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Abstract

This thesis is focused on a light airplane flight parameter estimation, specially aimed at
the Evektor SportStar RTC. For the purposes of flight parameter estimation the Equation
Error Method, Output Error Method and Recursive Least—Squares methods were used.
This thesis is focused on the investigation of the characteristics of the flight parameters of
longitudinal motion and the verification, that this estimated parameters corresponds to the
measured data and thus create a prerecquisite for a sufficiently accurate airplane model.
The estimated flight parameters are compared to the a—priori values obtained using the
Tornado, AVL and Datcom softwares. The differences between the a—priori values and
estimated flight parameters are also compared to the correction factors published for the
subsonic flight regime of an F—18 Hornet model.
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Abstrakt

Tato prace je zaméfena na odhad letovych parametrii malého letounu, konkrétné letounu
Evektor SportStar RT'C. Pro odhad letovych parametrii jsou pouzity metody “Equation
Error Method”, “Output Error Method” a metody rekurzivnich nejmensich ¢tvercia. Prace
je zaméfena na zkoumani charakteristik aerodynamickych parametri podélného pohybu
a ovéreni, zda takto odhadnuté letové parametry odpovidaji naméfenym datim a tudiz
vytvareji predpoklad pro realizaci dostateéné presného modelu letadla. Odhadnuté letové
parametry jsou déle porovnaviny s a—priornimi hodnotami ziskanymi s vyuZzitim programu
Tornado, AVL a softwarovéverze sbirky Datcom. Rozdily mezi a—priornimi hodnotami a
odhadnutymi letovymi paramatery jsou porovnany s korekcemi publikovanymi pro subson-
ické letové podminky modelu letounu F-18 Hornet.
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1. Introduction

In 2009, Federal Aviation Administration (FAA) conducted a study regarding the safety of
Light Sport Airplanes (LSA) [15] in the USA. They have discovered that the LSA has over
2.5 times higher fatal accidents rate than the CS'-23 airplanes. During the investigated
period, 39 fatal LSA accidents were observed, 54% were due to the loss of control, 10% were
due to the structural failure. To decrease the high fatal accident rate of LSA, it seems to be
necessary to increase the pilot awareness and to reduce pilots’ workload during all phases

of flight.

The estimation of the flight parameters and building a high fidelity model of the airplane
enables manufacturing of build a flight simulators, which will be able to match the behavior
of the real airplane more precisely and therefore improve pilot training. The estimated flight
parameters are also the prerequisites in design of an advanced 4—axis autopilot, which can
lower pilots’ workload during the flight.

Moreover, knowledge of the flight parameters can be useful during the development of new
airplane to verify the validity of the design within the flight envelope and to enable to focus
the tests on specific points of the flight envelope.

Another major application of the identified aircraft model is the aircraft certification process,
as the identified model can be used to investigate the stability point. The dynamic stability
is one of the requirements of the EASA (European Aviation Safety Agency) Certification
Standards, e.g., CS-23 paragraph 181, CS-25 paragraph 181 and CS-VLA? paragraph 181.

Due to the existence of a large amount of flight parameters, the author has decided to
focus on the estimation of the static stability parameters, damping and control derivatives
of the longitudinal motion. The input data were recorded during the test flights on an
experimental airplane. For the purposes of the flight tests, the flight envelope was limited
to the conditions of altitudes, airspeed and position of center of mass, as consulted with
the airplane manufacturer. The limits reflect the safety constraints to prevent extreme
attitudes.

LCS — Certification Specifications
2VLA — Very Light Airplane



1.1 Objectives of the thesis

According to the above mentioned facts, the objectives of this Ph.D. thesis were set as
follows:

1. Research on the theory of flight data acquisition, flight parameters estimation, includ-
ing the sensors used in avionics and Equations of Motion, respectively.

2. Selection of algorithms suitable for the flight parameters estimation of a light airplane.

3. Implementation of selected algorithms and evaluation of the results including proposals
for future work.

In the evaluation of the results, following main research questions are addressed:

1. Do the flight parameters of the longitudinal motion fall within the range of values
expected for this category of airplanes?

2. Do the force coefficients contained in the above mentioned flight parameters of longi-
tudinal motion exhibit linear behavior for the investigated part of the flight envelope?

3. Do the estimated flight parameters describe sufficiently the airplane aerodynamics?
Do, therefore, the simulated flight data based on the estimated flight parameters
sufficiently correspond to the measured flight data?

4. What are the correction factors between the a—priori data and their refined values
obtained using the parameter estimation methods on the basis of the measured flight
data?

5. Are the above mentioned corrections similar to other categories of airplanes?



2. Modeling

In this chapter, it is necessary to describe the modeling behind the identification process,
i.e., mostly kinematics and dynamics of motion, and present the used notation. Because of
a large amount of theory, only parts needed as a theoretical background for this thesis are
presented. Notation introduced in this thesis is based on standards ISO' 80000-1:2009 [20]
and ISO 80000-2:2009 [21].

Firstly, kinematics of translational and rotational motion, e.g., positions, velocity and ac-
celeration, is described. Secondly, rigid body dynamics, e.g., force and moment of force,
is given. Thirdly, the airplane subsystems modeling is presented. Fourthly, the nonlinear
Equations of Motion are composed and split into symmetric and antisymmetric equations.
Fifthly, the linearization process and the resultant linear Equations of Motion are described.

2.1 Kinematic model

The kinematics describes the motion of an object without the consideration of its mass and
forces acting on it. The kinematic model can be divided into two parts: kinematics of the
translational motion and the kinematics of the rotational motion.

2.1.1 Kinematics of translational motion
First of all, it is necessary to describe the position of an object and then proceed its velocity
and acceleration.

