
Research Article
Implementation of True IoT Vision: Survey on
Enabling Protocols and Hands-On Experience

Pavel Masek,1 Jiri Hosek,1 Krystof Zeman,1 Martin Stusek,1 Dominik Kovac,1

Petr Cika,1 Jan Masek,2 Sergey Andreev,3 and Franz Kröpfl4

1Department of Telecommunications, Brno University of Technology, Technicka 12, 616 00 Brno, Czech Republic
2Institute of Structural Mechanics, Brno University of Technology, Technicka 12, 616 00 Brno, Czech Republic
3Department of Electronics and Communications Engineering, Tampere University of Technology, Korkeakoulunkatu 10,
33720 Tampere, Finland
4Telekom Austria Group, Lassallestraße 9, 1020 Vienna, Austria

Correspondence should be addressed to Pavel Masek; masekpavel@feec.vutbr.cz

Received 7 January 2016; Accepted 15 February 2016

Academic Editor: Piedad Garrido

Copyright © 2016 Pavel Masek et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Internet ofThings (IoT) is expected to become a driver in an emerging era of interconnected world through the advanced connec-
tivity of smart devices, systems, and services. IoT goes beyond a broad range of Machine-to-Machine (M2M) communication
technologies and covers a wide variety of networking protocols. There exist solutions like MQTT or SIP collecting data from
sensors, CoAP for constrained devices and networks, or XMPP for interconnecting devices and people. Also there is a plethora
of standards and frameworks (OSGi, AllJoyn) bringing closer the paradigm of IoT vision. However, the main constraint of most
existing platforms is their limited mutual interoperability. To this end, we provide a comprehensive description of protocols
suitable to support the IoT vision. Further, we advocate an alternative approach to already known principles and employ the SIP
protocol as a container for M2M data. We provide description of data structures and practical implementation principles of the
proposed structures (JSON and Protocol Buffers are discussed in detail) transmitted by SIP as a promising enabler for efficient
M2M communication in the IoT world. Our reported findings are based on extensive hands-on experience collected after the
development of advanced M2M smart home gateway in cooperation with the operator Telekom Austria Group.

1. Introduction

Presently, the world around us is humming with data from
smart meters, sensors, or actuators. Everyday devices like
energy meters, water meters, or environment sensors are
no longer isolated entities performing their tasks offline. In
contrast, the goal of smart devices is to make our personal
and business lives easier and more efficient—today, we can
see a wide variety of smart devices (e.g., smart meters,
sensors, and actuators) coming on the market in waves and
targeting to bring intelligent behavior into today’s households
[1]. All kinds of such devices are interconnected within one
communication paradigm named Internet of Things (IoT)
where the tremendous volumes of measured data need to be
transmitted.

Following the fact that over the last decade the IoT
has attracted an enormous interest from numerous industry
domains [1], the number of Machine-to-Machine (M2M)
connections will grow to over 3 billion in 2019. Hence,
there is a crucial need to develop appropriate communi-
cation protocols for M2M (together with appropriate data
structure/format) to manage data from different sources—
storing, organizing, and analyzing data to enrich the new
businesses with novel revenue streams and valuable services
(frameworks) [1, 2].

Envisioning the future of M2M communication, the
telecommunication operators will play a key role in providing
and supporting the communication infrastructure between
end devices. Today, the 4G and beyond cellular networks
(Long Term Evolution, LTE) increasingly introduce support

Hindawi Publishing Corporation
International Journal of Distributed Sensor Networks
Volume 2016, Article ID 8160282, 18 pages
http://dx.doi.org/10.1155/2016/8160282

2 International Journal of Distributed Sensor Networks

Stage I Stage II Stage III Stage IV

Figure 1: Communication chain representing today’s IoT structure:
data from smart meters and sensors (Stage I) is transmitted via
communication protocols (e.g., WM-BUS and ZigBee) supported
by meters/sensors to aggregation unit calledMTCG (Stage II). After
performing aggregation logic, data is transmitted via the cellular
networks (Stage III) towards the end (remote) application/service
provider (Stage IV).

for M2M communication capabilities [3]. However, IoT
brings along new challenges which cannot be solved by a
single technology. Therefore, we are likely to encounter a
new paradigm called 5G vision or 5G ecosystem providing
the bridge between a massive number of smart devices
deployed, for example, within a connected home and remote
application running in cloud [4, 5]; see Figure 1.

It becomes obvious that, to manage devices and services
in IoT, more than one communication protocol has to be
deployed [6, 7]. On the other hand, it is not always necessary
to develop entirely new platforms to satisfy the demands of
IoT services, but also already existing protocols should be
taken advantage of as possible candidates for certain IoT use
cases. For example, if we take a closer look at the architecture
of LTE networks [5] we can see that the IP Multimedia
Subsystem (IMS) is a mandatory part of LTE architecture
providing the possibility of using Session Initiation Protocol
(SIP) for transmitting M2M data [8–10]. Taking into account
that SIP represents a lightweight communication protocol
independently of the carried data, the question is whether
it is feasible to use the SIP protocol as an alternative to
other protocols like Message Queuing Telemetry Transport
(MQTT) [11, 12], Constrained Application Protocol (CoAP)
[13], Advanced Message Queuing Protocol (AMQP) [14],
Data Distribution Service (DDS) [15], or Extensible Messag-
ing and Presence Protocol (XMPP) [16] for communicating
the M2M data [17].

Inspired by that, in this paper, we deliver a comprehensive
discussion on remote data management architecture in IoT
including the summary of proof-of-concept implementation
of SIP-based data sharing between smart home gateway
and remote service entities where the JavaScript Object
Notation (JSON) as data format transmitted within the SIP
messages carrying M2M data from a wide variety of real
meters/sensors is utilized (described implementation was
completed as a part of SyMPHOnY project which stands for
the joint project realized by Brno University of Technology
(BUT) and Telekom Austria Group (TAG) [18]) [19, 20].
In this research, we proposed and implemented our own
JSON structure for transmitting M2M data which meets the
requirements imposed by industry [21].Therefore, we believe
that our approach is adequate and sufficiently scalable to
support M2M applications across future deployment of LTE
and future cellular networks.

The rest of the paper is organized as follows. Section 2 is
devoted to describing possible application protocols forM2M
communication in cellular networks. Following the described
application protocols, the bidirectional communication as a
key function is described in Section 3. Further, in Section 4,
a discussion on suitability of JSON and Protocol Buffers
formats for IoT (M2M) is offered. Our implementation of
created structures as part of the real use case for Telekom
Austria Group (TAG) is provided in Section 5. Finally, the
lessons learned during the implementation of the JSON and
Protocol Buffers within the development of MTCG (smart
home gateway) for M2M data are summarized in concluding
Section 6.

2. IoT Protocols

Following the concept of IoT, devices must be able to
communicate with each other—referred to as M2M commu-
nication [22]. Further, data from devices should be stored
at the central point (MTCG) and as a next step sent to the
remote server. Many IoT standards and recommendations
were proposed to implement the described idea of IoT.
Therefore, different development groups and standardization
initiatives have been formed to pave the road towards the
demanded communication protocols (in case of IoTwemean
application protocols); the most important representatives
include World Wide Web Consortium (W3C) [23], Internet
Engineering Task Force (IETF) [24], Institute of Electrical
and Electronics Engineers (IEEE) [25], and the European
Telecommunications Standards Institute (ETSI) [26]. Table 1
provides a summary of themost prominent protocols defined
by these groups.

In this section, we provide an overview of the popular
protocols and their core functionality (with respect to their
ability to be used as M2M containers).

2.1. Message Queue Telemetry Transport (MQTT). MQTT is
the messaging protocol introduced in 1999 and standardized
in 2013 at OASIS [27]. The protocol itself was aimed at
enabling connection between embedded devices and net-
works with various applications [11, 12]. MQTT works with
publish/subscribe pattern to provide flexibility and simplicity
of implementation as can be seen in Figure 2. Focusing
on the target group of devices, the MQTT (running above
TCP protocol) is appropriate for embedded (resource/power-
constrained) devices using unreliable or low-bandwidth
links. Nowadays, two main specifications exist for MQTT: (i)
MQTT v.3.1 [11] and (ii)MQTT-SN (also known asMQTT-S)
[12].

MQTT consists of three key components: (i) subscriber,
(ii) publisher, and (iii) broker. An interested device can
register as a subscriber for the specific content in order to
be informed by the central point (broker) every time when
a publisher disseminates information of interest [11]. In this
architecture, the publisher stands for the meter/sensor send-
ing data toMQTTbroker. Secure communication between all
parts is achieved by verifying the authorization of publishers
and subscribers on the side of broker [12].

International Journal of Distributed Sensor Networks 3

Table 1: Standardization activities in support of IoT.

