD of electrochemical determination of metal ions when using 

mercury film modified carbon tip as WE. It was found that due to the modification of WE with 

mercury film the electrochemical signal of Zn(II) was recorded. The signal of Zn(II) ions showed a 

maximum at a potential of −1.07 V and LOD was estimated as 0.6 µg·mL−1 (Figure 2D). For the 
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analysis of Cd(II) ions the peak maximum was detected at a potential of −0.7 V and LOD as  

0.06 µg·mL−1, which is 21 times less than when measured with the unmodified WE, was found  

(Figure 2E). For the analysis of Pb(II) ions the peak maximum was detected at a potential of −0.54 V 

and LOD as 0.03 µg·mL−1, which is five times less than when measured with the unmodified WE 

(Figure 2F). For the analysis of Cu(II) ions the peak maximum was detected at a potential of −0.29 V 

and LOD as 0.02 µg·mL−1, which is five times less than when measured with the unmodified WE 

(Figure 2G). 

 

Figure 2. Calibration curves of (A) cadmium(II) (0.6–10 µg·mL−1); (B) lead(II)  

(0.16–10 µg·mL−1) and (C) copper(II) ions (0.6–10 µg·mL−1) measured using carbon tip 

electrode. Calibration curves of (D) zinc(II); (E) cadmium(II); (F) lead(II) (all 0.6–10 

µg·mL−1) and (G) copper(II) ions (0.16–10 µg·mL−1) measured using thin film mercury 

electrode. (H) The graph of optimized time of accumulation (0–300 s) (red line) is connected 

with appropriate calibration curve and shows the changes of peak potential (blue line). 

Comparison of slopes of calibration curves measured using carbon tip electrode (blue bar) 

and thin film mercury electrode (green bar); (I) The amount of cadmium ions detected  

(by AAS, DPV and ANN) in brain and liver of chicken embryo (16 day) exposed to  

cadmium (II) ions (0.5 mg) by injection to air cell.  
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Further, for the use of the slopes of the calibration curves (Figures 2A–2G), sensitivities of the 

unmodified and modified WE for analysis of individual metal ions were compared (Figure 2H). It was 

found that modification of WE with mercury film had the greatest effect on detection of Zn(II) and 

Cd(II) ions. Detection of Zn(II) ions was possible only due to the WE modification. For detection of 

Cd(II) ions the sensitivity was increased 7-fold. On the other hand an increase in sensitivity was not 

demonstrated for the detection of Cu(II) and Pb(II) ions within a 5% error bar. Finally, brain and liver 

samples of the real-chicken embryo treated with Cd(II) ions were analysed. For these samples Cd(II) ions 

were determined. Comparison of the results measured by both DPASV (without stirring since the 

samples were placed in a titre plate) and AAS coincided within 10% error, as shown in Figure 2I. 

3.3. Rock Analysis 

Four different rocks were analysed electrochemically using TFME and the obtained results were 

compared with the X-ray fluorescence analysis (XRF) ones. Two rock samples consisting 

predominantly of the minerals sphalerite (ZnS) and pyrite (FeS2) were obtained in Madan in Croatia, 

and further galenite (PbS), and a mineral association of arsenopyrite (FeAsS) with pyrite and löllingite 

(FeAs2) were obtained in Panasqueira in Portugal (Figure 3). 

 

Figure 3. (A) Photo, original (red) and (B) baselined voltammogram (blue); (C) the element 

content in the rock calculated by neuronal network from voltammograms and element 

content measured using XRF (inserts) of rocks containing (D–F) sphalerite and pyrite;  

(G–I) galenite; and (J–L) arsenopyrite, pyrite, and löllingite. 

For the first sample of analysed rock, which was composed predominantly of the mineral sphalerite 

(Figure 3A), the highest content of Zn(II) (24%) and traces of Cd(II) (1.5%), Pb(II) (1.0%) and  
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Cu(II) (0.3%) were determined electrochemically and evaluated by ANN (Figure 3B). Similar results 

were obtained by XRF analysis (Figure 3C). In addition the elements Fe (10%) and S (12% of  

detected elements) were further detected (not shown). 

For the second sample of analysed rock composed mainly of pyrite (Figure 3D), none of the 

analysed metals was determined electrochemically (Figure 3E and F). Using XRF analysis the 

elements Fe (47%), S (30%), Mg (1.22%) and Cu (1.35%) were detected (not shown), which 

corresponds essentially to the elemental composition of pyrite. 