Positions in aerospace applications are often specified in a Cartesian coordinate system
using metric length units. [11, 29].

T_"X]f = (2.1)

INI SO

Xf
where z, y, z are the positions along particular axes and X is the arbitrary point.

Translational velocity describes the change of position in time and is given in meters per
second |11, 41]. Translational velocity vig¢ of the aircraft’s center of mass G relative to the
general reference frame F is defined in the following term:

dig;  |* u
% = y = 17gf = |v (2.2)
z w
Gf Gf

where u, v, w are the translational velocities along particular axes.

SO — International Organization for Standardization



The translational velocity can also be expressed using the transformation from the Geodetic
coordinate system to the Geodetic reference frame in a Cartesian coordinate system as
specified in the following term |1, 11]:

@ (Mo +h)
Uxo = [£(No+ h)cose (2.3)

—h
Xo

where h is the height above the ellipsoid, My is the meridian radius of curvature of the
ellipsoid?, and Ny is the prime vertical radius of curvature of the ellipsoid. These quantities
are given by following equations:

9

My =2 (1-¢) (2.4a)
(1 — e2sin? @)3/2

Ny = a (2.4b)

V1 —e2sin®p

where a is the semi—major axis of the ellipsoid and e is the first eccentricity of the ellipsoid
equal to:

et =2f — f? (2.5)
where f is the flattening of the ellipsoid.

Aircraft airspeed (the translational velocity of the aircraft’s center of mass G, relative to
the surrounding air) is usually measured in a Spherical coordinate system. A transformation
of the translational velocities at point GG in a Spherical coordinate system Fj to Cartesian
coordinate system Fy, are [25, 11]:

ugp =V cos B cos (2.6a)
vGy = \%4 sinﬁ (2.6]3)
wgp =V cos B sina (2.6¢)

where V' is the magnitude of the true airspeed.

On the contrary, an inverse transformation, i.e., translational velocity at point G from a
Cartesian coordinate system Fj to a Spherical coordinate system Fp, is determined using
following expressions |25, 29]:

V =\ Jud, + vi, + wiy (2.7a)

a = arctan —° (2.7b)
UuGh

f = arcsin % (2.7¢)

Translational acceleration describes a change of the translational velocity in time and
is given in meters per second squared [I, 7|. The translational acceleration dgs at point G
relative to the general reference frame F'y is defined as:

dvgy B e
af “lay

2 For the purposes of this thesis, the WGS84 ellipsoid is used.



where a,, a,, a. are the translational accelerations along particular axes.

The derivative of the airspeed describes the translational acceleration of the aircraft’s
center of mass relative to the surrounding air. Based on Equations 2.7, the derivative of the
aircraft airspeed is defined as follows [25, 11]:

1 _ . ‘
V = 17 (ucy e + vay tey + way e) (2.9a)
. UGHWGh — WG UGH
T (2.9)
cv T Way

VQ')Gb — ’UGbV
Vy/ ugy + Wy,

2.1.2 Kinematics of rotational motion

8= (2.9¢)

After the kinematics of the translational motion was described, it is important to introduce
physical quantities of the rotational motion, i.e., Euler angles, rotation matrix, angular
rates, angular velocity and angular acceleration.

The coordinate rotation of a rigid body in a three—dimensional space is defined using a
transformation between the reference frame of a rigid body and the reference frame in
which we want to describe rotation |11, 13]. The coordinate rotation can be specified using
the Rotation matrix or the Euler angles.

The Euler angles O are a sequence of three angles which represents the transformation
from one reference frame to another [2, 11]. Each angle represents rotation in particular
axis. Rotation order used in the aerospace domain is z-y-x. The transformation from the
reference frame Fj, to the reference frame Fj using Euler angles vector C:)Ob is given [2]:

Oop = |0 (2.10)

where ¢ is the angle of rotation around z-axis (i.e., roll angle or bank angle), 6 is the angle
of rotation around y-axis (i.e., pitch angle or elevation angle), and v is the angle of rotation
around z-axis (i.e., yaw angle, heading angle or azimuth angle).

Considering the convention for the aerospace applications [2], the yaw angle ¢ can range
from —7 to m, pitch angle 6 can range from —7/2 to m/2 and roll angle ¢ can range from
—m to m.

Rotation matrix C (sometimes called the Direction Cosine Matrix) describes the trans-
formation from one reference frame to another frame in the Cartesian coordinate system [35,

|. Rotation matrix is always orthogonal and its determinant is unity. For example, trans-
formation from the reference frame F, to the reference frame Fj is given by:

Xo = Chro - Xo (2.11)

where Y, is the general vector in the reference frame F,, X is the general vector in the
reference frame Fp, and C,, is the rotation matrix from the reference frame F, to the
reference frame Fj,.



Rotation matrix C,, for an inverse coordinate rotation (i.e., from reference frame Fj to
reference frame Fy) is described using following term [7, 11]:

Cp=C,! =Ci (2.12)

Rotation matrix Cg, used for the computation of two subsequent transformations (i.e.,
from reference frame Fj, to reference frame Fs and then from reference frame F; to reference
frame F,) can be computed as follows [25, 11].

