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INTRODUCTION 

Sound classification is a process of categorization of different sounds into classes that 

share common features. It is used with various types of sounds, ranging from automatic 

recognition of music genre, speaker and spoken content recognition to acoustic analysis 

of industrial processes and recognition of natural and artificial sounds (such as 

disturbances in environment or gunshot detection).  

The main motivation for this work was an effort to develop a reliable gunshot 

detection algorithm with low computational demands. This algorithm would be then 

incorporated within tracking collars for protected wildlife and is supposed to prevent 

poaching by alerting authorities about illegal activities. Similar efforts were undertaken 

by other researchers using microphone arrays in protected parks. 

Sound recognition comes in multiple steps. First of all, dataset representing sounds 

to be distinguished must be obtained. After the data is acquired and properly labeled, 

suitable features should be calculated which sufficiently distinguish between various 

classes, this equals to low variability inside class and high variability between classes, 

which can be expressed as mutual information. Among frequently used features in sound 

event detection are mel-frequency cepstral coefficients (MFCC), linear predictive 

coefficients (LPC), various spectral characteristics, such as spectral band energy, and 

recently also MPEG-7 descriptors. While many features have high mutual information 

between them and class label, they can also have high mutual information between 

themselves, resulting in high redundancy and low added information with increasing 

feature count. Many feature extraction and selection methods exist, related to this is also 

dimensionality reduction, which aims to reduce the number of features while preserving 

information content. An example of such dimension reduction techniques, we can name 

linear discriminant analysis (LDA) or principal component analysis (PCA). Ultimately, 

features are fed to recognition algorithm, which assorts input data into classes. Examples 

of commonly used algorithms are support vector machine (SVM), artificial neural 

networks (ANN) or Naive Bayes classifier. 

The thesis is structured into two major parts. The first part consists of introducing 

basic theory, demands and methods used. These include basics of acoustics, important 

sources of information and publications in the field of sound event detection, demands on 

datasets and some frequently used datasets. Next, frequently used features are introduced, 

along with various methods on comparing them, and a comparison of their effectiveness 

under clean and noisy conditions is made. The first part concludes by introducing 

frequently used algorithms in sound event recognition. The second part consists of the 

contributed work itself. It presents new proposed features and compares them to some 

previously used features. It also proposes a system for real-time event detection with 

preliminary categorization into single gunshots and gunshot bursts which uses fast and 

well established algorithms. Secondly, it proposes advanced algorithms, which use new 

features and are also more computationally demanding, to further refine preliminary 

results and increase their accuracy and reliability. The short version of thesis includes 

only the most important parts of the above mentioned content. 
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1 SOUND EVENTS DATABASES  

The first step in sound recognition is to assemble proper audio dataset containing sounds 

of interest and possibly other sounds to be distinguish. The audio in dataset is usually 

labelled with various classes or categories (such as gunshots and sounds of barking dog), 

number of recordings in each class should be approximately equal, at least for training 

purposes. Since the conception of sound recognition field, multiple audio datasets were 

compiled, some tailored for specific purpose and some with the aim of being universally 

used to compare various algorithms. The following section lists some of those datasets 

and subsequently describes the dataset used in this work. 

1.1 Existing sound event datasets 

This section lists multiple audio datasets compiled mostly for various audio recognition 

tasks, but some also for other purposes (such as movie industry). For the task of sound 

recognition, audio without any artificial alterations is preferred, this includes not only 

synthethic audio (such as special effects for movies), but many times also lossy audio 

encoding. 

For purposes of sound recognition, database focused on urban sounds [1]. This urban 

sound database consists of 10 sound classes (air conditioner, car horn, dog bark, drilling, 

engine, gunshots, playing children, jackhammer, siren and street music). This publication 

also offers taxonomy of urban sounds due to lack of common vocabulary. Subset of 

databases is dedicated to domestic and indoor sounds, for example in case of fall detection 

in elderly care. Netcarity project supported several specialized datasets, one such dataset 

focused on daily activities, such as ironing, eating or watching TV. Another database 

under this project is described in [2], it consists of 450 events with approx. 210 falls 

performed by 13 different actors. In this work, accelerometer and 3D camera data were 

collected as well. Datasets with indoor sounds such as appliances and gender or age 

classified speech was popular also with other authors. Database [3] is created for movie 

making purposes, there are both free and paid collections made of recordings of crowds 

in different places and ambience sounds. DCASE 2016 Challenge used [4] and [5], 

databases of indoor and outdoor sounds and events, both described in [6]. 

Specialized gunshot sounds databases are scarcer. First database consists of 

approximately 800 gunshots and other dangerous sound (e.g. explosions, car crashes …) 

recordings [7], it is available only to INDECT project partners. Next database is dedicated 

only to gunshots and mechanical sounds produced by weapons [8]. It was compiled for 

movie making purposes and consists of around 1100 recordings of gunshots and 

additional mechanical sounds, recorded in WAV format with high quality.  

Apart from above mentioned datasets, there is a wide variety of various specialized 

datasets assembled for certain purpose, such as acoustic fault analysis of combustion 

engines, or collection of natural sounds in “British Library Sounds”. Then, there is 

different approach to assembling datasets, such as “Million song dataset”, which is a 

dataset of a million contemporary popular sounds. The dataset, in order to avoid copyright 

issues, does not contain any actual songs, but only extracted features.  
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Apart from datasets assembled by individuals and collectives, there are also 

crowdsourced datasets such as Freesound and Soundbible. Crowdsourced datasets come 

with weakness that they are weakly curated, and so contain mislabelled sounds or 

synthetic sound effects. 

1.1.1 Our Dataset 

Our dataset consists of selected audio data from previously mentioned datasets, as well 

as some recordings made by us. The dataset can be divided by various criteria, e.g. by 

duration into two groups. Firstly ambient noise, which contain outdoor noises, such as 

construction site, crowded place or rain and indoor noises, for example air conditioning. 

Second part consists of specific events, these include gunshots, breaking glass, cracking 

wood, barking dogs etc. The division can further be into natural sounds (such as barking 

dog or rain and thunderstorm) and man-made sounds (e.g. sound of idling engine). 

Arguably, the most important divison for this work is division into gunshots (positive 

class) and non-gunshots (negative class). 

Since all the data comes from various sources, original number of channels, sampling 

frequencies, quantization and even audio format differ widely. To ensure uniformity, all 

sounds were converted to mono signal (averaging between channels), downsampled to 

44.1 kHz and quantized with 16-bits. Recordings in lossless formats (such as .flac) were 

converted to .wav and recordings in lossy formats were dropped. 

The compiled dataset contains a lot audio data, which would be infeasible to use in 

its entirety, thus most experiments operate with only parts of the dataset. During the 

experiments, classes of interest are picked and subsequently, required number of 

randomly chosen segments is used. For example, the last chapter operates with 4 non-

gunshot classes whose sounds originate from different datasets, only sounds with certain 

minimum amplitude are chosen and only sounds flagged as gunshots by a simple 

algorithm. This way, we ensure testing the final algorithm with over 30000 sound frames 

from various sources. 