Application Service discovery Infrastructure protocols (OSI layer number-name of the protocol)

Protocol mDNS DNS-SD
L4 L3 L3 L2 L1 L1 L1 L1 L1

RLP 6LoWPAN IPv4/IPv6 IEEE 802.15.4,
802.11, 802.3 LTE-A EPC Global IEEE 802.15.4 Z-Wave IMS

DDS ✓ × ✓ ✓ × ✓ ✓ × × × ×

CoAP ✓ × ✓ ✓ × ✓ × ✓ × × ×

AMQP ✓ × ✓ ✓ × ✓ × ✓ × × ×

MQTT ✓ × ✓ ✓ × ✓ × × ✓ × ×

MQTT-SN × ✓ ✓ ✓ × ✓ × × ✓ × ×

XMPP × ✓ ✓ × ✓ ✓ × × × ✓ ×

HTTP, REST × ✓ ✓ × ✓ ✓ × × × ✓ ×

SIP × ✓ ✓ × ✓ ✓ × × × × ✓

Publisher MQTT broker

Subscriber #1

Subscriber #2

Subscribe
Publish: temperature 21∘C

Figure 2: The architecture of MQTT protocol.

Variable length message payload (optional)
Variable length header (optional)

Message type DUP QoS level Retain
0 1 2 3 4 5 6 7

Remaining length (1–4 bytes)

Figure 3: MQTT message format [11].

The message format of MQTT protocol is depicted in
Figure 3. The first two bytes are part of fixed header. Further,
the field Message Type contains a variety of messages,
for example, Connect (1), Connack (2), Publish (3), and
Subscribe (8).

Next, the DUP (duplicate) flag informs that the message
is duplicated and receiver may have acquired this message
already before.TheQoS field stands for identification of three
QoS levels for delivery of Publish messages. The following
field is called Retain and informs the server to retain the
last Publish message and submit this message to the new
subscribers (this message will be sent as the first message).
The last field (Remaining field) indicates the remaining length
of the message (i.e., optional parts).

CoAP
clients

CoAP serverREST-CoAP
proxy server

Internet

CoAP
domain

CoAP communication
HTTP communication

#1

#2

#3

Figure 4: CoAP functionality [13].

From the M2M communication point of view, the main
disadvantage of MQTT is the fact that end devices which
use MQTT protocol may go to sleep state for a limited
time period only (e.g., a lot of sensors or smart meters
send the data once per few hours and therefore MQTT
is not a suitable communication protocol for these power-
constrained devices).

2.2. Constrained Application Protocol (CoAP). CoAP was
created by the IETF Constrained RESTful Environments
(CoRE) working group as the application layer protocol for
IoT applications [13, 28]. CoAP introduces web transfer pro-
tocol based REpresentational State Transfer (REST) on top
of HTTP. In contrast to REST, CoAP is utilizing lightweight
UDP as transport protocol (TCP is not supported) by default.
This makes CoAP more suitable for the IoT domain because
it is possible to build sufficiently basic error checking and
verification for UDP to make sure that messages arrived
without the significant communication overhead in case of
TCP.However, CoAPwas designed together with REST func-
tionality; therefore conversion between these two protocols
has to be implemented in communication chain; see Figure 4.

4 International Journal of Distributed Sensor Networks

Payload (optional)
Options (optional)

Token (optional)
Ver Message ID

16 31
T OC

0 1 2 3
Code

85 6 7 15

Figure 5: CoAP message format [13].

CoAP can be divided into two sublayers [28]:

(i) Messaging Sublayer. It detects duplications and based
on that provides reliable communication even over
the UDP transport protocol using the exponen-
tial backoff (multiplicative decrease of the rate of
data transmission, in order to gradually establish an
acceptable data rate); this is a necessary technique
since UDP does not include error recovery mecha-
nism.

(ii) Request/Response Sublayer. It handles REST commu-
nication between individual nodes.

CoAP utilizes four message types: confirmable, noncon-
firmable, reset, and acknowledgment. Reliability of CoAP
is achieved by using confirmable and nonconfirmable mes-
sages. Similarly to HTTP, CoAP utilizes methods such as
GET, PUT, POST, and DELETE to perform Create, Retrieve,
Update, andDelete operations; for example, the GETmethod
can be used by a server to inquire the client’s temperature
using the response mode. The client sends back the temper-
ature if it is available; if not, it replies with a status code to
indicate that the requested data is not found.

Message format of CoAP is depicted in Figure 5. The first
and fixed part of each message consists of four bytes of a
header. Then a token value may appear whose length ranges
from zero to eight bytes. A typical length of CoAP message
can vary between 10 and 20 bytes [29]: this means that CoAP
may be unsuitable for some domains of IoT.

Remark. There are studies describing the possible use cases
where CoAP messages are transmitted via Short Message
Service (SMS) [28]; thismakes another logical bridge towards
the idea to use SIP communication protocol as a data
container for IoT domain.

2.3. Extensible Messaging and Presence Protocol (XMPP).
XMPP represents an IETF instant messaging (IM) standard
for chatting, voice and video calling, and telepresence [16].
XMPP allows IM applications to run authentication, access
control, privacy measurements, and especially Device-to-
Device (D2D) and end-to-end (E2E) encryption. The overall
functionality of XMPP protocol is depicted in Figure 6 where
gateway can overcome issues with sending messages between
foreign networks; XMPP connects clients and servers using
the XML called stanza [30].

Integrated features make XMPP a preferred protocol by
most IM applications and therefore relevant for specific part
of IoT ecosystem. XMPP also implements a building block for

Gateway

Internet

Internal network communication
Foreign networks

#1

#2#3#4

Server #1
Server #2

Figure 6: Communications in XMPP [16].

<presence>
<show/>

</presence>

<body/>
</message>

<query/>
</iq>

<stream>

</stream>

<message to=‘x’>

<iq to=‘y’>

Figure 7: Structure of XMPP stanza [30].

secure communication and allows new applications on top of
core protocols [16]. As was mentioned, XMPP uses the so-
called stanzas which divide the code into three components:
(i) message, (ii) presence, and (iii) info/query; see Figure 7.

Messages in stanza identify the source and destination
address, types, and IDs of XMPP entities that provide PUSH
method for retrieving data. The presence stanza notifies
end users of the status updates. Finally, the iq stanza does
the pairing between message senders and receivers. The
possible disadvantage of XMPP is text-based communication
using XML. This leads to higher network load (overhead).
Therefore, there is a possible solution to this problem: XML
streams using EXI [31, 32].

XMPP is very often compared with the SIP protocol
where SIP is inherently a peer-to-peer protocol whereas
XMPP is inherently client-server. Tasks that are easy in client-
server systems, for example, to share state, to save data
on server, or to post offline messages on server, are well
accomplished with XMPP protocol. On the other hand, one
of the primary goals of SIP (described later in this section) is
to keep the intelligence at the end point. Ideally, a SIP proxy
server does not even maintain the session state for the SIP
dialog [16].

International Journal of Distributed Sensor Networks 5

AMQP broker

Publisher

Subscriber #1

Subscriber #2
Exchange

Queue

Queue

Figure 8: AMQP publish/subscribe mechanism [14].

H
ea

de
r

D
eli

ve
ry

an
no

ta
tio

ns

M
es

sa
ge

an
no

ta
tio

ns

Pr
op

er
tie

s

Ap
pl

ic
at

io
n

pr
op

er
tie

s

Ap
pl

ic
at

io
n

da
ta

Fo
ot

er

Bare message

Annotated message

Figure 9: AMQP message format. The header enables a delivery
of parameters including durability, priority, time to live (TTL), first
acquirer, and delivery count [14].

2.4. Advanced Message Queuing Protocol (AMQP). AMQP
represents the open standard application layer protocol
focusing on the message-oriented environments in IoT
[14]. Further, AMQP enables guaranteed communication—it
requires a reliable TCP session to exchange messages.

Communication via the AMQP is realized by two key
components (see Figure 8) [33]:

(i) Exchanges. They are used for routing messages to
appropriate queues. Routing (between exchanges and
queues) is based on predefined rules/requirements.

(ii) Message Queues. They are stored in message queues
before sending to end destination (receiver).

AMQP defines messaging layer on top of the transport
layer (TCP is used as the transport protocol) where all
messaging capabilities are handled. Following that, two types
of messages are defined in AMQP: (i) bare messages (at the
sender’s side) and (ii) annotated messages (at the receiver
side); see Figure 9.

As discussed, AMQP requires extensions implemented
on transport layer for the aforementionedmessaging layer. In
case of transport layer, the communication is frame-oriented.
The structure of AMQP frame is depicted in Figure 10.

In the IoT context, AMQP is the most appropriate for the
control plane or server-based analysis functions.Therefore, it
is not a suitable candidate for transmission ofM2Mdata (E2E
communication).