Cup=0Cu-Cy (2.13)

The coordinate transformation in Euler angles can be converted to a rotation matrix, given
that coordinate transformation can be divided into three subsequent transformations. The
resultant rotation matrix can be created by combining these three rotation matrices [33,

|:
Cob =C, (¢) Cy (‘9) C. (d}) (2'14)

where C, (¢) is the rotation matrix around z axis, Cy (¢) is the rotation matrix around y
axis, and C (¢) is the rotation matrix around z axis, which are equal to:

1 0 0
C.(¢p)=10 cos¢p sing (2.15a)
0 —sing cos¢

-cos 0 0 —sind
C, ()= 0 1 0 (2.15b)
sin@ 0 cos@

cosy siny 0
C.()=|—siny cosy 0 (2.15¢)
0 0 1

The resultant rotation matrix Cy,, is:

cos 0 cos cos fsin —sin6
Cpo = [singsinfcosyp — cospsinty sin ¢sinfsiny + cos¢pcosy  sin ¢ cosf (2.16)

cos ¢sinf cosy + sin¢sintyy cos@sinfsiny — sinpcosy cos ¢ cos O ,
o

The angular velocity describes the rotation speed from one reference frame to another
and is always given in radians per second |11, 11]. The angular velocity ,;, of the reference
frame F, relative to the reference frame Fj, is defined in following expression:

p
Wop = q (217)
r
ob
where p, g, r are the angular velocities around particular axes, whereby all rotations are
simultaneous.



Angular rates, sometimes called the Euler angle rates, describe the change of the Euler

angles in time and are given in radians per second [I, 19]. Angular rates O, are the time
derivatives of the Euler angles of the reference frame F;, relative to the reference frame Fj,
and are defined as follows:

O = |6 (2.18)

The transformation of the angular rates to the angular velocities with respect to the Euler
angles ranges is defined using following equations |25, 51]:

p=¢—1sind (2.19a)
q=1cosfsing + cos g (2.19Db)
r =1 coshcosp— fsing (2.19¢)

On the contrary, the transformation from the angular velocities to the angular rates is based
on the Equations 2.19, and is given by [25, 29]:

ézp—i- (gsin ¢ + r cos ¢) tan 6 (2.20a)

0 = qcos ¢ — rsin ¢ (2.20b)

b= gsin¢ + rcos ¢ (2.200)
cos 6

Equations 2.20 leads to singularity (similar to Gimbal-lock problem?) [Gimbal, Kenwright],
as there is no solution of Equation 2.20c for # = 4+ /2. Gimbal-lock problem can be avoided
by using different computation theories (e.g., quaternions [13]).

The angular acceleration describes the change of the angular velocity in time and is
given in radians per second squared [19, 11|. The angular acceleration @, of the reference
frame F, relative to the reference frame F is defined in following terms:

S,

Aop = |G (2.21)

P
ob

-

Given that some reference frames are rotating relative to others, e.g., reference frame Fy
relative to reference frame Fj, it is necessary to adapt some of the above presented equation
to this rotation.

The transformation between the general vectors ¥ in rotating reference frames F, and Fy is
defined as 25, 30]:

d)ZO d)zb -
=4 9.22
at o W XX (2:22)

The translational acceleration d,, can be calculated in rotating reference frames using
two different approaches. The first approach is based on the use of the translational velocity

3Gimbal-lock is a phenomenon related to mechanical gimbal, when gimbal system looses a degree of
freedom due to parallel configuration of several axes.



vector. Given that the translational acceleration is the first derivative of the translational
velocity, the @, can be expressed using Equation 2.22 as:

Qo = Qp + Gop X Uy (2.23)

The second approach is based on the utilization of the position vector. Given that the
translational acceleration is the second derivative of the position, the @, can be expressed
using Equation 2.22 as:

a, = Eib + 2(;}'05 X 171, + Qob X (Lﬁob X Fb) + O_Zob X Fb (2.24)

2.2 Dynamic model

The dynamic model of the rigid body describes the causes of the motion, i.e., forces and
moments of forces acting on the object. The dynamic model can be divided to two parts:
dynamic model of the translational motion and dynamic model of the rotational motion.

2.2.1 Dynamics of translational motion

At the beginning, it is necessary to introduce the translational momentum and then proceed
with the description of the force and the specific force.

Translational momentum p’is given in kilogram meters per second. Translational mo-
mentum px s of an object in arbitrary point X relative to the general reference frame F is
defined as follows |11, 25]:

Dxf=m-Uxy (2.25)
where m is the mass of the object.

Force is given in Newtons. Force Fxi acting on an object in point X relative to Inertial
reference frame F; is given by [1, 11]:

X
= Fy,=|Y (2.26)
Z

where X, Y, Z are the forces acting along particular axes.

According to the Second Newton’s laws of motion, sum of external forces on the object in
center of mass G is defined as follows [1, 11]:

Z ﬁGi =m-dg (2.27)

Force F, was defined as a first derivative of the translational momentum Do, therefore it can
be expressed in rotating reference frames using Equation 2.22 as:
= dpp

FO — g + (r)ob X ﬁb (228)



Furthermore, the derivative of pj can be substituted with 2.26 followed by 2.27 and pj can
be replaced with 2.25. The resultant equation can be written as

—

Fo=may+mdyy X Up (2.29)

The specific force describes non—gravitational force per unit mass and is given in meter
per second squared [19]. The specific force fx ¢ acting on an object in point X relative to
the general reference frame F is defined as follows:

. Fys-a N
fxp=" X o = f, (2.30)
Iz X/

where G is the gravitational force and f;, fy, f. are the specific forces acting along particular
axes.

Based on the definition of the Geodetic reference frame Fj,, gravitational force db acting on
an arbitrary object can be expressed as [25]:

0
@b:meogo =mCh | 0 (2.31)
Go
o
where gy is the gravitational acceleration and Gg is the magnitude of the standard ac-
celeration of the free fall. For the purposes of this thesis the magnitude of the standard

acceleration of the free fall is equal to 9.80665 ms 2.

2.2.2 Dynamics of rotational motion

After the dynamics of the translational motion was described, it is necessary to present
physical quantities for the rotational motion, i.e., the angular momentum and the moment
of force.