Gunshots, focus of this work, come from [8] and include 1532 events from 25 

different weapons of different categories (such as handguns, hunting rifles and assault 

rifles). In total, the largest subset of sounds of the same type is represented by 374 

gunshots from the assault rifle AK-47. The distinctive sound of gunshots come from two 

main sources. One, the muzzle blast, is the sound of gases expanding from the weapon, it 

has quite a distinctive shape which is known as the N-wave [2]. The other is shockwave 

and it is produced by hypersonic bullets along their path, thus shockwave is not detectable 

behind the shooter. We have investigated the similarity of individual gunshots in this 

dataset comparing gunshots from the same weapon (AK-47). In all cases, gunshots were 

extracted from the recordings using a rectangular window with a length of 30 ms and 

then, each extracted gunshot signal was normalized to the size –1 to +1 to eliminate 

different intensity of sounds. In the next step, all gunshots were time synchronized by 

fixing in the maximum point, and finally limited to a length of 1024 samples (approx. 23 

ms). These synchronized gunshot waveforms were stored together in a time-amplitude 

distribution matrix. In statistical processing the mean µ(t) and standard deviation σ(t) 

were estimated sample by sample along the whole gunshot length. Fig. 1 shows a 

graphical interpretation of the distribution matrix displayed as a grey scale image together 

with the statistical parameters obtained for a subset of 308 gunshots within the class of 
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AK-47s. The darker shade in Fig. 1 means that the waveforms are more concentrated 

around the average waveform. The leftmost part is shockwave and we can see that its 

position varies, this is due to different geometries of gunshots. The part on the right, 

around the maximum point is muzzle blast, some variability can be seen, but the typical 

N-shape is distinguishable. 

 

Fig. 1 Gunshot waveforms stacked on top of each other 

2 COMPARISON OF FREQUENTLY USED 

FEATURES 

This chapter compares several feature sets under different conditions and its aim is to 

discover the best setup that would be used later in the gunshot recognition system. 

Examined features include mel-frequency cepstral coefficients (MFCC), linear prediction 

coefficients (LPC) and linear prediction cepstral coefficients (LPCC). Performance was 

evaluated using Matlab Neural Net pattern recognition tool, using neural network with 

one hidden layer with 10 neurons. Data was divided into training, validation and testing 

sets in default proportion 70%, 15% and 15% respectively, using random permutations 

for each training. 

To represent results, we will be using recall (also known as true positive rate), 

precision (PPV – positive predictive value) and F-score, calculated as shown in equations 

(1), (2) and (3) respectively: 

𝑟𝑒𝑐𝑎𝑙𝑙 =  
𝑇𝑃

𝑃
=  

𝑇𝑃

𝑇𝑃 + 𝐹𝑁
, 

(1) 

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
, 

(2) 
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𝐹 − 𝑠𝑐𝑜𝑟𝑒 = 2 ∙
𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∙ 𝑟𝑒𝑐𝑎𝑙𝑙

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑟𝑒𝑐𝑎𝑙𝑙
, 

(3) 

where TP (True Positives) is number of gunshots classified as gunshots, P is number of 

all gunshots (Positives), FN is number of gunshots misclassified (False Negatives) and 

FP (False Positives) is number of non-gunshots classified as gunshots. 

To establish baseline performance, Tab. 1 below shows performance (precision was 

used to indicate performance) of features of different orders using frame length of 1024 

samples (approx. 23 ms at 44.1 kHz) which is frequently used frame length in similar 

applications, this table will be used as a starting point for further [9]. 

Table 1 Precision (2) of various features with frame length 23 ms [9] 

Number of 

coefficients 

Feature set 

LPC LPCC MFCC 

8 83.3 % 84.6 % 84.4 % 

12 87.8 % 86.3 % 86.9 % 

16 88.5 % 87.4 % 83.4 % 

20 89.3 % 88.4 % 83.2 % 

Average performance 87.2 % 86.9 % 84.5 % 

2.1 Effects of Frame Length and Position on Feature 

Variability 

This chapter compares effects of different frame lengths on gunshot recognition and 

explores the effect of frame length and position of audio event in frame on variability of 

features. The aim of this approach is to reveal relevance of given feature to gunshot class. 

Preliminary experiments were conducted using only small number of gunshots, after 

obtaining results, we proceeded to include the whole dataset. In order to investigate 

influence of frame length, gunshot recordings were segmented into frames of lengths 3 

ms, 5 ms, 8 ms and 11 ms, as shown in Fig. 2. As to the event position, gunshots were 

segmented into frames of length 3 ms with 50% overlap as shown in Fig. 3. 

Variability/stability observation consisted essentially of comparing values of coefficients 

under changing conditions. Illustrative results are shown in Fig. 4, this represents LPC 

coefficients (which were the most stable from the three sets) of order 20, individual lines 

represent individual coefficients. 
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Fig. 2 Increasing frame size 

 

Fig. 3 Shifting event position within frame 

 

Fig. 4 LPC coefficients (order 20) - increasing frame size 

During the next step, feature performance was estimated for all frame lengths and 

for different orders (8 to 30). Fig. 5 shows progressively decreasing recall for MFCC with 

decreasing frame lengths. As can be seen from Tab. 3, frame length 11 ms for LPC and 

LPCC achieved results very similar to the ones achieved with frame length 23 ms (results 

compared with Tab. 1 [9]). Thus, we will explore viability of frame length of 11 ms in 

the following tests, unless otherwise noted. Achieved results for frame length of 11 ms 

are presented in Tab. 2 and Tab. 3. Observation also shows, that there is no substantial 

improvement beyond order 12 for LPC or LPCC. 
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Table 2 Recall (1) for frame length 11 ms 

Order 
Feature set 

LPC LPCC MFCC20 MFCC 

8 84.2 82.1 79.9 73.8 

10 84.6 84.1 81.6 76.8 

12 87.0 84.3 82.8 79.2 

14 86.0 82.9 83.8 77.2 

16 86.3 85.0 85.4 80.4 

18 86.9 83.9 81.1 81.9 

20 86.4 83.4 84.5 81.8 

22 86.7 83.9 78.2 82.2 

24 84.8 83.1 82.9 83.0 

26 85.3 84.4 81.3 82.0 

28 85.7 84.6 84.3 84.8 

30 85.9 83.9 85.8 84.5 
 

Table 3 Precision (2) for frame length 11 ms 

Order 
Feature set 

LPC LPCC MFCC20 MFCC 

8 81.7 84.0 74.3 73.8 

10 85.1 85.5 77.5 76.8 

12 90.3 87.3 82.0 79.2 

14 89.2 88.8 80.1 77.2 

16 89.4 89.3 80.9 80.4 

18 90.0 89.0 79.9 81.9 

20 90.3 87.2 78.9 81.8 

22 89.9 89.3 81.3 82.2 

24 89.8 87.8 81.3 83.0 

26 89.3 88.0 81.9 82.0 

28 90.9 88.1 81.7 84.8 

30 89.1 88.9 77.8 84.5 
 

 

 

Fig. 5 Recall (1) of MFCC coefficients of various orders for different frame size 

Figur above conclusively show, that 3 ms frame is insufficient. Recall difference 

between 11 ms and 8 ms frames is marginal, what suffers during this reduction is 

precision. With reducing frame size from 8 ms to 5 ms precision remains roughly the 

same, while recall diminishes. As noted above, these are the reasons why we choose 11 

ms frame size for subsequent experiments. 

In the following part, feature variability with respect to frame length was compared. 

In this step, only gunshot sounds were used (1532 from various weapons, distances and 

angles). Features were extracted from all sounds using various frame lengths, they were 

then compared and the most invariant was chosen.  
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In order to assess vaibility of features, we propose comparing their differences in 

two ways. We can compare absolute differences between features, which might be 

problematic due to different feature scales. And we can compare relative differences, 

defined by (4): 

∆𝑚
̅̅ ̅̅ =

∑ ∑
(𝑎𝑚,𝑘,𝑝+1 − 𝑎𝑚,𝑘,𝑝)

(𝑎𝑚,𝑘,𝑝+1 + 𝑎𝑚,𝑘,𝑝)
𝑃−1
𝑝=1

𝐾
𝑘=1

𝐾(𝑃 − 1)
, 

(4) 

where m is series index of coefficients, 1≤m≤30, k is gunshot index, p is index of frame 

position, and am, k, p are corresponding coefficients. Best 3 coefficients (i.e. coefficients 

with the lowest variability calculated with (4)) from each order were summed and 

compared with other orders, Tab. 4 below shows results. When changing number of best 

coefficients during evaluation (e.g. considering 5 coefficients instead of 3), best feature 

order may vary. 