2.5. Data Distribution Service (DDS). DDS was designed
as a publish-subscribe protocol for real-time M2M com-
munications by Object Management Group (OMG) [15,
34]. In comparison with the aforementioned protocols like
MQTT or AMQP, DSS uses multicasting to provide better
reliability and Quality of Service (QoS). DSS supports 23

Size
DOFF Type4

0

8 Extended
header

Frame
body

Frame
Header (8B)

<Type-Specific>

<Type-Specific>

<Type-Specific>

4
∗

D
O

FF

Figure 10: The first four bytes indicate the frame size. DOFF (Data
Offset) represents the position of the body inside the frame. The
Type field indicates the format and purpose of the frame. For
example, 0x00 is used to show that the frame is an AMQP frame
or type code 0x01 represents a SASL frame.

Publisher

Data
Writer

Subscriber

Data
Reader

Subscriber

Data
Reader

Data
object

Data
values

DLRL

Application #n Application #2 Application #1

Internet

Data
values

Data
values

Figure 11: Conceptual architecture of DSS [15].

QoS policies by which a wide variety of communication use
cases can be covered, for example, security, priority, and
reliability. The DDS logic is therefore able to meet the real-
time requirements given by specific types of IoT/M2M.

Architecture of DDS defines two layers: (i) Data-Centric
Publish-Subscribe (DCPS) and (ii) Data-Local Reconstruc-
tion Layer (DLRL). DCPS layer is responsible for delivering
information to the end destinations (subscribers). DLRL
represents, on the other hand, optional layer which serves
as the bridge/interface to the DCPS functionalities (sharing
of distributed data among distributed objects) [35]. In DCPS
layer, five entities are managing the data flow (see Figure 11):

(i) Publisher. It sends required data sets.
(ii) DataWriter. It is used by the application to interact

with the publisher with respect to values and changes
regarding data type. The thin cooperation between

6 International Journal of Distributed Sensor Networks

Publisher and DataWriter is used by application for
publishing data in provided context.

(iii) Subscriber. It receives data from Publisher and trans-
fers them to the application.

(iv) DataReader. It is controlled by Subscriber to read the
received data.

(v) Topic. It is defined by data type and name and
connects DataWriters with DataReaders.

2.6. Comparison of Already Described Protocols. Based on the
abovementioned facts, it can be seen that MQTT, XMPP,
or CoAP can be used as protocols for M2M data, but
still there are limitations (e.g., message length and sensors
inactivity) mainly associated with end-to-end connectivity.
In literature, several comparisons between these protocols
can be found. For example, in [36] the authors compare
end-to-end transmission delay and bandwidth utilization of
MQTT and CoAP; MQTT delivers required data with lower
delay in comparison to CoAP in case of low packet loss.
Otherwise, in case of high packet loss, CoAP gave better
results. In another research [37], the attention was focused
on smartphones application environment. Results show that
CoAP offers lower bandwidth usage and lower round trip
time (RTT) than MQTT.

Offering a new point of view in this space, in our
project [38], we propose a novel way to transmit M2M data
through the network—with respect to length of transmitted
data, transmission scheduling, and E2E nature of M2M
communication. As discussed in Section 1, the SIP protocol
is a common part of today’s cellular networks and even
though it was invented for different applications like IP
telephony, multimedia streaming, and instant messaging, it is
an excellent candidate to become a primary communication
bus for the constituent components of IoT ecosystem (as a
part of the emerging 5G vision).

2.7. Session Initiation Protocol (SIP). SIP represents the text-
based request-response protocol (in a way similar to HTTP)
where the key attributes are included in the header and
additional data is stored in the message body (e.g., session
description or capabilities). Nowadays, SIP is well established
in both local and global telecommunication infrastructures
and there is a plethora of end user devices and applications
supporting this protocol [38]. Therefore, there is no need to
invest additional resources to implement this protocol within
IoT domain [8].

Although the SIP works in parallel with other com-
munication technologies and protocols (e.g., TCP, UDP, or
Stream Control Transmission Protocol (SCTP) can be used
as transport protocols for SIP) there are two key components
used by SIP [8] (see Figure 12):

(i) User Agents. End points of the communication chain
are often named as SIP clients. There are two subcom-
ponents of a user agent: (i) client and (ii) server.When
there is a request (e.g., to initiate a session) generated
by User Agent Client (UAC), responding user agent
(at the opposite side) is User Agent Server (UAS). It

Internet

Registrar
server

SIP proxy
server

SIP redirect
server

Location
server

SIP client #1 SIP client #2 SIP client #3

Figure 12: Communication in SIP [8].

is important to understand that as the user agent will
sendmessage and then respond to another user agent,
it will alternate between both roles during a session.

(ii) SIP Servers. They are used to resolve usernames to
IP addresses. A user agent (see previous paragraph)
registers with the SIP server (providing username, IP
address, and location information). This procedure
verifies whether the user agent (SIP client) is online,
so that other user agents can see whether they are
available and can start a session. If the user agent
does not belong to a certain SIP domain (different
SIP server), it will send request to other servers. SIP
server can act in any of the following roles: (i) registrar
server, (ii) proxy server, and (iii) redirect server [8].

The format of SIP header is depicted in Figure 13 and
structure of SIP protocol comprises three layers:

(i) Transport Layer. It defines how the SIP client (user
agent) sends requests and receives responses and how
SIP server receives requests and sends response over
the network. It is important to mention that all SIP
elements work within transport layer.

(ii) Transaction Layer. It serves for sending requests
(from SIP client to SIP server, using transport layer).
Any task completed by SIP client comprises a series
of transactions (stateless proxy servers do not contain
transaction layer).

(iii) Transaction User. Each of the SIP entities (SIP clients
and SIP servers except the stateless proxy servers) acts
as transaction user.

The question of security communication is also covered
by SIP since the Secure Sockets Layer (SSL)/Transport Layer
Security (TLS) mechanisms are already prepared for secure

International Journal of Distributed Sensor Networks 7

Version Flow label
Payload length Payload type Hop limit

Source address
Destination address

0 3 4 15 16 23 24 31

Message body (variable length)

Figure 13: SIP message format [8].

communication between SIP clients. For the purposes of
M2M (home automation) communication, SIP MESSAGE
(for PUT and GET actions) and SIP SUBSCRIBE (for status-
based events like alarm notification) can be used [8].

2.8. IoT Application Protocols Summary. To conclude this
section, three protocols are mentioned very often in the
context ofM2M communication:MQTT (Section 2.1), CoAP
(Section 2.2), and SIP (Section 2.7). In addition to MQTT
and CoAP, the SIP has been recognized as an efficient
data container for home automation/IoT communication
[18, 38]; see Table 2 for comparison of IoT application
protocols. Moreover, open-ended nature of SIP (where the
SIP MESSAGE can contain any data structure with dynamic
length) provides a solid basis to address issues specific to
the home/industry automation domain. Together with the
operators’ maintained infrastructure, the SIP constitutes a
secure and reliable communication protocol for remote IoT
services.

3. Bidirectional Communication in IoT
Application Protocols

In the previous section, we discussed the most frequently
used protocols in IoT domain. Together with the described
(overall) parameters of each protocol, there is one additional
requirement which impacts the choice of an appropriate
application protocol. Nowadays in IoT, the one-way commu-
nication is no longer the predominant type of data transmis-
sion between sensors and cloud apps. We often encounter
an emerging need for remote controlling and adjustment of
smart devices (meters, sensors, actuators, etc.).Therefore, the
two-way (bidirectional) communication plays the key role in
today’s IoT architecture [1].

In this section, the protocols previously identified as the
most attractive (i.e., CoAP, MQTT, and SIP) are described
and compared mindful of the two-way communication fea-
ture.

3.1. CoAP. CoAP employs two-layer structure: (i) the bottom
layer is calledmessage layer and has been created to deal with
the UDP transport protocol and asynchronous switching; (ii)
the request/response layer manages communication method
and also request/response message.

3.1.1. Message Layer. Message layer of CoAP protocol con-
sists of 4 message types: (i) CON (confirmable), (ii) NON

Client Server

CON [0x8b56]

ACK [0x8b56]

(a) Reliable message transport

Client Server

NON [0x8b57]

(b) Unreliable message trans-
port

Figure 14: Message layer model: reliable/unreliable [13, 28].

Client Server

CON [0x8c51]

ACK [0x8c51]

(token 0x21)

(token 0x21)
2.05 content

“21.8C”

GET—temperature

(a)

Client Server

“Not found”

4.04 not found

CON [0x8c51]

ACK [0x8c51]

(token 0x22)

(token 0x22)

GET—temperature

(b)

Figure 15:The successful and failed response results of GETmethod
[13].

(nonconfirmable), (iii) ACK (acknowledgment), and (iv) RST
(reset) [13, 28]. The communication via message layer model
can be divided into two groups:

(i) ReliableMessage Transport.The transmission ismain-
tained until the same message ID (like 0x8b56; see
Figure 14(a)) in ACK message is received at the side
of the client. If server fails to process the incoming
message, it responds by replacing the ACK with the
RST message.

(ii) Unreliable Message Transport. It is transported with
theNON typemessage.There is no need to sendACK,
but the message has to contain message ID for the
purpose of retransmission. If server fails to process
message, it responds by RST; see Figure 14(b).