Angular momentum h is given in kilogram meters squared per second. Angular mo-
mentum hy of an object in Body—fixed reference frame Fj, is defined in following term |11,

|:
hy = Jp @i (2.32)

where Jj, is the inertia tensor, i.e., tensor of moments of inertia:

Jac _Jacy _J;tz
Jy=|~Juoy Ty Iy (2.33)
_J;Bz _Jyz Jz

where J,, Jy, J, Jyy, Jz. and Jy. are the elements of the inertia tensor:
/ (42 +22) dm (2.34a)

J, = / (3:2 + z§> dm (2.34b)

Ja

10



J, = / (:Ug + y?) dm (2.34c)

ny = /Ib Yb dm (2.34d)
Jpr = /:Ub zp dm (2.34e)
Jy» = /yb zp dm (2.34f)

Given that aircraft’s plane of symmetry is zp2;, and center of mass of aircraft is lying on this
plane, inertia elements J,, and J,. are equal to zero. Therefore inertia tensor of symmetric
aircraft is equal to [11]:

N
Jy=] 0 J, 0 (2.35)
_Jzz 0 Jz b

Moment or moment of force describes a tendency of a force to rotate an object about
particular axes. Moment 7y is given in Newton meters and is defined by [I, 25]:

2 L
dh
7= de = =M (2.36)
N
!
or
f'f:FfoFxf (2.37)

where L, M, N are the moments of force acting around particular axes, 7xs is the vector
from the origin of the general reference frame F'y to the point X where the force is applied.

Moment 7, defined as first derivative of angular momentum i_ib7 can be expressed in rotating
reference frames using Equation 2.22 as:
. dhy

To — E + O._J'Ob X Eb (238)

Moreover, the vector ﬁb can be replaced by Equation 2.32. Given that &, ~ @;p, and that
the resulting derivative of Wy, can be replaced by Equation 2.21, therefore Equation 2.38
can be rewritten as

To = Jp Aop + Do, X Jp Dop (2.39)

Applying the Second Newton’s laws of motion to the rotational motion, sum of external
moments is equal to [1]:

ZFfZJfC_M'if (2.40)

2.3 Aircraft model

Detailed aircraft models introduce the forces and moments caused by different elements of
an aircraft. The model of a light airplane, used in this thesis, consists of five main parts:

11



Mass and inertia model (see Section 2.3.1);

Aerodynamic model (see Section 2.3.2);

Propulsion model (see Section 2.3.3);

Landing gear reaction model; and

e Structural model.

The landing gear model is describing behavior of airplane during taxiing, take—off and
landing. Because taxiing, take—off and landing part of the flight are out of the scope of this
thesis, the landing gear model is omitted.

The structural model describes elastic properties of airplane structure. This thesis uses
point mass approximation of airplane, so the structural model, is out of the scope of this
thesis.

2.3.1 Mass and inertia model

The main purpose of a mass and inertia model is to compute the total mass of an aircraft,
position of the center of mass and moment of inertia tensor. The change of inertia and
mass during flight is so important, that it is necessary to compute this change continuously
during the whole flight [17].

In this thesis, we consider only rigid body aircraft. Elastic body aircraft have to have more
complex models of mass, inertia and aerodynamics. The model of an elastic aircraft has to
account for structural responses changing of all during the flight.

Mass and position of the center of mass of an aircraft are conventionally measurable
on the ground. The total mass m of the aircraft is a sum of all elements: empty aircraft,
fuel in fuel tanks, pilot, crew and passengers, cargo and other load [26].

Position of the aircraft center of mass 7 can be computed as a weighted mean using
following formula:
. DM TG
TGd = —
m
where m; is the mass of the aircraft element ¢ and 7,4 is the position of the center of mass
of the " aircraft element.

(2.41)

The inertia tensor J of an aircraft can be obtained in three different ways. The first
option considers an experimental measurement using a special oscillation test rig. However
this process is highly demanding in terms of infrastructure, equipment and resources [22].

The second option is the possibility to acquire an inertia tensor of any model by Computer
Aided Design (CAD) software [13]. Nevertheless it is impractical to create model of every
pilot, every cargo and fuel configuration; however, this approach can be easily used for
computation of inertia tensor of empty aircraft.

The third option of how to acquire inertia tensor of the whole aircraft, is thus to be computed
based on the inertia tensors of individual parts using parallel axis theorem |11, 16]:

Io= 3 s (2,4 22,)| 2.2
b

1
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Jy = Z [in +m; (3’%@ + zézﬂ (2.42b)

=3 {J +mi (o2, + 92, b (2.42¢)
Jay = Z [Jay, +miza, ya], (2.42d)
Jyz = Z [Jyz: +miya, 26,], (2.42¢)
A ZZ: [Jaz; + miza, 2], (2.42f)

(2

where the inertia tensor of an empty aircraft can be acquired from the manufacturer docu-
mentation, inertia tensor of the fuel in the fuel tank can be obtain using simulation result
based on the shape of the fuel tank, and the inertia tensor of person on—board can be
estimated based on procedures and data in specialised document [17].

2.3.2 Aerodynamic model

For the purposes of this thesis, the most important elements of the aerodynamic model are
the aerodynamic force and moment of aerodynamic force along with their respective coeffi-
cients, i.e., aerodynamic parameters, because these coefficients can be used to approximate
the individual flight parameters.

The aerodynamic force Fj is often expressed in different coordinate systems. Mutual
dependence of these expressions is given in the following equation [I1]:

C(X —CD —CW
Fa=qS |[Cy| =45 -Cys | Cy =qS-Cy | Cg (2.43)
Cz , -, -Cp,

where ¢ is the instant dynamic pressure; S is the reference wing area; C'x, Cy, Cz are the
coefficients of the aerodynamic force in Fj; Cp, Cf, are the coefficients of the aerodynamic
force in F; and Cyy, Cg are the coefficients of aerodynamic force in F,. The instant dynamic
pressure can be computed using following equation [28, 11|

1
—pV? (2.44)

q:2

where p is the air mass density.