Table 4 Best orders and coefficients using relative values 

Feature Best order Best 3 coefficients 

LPC 8 

1 

2 

3 

LPCC 10 

1 

3 

2 

MFCC 22 

1 

2 

21 

 

Since recognition performance is not significantly impacted beyond feature order 12, 

the real problem is choosing correct coefficients, instead of choosing order. To confirm 

viability of our metrics, feature performance will be tested using neural networks. 

Additionally, mutual information between class label and feature value will be calculated, 

as shown in (5). This measure reflects relevance of the feature in classification process 

for given classes. 

𝐼(𝑥, 𝑦) = ∑ 𝑝(𝑥𝑖 , 𝑦𝑗) ∙ log
𝑝(𝑥𝑖 , 𝑦𝑗)

𝑝(𝑥𝑖) ∙ 𝑝(𝑦𝑗)
,

𝑖,𝑗
 

(5) 

where I(x,y) is mutual information, p(xi) if probability distribution of features, p(yj) is 

probability distribution of classes and p(xi,yj) is joint probability. In this step, we are not 

dealing with mutual information between individual features. 

Tab. 5 summarizes best results of mutual information tests for all feature sets. Mutual 

information was calculated according to (5) shown and explained above. For now, no 

mutual information between features was examined. In general, the most mutual 

information was concentrated in lower coefficients. 
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Table 5 Best orders and coefficients – Mutual information (5) 

Feature Best order Best 3 coefficients Mutual information [bit] 

LPC 30 

5 0.4789 

4 0.4741 

6 0.4665 

LPCC 30 

2 0.4132 

1 0.3535 

4 0.2298 

MFCC 28 

1 0.2883 

2 0.1378 

3 0.1274 

 

Fig. 6 presents performance represented by F-score of LPC chosen by different 

methods. Feature order depends on which order was chosen as best by each method. The 

following methods were tested: absolute and relative stability, mutual information 

between features and class labels (in legend labeled as “MI”) and, for reference, simple 

increase from 1 to 30 (in legend labeled as “increase”).  

 

Fig. 6 F-score (3) of different number of LPC coefficients for various selection methods 

Closeness of results obtained by “MI” and “increase” might be explained by the fact, 

that low index coefficients have high mutual information with class labels. Relative 

stability exhibits slightly worse but still comparable results while absolute stability 

attained the slowest ascend, probably because lowest absolute differences are 

concentrated in higher index coefficients, which according to (5) have comparably lower 

mutual information with class label in contrast with lower index coefficients. Overall, all 

features achieved similar results with MFCC requiring more features than LPC and 

LPCC. 
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2.2 Comparison of Various MFCC Settings 

As a next step, we have investigated extraction of MFCC coefficients, which has a lot of 

possibilities for modifications. We base the usual proces of MFCC extraction on [10]. 

The section briefly describes dataset used and evaluation method, then proceeds to 

explore various ways in which we can modify MFCC extraction. 

We used GUDEON [11] dataset to generate audio for this experiment. We have used 

all 1532 gunshots and added 90% probability of added noise  (consisting of various other 

recordings, with amplitude of at least 0.1). Non-gunshot recordings consisted of 2451 

recordings of random non-gunshot sounds (with amplitude of at least 0.1). We used 60% 

of the data for training, 20% for evaluation and 20% for testing. Random data division 

was used respecting original ratio of ca. 40% gunshots and 60% non-gunshots for each 

subset. Fully connected feedforward neural networks with 1 hidden layer (consisting of 

10 neurons) was used together with mean normalization, neural networks were 

implemented in Matlab. Preprocessing before MFCC extraction consisted of dividing 

audio into non-overlapping frames of 11 ms (486 samples at sampling frequency 44.1 

kHz) using rectangular window. Frames were subsequently resampled to 192 kHz and 

truncated to 2048 samples (from 2116 samples). After calculation of power spectrum, we 

have upsampled the spectrum 10x (resulting in 20480 frequency bins) in order to calculate 

low index coefficients using more samples than just one. Pre-emphasis as a part of 

preprocessing was turned off, as was cepstral liftering in postprocessing. 

In this experiment, we have investigated the influence of variation of frequency 

bandwidth, number of filter banks, filter shapes, frequency scale (mel vs. linear) and 

finally MFCC order on correct gunshot recongition. Apart from this, we have also 

investigated the influence of audio normalization on recognition performance. F-score 

was used as a metric along with true positives ratio (TPR) and true negatives ratio (TNR). 

The baseline setup against which we compared the results was MFCCs of order 12 

with bandwidth 1 Hz – 4 kHz, containing 24 triangular filter banks on a scale strictly 

linear until 1 kHz and mel afterwards (later called „linear/nonlinear“). The next step was 

to vary different parameters of extraction, compare the results and possibly adjust 

parameters for optimal performance. A series of tests compare effects of increased 

bandwidth, increased bandwidth and number of filter banks, various frequency scales, 

and ultimately filter shape. Other tests included varying feature order to bank ratio and 

input normalized so that maximum absolute value is equal to one. 

Tab. 6 shows results of increasing bandwidth, other things unchanged. Tab. 7 

increases bandwidth and number of filter banks. Subsequently, we have adjusted number 

of filter banks to 32 and bandwidth to 8 kHz to reflect the best attained results so far and 

varied frequency scale, the results are presented in Fig. 7. Tab. 8 compares different filter 

shapes with baseline setup (except with linear scale). 
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Table 6 Comparison of baseline setup with different bandwidths 

Bandwidth 
Metric 

TPR TNR F-score 

4 kHz 76.8 % 83.3 % 75.4 

8 kHz 73.9 % 84.7 % 74.5 

12 kHz 72.5 % 85.9 % 74.4 

16 kHz 74.2 % 85.1 % 74.9 

 

Table 7 Comparison of baseline setup with different bandwidths and filter bank count 

Bandwidth Number of filter banks 
Metric 

TPR TNR F-score 

4 kHz 24 76.8 % 83.3 % 75.4 

8 kHz 32 79.4 % 84.5 % 77.8 

12 kHz 37 74.5 % 85.1 % 75.1 

16 kHz 41 74.2 % 84.9 % 74.8 

 

Table 8 Comparison of various filter bank shapes 

Filter shape 
Metric 

TPR TNR F-score 

Triangular 76.5 % 84.5 % 76.0 

Rectangular 74.5 % 83.7 % 74.2 

Gaussian 75.2 % 84.7 % 75.3 

Gammatone 74.8 % 84.1 % 74.7 

Exponential 71.9 % 87.1 % 74.7 

 

The results indicate that feature order to bank ratio at, or below 0.5 is performing 

better in comparison with higher ratios (such as 1). Normalizing input to maximum 

absolute value equal to 1 had detrimental effects on recognition, decreasing it by around 

7%. 

As a result, we conclude it is better to use linear frequency scale. The best performing 

bandwidth appears to be 1 Hz – 8 kHz, with 32 triangular filter banks. We have chosen 

MFCC order 8 to conclude further experiments with real-time gunshot detection. 



 12 

 

Fig. 7 Gunshot recognition with increasing MFCC order 

2.3 Effects of Noise Levels and Types 

Until now, all sounds used in experiments contained no additional noise, apart from noise 

present during recording and the noise introduced by recording devices and processing. 

In this chapter, performance of previously used features under adverse noise conditions 

is briefly investigated. 

During the tests, multiple noise types and noise levels were used. White noise was 

chosen because of its spectral characteristics, and widespread use of white noise during 

testing. Additionally, sounds were combined with sound of rain and sound of idling 

engine, which also served as noises, under various SNR. Spectral characteristics of the 

noises differ in occupied bandwidth, with progression BWAWGN>BWRain>BWEngine, with 

engine concentrating most of its power below 1 kHz. Signal-to-noise ratios (SNR) were 

set to 0 dB, 10 dB, 20 dB and 30 dB, for reference, also clean signal was used. During 

tests, recordings with equal amount of noise were used both for training and for testing. 