For the third sample of analysed rock, which was composed mainly of the mineral galenite (Figure 3G), 

the highest content of Pb(II) (37%) was determined electrochemically and this corresponded to the 

composition of this mineral (Figure 3H). Further, Si (8.5%) and minor amounts of Zn (1.8%), Cd 

(1.6%), and Cu (0.6%) ions were also determined (Figure 3I). Similar results were obtained by XRF 

analysis (Figure 3H and I). 

For the fourth sample of analysed rocks, consisting primarily of the minerals arsenopyrite, pyrite 

and löllingite (Figure 3J) the largest amount of Zn(II) (25%) and in smaller amounts Cu(II) (2.0%),  

Cd(II) (1.4%) and Pb(II) (1.0%) were determined electrochemically (Figure 3K and L). Similar results 

were obtained using XRF analysis, but the elements Fe (32%), As (>18.29%), S (8%) and Sn 

(>2.875%) were also found (not shown). 

3.4. Identification of Regression Function 

A total of 645 mixture combinations of Zn(II), Cd(II), Cu(II), and Pb(II) standard concentrations 

within the range 0–10 µg/mL were prepared (appropriate amounts of the corresponding nitrates were 

dissolved in water). First, simple linear regression was performed to reveal the associations between 

peak values and concentrations using the following equation ݕ௓௡ = ܽ௓௡ + ܾ௓௡ݔ௓௡ (1)

where y indicates the concentration of each metal, x indicates the peak value for each metal and a and b 

are constants for each metal (Table 1). The goodness of fit of the model was as low as R2 = 0.87 for 

copper. Therefore, other functions were tested. Highest R squared (R2 = 0.92) was observed for the 

exponential function. Based on these results a multiple regression model using the following combined 

linear/exponential regression function was used: ݕ௓௡ = ܾ௓௡ݔ௓௡ + ܾ஼ௗݔ஼ௗ + ܾ௉௕ݔ௉௕ + ܾ஼௨݁(௔಴ೠ௫಴ೠ) (2)

where y indicates the concentration of each metal, x indicates the peak value for each metal, b is a 

constant (different for each metal), and e is the Euler constant (Table 1). The performance of this 

model was still weak for the calculation of copper concentration (R2 = 0.87). Therefore, instead of 

fitting another higher order or other complex functions, regression using automated neural networks  

was performed. 
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Table 1. Parameter estimates for simple regression and nonlinear estimation used in the 

optimization steps of the model. Parameters a and b for each metals are those used in the 

Equations (1) and (2). * indicate parameter is significant for calculation and therefore was 

used for the model. 

Model Parameter 
Parameter Estimates (95% Confidence Interval) 

Zn(II) Cd(II) Pb(II) Cu(II) 

Simple linear regression 

a * −0.56 * −0.62 * −0.52 * −1.47 

b * 0.72 * 0.67 * 0.18 * 0.20 

model R2 0.98 0.98 0.98 0.87 

Nonlinear estimation 

bZn * 0.72 (0.70–0.73) * 0.12 (0.11–0.13) * −0.02 (−0.03–−0.01) * 0.03 (0.00–0.05) 

bCd * 0.15 (0.13–0.16) * 0.74 (0.73–0.76) * −0.02 (−0.04–−0.01) 0.00 (−0.02–0.03) 

bPb 0.00 (0.00–0.01) 0.00 (0.00–0.00) * 0.19 (0.18–0.19) 0.00 (−0.01–0.00) 

bCu * −2.61 (−2.94–−2.28) * −2.94 (−3.19–−2.7) 0.02 (−0.27–0.31) * 0.46 (0.33–0.59) 

aCu 0.00 (0.00–0.00) 0.00 (0.00–0.00) 0.00 (−0.31–0.31) * 0.06 (0.05–0.06) 

model R2 0.98 0.98 0.98 0.87 

3.5. Building a Neural Network Model 

Both the radial basic function and multilayer perceptron approaches were used for training with the 

following activation functions, which were used for hidden and output neurons: identity, logistic, tan, 

and exponential. In the initial training set total 10,000 training cycles were performed with weight 

decay and the five best were retained. The number of hidden neurons was limited to 20. After the 

initial training, the highest observed network performance was observed in a network with 19 hidden 

neurons, and exponential and logistic hidden and output activation functions, respectively. The 

goodness of fit of the model was 0.9996 for both test and validation (Table 2).  