Moment of aerodynamic force 74 calculated in Body—fixed reference frame is [11]:

by - C
FA=qS | ¢ O (2.45)
by - Ch

b

where b,, is the reference wingspan, ¢ is the length of Mean Aerodynamic Chord (MAC), and
Ci, Cp, C), are the moment coefficients of the aerodynamic force in the reference frame Fj,.

13



The aerodynamic parameters can be obtained using force coefficients given in Equa-
tion 2.43 and moment coefficients given in Equation 2.45. These coefficients can be ap-
proximated with arbitrary accuracy in the vicinity of the trim point using Taylor’s theo-
rem [Hazewinkel|. The resultant equations are [25, 11]:

CX:CX0+04‘CXQ+Q*‘CXq+5e‘CX56 (2.46a)
Cy =Cyo+pB-Cyg+p"-Cyp+1"-Cyr+ 04 - Cys, + 6, - Cyy, (2.46D)
CZ:Czo-l-Oé'CZa-i-q*‘Czq-i-(Se'nge (2.46¢)
CD:CD()-FOJ-CDa—i-q*-CDq—|-5e'CD56 (2.46d)
CLZCLQ—FOJ-CLQ—FQ*-CLq—i-(Se-CL(;e (2.466)
Cw =Cwo+a:-Cwa+q" - Cwg+6e-Cws, (2.46f)
CQ = CQO + 8- CQﬁ +p*- CQp + . CQT + 04 - CQéa + 6 - CQér (2.46g)
Cr=Cro+pB-Cig+p"-Cp+1"-Cip + 04 - Cis5, + 0, - Cs, (2.46h)
Cr=Cmo+a-Chpa+q" - Cng+ 0 - Cris, (2.461)
Ch=Cup+B-Cpg+p" Cpp+71" - Cpr + 64 Crs, + 0, - Chrs, (2.46j)

where C;j is the flight parameter (defined as a derivative of coefficient C7 with respect to j
in general), J. is the deflection of elevator, d, is the antisymmetric aileron deflection, 4, is
the deflection of rudder, and p*, ¢*, r* are the dimensionless angular velocities defined as:

«_ by
=gy (2.47a)
* qc
= 1 2.4
¢ =5y (2.47b)
rb
= Y 2.4
r 5V (2.47¢)

The aerodynamic force and aerodynamic moment, hence its coefficients and aerodynamic
parameters, are included in the Equations of Motion. Values of the aerodynamic parameters
are obtained by a parameter estimation process, which is based on utilization of Equations
of Motion.

2.3.3 Propulsion model

Given that this thesis deals with a light airplane, the propulsion of an airplane is considered
to be based on a single reciprocating 4 stroke combustion engine with a propeller. For the
purposes of this thesis, it is not necessary to describe the whole propulsion system in detail,
therefore only the fuel inputs, propulsion force and moment due to propulsion force are
considered.

Fuel inputs (fuel level and fuel flow) are necessary to compute the center of mass and the
tensor of inertia of fuel in fuel tanks, as described in Section 2.3.1.

Propulsion force magnitude Fp can be computed using equation [1]:

Fp = Crpn% Dp (2.48)
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where Cp is the dimensionless output thrust coefficient (specified by the propeller manu-
facturer), np is the propeller’s rotational speed in revolutions per second, and Dp is the
diameter of the propeller.

The propulsion on most of the airplane acts along the x, axis, so the propulsion force
vector F 'pp can be constructed as:
Fp
Fp=10 (2.49)

0
b

Moment due to the propulsion force can be evaluated considering three assumptions.
Firstly, the x; axis does not pass through the center of the propeller. Secondly, the propeller
itself is a rotating mass and therefore it generates moment. Finally, the revolutions of the
propeller cannot be considered constant, because the airplane used for the purposes of
this thesis has fixed pitch propeller. The resultant moment of the propulsion force can be
expressed as [11]:

FP:FPbXF’P‘FQobXJPwP*JPO_ZP (250)
and simplified to
—Jpap
FP: Fprb—l-JP’l"(.dP (251)

—Fpypy — Jpqup

where Jp is the moment of inertia of the propeller. The &p and Wp are acting only around the
xp axis, therefore their vectors contain only the first component, i.e., wp and wp respectively,
and wp is the magnitude of angular velocity of the propeller which can be computed as:

wp =27Tnp (2.52)

2.4 Nonlinear Equations of Motion

The Equations of Motion (EoM) describe the behavior of an aircraft (or physical system
in general) as a set of mathematical functions. The nonlinear Equations of Motion can be
divided into two types: kinematic equations and dynamic equations. At first, the general
nonlinear models are introduced. At second, the nonlinear kinematic Equations of Motion
are presented. Then, the description of the merge of the Equations of Motion with the
rest of aircraft models and the resultant nonlinear dynamic Equations of Motion are given.
At the end of this section, dynamic Equations of Motion are divided into the longitudinal
equations, and lateral-directional equations.

2.4.1 General nonlinear dynamic system
A general dynamic system is defined as a system, where the outputs in time ¢ depends

on inputs in time ¢ and inputs in some of the previous time moment(s) [3, 5]. In general,
dynamic system is defined by Equation 2.53.

i = f(Z ) (2.53a)
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7= h(Za) (2.53b)
#(0) = (2.53¢)

where 7 is the state vector; f () is the state function; @ is the input/control vector; ¥ is the
output vector; h () is the output function; and Zy is the initial state vector.