Fig. 8 and 9 show F-score of MFCC and LPC features under different SNR conditions 

using white noise, performance of LPCC was similar to LPC with F-score decreasing 

with increasing order at SNR = 0dB. The results indicate, that LPC perform better in 

conditions with little noise. However when SNR drops to 20dB or 10 dB, performance of 

MFCC degrades much slower than that of LPC, even to the point where MFCC perform 

significantly better. At noise levels 0dB, performance of LPC and MFCC is comparable 

again. Trends under degradation with engine and rain sounds were similar to white noise, 

but the degree was slightly different. 
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Fig. 8 F-score (3) of LPC coefficients of various orders for different SNR 

 

Fig. 9 F-score (3) of MFCC coefficients of various orders for different SNR 

3 CONTINUOUS AUDIO EVENT 

DETECTION 

The whole approach is based on audio signal processing in two stages, namely Monitoring 

of audio events (first stage) and subsequent Detection of gunshots (second stage). In the 

first stage, the sound scene around the sensor (microphone) is continuously captured, and 
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shot-like sounds are sorted into group of individual shots and group of burst. Then, signals 

in both groups are stored for further advanced analysis in separate buffers. In the second 

stage, all sounds in the buffers are individually investigated in order to detect a gunshot 

or reject other shot-like sounds. 

The first section of this chapter introduces the idea of continuous monitoring further, 

along with how to deal with preliminary flagged segments. Second and third sections deal 

with preliminary detection of bursts and gunshots respectively. 

3.1 Continuous Monitoring of Audio Events 

This chapter details our work on continuous audio input monitoring in order to detect 

gunshots or gunshot bursts. It will introduce the concept in general, including 

preprocessing and basic filtering. Gunshot and burst detection will be described in 

dedicated subsections.  

Continous monitoring works with audio frames of length 330 ms without overlap 

(14553 samples with sampling frequency of 44.1 kHz). This length was chosen because 

methods for burst detection, mentioned in the following section, work with at least 3 

periods of signal in a time-frame, which results in 300 ms for weapons with slowest rate 

of fire (10 rounds per second) in our audio dataset, extra 30 ms is a reserve (since, as will 

be presented later, period detectors report up to 10% deviation on individual periods). 

Overlap was not introduced because of the need to save computational power. Audio 

input is sampled at 44.1 kHz with 16-bit quantization, as these are frequently used values 

for this task and provide reasonable compromise between resolution and power demands. 

Next step is to check input signal energy, and in case no (or very weak) signal is 

detected, we discard the frame and do not continue with other operations. Energy is 

calculated over whole time frame as a sum of squared samples. Energy threshold was 

chosen so that every single gunshot burst in used audio dataset passes the criterion, the 

resulting value was set to 0.3. If the signal is stronger than this value, check for amplitude 

limiting takes place. Amplitude limiting is checked by counting number of values close 

to, or at maximum absolute values (in case of normalized signal, the values are +1 and -

1) and comparing this number to a threshold. The threshold was estimated observing our 

audio dataset, and was experimentally set to 30 samples, i.e. if more than 30 samples in 

the whole frame are very close to maximum values, the frame is flagged as containing 

amplitude limited signal. Amplitude limited frames are saved for later processing (as they 

will require approach different to non-limited signal) and no further action is taken.  

If no amplitude limiting is detected we proceed with the next steps. We check the 

frame for possible presence of single gunshots or gunshot bursts, using methods detailed 

below. If this preliminary test indicates presence of either, frames are saved for further 

processing and confirmation of true positives. Preliminary test are also described in 

dedicated sections, further advanced processing is described in separate chapters. Signals 

that are preliminarily flagged, are saved in dedicated folders together with a timestamp 

for later processing/revision, an example of naming possible gunshots can be found 

below. 

 

gunshots/22-May-2019-09-30-33-3033.wav 
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3.2 Preliminary Burst Detection 

This section briefly describes processes and methods of preliminary burst detection. 

Advanced burst detection will be described in dedicated chapter.  

After passing energy threshold check and amplitude limiting check, input frame is 

passed to preliminary burst detection block. Preliminary (online) burst detection uses 

center-clipping method (described in next subsection) to estimate whether input signal is 

periodic, and if so what the period is. The reason to pick center-clipping was mainly due 

to its low computational demands (in comparison with e.g. AMDF, which will be 

described later) and sufficient performance in establishing basic frequency. This method 

uses center-clipping with reduction factor of 0.8 and alpha factor of 0.1, this setup 

ensures, periodic signal will not be lost in noise easily. In order for a frame to be flagged 

as a possible burst, it needs to have a period in range of +/- 5 ms from nominal weapon 

rate of fire (thus having range 85 ms – 105 ms for M45 and AK-47). If any frame 

conforms to these rather loose criteria, it is saved together with previous and the following 

frame for advanced (offline) processing, any adjacent frame conforming to these criteria 

is appended to the recording. Results for the first stage detection are presented below in 

Tab. 9. „Original duration“ shows duration of the whole category of sounds used in 

testing, „Stage 1“ column shows total duration flagged as bursts by preliminary burst 

detection in seconds, and also as a total percentage of original duration. All bursts in 

categories M45 and AK-47 pass this criterion under tested conditions. 

Table 9 Preliminary burst detection results 

Category 
Original 

duration 

Stage 1 

[seconds] 

Stage 1 

[%] 

Speech and music 11 hours 42 sec 0.11 % 

Engine 
1 hour 5 

min 
97 sec 2.49 % 

Rain and 

thunderstorm 
13 minutes 16 sec 2.05 % 

Birds 35 minutes 21 sec 1.00 % 

Dog 3 hours 74 sec 0.69 % 

3.2.1 Center-clipping Method 

The center-clipping algorithm is more suitable than AMDF (described later in chapter 

8.1.1) to determine whether the given time frame is periodic, but it is not as good in 

determining the degree of periodicity. This algorithm works only with peaks (both 

positive and negative) and zeroes all values in between, zeroing threshold will be called 

clipping level [12]. In contrast to AMDF, this algorithm uses overlapping factor of 2/3. 

Clipping level is determined by equation (7) as follows: input segments are 

subdivided into three frames (j-1, j, j+1) then peaks of left (MAXj-1) and right frame 

(MAXj+1) are extracted. The clipping level CL is a product of the lower of these values 

and reduction factor rf which was experimentally set to 0.8 for best performance [13]. 

𝐶𝐿𝑗 = 𝑟𝑓 ∙ min(𝑀𝐴𝑋𝑗−1;  𝑀𝐴𝑋𝑗+1), (7) 
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after clipping, resulting samples are either rounded to +/-1 or zeroed. This clipped signal 

is used as an input for autocorrelation. Examples of autocorrelation function for periodic 

and non-periodic signals are shown in Fig. 10.  

  

Fig. 10 Center-clipping autocorrelation output for periodic (left) and non-periodic (right) inputs 

It can be seen, that periodic signal outputs distinctive peaks with decreasing 

amplitude at regular intervals. In contrast, non-periodic signal produces noise-like signal 

without any distinctive peaks or general trend. 

After obtaining output from the autocorrelation function, the algorithm locates 

maximum of the function (apart from R(0)) and decides whether investigated frame is 

periodic according to the following criteria (8) and (9): 

𝑅(𝑘𝑚𝑎𝑥) ≤ 𝛼 ∙ 𝑅(0), nonperiodic (8) 

𝑅(𝑘𝑚𝑎𝑥) > 𝛼 ∙ 𝑅(0), periodic (9) 

where α is an empiric constant based on previous testing [13] and defaults to 0.3 for 

speech signal. In our application, we are using alpha factor equal to 0.1, since higher 

values resulted in too many missed detections. The period can be calculated by 

multiplying the position of maximum peak kmax by sampling period, the same way as in 

AMDF algorithm (13). 

3.3 Preliminary Individual Gunshot Detection 

This section describes detection of individual gunshots within bigger, 330 ms frames. 