Table 2. Results of the neuronal network learning optimization. 

Training 

Network Name 

Network Performance (R2) Network Error Training 

Cycle 

Activation Function 

Training Test Validation Training Test Validation Hidden Output 

Initial training 

MLP 4-17-4 0.9993 0.9993 0.9993 0.0362 0.0347 0.0367 210 Logistic Exponential 

MLP 4-19-4 0.9996 0.9996 0.9996 0.0261 0.0222 0.0291 699 Exponential Logistic 

MLP 4-19-4 0.9995 0.9995 0.9994 0.0292 0.0261 0.0320 232 Exponential Logistic 

MLP 4-14-4 0.9992 0.9990 0.9993 0.0 394 0.0461 0.0367 589 Tan Identity 

MLP 4-15-4 0.9993 0.9993 0.9993 0.0348 0.0333 0.0362 722 Tan Exponential 

Final network for further deployment 

MLP 4-8-4 0.9941 0.9924 0.9933 0.3744 0.3641 0.4275 1237 Exponential Logistic 

Based on this network, the number of hidden neurons was optimized using a custom network design 

with enabled training stopping conditions. The number of hidden neurons was optimized in a range  

0–30. The activation function for hidden and output layer was exponential and logistic with weight 

decay activated. When the number of hidden neurons increased from 1 to 8, the validation performance 

of the network increased significantly from 0.36 to 0.995. Subsequent increase in number of hidden 
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neurons did not enhance the performance of the network significantly, therefore, eight hidden neurons 

was used as a model for final analyses (Table 2 and Figure 4A). Decreasing evaluation errors of 

training and testing samples were plotted against number of training cycles (Figure 4B). 

Network name includes training method, and number of input-hidden-output neurons. MLP, 

multilayer perceptron. Training cycle indicates cycle number when the network was created (in the case of 

initial training) or the training was stopped by stopping conditions (in the case of final network design). 

 

Figure 4. (A) Design of the final custom neuronal network model with four input, eight 

hidden and four output neurons. Note input layer neurons use identity functions; (B) Training 

of the network with the employment of the stopping conditions to prevent overfitting. 

Network was trained in the 1237th cycle, when the test error started to increase;  

(C) Testing the goodness of the fit of the target (known concentration) and output 

(neuronal network result).  

3.6. Measurements of a Blood Plasma and Unknown Samples 

Consequently, a model was employed for the measurement of the 22 blood plasma samples, to 

which defined heavy metal concentrations were added (Table 3). The goodness of fit for the neuronal 

network was 0.995, 0.998, 0.993 and 9.999 for Zn, Cd, Pb, and Cu ions, respectively. Consequently, 

the model was tested on validation sample and goodness of fit was tested again. The R2 was as follows:  

0.996, 0.998, 0.997, and 0.999 for Zn(II), Cd(II), Pb(II) and Cu(II), respectively. The results of these 

validations indicate significant improvement over using a general regression model with user defined 

function (compare the goodness of fit in Tables 1 and 2). 
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Table 3. Employment of the network on the measurement of the artificial blood plasma 

samples and set of validation samples. 

Group No. of 

Sample 

Concentration Targets Neuronal Network Outputs 

Zn(II) 

(µg·mL−1) 

Cd(II) 

(µg·mL−1) 

Pb(II) 

(µg·mL−1) 

Cu(II) 

(µg·mL−1) 

Zn(II) 

(µg·mL−1) 

Cd(II) 

(µg·mL−1) 

Pb(II) 

(µg·mL−1) 

Cu(II) 

(µg·mL−1) 