2.4.2 Nonlinear kinematic Equations of Motion

Nonlinear kinematic equations of the motion describe motion of an object without describing
the reason of motion. There are three main nonlinear kinematic EoM: Attitude equations,
Navigation equations and Velocity equations.

Attitude equations represent the rate of change of angular position given by transforma-
tion from angular velocities to angular rates. These equations were already introduced in
Equations 2.20a — 2.20c, but for the sake of completeness are repeated below:

¢ =p+ (gsing + rcos ¢) tan 6 (2.54a)

6 = gcosp— rsin ¢ (2.54b)

b= gsin¢g + rcos ¢ (2.540)
cos 6

Navigation equations, also known as the Position equations, represent the rate of change
of the translational position. These equations are based on the transformation of the trans-
lational velocity from the reference frame Fj to the reference frame F, using following
equation: '

Tao = Cop Ua (2.55)

The scalar form is shown below [11, 11]:

TGo = ugp cos b cos i + vgp (sin ¢ sin 6 cos 1 — cos psin )

+ wep (cos ¢ sinf cosyp + sin psin ) (2.56a)
YGo = Ugp o8 0 sin 1) + vy (sin ¢ sin 6 sin i + cos ¢ cos )

+ wep (cos ¢ sin @ sin ) — sin ¢ cos ) (2.56b)
Zao = —Ugp sinl + vgyp sin ¢ cos 0 + weyp cos ¢ cos O (2.56¢)

The rate of change of the translational position, based on Equation 2.3, can also be expressed
in the Geodetic coordinate system as:

é _ yGo

_ 2.57
(No + h)cose (2.57a)
. TGo
= 2.57b
v Mo+ h ( )
h=—%go (2.57¢c)

The Velocity equations describe the rate of change of the translational velocity. The
Velocity equation is based on Equation 2.23 for the Translational acceleration in rotating
reference frames. Given that the total acceleration can be decomposed into specific force
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and gravitational acceleration (see Equation 2.30), and that the acceleration is the first
derivative of the velocity, the resulting equation can be written as

Tap = fo + Go — Dob X e (2.58)

Based on the Equations 2.31, Equation 2.58 can be given in the scalar form:

gy = fo — Go sinf + rvgy, — qugay (2.59a)
gy = fy + Go cosfsin ¢ + pway — T ugy (2.59Db)
wey = f»+ Go cosbcos ¢ + quay — poGy (2.59¢)

2.4.3 Nonlinear dynamic Equations of Motion

Nonlinear dynamic EoM describe the forces and moments acting on the airplane. As it was
mentioned before, there are three sources of forces and moments acting on an airplane in
flight: the aerodynamic forces and moments, the propulsion forces and moments and finally
the gravitational force. Gravitation does not generate moment, as the gravitational force is
acting in the center of mass. Particular models of these forces and moments were introduced
in Section 2.3.

Force equations describes the rate of change of the translational velocity. The Force equa-
tions are based on the Velocity equation given in 2.58, which is extended using substitution
of the specific force with Equation 2.30 to include the forces affecting the motion of the
airplane. The resultant Force equation is:

- F A+ F, P+ C_jG . .

UGy = ———— " — Wb X U (2.60)

Based on the Equations 2.31, 2.49 and 2.43, the Force equation can be expressed in the
scalar form:

qS F

UGy = LCX + £ Go sinf + rvgpy — qugy (2.61a)
m m
qS

bi = LCY + GO COS@Sin(J5 +pway — T UGH (2.61b)
m
qS

way = LCZ + Go costlcos ¢ + quay — VG (2.61c)
m

The Force equations can be also expressed in the Spherical coordinate system utilizing
Equations 2.7, 2.9, 2.31, 2.49 and 2.43. The resultant equations are:

. 7S F
V:—q—CW—F—PcosBcosa
m m
+ G (sin 3 cos 0 sin ¢ + cos 3 sin a cos 6 cos ¢ — cos 3 cos asin 6) (2.62a)
oS Fo i
d:—m L—ﬁ—pcosatanﬂ—i—q—rsinatanﬁ
50 i in 6 2.62b
7 oos (cos a cosf cos ¢ + sin a sin 6) ( )
. 7S F
B:WZVCQ—mI‘D/sinBCOSOz—i-psina—rcosoa
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+ % [cos Bcosfsin ¢ + sin B (cos asin § — sin avcos f cos @) | (2.62c¢)

Moment equations represents the rate of change of the angular velocity. Moment equa-
tions are based on Equation 2.39 for the Moment of forces in rotating reference frames.
Given that the moment of force acting on an airplane can be decomposed into a moment of
aerodynamic force and a moment of propulsion force, the resultant equation is

Jb Qop = Ta + Tp — Wob X Jp Wb (2.63)
This equation can be written in scalar form using Equations 2.33, 2.51 and 2.45 as fol-
lows [25]:
DJe —qJuy — 7 Jpe = 7S by Cp — Jpwp+
qr@h—wk)+Jy(ﬁ2—rﬂ-+pqu—per (2.64a)
—PIey +qJy —17Jy. =qScCy, +Jprwp + Fp zp+
pr(J, — Jz) + Juz (7‘2 — p2> +qrJy —pqJy: (2.64Db)
P —qJy. +7J, =qSb, Cp, — Jpquwp — Fpyp+
pqch—ﬂh)+why@g—qﬁ-+p%@z—qum (2.64c)
Given that airplane’s plane of symmetry is zp2, and center of mass of aircraft is lying on

this plane, inertia elements J,, and J,. are equal to zero (see Equation 2.35). Therefore
Equation 2.64 can be simplified to