Since individual gunshots (we are considering muzzle blast and disregarding acoustic 

shockwave, however the presence of shockwave is not a problem) without echo are very 

short, just several milliseconds, the whole frame will be divided into smaller subframes. 

Previous research [9] suggested 11 ms frame is sufficient for gunshot detection and results 

in performance comparable to 23 ms frames used previously.  

Thus the next step is to divide 330 ms frame into 11 ms subframes, again without 

overlap. The reason we are not using overlap is because it introduces increased demands 

on computational power and our application presupposes presence of many gunshots, 
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moreover the importance lies in high precision (i. e. low false alarm count), not on perfect 

recall. In the next step, energy check is performed again, in order to discard silent 

subframes, the threshold was set so that the most silent gunshots in our dataset will pass 

it. In this case, energy was calculated as a sum of squared samples and energy threshold 

under which no further calculation was done was set to 0.13.  

Subsequently, we calculate features derived from 8th order MFCC, the concept was 

described more in detail in chapter 2.2, where comparison of various setups took place, 

but we will briefly mention the differences and any additional modifications. The 

calculation is basically identical, however these features are calculated on a linear 

frequency scale (as opposed to mel scale in MFCC), the bandwidth was 1 Hz – 8 kHz 

with 32 triangular filters, we will call these features LFCC (emphasizing linear frequency 

scale, bandwidth or filter shapes can and will vary). Additionally, before the calculation, 

the signal is upsampled to 192 kHz and further 10x in spectrum in order to increase the 

number of samples in each frequency bin. This LFCC set-up was proven to be slightly 

better than others (even compared to MFCC). 

In the preliminary detection stage, neural networks were chosen as recognition 

algorithm due to its previous extensive use and good performance. Neural network 

training and testing was performed on a mix of data with gunshots from [8] and other 

sounds coming from Urban Audio dataset [1] and our recordings. We have used 7 non-

gunshot classes (barking dog, drilling, jackhammer, siren, engine sound, sounds recorded 

near elephants – including trumpeting, and sound of rain and storm) and gunshot class. 

For training, each class consisted of 900 feature vectors extracted from sound frames 11 

ms long, randomly chosen from the above mentioned datasets. 

Regarding architecture, in the first step, two approaches have been tested. First 

approach was training the network simply for gunshot detection, i. e. 2 class problem, 

gunshots vs. everything else. Second approach was to train the network for multiclass 

classification, where there was an output neuron for every non-gunshot class as well as 

for gunshot class. First approach yielded better results mostly in terms of true positives 

for gunshot class, so we have subsequently decided to use the 2 class neural network. As 

for the number of hidden layers and neurons, grid search was used to determine best 

combination of hyperparameters. The grid search included options of 10, 20 and 30 

hidden neurons in 1 or 2 layers, with both layers having the same amount of neurons. 

Finally, architecture with 2 hidden layers of 20 neurons each was chosen, resulting in 

79% true positives and 86% true negatives over a dataset containing 1532 gunshots and 

227923 non-gunshot frames from 4 different classes (barking dog, engine, raining and 

storm, speech and music). 

Finally, if the network decides that a gunshot is present, the frame, along with 

previous and the following frame (and any adjacent flagged frames) is saved into 

dedicated folder with a timestamp for further processing as mentioned in the introductory 

chapter 3.1. 

This preliminary approach was subsequently tested on a data consisting of classes 

„barking dog, engine, rain and storm, speech and music“. This monitoring yielded 

numerous non-gunshot sound frames labeled as gunshots. These, along with neighboring 

non-labeled frames (combined 31286 frames) were later used for testing in advanced 

gunshot detection, as described in chapter 4.2. 
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4 ADVANCED GUNSHOT DETECTION 

This chapter explains how frames flagged as possible gunshots are processed to determine 

whether or not they really are gunshots. We will use neural networks for most of the 

testing, and in the end compare them to some other recognition algorithms to choose the 

best performing. Apart from describing the algorithm itself, this chapter will also describe 

new time-domain features we propose, which in this case exhibit great recognition 

performance for refining results obtained from preliminary gunshot detection. 

4.1 New Features in Time Domain 

This section proposes new features derived from signal waveform. Feature testing and 

reported performance in this section were performed on dataset described in [14].  This 

and the following paragraphs will describe calculation of 11 temporal features, with some 

illustrated by figures. First two features are relative positions of zero-crossings before and 

after the most dominant peak and third is their mutual distance (abbreviated RP-, RP+ 

and ZDist respectively), these are illustrated in Fig. 11 (shortening time axis for 

illustration purposes). 

 

Fig. 11 Zero-crossings and their distance [14] 

Other features include time distance between minimum and maximum values (PDist) 

and distance in two dimensions (PlDist), angle between the line connecting minimum and 

maximum and horizontal line (Ang) – the angle was calculated with horizontal line in 

seconds. Some of the features mentioned here are illustrated in Fig. 12. 
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Fig. 12 Peak distance and angle [14] 

The area of triangle delimited by 2 highest peaks and a minimum (referred to as 

“Area”). Ultimately, 4 features were defined as coefficients (A and B in (10)) of 

exponential fit to both positive and negative local extremes. 

𝑦(𝑡) =  𝐴 ∙ exp(𝐵 ∙ 𝑡), (10) 

where y(t) is exponential approximation, A and B are coefficients and t is time. These 

features are illustrated in Fig. 13 together with approximations of positive envelope p(t) 

and negative envelope n(t) with numeric values for one sample waveform. 

 

Fig. 13 Envelope approximation by exponential fit [14] 
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The viability of these features was tested by different means before actual usage so 

that we can tell which might be useful beforehand. Firstly a ratio between absolute mean 

value (µ) and standard deviation (σ) of each feature was calculated, with the expectation 

that higher value means that features will perform better. Next, we calculated mutual 

information between feature values and class labels using Matlab kerlenmi function (we 

disregarded mutual information between features themselves). Ultimately, two-sample t-

test (using Matlab ttest2 function) was calculated measuring similarity of two 

distributions, where we compared distributions of gunshots and non-gunshots. We have 

used p-value of t-test (with 5% significance level, assuming unequal distribution 

variances), which should be lower for more dissimilar distributions, thus indicating better 

discrimination capability of a feature. Statistics for mean and standard deviation were 

calculated on all available data in all categories. Mutual information and p-values were 

calculated for no more than 2000 frames in each category due to memory restrictions 

during calculation. Ratio of mean to standard deviation indicated “Angle“ feature to be 

performing the best and A-coefficients of the fit of both negative and positive extremes 

the worst. Mutual information rating offers slightly different view, where “An“ feature is 

rated as the best, while “Area“ is the worst, with the rest of the features achieving similar 

scores. Lastly, p-value, ehre low values indicate dissimilar distributions indicated B-

coefficients of the fit and RP+ with RP- are the best features. As further discussion 

reveals, we opted for precisely these features because of their superior performance 

Actual recognition performance was tested using progressively increasing number 

of these features (firstly ordered by above mentioned criteria) with implementation of 

Matlab neural networks (10 neurons in 1 hidden layer, sigmoid activation function). This 

configuration did not perform very well for lower number of features, which prompted us 

for reordering. After few trials, we settled on six to seven features: RP+, RP-, Bn, Bp, 

PlDist, Angle and ZDist. Performance for increasing number of TDF is illustrated in Fig. 

14, Table 10 indicates recognition performance for problems „all gunshots vs. non-

gunshots“ and „AK-47 vs. non-gunshots“.Overall, we conclude that despite some other 

features (such as LPC or MFCC) achieve slightly better results, our features are 

comparable and are an excellent addition to some more frequently used features, 

especially due to their temporal origin which might hint low mutual information with 

spectral features. 