3.1.2. Request/Response Layer. Using the request/response
layer model, the communication can be handled as follows:

(i) Piggy-Backed Approach. In this case, the client sends
request (using the CON or NON message) and
receives ACK message. If the transmission is suc-
cessful, the ACK contains response message which is
identified by token (0x21; see Figure 15(a)). In case of
failure, the ACK contains failure response code (see
Figure 15(b)).

(ii) Separate Response. In the case when the server
receives CON message and is not able to respond
immediately, it sends an empty ACK message to the
client. When the server is ready to respond to the

8 International Journal of Distributed Sensor Networks

Table 2: Comparison of IoT application protocols.

Protocols RESTful Transport Publish/subscribe Request/response Security QoS Header size (bytes)
CoAP ✓ UDP, SMS ✓ ✓ DTLS ✓ 4
MQTT × TCP ✓ × SSL ✓ 2
MQTT-SN × TCP ✓ × SSL ✓ 2
XMPP × TCP ✓ ✓ SSL × —
AMQP × TCP ✓ × SSL ✓ 8
SIP × TCP, UDP, SMS ✓ ✓ SSL, TLS ✓ —
DDS × TCP, UDP ✓ × SSL, DTLS × —
HTTP ✓ TCP × ✓ SSL × —

Client Server
CON [0x4d45]

ACK [0x4d45]

ACK [0x4d45]

CON [0x4d45]

(token 0x21)

(token 0x21)
2.05 content

“21.8C”

. . .

GET—temperature

(a)

Client Server

NON [0x4d45]

NON [0x4d45]

(token 0x21)

(token 0x21)
2.05 content

“21.8C”

GET—temperature

(b)

Figure 16: (a) Get request with a separate response; (b) noncon-
firmable request and response [13].

request, the new CONmessage is sent to the client. At
the client side, the confirmation message with ACK is
sent back to server; see Figure 16(a).

(iii) Nonconfirmable Request/Response. Unlike the piggy-
backed approach, the request is sent from a client to
the server in NON type message which indicates that
the server does not need to confirm the incoming
message. After receiving themessage, the server sends
aNON typemessagewith response (see Figure 16(b)).

3.2. MQTT. Even though the MQTT application protocol is
mentioned very often as a leading candidate for IoT domain
[39], it does not support the request/response communica-
tion; see Table 2. This restriction limits the range of possible
use cases where the MQTT can be used. The only available
scenario of bidirectional communication with MQTT illus-
trates the publish/subscribe communicationmodel.With one
client in the role of publisher and one or more nodes as
subscribers, the information can be sent from a single point
to many other devices or listeners.Therefore, the deployment
of this application protocol becomes straightforward; see
Figure 17.

Client/source
(publish) Broker Client/subscribe

(sink)

Subscribe (topic)

Publish (topic, info)

Publish (topic, info)

Figure 17: Publish/subscribe process utilized by MQTT [11].

Unregister

SIP client SIP server

401 unauthorized

Unregister with digest

SIP client

Unregister

401 unauthorized

Unregister with digest
200OK

200OK

Figure 18: SIP registration procedure [8].

3.3. SIP. As discussed in Section 2.7 and highlighted in
Table 2, the SIP stands for the request/response application
protocol. Sending M2M data via the SIP requires different
behavior comparing to the traditional voice communication
via SIP (e.g., the media session (RTP) is not established). In
general, using SIP for IoT/M2M, the overall communication
procedure comprises three steps [8, 9]:

(i) Registration to the SIP Server. Each SIP client has
to register to the SIP server to be able to receive or
send the data; see Figure 18. The registration process
is completed by the 200OK message sent from the
server to the SIP client. Depending on the SIP (IMS)
network configuration, the registration process has to
be reestablished in a loop.

(ii) M2M Data Request/Response. After the registration
process is completed, the M2M data can be trans-
mitted using the SIP. Since the SIP was designed for
request/response communication, this can be done

International Journal of Distributed Sensor Networks 9

Message (request)

SIP client SIP server SIP client

Message (request)

Transaction
Dialog

200OK (response)
200OK (response)

Message (request) with digest
Message (request) with digest

407 proxy auth required

Figure 19: Request/response communication using the SIP protocol
[8].

via the SIP message which carries the request or
response; see Figure 19. Request is sent to the SIP
server which will answer back to SIP client with
the 407 Proxy Authentication Request. Next, the SIP
client sends the message (request) with digest to the
SIP server and this message is resent to the end SIP
client. In case of response, the destination node will
send the message 200OK as a confirmation. Using
the modularity of SIP, inside the 200OK message,
the response to the source SIP client is included (the
format inside the request/response SIP messages can
differ; e.g., JSON of Google Buffers [40] can be used;
see Section 4).

(iii) Termination of SIP Connection. The procedure of
deregistration of SIP clients from the SIP server fol-
lows the rules mentioned in the registration process.
SIP client sends the SIP message Unregister to the
SIP server which answers with the 401 unauthorized
message. After that, SIP client sends the SIP message
Unregistered with digest. As a response from server,
the 200OK is sent back and the connection is closed
[8].

Remark on Reliable SIP Communication. SIP represents
the transactional protocol which means that interactions
between components (UAC and UAS) take place in series
of independent message exchanges. Specifically, a SIP trans-
action consists of one request and many responses to that
specific request. Transactions feature client (called client
transaction) and server (known as server transaction) parts.
The client and server transactions are logical functions
embedded in all elements (they exist in user agents and
stateful proxy servers); see Figures 19 and 20.

Following the fact that SIP usesmainly theUDP transport
protocol, the question of reliable communication is raised
here. Especially for request/response it is crucial to know if
the message was delivered or not. For that, SIP implements
the logic where, with every transaction, the CSEQ number
(transaction ID) is incremented for each new request within
the dialog as a traditional sequence number [8].

UAC

Cl
ie

nt
 tr

an
sa

ct
io

n

Proxy

Cl
ie

nt
 tr

an
sa

ct
io

n

UAS

Se
rv

er
 tr

an
sa

ct
io

n

Se
rv

er
 tr

an
sa

ct
io

nRequest

Response

Request

Response

Figure 20: Transaction relationships in SIP [8].

4. Data Formats for M2M

While considering SIP as a perspective IoT communication
protocol, we aimed at developing an appropriate data struc-
ture inside the SIP message. Nowadays, JSON format [41]
acts as one of the most acknowledged drivers in case of
IoT/M2M data structure. On the other hand, there are new
emerging projects trying to rethink the aspect of M2M data
sharing. One of them is Protocol Buffers [40] which stands
for Google’s language-neutral, platform-neutral, extensible
mechanism for serializing structured data.

However, after evaluating the state-of-the-art data struc-
ture formats, we chose the JSON format as our main data
format which is easy to read and write and in comparison
with the XML, the structure is more suited for generating
and further handling (parsing and converting). Another
advantage of using JSON is shorter message length since
JSON can describe an individual object very efficiently [42].
To provide the comprehensive evaluation, we also develop a
practical example of IoT data structure utilizing the Protocol
Buffers which enables a direct comparison of two different
approaches.

4.1. JSON Structure. JSON is based on a subset of JavaScript
using the text format that is completely independent of
programming language, but at the same time it also uses
the rules similar to C family (including C, C++, C#, Perl, or
Python). These properties caused JSON to quickly become a
popular data interchange format.

It is very important to mention at the beginning of
this section that JSON as a generic data structure can be
implemented in various types of communication protocols,
for example, the SIP, CoAP, and MQTT communication
protocols, and is suitable to carry different types of payloads.
Following this fact, the proposed JSON structure (data
format) in this paper can be also implemented as part of other
protocols (for different use cases where CoAP orMQTTmay
represent better choices comparing to the SIP).

Currently, the JSON is based on two data structures [43]:

(i) Collection of Pairs (Name-Value). This is in many
programing languages implemented as object, record,
hash table, or associative array.

(ii) Ordered List of Values. It is often realized as an array,
vector, list, or sequence.

10 International Journal of Distributed Sensor Networks

{ : }

JSON:object

,

string value

Figure 21: Source code notation for JSON:object: each name is
followed by : (colon) and pairs are separated by , (comma) [42].

[]

,

value

JSON:array

Figure 22: Source code notation for JSON:array: it begins with the
[(left bracket) and ends with] (right bracket). Values are separated
by , (comma) [42].

The above structures are universal and almost all modern
programing languages support them. Therefore, JSON data
format is interchangeable with respect to the programming
languages based on the following structures [43]:

(1) Object. It is an unordered set of pairs (name-value).
An example of object in JSON is depicted in Figure 21.

(2) Array. It is an ordered collection of values. An
example of array in JSON is depicted in Figure 22.

(3) Value. Examples of different types of values are
depicted in Figure 23.

(4) String. It is very similar to C or Java string notation.
An example of string in JSON is depicted in Figure 24.

(5) Number. It is very similar to C or Java string nota-
tion. An example of number in JSON is depicted in
Figure 25.