blood plasma samples measurement 

1 6.00 6.00 6.00 6.00 6.61 6.48 6.00 6.25 

2 6.00 6.00 6.00 4.00 6.58 6.49 6.01 3.94 

3 6.00 6.00 6.00 2.00 6.54 6.49 6.03 2.25 

4 6.00 6.00 6.00 1.00 6.49 6.49 6.05 1.11 

5 6.00 6.00 6.00 0.00 6.49 6.50 6.04 0.17 

6 6.00 6.00 4.00 6.00 6.59 6.47 4.51 6.24 

7 6.00 6.00 2.00 6.00 6.54 6.44 2.20 6.24 

8 6.00 6.00 1.00 6.00 6.48 6.37 0.63 6.22 

9 6.00 6.00 0.00 6.00 6.42 6.29 0.20 6.21 

10 6.00 4.00 6.00 6.00 6.75 4.18 5.97 6.23 

11 6.00 2.00 6.00 6.00 6.81 1.99 5.93 6.21 

12 6.00 1.00 6.00 6.00 6.87 0.95 5.92 6.18 

13 6.00 0.00 6.00 6.00 6.88 0.32 5.93 6.14 

14 4.00 6.00 6.00 6.00 5.27 6.50 5.95 6.24 

15 2.00 6.00 6.00 6.00 1.88 6.45 5.80 6.22 

16 1.00 6.00 6.00 6.00 1.00 6.49 5.74 6.20 

17 0.00 6.00 6.00 6.00 0.37 6.47 5.66 6.18 

18 0.00 0.00 0.00 4.00 0.49 0.50 0.38 3.81 

19 0.00 0.00 4.00 0.00 0.49 0.47 4.77 0.10 

20 0.00 4.00 0.00 0.00 0.45 4.18 0.31 0.09 

21 4.00 0.00 0.00 0.00 5.08 0.38 0.27 0.08 

22 0.00 0.00 4.00 4.00 0.46 0.46 4.64 3.91 

R2 of the 

network 
   0.995 0.998 0.993 0.999  

Validation samples 

1 8.00 8.00 8.00 8.00 8.42 8.59 8.53 9.02 

2 8.00 8.00 8.00 4.00 8.38 8.60 8.52 3.82 

3 8.00 8.00 8.00 2.00 8.35 8.61 8.53 2.11 

4 8.00 8.00 8.00 1.00 8.31 8.61 8.54 1.04 

5 8.00 8.00 8.00 0.00 8.27 8.61 8.54 0.19 

6 8.00 8.00 4.00 8.00 8.35 8.56 4.65 8.94 

7 8.00 8.00 2.00 8.00 8.30 8.52 2.22 8.89 

8 8.00 8.00 1.00 8.00 8.25 8.46 0.60 8.83 

9 8.00 8.00 0.00 8.00 8.19 8.39 0.18 8.78 

10 8.00 4.00 8.00 8.00 8.19 3.85 8.40 8.94 

11 8.00 2.00 8.00 8.00 8.11 1.87 8.35 8.90 

12 8.00 1.00 8.00 8.00 8.04 0.89 8.32 8.86 

13 8.00 0.00 8.00 8.00 8.44 0.28 8.31 8.80 

14 4.00 8.00 8.00 8.00 5.37 8.48 8.36 9.00 

15 2.00 8.00 8.00 8.00 1.83 8.32 8.17 8.96 

16 1.00 8.00 8.00 8.00 0.96 8.27 8.09 8.95 

17 0.00 8.00 8.00 8.00 0.34 8.18 7.96 8.92 

18 0.00 0.00 8.00 8.00 0.45 0.42 7.99 8.66 
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Table 3. Cont. 

Group No. of 

Sample 

Concentration Targets Neuronal Network Outputs 

Zn(II) 

(µg·mL−1) 

Cd(II) 

(µg·mL−1) 

Pb(II) 

(µg·mL−1) 

Cu(II) 

(µg·mL−1) 

Zn(II) 

(µg·mL−1) 

Cd(II) 

(µg·mL−1) 

Pb(II) 

(µg·mL−1) 

Cu(II) 

(µg·mL−1) 

19 0.00 4.00 4.00 0.00 0.39 3.94 4.39 0.14 

20 2.00 2.00 0.00 0.00 2.04 2.10 0.27 0.09 

R2 of the network 0.996 0.998 0.997 0.999 

Concentration targets are concentrations added to blood plasma samples and prepared as custom 

concentrations for validation samples. Goodness of fit was tested separately for both sample sets. 

Correlations analysis of input heavy metals concentrations and output results were performed (Figure 4C). 

4. Conclusions 

In this work electrochemical system for automatic detection of heavy metals was developed. Using 

this system rock samples, blood plasma samples and organs of chicken embryos were successfully 

analysed. The accuracy of the system was verified by atomic absorption spectrometer (AAS) and  

X-Ray fluorescence (XRF). Furthermore, the different mathematical models were used to calculate the 

mutual interactions between the individual electrochemical signals in the multi element analysis. The 

performance of simple linear regression and multiple regression models (combination of linear and 

exponential regression) for determining copper concentrations correctly was weak. Based on this fact, 

an artificial neural network model was built and used for the correction of results in mixtures of metal 

samples. Perfect fit of this model was found (R2 = 0.9933). 
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