 

Table 10 Best performance of temporal features 

Subset Recall Precision F-Score 

AK-47 80.8 % 38.1 % 51.8 

All gunshots 82.2 % 69.3 % 75.2 
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Fig. 14 Gunshot recognition performance for different number of temporal features [14] 

4.2 Advanced Gunshot Detection Results 

Various ideas for advanced gunshot detection were considered. One such example of 

state-of-the-art approach [15] uses convolutional/recurrent networks with mel 

spectrogram (with 40 frequency bins) over multiple time frames (1024 time frames of 40 

ms each with 50% overlap) for multiclass sound event detection (including gunshots). 

This approach was tested, training the network using our dataset. The results on gunshot 

recognition could not be reproduced, and were not satisfactory. For this reason, and 

because of long training times, we did not consider using this architecture afterwards. 

Instead, we turned to MFCC once again in order to leverage its variability described in 

chapter 2.2 as well as our proposed features described in previous section. In order to 

limit mutual information between this stage and stage 1 recognition, many parameters 

were changed. These features were calculated on a mel frequency scale, using different 

feature order (order 20) and more filter-banks (40 filter banks) and also different filter 

shape (gammatone) compared to preliminary detection approach, so mutual information 

should be limited. Individually, triangular filter banks calculated on mel frequency scale 

performed better, but later experiments turned out in favor of gammatone filter banks on 

a mel scale. We have also used 5 best features described in chapter 4.1. Namely exponent 

of approximation of negative (Bn) and positive (Bp) waveform envelope, relative 

positions of first zero-crossings before (RP-) and after (RP+) the dominant peak and 

distance between global minimum and maximum (PlDist), the rest of the features 

mentioned in chapter 4.1 did not provide further improvement. 

This section uses 2 different datasets coming from stage 1 tests. Dataset A contains 

59723 non-gunshot frames in various classes and 1532 gunshots. The division is 

approximately 20% to 80% of frames flagged and not-flagged as gunshots by first stage 

respectively. This dataset is used for training (60% training, 20% validation) and 

evaluating algorithms (20% testing). Dataset B consists of 31286 non-gunshot frames (all 
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flagged as gunshots by stage 1) and 1532 gunshots and is used exclusively to test the final 

algorithm. There is minimum to none overlap in non-gunshot sounds for sets A and B, 

but gunshots are shared in both.  

In search for algorithm suitable to handle multitude of non-gunshot classes, we have 

decided to take advantage of ensembling. Training single feedforward network for each 

non-gunshot category separately, using training subset of set A, subsequently summing 

resulting scores over each category and deciding based on final score. After comparison 

of multiple neural network architectures, we have concluded that two layers with 20 

neurons each perform the best (this architecture will be referred to as NN20+20). Apart 

from neural networks, we have also tried other recognition algorithms, compared to 

selected neural network (NN20+20) in Tab. 11. Other tested algorithms, along with brief 

description of their hyperparameters, are listed below. The compared algorithms include 

the following, Support vector machines (SVM) with Gaussian kernel. Another algorithm, 

k-nearest neighbors (kNN) is using Euclidean distance (for standardized features) and k 

= 5 nearest neighbors (achieving comparable or better results than using different values 

during optimization step). Decision tree (tree) with minimum leaf size equal to 1 (i.e. 

number of samples in one leaf node), maximum number of splits equal to number of 

samples minus one, and using “Gini diversity index” as a split criterion. This set-up for 

decision trees achieved the most desirable results (in terms of true negatives) during the 

optimization stage. And lastly Naïve Bayes classifier, where we are presupposing normal 

distribution for each feature. Along with these results, Ensemble result is presented, 

which was obtained as summing decisions (not probabilities) of all classifiers in the table 

and choosing the most frequent class. For example, if SVM, kNN and neural networks 

decide the event is gunshot and decision trees and Naïve Bayes say it is not a gunshot, 

overall decision is gunshot, because 3 algorithms vote for gunshot while only 2 vote for 

non-gunshot. True negative rate (TNR) is defined as a ratio of correctly rejected non-

gunshot sounds and true positive rate (TPR) which is defined as a ratio of correctly 

detected gunshots. In Tab. 11, green color shows best results achieved using TPR as 

primary metric and highlights also corresponding TNR, orange results highlight the best 

TNR result plus corresponding TPR result. Inputs to all algorithms are standardized, so 

that mean value is 0 and standard deviation is 1 using data from testing data. This is done 

with all algorithms except for decision trees, which do not need such treatment ensuring 

equal scale. 

Table 11 Performance for different classification algorithms and features 

True Negative Rate 

Features SVM kNN NN20+20 Tree Naïve Bayes Ensemble 

MFCC 100.0% 82.9% 76.4% 72.9% 81.3% 85.0% 

MFCC+TDF 98.2% 90.5% 89.9% 89.9% 85.0% 92.7% 

TDF 97.2% 96.9% 97.4% 98.3% 95.7% 97.2% 

True Positive Rate 

Features SVM kNN NN20+20 Tree Naïve Bayes Ensemble 

MFCC 16.3% 88.9% 89.5% 85.3% 69.3% 88.6% 

MFCC+TDF 9.5% 93.8% 92.8% 95.8% 96.7% 94.8% 

TDF 86.3% 89.5% 86.0% 87.6% 91.2% 87.3% 
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As can be seen from tables above, from the point of view of least false alarms, SVM 

perform the best, however they have also prohibitively low true positive rate. From the 

point of view of best true positive rate, Naïve Bayes classifier performs the best. In order 

to choose a compromise, with focus on less false alarms, we have chosen decision tree 

algorithm with TDF only features, which provides excellent true negative rate (98.3%), 

while achieving very good true positive rate (87.6%). Contribution of true negatives in 

this setup is approximately the same from each category of non-gunshot sounds. 

In order to compare computational demands of different algorithms, we have run 

each algorithm five times and averaged the execution time. Each time, we input 59723 

feature vectors (i.e. 59723 different, 11 ms long recordings converted to features). The 

algorithm was run on a desktop running Windows 7 with 8 GB RAM and Intel Core2 

QUAD Q9650 processor without graphic card acceleration. Tab. 12 compares execution 

times of all algorithm and feature combinations. Only execution time (in seconds) of 

algorithms is included, features were calculated separately. 

 

Table 12 Execution times in seconds of various recognition algorithms 

Features NN20+20 SVM kNN Tree 
Naïve 

Bayes 
Ensemble 

MFCC 0.56 36.66 20.78 0.18 0.30 62.94 

MFCC+TDF 0.74 46.16 24.68 0.19 0.40 72.25 

TDF 0.44 1.27 1.48 0.11 0.14 3.48 

 

In neural networks, more neurons meant longer execution time. This includes both 

input neurons (i.e. number of input features) and neurons in hidden layers. Regarding 

other algorithms, as for input features, less features mean shorter execution time. 

However various algorithms perform very differently, with decision trees being the 

quickest and SVMs the slowest by a wide margin. Neural networks, have execution times 

only slightly worse than decision trees, and so are very good choice from execution time 

point of view as well.  

Apart from execution time of algorithms themselves, we should also compare 

execution times of feature extraction algorithms, since they are slower than actual 

recognition algorithms, we only calculated features of 1532 recordings (each 11 ms long) 

and compared their execution times. Among compared features are MFCC coefficients 

of order 20, upsampled MFCC coefficients (used in preliminary gunshot detection) of 

order 20, 5 time domain features (TDF) described in previous section and LPC 

coefficients of order 20, Tab. 13 summarizes those results in seconds. Each extraction 

algorithm was calculated 5 times again and the time was averaged. 

Table 13 Execution times in seconds of feature extraction algorithms 

MFCC 
MFCC-

upsampled 
LPC TDF5 

1.07 16.22 0.17 110.213 
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LPC coefficients, as a native Matlab algorithm achieve the best performance in terms 

of execution time. MFCC algorithm from Matlab file exchange fares order of magnitude 

worse, while upsampling adds considerable amount of time to the calculation. TDF 

execution time is by far the longest, which also makes it unsuitable for real-time 

deployment in its current implementation. One explanation for such a long time of 

execution is, that the algorithm is in its first version and no optimization was done. 