The described options represent the most frequently used
JSON structures; a detailed overview of available structures
can be found in [43].

Due to the wide variety of possible JSON messages, a lot
of examples for different use cases can be found in literature
[44–46].

4.2. Protocol Buffers Structure. There aremany possible views
on the problem (data structure for M2M content) presented
by this paper and, consequently, a number of feasible solu-
tions. As described above, JSON structure is one of the
most promising solutions and therefore, we have utilized this
approach in our practical implementation. However, another
emerging candidate is Protocol Buffers which is a recently
introduced tool for serialization of structured data provided
by Google.

Currently, Protocol Buffers exist in two language versions,
called proto2 (latest stable release) andproto3 (alpha version).
In this subsection we discuss the proto2 capabilities and
structure as stable implementation recommended by Google.

Protocol Buffers are able to work with a variety of pro-
gramming languages such as Java, C++, C#, and Python.The

string

number

object

array

true

false

null

JSON:value

Figure 23: Source code notation for JSON:value: it can be repre-
sented as a string in “ ” (double quotes), number, true, false, null, or
an object or an array [42].

“ ”

JSON:string

\

Any Unicode character except “ or \

\

4 hexadecimal digits

b

f

n

r

t

u

“ Quotation mark

Reverse solidus

Backspace

Formfeed

Newline

Carriage return

Horizontal tab

Figure 24: Source code notation for JSON:string: sequence of
Unicode characters in “ ” (double quotes) using \ (backslash)
escapes. A character is represented as a single character string [42].

JSON:number

0

Digit

Digit

Digit

e

E
Digit

−

−

+

1–9

·

Figure 25: Source code notation for JSON:number: similar to C or
Java, it does not contain the octal and hexadecimal formats [42].

basic idea of Protocol Buffers is similar to that in JSON. In the
first step, structure of serialized data is defined. This is done
in .proto file by defining Protocol Buffer messages type. Each
of these messages is a small logical record of information,
containing series of fields with name-value pairs. There are
a number of different types used for the value definition.
Examples of these types are depicted in Figure 26. Aside from
those types, there is one special type of field, called Enum. Its
purpose is to predefine values in a list, so no other data can
be put inside.

International Journal of Distributed Sensor Networks 11

double

float

int32/64

uint32/64

sint32/64

fixed32/64

sfixed32/64

Protocol buffer: value type

bool

string

bytes

Figure 26: Source code notation for Protocol Buffers: value type.

Message fields are assigned with unique numbered tags.
Those tags are used to identify fields in the message binary
format and should not be changed once message type is in
use. Tag numbers can be chosen from the range 1–229. For
message fields, there are three rules:

(i) Required. It is obligatory to fill this field with data.
(ii) Optional. Anymessage field with this rulemay ormay

not be filled with data.
(iii) Repeated. Fields with this rule can be repeated several

times including zero.

4.3. Review of Introduced Thoughts. Before proceeding with
the description of realized implementation in the following
section, a short summary on ideas discussed in previous
sections is appropriate. We have introduced the well-known
application protocols with respect to the IoT domain. Instead
of using traditional protocols, we have based our implemen-
tation on SIP protocolwhich can act as the container forM2M
data. On top of that, we introduced two new data structures
for M2M data based on (i) JSON and (ii) Protocol Buffers
schemes.

5. Implementation of Proposed Data
Structures in Live Smart Home Project

In this section, we focus our attention on practical implemen-
tation of two data structures: JSON (Section 5.2) and Protocol
Buffers (Section 5.4). Our goal is to identify a suitable data
structure for transportation of M2M data from a large
number of meters/sensors to a concentrator node (MTCG);
see Figure 29. Since a variety of meters can proliferate in the
market, we have been investigating an easily expandable and
universal data structure.

First, the overview of the entire communication structure
of our SyMPHOnY (Smart Multipurpose Home Gateway)
project is given in Section 5.1. Next, the generic JSON scheme
is described in more detail in Section 5.2. Further, the
attention is focused on the JSON and Protocol Buffers data
structures; see Sections 5.3 and 5.4, respectively.

SIP bundle

DB bundle

TCP/IP bundle

UPnP/DLNA
bundle

Image bundle

WM-BUS bundle

ZigBee bundle

Cloud-API
bundle

JSON bundle Core

· · ·

Figure 27: General structure of created framework in the SyM-
PHOnY project [18].

5.1. Overall System Architecture. As discussed earlier in
Section 2, we chose SIP as a communication protocol for data
transmission. In our architecture (see Figure 29), the MTCG
node assumes role of SIP client where data is (i) received (e.g.,
via wireless M-BUS interface) from a wide variety of smart
devices and (ii) sent via the IMS/SIP network (using the SIP
server as an intermediate node) towards the remote SIP client
[47].

5.1.1. SW Implementation on theMTCG. The created applica-
tion framework is written in Java programming language and
follows requirements given by the Open Services Gateway
Initiative (OSGi) [48]. Following that fact, our solution is
divided into several packages called bundles. Each of the
created bundles manages a certain subtask (e.g., receiving
data from specific communication protocol and acting as a
SIP client at the MTCG side) and ultimately the entire logic
is managed by the Core Bundle; see Figures 27 and 28.

Our developed framework [18] is able to run on any
device based on Acorn RISC Machine (ARM) architecture.
Nowadays, there are pilot projects trying to run Java-based
applications also on MIPS (Microprocessor without Inter-
locked Pipeline Stages) platform [49]. In addition, Oracle
company announced plans for developing Java libraries for
MIPS architecture. However, these projects are in early devel-
opment stage and therefore we decided to use for our project
IP gateway running the ARM SoC (System on Chip) [50]; as
operating system, the OpenWRT 14.07 Barrier Breaker was
used [51].

Since the SIP bundle is the key part of communica-
tion chain between MTCG and remote “cloud-based” app,
we provide a deeper analysis of SIP implementation in
Section 5.1.1. Our solution is based on JAIN-SIP API [52]
which explicitly supports RFC 3261 [8] functionality and
the following SIP extensions: the INFO method (RFC 2976)
[53], Reliability of Provisional Responses (RFC 3262) [54],
EventNotification Framework (RFC 3265) [55], theUPDATE
method (RFC 3311) [56], the Reason Header (RFC 3326) [57],
theMessagemethod (RFC 3428) [58] defined for instantmes-
saging and the REFER method (RFC 3515) [59], Distributing
Authoritative Name Servers via Shared Unicast Addresses
(RFC 3581) [60], and the PUBLISH method (RFC 3903)
[61]. Therefore, our implementation of SIP on our gateway
(MTCG) does not need any additional packages/extensions.

12 International Journal of Distributed Sensor Networks

Proxy
server SIP client

Core
Bundle

setProfile

Register

Registered?

sendMessage

Incoming
SIP message?

Yes No

Yes No

Figure 28: Architecture of SIP client bundle in SyMPHOnY [18].

5.1.2. SW Implementation on Remote SIP Client. Following
the information in Section 5.1.1, there are no special require-
ments for the remote SIP client since our solution follows
standardized implementation of SIP protocol [8]. We tested
X-Lite [62], ZoiPer [63], and Asterisk (client part of Asterisk
running in the terminal) [64] and as a result all of them were
able to successfully process data sent from MTCG. To make
the overall process of data handlingmore effective, we created
our own SIP client (source codes are available on GitHub
[18]). This tool combines SIP client and logic for parsing
received JSON-structured data. Furthermore, if there is a
need for conversion of received data into another data format,
we implemented conversion logic for LPEX (proprietary data
structure used by electricity companies) and CSV [65] data
structures (this highly depends on the requirements at the
remote side (specific app/industry use case)).

5.1.3. Bidirectional (E2E) Communication. Considering the
aforementioned facts, we covered also the question of E2E
communication between smart devices and remote cloud-
based applications. Today, the need for bidirectional com-
munication grows. Even though the majority of transmitted
M2M data is represented by one-way communication (from
sensors to the cloud), in the future, two-way communication

will play the key role [1]. To react accordingly, we imple-
mented special bundles (see Figure 27):

(i) JSON Bundle. In it translation of data is received
frommeters/sensors to required JSONstructure (sup-
ported by remote cloud app) which is subsequently
included in SIP message.

(ii) Cloud-API Bundle. It manages the commands (for
smart devices) received from applications in the cloud
at the side of aggregation node (MTCG).

Requirements related to bidirectional communications
bring new challenges across the IoT communication chain;
see Figure 1. Concerning our proposed architecture in our
SyMPHOnY project [18] we have the following:

(i) At the side of cloud-based app, the request messages
for smart meter/sensor (or even for group of smart
devices) have to be included (in JSON format agreed
on by both communication sides) into the body of SIP
message (Stage II↔ Stage III↔ Stage IV).