Py —TJp, =q3S by Cy — Jpwp +qr (Jy — JZ) +pqds. (2.65a)
GgJy=qScCp+Jprwp+ Fpzp+pr(J, —Jy) + Jpz (r2 —p2> (2.65b)
_mez+rJz = quwOn - JPqWP _FPyP +pQ(Jr - Jy) —qTsz (265C)

and solved for p, ¢, and 7 as follows

quw(JzCl+szCn)_sz (JPqWP“‘FPPb)_JzJPW.P_’_

P= Tods — J2.
Joz (o — J, J JyJ, —J2—J?
pq ( Yy + )—i—qr ( Yy z xz) (266&)
Jo s — J2,
qgScCy, —J F J,— Jg Jps (12 — p?
q.:q c prwp+ Fpyzpy +pr( ) + (r* = p?) (2.66b)
Jy
. qS by (Joz Cr+ J: Cn) — Ju (Jpqup + Fpypp) — Jaz JPw'P+
- Iz JZ—JQ%Z
J2 = Jy J, + J2, s (Jy — Jo — J.
JxJZ—JIZZ

2.4.4 Separation of dynamic Equations of Motion

There were four sets of the Equations of Motion presented before: Attitude equations, Navi-
gation equation, Force equations (created from Velocity equations), and Moment equations.
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The Navigation equations are used for the purposes of the Flight Path Reconstruction only;
therefore, it is not necessary to linearize them.

The remaining three sets of the Equations of Motion contain nine equations, which can be
separated according to the type of the motion to the Symmetric equations (motion in the
vertical plane), i.e., V, a, q, and 0; and Antisymmetric equations (motion out of the vertical
plane), i.e., 8, p, r, and ¢. In order to complete the division of the equations into these two
categories, it is necessary to neglect dependencies of symmetric equations on antisymmetric
variables and vice versa. The remaining, ninth, variable 1 could be theoretically included
among Antisymmetric equations; however, it is often omitted, because 1 influences only
the orientation of the airplane and does not influence the motion of the airplane (other
antisymmetric variables are i-independent).

Symmetric equation for the longitudinal motion, i.e., equations of V', «, ¢, and 0, are
created from Equations 2.62a, 2.62b, 2.66b, 2.54b, respectively. At first, the antisymmetric
variables 3, ¢, p, and r are neglected, i.e., set equal to zero, to complete the separation of
Symmetric and Antisymmetric equations. Then it is possible to substitute ¢ with Equa-
tion 2.44. The resultant Symmetric equations are:

2
. F
V:_pV SCW—i——Pcosa—Ggsin(H—a) (2.67a)
2m m

__pVsS Fp . @

=5 Cr, — sina +q+ 7 cos (0 — ) (2.67Db)
. pV?*Se Fpzpy

_ o 2.67
=57 s (2.67¢)
0=q (2.67d)

Antisymmetric equation for the lateral-directional motion, i.e., equations of 5, p, 7,
and ¢, are created from Equations 2.62c, 2.66a, 2.66c, 2.54a, respectively. The symmetric
variables V', «, ¢, and 0 are neglected, i.e., set equal to zero, to complete the separation of
Symmetric and Antisymmetric equations. The resultant Symmetric equations are:

5' — % o+ 75]‘3/ sin B cos o + w (cosﬂsingb — sin asin 3 (cos ¢ — 1)) +
psina — 1 cosa (2.68a)
5 E5bu(J:Ci+ Ji: Co) —J;Jaz (JPJ%:UP + Fp Pb) — J. Jpup (2.68b)
i 050w (Joz G+ J2 Cn) —JixJ(ZJf 32:19 + Frypy) — Joo Jpwp (2.68¢)
bept T‘E:;Z (2.68d)

2.5 Linear Equations of Motion

In this section, system linearization including definition of the linear state—space model and
derivation of a linearized system is described. At the end, the linearized Equations of Motion
are given.
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2.5.1 System linearization

Dynamic systems can be divided into two separate categories: nonlinear systems and linear
systems. The difference between them is, that linear systems have to satisfy the property
of superposition, which is defined by the following equations |3, 8]:

flur+ug) = f(u) + fu2) A fku)=Fkf(w) (2.69)

where k is an arbitrary scalar.

There are many approaches to describe linear systems. In aviation, state—space model is
the most commonly used one. The state-space model of a linear system is given by the
equations |5, 8]:

7= Ai + Bil (2.70a)
j=Ci+ Di (2.70b)
#(0) = % (2.70¢)

where A is the state/system matrix, B is the input matrix, C is the output matrix, D is
the feed-through /feed-forward matrix.

The nonlinear system described by the dynamic equations can be transformed into a linear
system described by a state—space model using the following linearization process. Lets
assume, that the deflections AZ and A4 from a trim/equilibrium point (z;,us) and are

very small [10, 11] and can be computed as follows:
AT=7—-17 (2.71a)
AU =1d— 1 (2.71b)

and the first derivative of ¥, i.e., result of the state function in the trim/equilibrium point

1S:
Ty = f (T4, U) =0 (2.72)

Then Equation 2.53a can be modified to:
Ty + AT = f (Z + AT, @ + ATD) (2.73)

This equation can be further expanded using Taylor series and neglecting the high-order
terms [10, 11|. The resultant equation is:

. : L oLy Of L of .
mt—i—Aa::f(a:t,ut)—i—a—;;Ax—i—a—éAu (2.74)

where % and % are the Jacobian matrices constructed as:

(051 Of of1 ]
Oz, Oz, T Oz,
of2  9f2 9f1
g _ Rz dzy 70 Oy, (2 75)
oz S ‘
Ofng  Ofng Ofng
REEN dzy, 70 Oxmy,,
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oh  Oh 9f1

Ou,y Ouy 77 Ouy,,
Ofz  0f2 f1
c‘lf _ Ouy Ou, T Ouy, (2 76)
ou P '
Ouy Ouy 77 Ouy,

The Jacobian matrices % and 2 a* are equal to the state/system matrix A and the input

matrix B of the state—space model, respectively.