However excellent recognition performance of TDF make it a great algorithm to be 

employed for offline, advanced analysis. From TDF breakdown, exponential fit features 

take the longest time to calculate, with the rest of the features comparable to MFCC. The 

idea of leaving those out would work in combination with MFCC, however using only 

TDF requires Bn and Bp to provide results mentioned above. 

Thus, the final algorithm for advanced gunshot detection based on dataset A is a 

decision tree with hyperparameters mentioned by the beginning of this chapter. The final 

performance will be now tested on dataset B to provide more unbiased results. Tab. 14 

presents results in terms of true negatives. With dataset B consisting of false alarms after 

stage 1 (31286 frames), we also provide the proportion of original data before stage 1 in 

“Total frames” column. The most interesting part consists of number and percentage of 

true negatives in dataset B from stage 2 and the total proportion of false alarms in the 

original pool of recordings from which dataset B was compiled. Tab. 15 provides 

information on true positives in a similar manner.  

Table 14 Evaluation of overal results (True Negatives) of gunshot detection on dataset B 

Category 

Total 

frames 

[# frames] 

Stage 1 - 

TN 

[# frames] 

Stage 1 - 

FA 

[# frames] 

Stage 1 

- TN 

[%] 

Stage 2 - 

TN 

[# frames] 

Stage 2 

- TN 

[%] 

Overall 

- TN 

[%] 

Dog 55389 46412 8977 83.79% 7938 88.43% 98.12% 

Engine 23422 8085 15337 34.52% 14982 97.69% 98.48% 

Public 

places 
69440 66570 2870 95.87% 2592 90.31% 99.60% 

Speech & 

music 
53591 49489 4102 92.35% 3884 94.69% 99.59% 

Combined 201842 170556 31286 84.50% 29396 93.96% 99.06% 

 

Table 15 Evaluation of overal results (True Positives) of gunshot detection on dataset B 

Category 

Total 

frames 

[# frames] 

Stage 1 - 

TP 

[# frames] 

Stage 1 

- TP 

[%] 

Stage 2 - 

TP 

[# frames] 

Stage 2 

- TP 

[%] 

Overall 

- TP 

[%] 

Gunshots 1532 1207 78.79% 1158 95.94% 75.59% 

 

The whole system, including stage 1 and stage 2 thus achieves TNR of over 99% for 

4 combined non-gunshot categories and over 75% TPR for 1532 gunshots from various 

types of weapons, including handguns and assault rifles.  
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5 ADVANCED BURST DETECTION 

This chapter describes advanced processing employed on audio frames flagged and saved 

as possible gunshot bursts by preliminary algorithm described in chapter 3.2. The main 

focus of the chapter is to examine period and periodicity of input audio waveform. This 

approach is further improved by addition of gunshot detection on top of which we 

examine periodicity. First section in this chapter introduces process of feature extraction 

and evaluates proposed features. Remaining two sections describe two proposed versions 

of algorithm, compare them and propose final solution. 

5.1 Burst Features 

The most salient feature of gunshot bursts is its periodicity. Thus, we have focused on 

estimating average period of the burst, detailed period of each gunshot in a burst along 

with differences between adjacent periods (referred to as delta-period) and time 

difference between first and last period (referred to as first-delta-period). We have also 

compared degree of periodicity (i.e. how similar individual periods are) regarding 

adjacent periods (referred to as periodicity) and first and last period again (referred to as 

first-periodicity). Methods employed include Average Magnitude Difference Function 

(AMDF), center-clipping and peak-search, algorithms not yet described will be described 

in the following chapter.  

5.1.1 AMDF Method 

The Average Magnitude Difference Function (AMDF) calculates D(k) curve, which is 

based on modified short-term autocorrelation function, namely it uses absolute value of 

difference instead of multiplication, as shown in (11) 

𝐷(𝑘) = ∑ |𝑠(𝑛) − 𝑠(𝑛 + 𝑘)|
𝑁−𝑘

𝑛=1
, (11) 

where s(n) are signal samples, k=(0,1,....N-1) is time shift, and N is frame length (in 

samples). The function is calculated for all frames. D(k) curve is afterwards normalized 

by division with R - regularization term corresponding to signal energy (12) so that values 

are in range 0-1, with zero representing perfectly periodic signal. An example of similarity 

function is depicted in Fig. 15, with apparent period of around 50 samples. The first 

significant minimum (outside of zero-region where time shift is near 0) represents the 

periodicity degree and basic period of investigated frame. 

𝑅 = ∑ 2 ∙ |𝑠(𝑛)|
𝑁

𝑛=1
. (12) 

The basic period in seconds can be calculated as follows: 

𝑇0 = 𝑘min ∙ 𝑇S, (13) 

where kmin stands for location of the first significant minimum in the D(k)-wave 

(horizontal coordinate) and Ts is sampling period. Moreover, the non-zero value of D(kmin) 

(vertical coordinate of the first significant minimum) effectively represents degree of non-

periodicity in the signal waveform. For a truly periodic (having constant period and wave 
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shape identical in all periods) signal s(n) becomes D(kmin) = 0. 

 

Fig. 15 Similarity function D(k) 

5.1.2 Feature Statistics 

In order to estimate period and delta-periods, we employed center-clipping with peak-

search. Peak-search consists in finding peak positions placed approximately period-length 

apart, with tolerance of 10% (with the initial period estimate coming from center-clipping 

algorithm described in previous chapter). Periodicity was estimated using AMDF method 

with adjacent pairs of gunshots (from single burst) as an input. These statistics were 

estimated on clean gunshot bursts without added noise, they are presented below, in Tab. 

16, with mean values, minima, maxima and their differences. 

Table 16 Statistics of AK-47 bursts 

 Unit Mean Min Max Max-Min 

Period - peak-

search 
[ms] 91.01 85.20 99.15 13.95 

Delta-period [ms] -0.15 0.02 8.16 8.14 

First-delta-period [ms] -1.22 0.03 9.91 9.88 

Periodicity [-] 0.46 0.21 0.78 0.57 

First-periodicity [-] 0.53 0.34 0.80 0.46 

 

As can be seen, individual periods vary significantly (around 10%). However, with 

detailed look on all bursts, mean period within each burst varied only slightly (approx. 

2%). On the other hand, periodicity took on a wider range of values, which were also 

overlapped with other, non-burst sounds, thus, we do not consider periodicity as a suitable 

feature later. 

This was followed by comparison of the two methods (peak-search method to 
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AMDF) with added noise or other overlapping sounds (AWGN, rain, idling engine, 

barking dog, cracking branches). AMDF performed slightly worse with 20 dB SNR and 

completely broke at 0dB SNR with some of the sounds present. Peak-search performed 

well even in noisy conditions, but period localization (i.e. reported start and end of 

periods) reports a lot of incorrect positions, thus its reliability in stationary noise 

conditions is misleading, solution to this problem would be to pick an algorithm according 

to long-term noise conditions evaluated on a different basis. 

5.2 Advanced Burst Detection Results 

This section compares two different approaches to burst detection using previously 

introduced features. The first approach being based on deriving period from waveform, 

using AMDF and peak-search algorithm (which uses center-clipping). The second is 

applying individual gunshot recognition on frames and calculating signal period from 

Binary mask of detected gunshots. 

The first approach consists of detailed look into signal periods directly from input 

audio waveform. In order to establish whether frames flagged by preliminary detection 

really are bursts, we examine their periods in detail. In order to do this, we use both 

previously described methods (AMDF and peak-search), note that both methods are 

employed on the whole recordings (with any appended frames). As stated previously, the 

mean period of gunshot bursts have, under tested conditions, very small deviation of 

values. This feature was selected as a criterion to establish whether recording really is a 

burst, the criterion was that mean period must be nominal weapon rate of fire +/- 3 ms. In 

contrast with preliminary approach, this method takes into account each individual period 

in recording and achieves ore precise period measurements. 