(ii) After the SIP message is received by SIP bundle
(running under control of Core Bundle on MTCG),
information about targeted sensor(s) is extracted
from the SIP message body. Next, the appropriate
data unit (which depends on the used communication
technology at the sensor side) is generated (Stage
II)—in parallel, the Core Bundle is checking if the
requested sensor supports bidirectional communica-
tion. If not, the response to the cloud-based app is
sent.

(iii) During the final part (Stage I↔ Stage II), the request
generated by MTCG is sent to the target sensor
where the relevant action will be performed. As an
acknowledgment, theACKmessage is sent back to the
cloud-based app via theMTCG (Stage I→ Stage II→
Stage III→ Stage IV).

The above communication chain does not touch upon the
question of security which is even more important in case of
two-way communication. In case of secure communication
between MTCG and remote cloud-based app, one of the
supported security mechanisms (SSL and TLS) can be used.
The need for secure communication between MTCG and
smart devices (Stage I↔ Stage II) is closely connected with
concrete device/technology and its support of encryption.
Today, the most widespread encryption mechanism imple-
mented by industry manufactures is Advanced Encryption
Standard (AES 128) [66–69].

5.2. Proposed JSON Structure. Before we proceed with the
description of the constructed JSON scheme, we need to
clarify the question of why it is so important to implement
into the structure the so-called system codes. The system
code represents a unique identifier for the key objects in the
data structure. Nowadays, the leading system code for M2M
communication (especially in smart metering domain) is the
Object Identification System (OBIS) code—in our project we
use the OBIS as amain system code; as an example of another
system code, the KNX system code can be mentioned [70].

International Journal of Distributed Sensor Networks 13

MTCG

IMS/SIP
network

Public
network

3rd-party
services

MQTT

CoAP

SIP

MQTT
client

CoAP
client

SIP
client

Electricity
meter

Water
meter

Alarm
system

Smart
bulbs

Possible
use cases

IMS/SIP infrastructure (secure) connection

Photovoltaic
panel

Wireless communication technologies (wireless M-BUS, ZigBee, BLE, etc.)

Figure 29: SyMPHOnY is able to aggregate information fromarbitrary smart devices and automate actions based on user-defined or network-
defined policies using telecommunication operators’ technologies. In our project, the SIP communication is implemented as key remote data
exchange technology.

The OBIS code identifies the corresponding device value
and represents a text string composed according to the
OBIS standard [71]. The main reason for using OBIS is that
leading industry companies, dealing with metering, already
implemented support for OBIS standard.

One of the benefits of using OBIS is evident dur-
ing machine processing of collected data. A parser with
knowledge of JSON (or Protocol Buffers) structure as well
as utilizing principles of creating OBIS codes can easily
process received data without knowledge of exact internal
JSON/Protocol Buffers structure. Obtained data may there-
fore be processed by any system with OBIS code conversion
mechanism knowledge.This makes communication between
devices by two different vendors much easier.

TheOBIS code consists of 6 groupsmarked by letters A to
F. All of thesemay ormay not be present in the identifier (e.g.,
groupsA andB are often omitted). In order to decide towhich
group the subidentifier belongs, the groups are separated by
unique separators A-B:C.D.E∗F [71] (see Table 3):

(i) TheA group defines themedium (0 = abstract objects,
1 = electricity, 6 = heat, 7 = gas, 8 = water, etc.).

(ii) The B group defines the channel. Each device, with
multiple channels generating measurement results,
can separate the results into the channels.

(iii) The C group defines the physical value (current,
voltage, energy, level, temperature, etc.).

(iv) TheD group defines the quantity computation output
of specific algorithm.

Table 3: Examples of OBIS codes for home automation [71].

Name OBIS code Unit
Meter reading total (𝐴+) 1-0:1.8.0 kWh
Positive active instantaneous power (𝑃+) 1-0:1.7.0 kW
Meter reading total (𝐴−) 1-0:2.8.0 kWh
Negative active instantaneous power (𝑃−) 1-0:2.7.0 kW
Water cold, meter reading, total 8-0:1.0.0 l
Water hot, meter reading, total 9-0:1.0.0 l
Ambient temperature 0-0:96.9.0 ∘C
Relative humidity 0-0:96.9.2 %

(v) The E group specifies the measurement type defined
by groups A to D into individual measurements.

(vi) The F group separates the results partly defined by
groups A to E.

5.3. JSON Structure: Real Data Sets. Now, let us further
describe the created JSON structure. Following the developed
JSON scheme available on GitHub [18], we provide an
example of real data set regarding the electricity consumption
measurement implemented within the pilot project with
TelekomAustria Group. As can be seen, each of themeasured
values is clearly identifiable which is the key requirement for
further actions with received data, for example, parsing or
converting JSON into the different data format/structure.

When creating the message following the requirements
given by JSON scheme, it is crucial to conform to that
structure because any deviation can cause inadequate reading

14 International Journal of Distributed Sensor Networks

{

"system": {

"type": "SH-GW",

"location": {

"info": "Main building, 5th floor",

"format": "DD",

"latitude": "47.29",

"longitude": "16.21"

},

"data": [

{ "name": "Current Time",

"value": "2015-10-15T15:32:56+01:00" },

{ "name": "Status",

"value": "ZigBee interface not working" }

]

},

"device": {

"type": "Smart Meter",

"objectCodeVersion": "ObisV2.9",

"id": [

{ "name": "Serial Number",

"value": "013146520004-1",

"objectCode": "0-0:96.1.0" },

{ "name": "Metering Point ID",

"value": "TAG000000000000000000000000000001",

"objectCode": "0-0:96.1.10" }

],

"timestamp": "2015-10-15T15:32:56+01:00",

"data": [

{ "name": "Meter reading total (A+)",

"value": "1246.5",

"units": "kWh",

"info": "Below 24h average",

"objectCode": "1-0:1.8.0" },

{ "name": "Load profile 15 󸀠 total (A+)",

"value": "1.2",

"units": "kWh",

"objectCode": "1-0:1.29.0" }

]

}

}

Algorithm 1

of desired values. The proposed structure uses all of our
predefined properties to its best. There are three properties
of object system: system is related to (i) gateway (type of
gateway), (ii) location, and (iii) property data.

Data is an array property, consisting of two objects,
related to information about current time at gateway and sta-
tus message.The object device is described by five properties:
type (“smart meter”), objectCodeVersion (this device uses
ObisV2.9), id (this device uses two different identifications),
timestamp, and data. The objects in the array data (within
the “device”) have properties: name, value, units, info (addi-
tional information about measured value), and objectCode
(because device uses OBIS as system code); see Algorithm 1.

5.4. Proposed Protocol Buffers Structure. Protocol Buffers
represent the second used data structure. To distinguish from
the provided JSON structure with real data set, the examples
below show our proposed .proto structure from the scheme
viewpoint. The provided structure is divided into 7 parts
which follow the idea of JSON structure:

(1) Message FullJSONPacket consists of optional field
system and required field device. Those fields feature
messages defined as shown in Algorithm 2.

(2) Message System includes an optional field type with
value type string and two optional fields composed of
messages as shown in Algorithm 3.

International Journal of Distributed Sensor Networks 15

syntax = "proto2";

package vutbr;

option java package = "cz.feec.vutbr";

option java outer classname = "DataStructure";

message FullJSONPacket {

optional System system = 1;

required Device device = 2;

}

Algorithm 2

message System {

optional string type = 1;

optional Location location = 2;

optional SystemData data = 3;

}

Algorithm 3

message Device {

required string type = 1;

optional string objectCodeVersion = 2;

repeated Id id = 3;

required string timestamp = 4;

repeated DeviceData data = 5; }

Algorithm 4

(3) Message Device consists of required field of value
type string called type, optional field of value type
string called obejctCodeVersion, repeated field id,
required field of value type string called timestamp,
and repeated field data (see Algorithm 4).

(4) Message Location has four required fields of value
type string: info, format, latitude, and longitude (see
Algorithm 5).

(5) Message SystemData has two required fields of value
type string: name and value, one optional field of
value type string named info, and one optional field of
value type enum named Method (see Algorithm 6).

(6) Message Id has two required fields of value type string:
name and value, as well as one optional field of value
type string called objectCode (see Algorithm 7).

(7) MessageDeviceData has three required fields of value
type string: name, value, and units, two optional
fields of value string: objectCode and info, and two
optional fields of value type enum: Method and
ResponseResult (see Algorithm 8).

It is self-evident given the example above that created
structure of Protocol Buffers is easy to implement and extend;
the key principles of JSON scheme are followed. This is
mainly owning to the possibility of adding new messages to
the structure without a need of changing the existing ones.

message Location {

required string info = 1;

required string format = 2;

required string latitude = 3;

required string longitude = 4; }

Algorithm 5

message SystemData {

required string name = 1;

required string value = 2;

optional string info = 3;

enum Method {

null = 0;

ok = 1;

notAllowed = 2;

error = 3;

unknown = 4;

}

optional Method method = 4; }

Algorithm 6

message Id {

required string name = 1;

required string value = 2;

optional string objectCode = 3; }

Algorithm 7

message DeviceData {

required string name = 1;

required string value = 2;

required string units = 3;

optional string objectCode = 4;

optional string info = 5;

enum Method {

null = 0;

get = 1;

set = 2;

response = 3;

}

optional Method method = 6;

enum ResponseResult {

null = 0;

ok = 1;

notAllowed = 2;

error = 3;

unknown = 4;

}

optional ResponseResult responseResult = 7;

}

Algorithm 8

16 International Journal of Distributed Sensor Networks

This represents the main advantage in comparison with the
JSON structure/data format.

6. Conclusions and Lessons Learned

In this final section, we discuss the important aspects that
we faced during our implementation together with the main
conclusions.

During the development of new data structures (JSON
and Protocol Buffers) suitable for M2M communication via
the cellular networks we solved a number of challenges:
(i) selection of suitable communication protocol (offering
small communication overhead during the initial communi-
cation phase, enabling the request/response communication
between sensors and cloud-based applications, providing the
security in the entire communication chain); (ii) definition of
data structures which satisfy the requirements of simple and
universal structure (ready for future conversion into different
independent data structures (e.g., LPEX or CSV)).

Working with the data structure inside the application
protocol, we have used and modified two data schemes
(i) JSON and (ii) Protocol Buffers based on collaboration
with our industry partners: WepTech [67], Bonega [68], and
Pikkerton [69] to adapt our solution to different requirements
of meter types; see Sections 5.2 and 5.4. One of the most
important tasks was to design a universal structure (since
the content of data sent from sensors may differ across
manufacturers) suitable for effective handling at the side of
remote server/cloud-based app/end application (e.g., storing
and sorting of the received data, visualization of the received
data, and data mining).

Catering for the best candidate among today’s IoT proto-
cols, we conducted a comparative analysis of CoAP, MQTT,
XMPP, AMQP, SIP, and DDS; see Section 2. All of these
solutions are recognized in literature as application protocols
ready for IoT/M2M. Based on our research we can conclude
that in reality only some of the described protocols are
actually suitable for the practical implementation to support
contemporary IoT use cases such as smart homes or home
automation.

If we want to use IoT to its full potential, the SIP or
CoAP could be used as containers for the M2M data. This
decision follows from the fact that only these two protocols
are able to provide request/response communication which
is becoming the needed functionality in real IoT world. In
case of our pilot project, we have selected the SIP option
mainly due to the fact that this protocol is already a vital
part of mobile systems (in 4G and beyond networks, the IMS
component is mandatory in network architecture). Using SIP
as a remote communication enabler brings new challenges
and business opportunities for telecommunication operators.
They can extend today’s IP residential gateways (the so-
called Internet gateways) with new functionality enabling
the communication between the sensors deployed within the
intelligent building and any remote service provider/end user
interface [18].

As an output of testing our proposed schemes (JSON and
Protocol Buffers) in real use case (using the IMS infrastruc-
ture of Telekom Austria Group and real sensors/meters), we

can conclude that both proposed structures (often named as a
scheme) togetherwith SIP as a container for data transmission
represent the fully functional approach to transporting M2M
data over future Internet. Furthermore, the created solutions
are ready for further modifications (adding new meters or
updating current meter parameters).

The key identified challenges were discussed with our
industry partners and the resulting implementation was
tested as part of a market-ready commercial product. There-
fore, we believe that this comprehensive description of
application protocols together with enabling data structures
summarized by this paper will contribute to the important
developments within the IoT vision or the so-called IoT
domain, thus making them easier to understand andmanage.

Competing Interests

The authors declare that they have no competing interests.

Acknowledgments

The described research was supported by the National Sus-
tainability Program under Grant LO1401. For the research,
infrastructure of the SIX Center was used. The authors
would like to thank Telekom Austria Group for access to SIP
infrastructure and insight into the SIP protocol for M2M and
its real-life usage.

References

[1] Cisco, “Cisco visual networking index, globalmobile data traffic
forecast update, 2014–2019,” White Paper, 2015.

[2] A. Greenspan and C. Lewis, “Monetize the Internet of Things:
JSON turns a flood of data into business actions and results,”
2015, http://bit.ly/1He09Vu.

[3] M.Condoluci,M.Dohler,G.Araniti, A.Molinaro, andK. Zheng,
“Toward 5G densenets: architectural advances for effective
machine-type communications over femtocells,” IEEE Commu-
nications Magazine, vol. 53, no. 1, pp. 134–141, 2015.

[4] P. Masek, K. Zeman, Z. Kuder et al., “Wireless M-BUS: an
attractive M2M technology for 5G-grade home automation,”
in Proceedings of the EAI International Conference on Cyber-
Physical Systems, iOt and Sensors Networks (CYCLONE ’15), pp.
1–12, Rome, Italy, October 2015.

[5] J. Hosek, P. Masek, D. Kovac, M. Ries, and F. Kropfl, “Universal
smart energy communication platform,” in Proceedings of the
International Conference on Intelligent Green Building and Smart
Grid (IGBSG ’14), pp. 1–4, Taipei, Taiwan, April 2014.

[6] L. Atzori, A. Iera, and G. Morabito, “The Internet of Things: a
survey,”Computer Networks, vol. 54, no. 15, pp. 2787–2805, 2010.

[7] R. Khan, S. U. Khan, R. Zaheer, and S. Khan, “Future internet:
the internet of things architecture, possible applications and key
challenges,” in Proceedings of the 10th International Conference
on Frontiers of Information Technology (FIT ’12), pp. 257–260,
IEEE, Islamabad, Pakistan, December 2012.

[8] J. Rosenberg, H. Schulzrinne, G. Camarillo et al., “SIP: Session
Initiation Protocol,” IETF Std. RFC3261, 2002, http://www.ietf
.org/rfc/rfc3261.txt.

International Journal of Distributed Sensor Networks 17

[9] A. Niemi, “Session Initiation Protocol (SIP) Extension for Event
State Publication,” IETF Standards RFC3903, October 2004,
http://www.ietf.org/rfc/rfc3903.txt.

[10] “Session Initiation Protocol (SIP): Extension for Instant Mes-
saging,” IETF: RFC3428, 2002, https://www.ietf.org/rfc/rfc3428
.txt.

[11] MQTelemetry Transport (MQTT): V3.1 Protocol Specification,
IBM: Developer Works, 2014, http://goo.gl/3tLZVj.

[12] MQTT For Sensor Networks (MQTT-SN): Protocol Specifica-
tion Version 1.2., 2013, http://goo.gl/eDqIRQ.

[13] CoAP: RFC 7252 Constrained Application Protocol. CoAP
Technology, 2014, http://coap.technology/.

[14] AMQP: AdvancedMessage Queuing Protocol, 2015, https://www
.amqp.org/.

[15] DDS: Data Distribution Service. The Proven Data Connectivity
Standard for the IoT, 2015, http://portals.omg.org/dds/.

[16] Extensible Messaging and Presence Protocol (XMPP): Core,
IETF: RFC 6120, 2011, https://tools.ietf.org/html/rfc6120.

[17] N. Komninos, E. Philippou, and A. Pitsillides, “Survey in
smart grid and smart home security: issues, challenges and
countermeasures,” IEEECommunications Surveys andTutorials,
vol. 16, no. 4, pp. 1933–1954, 2014.

[18] GitHub: SyMPHOnY (Smart Multi-Purpose Home Gateway),
https://github.com/SyMPHOnY-/Smart-Home-Gateway/wiki.

[19] Y. Lai, J. Kang, and R. Yu, “Efficient and secure resource man-
agement in homeM2M networks,” International Journal of Dis-
tributed Sensor Networks, vol. 2013, Article ID 849572, 12 pages,
2013.

[20] M. M. Islam, J. H. Lee, and E.-N. Huh, “An efficient model for
smart home by the virtualization of wireless sensor network,”
International Journal of Distributed Sensor Networks, vol. 2013,
Article ID 168735, 10 pages, 2013.

[21] M. Sneps-Sneppe andD.Namiot, “AboutM2Mstandards:M2M
and open API,” in Proceedings of the 7th International Confer-
ence onDigital Telecommunications (ICDT ’12), pp. 111–117,Mont
Blanc, France, April-May 2012.

[22] Z. M. Fadlullah, M.M. Fouda, N. Kato, A. Takeuchi, N. Iwasaki,
and Y. Nozaki, “Toward intelligent machine-to-machine com-
munications in smart grid,” IEEE Communications Magazine,
vol. 49, no. 4, pp. 60–65, 2011.

[23] World Wide Web Consortium (W3C), http://www.w3.org/.
[24] The Internet Engineering Task Force (IETF), https://www.ietf

.org/.
[25] “IEEE—The world’s largest professional association for the

advancement of technology,” https://www.ieee.org/index.html.
[26] ETSI—European Telecommunications Standards Institute,

http://www.etsi.org/.
[27] D. Locke, “MQ Telemetry Transport (MQTT) v 3.1 protocol

specification,” IBM Developer Works Technical Library, http://
goo.gl/3tLZVj.