In terms of false alarms, the results indicate comparable performance of AMDF and 

peak-search in stage 2. AMDF and peak-search performed comparably well, with various 

non-gunshot sounds achieving less false alarms using various approaches. Overall 

number of false alarms is less for AMDF approach. In terms of true positives, both 

approaches achieved identical results. The results are summarized in Tab. 17. 

Since bursts consist of individual gunshots, another approach would be applying 

individual gunshot detection over whole frame and use AMDF afterwards. The input to 

individual gunshot detection is the whole frame divided into smaller subframes (11 ms), 

the output is a binary signal showing presence of gunshots. This binary signal serves as 

an input to AMDF, which determines its period. Similarly to the first approach, if detected 

period falls into tolerance of +/- 3 ms of nominal weapon rate of fire, the whole recording 

is flagged as containing gunshot burst. This method is more computationally demanding, 

as apart from calculating AMDF, we also need to extract other features from the signal. 

In the chapter dealing with advanced individual gunshot detection, we considered 

mainly two algorithms, ensembles of either neural networks (with two hidden layer 20 

neurons each) or decision trees. In this chapter, we will compare both of these methods 

using approach described in previous paragraph. Both of these algorithms provide less 

false alarms when using TDF only (without MFCC). Tab. 17 below compares results of 

this mixed method using neural network and decision tree algorithms to the results of two 

previously tested methods. Each cell shows number of recordings flagged as bursts out 

of all recordings, meaning non-gunshot categories show false alarms and gunshot 
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categories true positives. 

The recognition algorithms used in this section are exactly the same as in previous 

chapter. Trained on the same data, false alarms from stage 1 gunshot detection, which 

means some of the sounds that testing datasets in this task (burst detection) and gunshot 

detection overlap only minimally. 

Table 17 Burst recognition performance comparison with combined approach 

False positives  

Category AMDF Peak-search 

Combined 

approach – 

neural networks 

Combined 

approach – 

decision trees 

Speech and music 11/126 46/126 0/126 1/126 

Engine 54/224 43/224 0/224 2/224 

Rain and 

thunderstorm 
2/16 2/16 0/16 0/16 

Birds 22/46 22/46 2/46 14/46 

Dog 13/65 0/65 5/65 24/65 

True positives  

Weapon AMDF Peak-search 

Combined 

approach – 

neural networks 

Combined 

approach – 

decision trees 

AK-47 30/30 30/30 24/30 25/30 

M45 11/16 11/16 10/16 16/16 

PPSh 12/16 12/16 10/16 12/16 

 

Tab. 17 shows that false positives, an aspect which is more important than true positives 

for this application, are much lower using combined methods compared to simpler 

methods mentioned in previous chapters. When comparing the two combined methods, 

neural networks achieve less true positives than decision trees, but also less false alarms. 

For this reason, we are chosing combined approach with neural networks and TDF as 

final advanced burst detection algorithm. 

6 CONCLUSION 

This work briefly summarizes all steps needed for development of succesful gunshot 

detection system and subsequently introduces our contribution. The first chapter 

introduces a number of existing audio datasets and concludes with compiling a audio 

dataset used throughout this work. The next step is feature extraction and feature 

comparison. The chapter  works with various sets of frequently used features and 

compares their performance under different conditions. At first, compares the effects of 

preprocessing (such as frame length), then compares different modifications of MFCC 

calculation and concludes with comparison of effects of noise on feature performance. In 

the third chapter, the development of real-time gunshot recognition system begins. The 

chapter describes the whole process and reveals assorting of input into two main 
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categories, individual gunshots and gunshot bursts. Preliminary algorithms capable of 

working in real-time are, used together with features based on previous chapter. Chapters 

4 and 5 dive into advanced recognition of gunshots and bursts respectively. Novel features 

are introduced and used in conjunction with sofisticated algorithms, achieving state of the 

art performance. 

Firstly, we have reduced frequently used frame length of 23 ms to 11 ms based on 

comparison of performance with various frame lengths. Detailed view at recognition 

performance with 11 ms frame confirmed insignificance of feature order for these 

features, we suspect this is caused by high mutual information between lower and higher 

feature indices. From preliminary results on several recordings, we can see that when at 

least 50 % of muzzle blast is present in 3 ms frame, LPC coefficients are quite stable, 

which is helpful when considering using overlap. This part culminated in investigation of 

feature variability when changing frame size, two methods, absolute and relative, were 

used, subsequently compared with mutual information between class labels and features 

and then their recognition performance was tested with neural networks. We conclude, 

that relative variability was good measure of feature performance, it achieved similar 

results as mutual information and indicated coefficients with lower indices are generally 

better. Comparison of feature performance under various noise conditions shows, that 

LPC performs better under no-noise conditions, but noise at only 20 dB SNR causes 

MFCC to perform significantly better. 

The next part of the thesis deals with developing the gunshot detection algorithm 

itself. It begins with chapter 3 which elaborates on general idea of continuous audio 

detection. The chapter presents two algorithms for preliminary detection of gunshots and 

gunshot bursts. The purpose of this stage is to make sure every minute of audio is 

monitored. During this stage, we mostly get rid of noise and most non-gunshot sounds 

while still having not insignificant false alarm ratio (around 14%). In order to increase 

the precision of the algorithm, we use second stage, which achieves much better results 

but is also computationally too expensive to handle all the real-time data. 

Chapter 4 deals with individual gunshot detection. We combine all the methods 

examined from the first chapters, beginning with comparing multiple features, also 

incorporating newly developed feature set. Along with feature set, we compare 

performance of multiple machine learning algorithms, which are later ensembled for even 

better performance. The final algorithm consists of an ensemble of decision trees, each 

specializing in eliminating different sound category. The individual detection scores of 

decision trees are summed up, producing a voting. In comparison with other recent works 

on gunshot detection, our system performs significantly better, best paper in DCASE 

2017 track “Detection of rare sound events” [16] achieved error rate of 16% in gunshot 

class, while our system achieves performance with equivalent score of 2%. 

The final chapter of this work consists of advanced burst detection. Multiple methods 

are compared but the main topic of the chapter is work with periodicity, how to establish 

precise period measurement of bursts and to compare similarity of adjacent periods. The 

final method in this chapter constitutes a combination of single gunshot detection and 

periodicity examination. 
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ABSTRACT 

This work deals with gunshot recognition and problems connected to it. Firstly, the 

problem is briefly introduced and broken down to smaller steps. Next, overview of 

datasets is provided, relevant information sources and publications in this field, and state-

of-the-art along with possible applications of gunshot recognition. The second part 

consists of feature selection and performance comparison. Next, sound recognition 

algorithms are introduced and compared, along with novel features suitable for gunshot 

detection. The work culminates in creating two stage gunshot detection system, with real 

time audio event detection. The conclusion sums up achieved results and sketches 

possible steps to consider for hardware realization. 

ABSTRAKT 

Táto práca sa zaoberá rozpoznávaním výstrelov a pridruženými problémami. Ako prvé je 

celá vec predstavená a rozdelená na menšie kroky. Ďalej je poskytnutý prehľad 

zvukových databáz, významné publikácie, akcie a súčasný stav veci spoločne s 

prehľadom možných aplikácií detekcie výstrelov. Druhá časť pozostáva z porovnávania 

príznakov pomocou rôznych metrík spoločne s porovnaním ich výkonu pri rozpoznávaní. 

Nasleduje porovnanie algoritmov rozpoznávania a sú uvedené nové príznaky použiteľné 

pri rozpoznávaní. Práca vrcholí návrhom dvojstupňového systému na rozpoznávanie 

výstrelov, monitorujúceho okolie v reálnom čase. V závere sú zhrnuté dosiahnuté 

výsledky a načrtnutý ďalší postup. 

 