[28] N. Gligoric, T. Dimcic, D. Drajic et al., “CoAP over SMS: per-
formance evaluation for machine to machine communication,”
in Proceedings of the 20th Telecommunications Forum (TELFOR
’12), pp. 1–4, Belgrade, Serbia, November 2012.

[29] W. Colitti, K. Steenhaut, N. De Caro, B. Buta, and V. Dobrota,
“Evaluation of constrained application protocol for wireless
sensor networks,” in Proceedings of the 18th IEEE Workshop on
Local and Metropolitan Area Networks (LANMAN ’11), pp. 1–6,
Chapel Hill, NC, USA, October 2011.

[30] M. T. Jones, “Meet the Extensible Messaging and Presence
Protocol (XMPP),” DeveloperWorks, 2009.

[31] P.Waher and Y. Doi,XEP-0322: Efficient XML Interchange (EXI)
Format, 2013.

[32] T. Kamiya and J. Schneider, Efficient XML Interchange (EXI)
Format 1.0, World Wide Web Consortium Recommendation
REC Exi-20110310, 2011.

[33] J. L. Fernandes, I. C. Lopes, J. J. P. C. Rodrigues, and S. Ullah,
“Performance evaluation of RESTful web services and AMQP
protocol,” in Proceedings of the 5th International Conference on
Ubiquitous and FutureNetworks (ICUFN ’13), pp. 810–815, IEEE,
Da Nang, Vietnam, July 2013.

[34] Data Distribution Services Specification, V1.2, http://www.omg
.org/spec/DDS/1.2/.

[35] C. Esposito, S. Russo, and D. Di Crescenzo, “Performance
assessment of OMG compliant data distribution middleware,”
in Proceedings of the 22nd IEEE International Parallel and Dis-
tributed Processing Symposium (IPDPS ’08), pp. 1–8, Miami, Fla,
USA, April 2008.

[36] D. Thangavel, X. Ma, A. Valera, H.-X. Tan, and C. K.-Y. Tan,
“Performance evaluation of MQTT and CoAP via a common
middleware,” in Proceedings of the 9th IEEE International Con-
ference on Intelligent Sensors, Sensor Networks and Information
Processing (ISSNIP ’14), pp. 1–6, IEEE, Singapore, April 2014.

[37] N. De Caro, W. Colitti, K. Steenhaut, G. Mangino, and G. Reali,
“Comparison of two lightweight protocols for smartphone-
based sensing,” in Proceedings of the 20th IEEE Symposium on
Communications and Vehicular Technology in the BeNeLux
(SCVT ’13), pp. 1–6, Namur, Belgium, November 2013.

[38] J. Hosek, P. Masek, D. Kovac, and F. Kropfl, “M2M gateway: the
centerpiece of future home,” in Proceedings of the 6th Inter-
national Congress on Ultra Modern Telecommunications and
Control Systems and Workshops (ICUMT ’14), pp. 190–197, St.
Petersburg, Russia, October 2014.

[39] S.-M. Kim, H.-S. Choi, and W.-S. Rhee, “IoT home gateway for
auto-configuration and management of MQTT devices,” in
Proceedings of the IEEE Conference on Wireless Sensors (ICWiSe
’15), pp. 12–17, IEEE, Malacca, Malaysia, August 2015.

[40] GoogleDevelopers, “Protocol Buffers,” https://developers.google
.com/protocol-buffers/.

[41] C. Ortega-Corral, L. E. Palafox, J. A. Garćıa-Maćıas, J. Sánchez-
Garćıa, and L. Aguilar, “End-to-end message exchange in a
deployable marine environment hierarchical wireless sensor
network,” International Journal of Distributed Sensor Networks,
vol. 2014, Article ID 950973, 18 pages, 2014.

[42] T. Bray, “The JavaScript Object Notation (JSON) data inter-
change format,” RFC 7159, IETF, 2014, https://tools.ietf.org/
html/rfc7159.

[43] Introducing JSON: ECMA-404 the JSON Data Interchange
Standard, 2015, http://www.json.org/json-en.html.

[44] JSON-Schema: The Home of JSON Schema, 2015, http://json-
schema.org/.

[45] JSON (JavaScript Object Notation): 10 Example of JSON Files,
2015, http://www.sitepoint.com/10-example-json-files/.

[46] W3Schools: JSON Syntax, 2015, http://bit.ly/1QmCrLm.
[47] J. Hosek, P. Masek, M. Ries, D. Kovac, M. Bartl, and F. Kropfl,

“Use case study on embedded systems serving as smart home
gateways,” in Recent Advances in Circuits, Systems and Auto-
matic Control, pp. 310–315, EUROPMENT, Budapest, Hungary,
2013.

[48] OSGi Alliance, http://www.osgi.org.
[49] Port Project for theMIPSArchitecture, http://mail.openjdk.java

.net/mailman/listinfo/mips-port-dev.

18 International Journal of Distributed Sensor Networks

[50] Official and not-so-official thoughts on Java: oracle announces
plans for Java on MIPS, http://bit.ly/1YVKC50.

[51] OpenWRT: Wireless Freedom: Barrier Breaker, http://wiki
.openwrt.org/doc/barrier.breaker.

[52] JAIN-SIP API: The Source for Java Technology Collaboration,
https://jsip.java.net/.

[53] The SIP INFOMethod, IETF: RFC 2976, 2000, https://www.ietf
.org/rfc/rfc2976.txt.

[54] Reliability of Provisional Responses in the Session Initiation
Protocol (SIP), IETF: RFC 3262, 2002, https://www.ietf.org/
rfc/rfc3262.txt.

[55] IETF, “Session initiation protocol (SIP)-specific event notifica-
tion,” RFC 3265, IETF, 2002, https://www.ietf.org/rfc/rfc3265
.txt.

[56] The Session Initiation Protocol (SIP) UPDATE Method, IETF:
RFC3311, 2002, https://tools.ietf.org/html/rfc3311.

[57] “The Reason Header Field for the Session Initiation Protocol
(SIP),” IETF: RFC3326, 2002, https://tools.ietf.org/rfc/rfc3326
.txt.

[58] Session Initiation Protocol (SIP): Extension for Instant Messag-
ing, IETF: RFC3428, 2002, https://www.ietf.org/rfc/rfc3428.txt.

[59] “The Session Initiation Protocol (SIP) Refer Method,” IETF:
RFC3515, 2003, https://www.ietf.org/rfc/rfc3515.txt.

[60] An Extension to the Session Initiation Protocol (SIP) for
Symmetric Response Routing, IETF: RFC3581, https://www.ietf
.org/rfc/rfc3581.txt.

[61] “Session Initiation Protocol (SIP) Extension for Event State
Publication,” IETF: RFC3903, 2004, https://www.ietf.org/rfc/
rfc3903.txt.

[62] X-Lite, “SIP-based softphones, server applications and Fixed
Mobile Convergence (FMC) solutions,” http://www.counter-
path.com/x-lite/.

[63] ZoiPer: Unified VoIP Communications, http://www.zoiper
.com/en.

[64] Asterisk: an open source telephony switching and private
branch exchange service for Linux, http://www.asterisk.org/.

[65] Common Format and MIME Type for Comma-Separated
Values (CSV) Files, IETF: RFC 4180, 2005, https://tools.ietf.org/
html/rfc4180.

[66] EN, “Communication systems formeters and remote reading of
meters—part 4: wireless meter readout (radiometer reading for
operation in the 868MHz to 870MHz SRD band),” EN 13757-
4:2005, 2005.

[67] WepTech, “Humidity and temperature sensor WEP OMSF-
868A,” https://www.weptech.de/products/oms-humidityand-
temperature-sensor-wep-omsf-868a.html.

[68] Bonega, “Ultra-Antimagnetic Water-Meters,” http://bit.ly/
1prr8cu.

[69] Pikkerton, Wireless M-Bus Smart Cable Meter MBS-112,
http://bit.ly/1Uwa8gk.

[70] KNX Association, http://www.knx.org/knx-en/index.php.
[71] List of standard OBIS codes and COSEM objects, http://bit.ly/1

KTdYYg.

International Journal of

Aerospace
Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Robotics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 Active and Passive
Electronic Components

Control Science
and Engineering

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 International Journal of

 Rotating
Machinery

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com

 Journal ofEngineering
Volume 2014

Submit your manuscripts at
http://www.hindawi.com

VLSI Design

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Shock and Vibration

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Civil Engineering
Advances in

Acoustics and Vibration
Advances in

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Electrical and Computer
Engineering

Journal of

Advances in
OptoElectronics

Hindawi Publishing Corporation
http://www.hindawi.com

Volume 2014

The Scientific
World Journal
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Sensors
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Modelling &
Simulation
in Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Chemical Engineering
International Journal of Antennas and

Propagation

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Navigation and
 Observation

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Distributed
Sensor Networks

International Journal of