The Output equation of the dynamic model (Equation 2.53b) can be processed using the
same, above-mentioned approach. The resultant matrices will have following form:

T

D= % (2.77D)

(7

l

1

2.5.2 Linear Equations of Motion

The process described in Section 2.5.1 can be used to linearize nonlinear Equations of Motion
introduced in Section 2.4. These resultant equations can be separated into sets of Symmetric
and Antisymmetric equations.

Symmetric equations for the longitudinal motion, after the linearization procedure are
described by the resultant state—space model shown below:

v Dy D, D, Dg| |V D5, Dr,
e Ly Lo Ly Ly @ Ls, Lp, Oe
| = © 2.78
g My My M, 0| |q| " |Ms Mp.| |Fp (2.78)
0 0 0 1 0 0 0 0
where particular elements of respective matrices can be expressed as:
Vs
DV = ,0 (CWO + OéCWa + (5 CW(Se 4VC ) (279&)
2
F
a:_pV SCWQ——Psina+G0 cos (0 — a) (2.79b)
2m m
pV Sec
D, = - im Cwyq (2.79¢)
Dy = —Gq cos (6 — «) (2.79d)
2
Ds, = 4 SCWJE (2.79)
2m
cos
Drp =~ (2.79¢)
Fpsina pS cqClrq Gy
Lv=—5_—"~"5. <0L0+Q0La+5eCL68 = e cos (0 —a) (2.79g)
_ Go . pV S Fp cosa
La = 7 S1n (9 O[) 7mCLa + V7m (279h)
pSc .
Ly=1-"""Cr, (2.79)
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Ly =
Ls, =

Lp, =

My =

pV Sée?

o sin (0 — «)
v

pV S
2m
sin av
Vm
pVSec
Jy
pV2Seé
2J,

Crs.

4

+
a Cra + de Cmée
(Cmo +

Cma

Cing
47,

pV2Se
27,
zZp

Jy

Cmée
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(2.79))
(2.79K)

(2.791)
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(2.79n)
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(2.79p)
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3. Flight parameter estimation

Parameter estimation consists of following elements: optimization algorithm, identification
criteria, mathematical model, model structure and model requirements. The process of
parameter estimation has following prerequisites: Flight Path Reconstruction and a—priori
values. The result of parameter estimation process is subjected to the model validation. For
the description of the whole process flow, see Figure 3.1.

Input maneuvers _%% Data acquisition ——> Flight path reconstruction

Parameter estimation
L T . Identifcation
A-priori values —_— Optimization algorithm €<——— e <
i )
Mathematical model { )
Model validation Model structure —<—— Madel <
requirements

Figure 3.1: Identification process flow.

The Section 3.1 discuses sensor errors and the Flight Path Reconstruction process. The
description of the sources of a—priori values of respective aerodynamic parameters is given
in Section 3.2. The estimation methods for the estimation of the flight parameters of a light
airplane are discussed in Section 3.3.

3.1 Flight Path Reconstruction

All sensor outputs are affected by errors. The output of the sensors is effected by the
deterministic and stochastic errors. Deterministic errors contain the sensor errors and the
position errors. Stochastic errors are difficult to predict, e.g., noise. Hence, some of the
variables are measured by more than one sensor, or estimated using the integration or
derivation of specific variable. It is also possible to use a redundancy in sensor output as a
way to minimize some of the errors.

Some sensors do not directly measure required quantity, but the required quantity can be
estimated from these measurements. The angle-of-sideslip cannot be measured directly,
but it is convenient to measure the flank angle. Measured flank angle 3; is further used for
the computation of the angle-of-sideslip using Equation [25, 30]:

B = arctan (tan By - cos a) (3.1)
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First part of this section introduces common sensor errors. In the following part, the position
errors of the sensors are described. Further, the measurement and the process noises are
analyzed. At the end of this section, Kalman Filter and its variants are discussed.

3.1.1 Bias and gain error

Most of the sensor outputs contain sensor errors, and most sensors errors can be corrected
by calibration.

The direction of the airflow sensors suffers from sensors errors which can be compensated
using gains and bias values. The sensor error in the direction of the airflow sensor is caused
by the pressure field created around the airplane. The effect on the flow vanes is also called
upwash or sidewash and can be computed using the equation:

oy =K, o+ b, (3.2a)
Bfm :Kﬁ /Bf + bﬁf (3.2b)

where «,, is the measured angle-of-attack, By, is the measured flank angle, b, and bg are
the biases, and K, and Kg are the scale factors caused by upwash or sidewash.

3.1.2 Position error

The position error affects the sensor output due to an inconvenient installation position of
the sensor or an incorrect axis alignment.

An accelerometer output suffers from an incorrect installation position relative to the air-
plane centre of mass, as the center of mass is changing during the flight as a result of the
fuel consumption as introduced in Section 2.3.1. Given that the specific force is a type of
acceleration, the specific force of the whole airplane can be computed using an acceleration
Equation 2.24. The resultant equation can be simplified by neglecting the velocity of change
of accelerometers position to [22, 17]:

@+ —(pg—7) —(pr+4)
fa=fc+ |—(a+7) @P*+r*) —(qr—p)| Fc (3.3)
—(pr—q¢) —(r+p) (P*+¢)

where fc is the specific force measured by the accelerometer, which is installed in position ¢
in the reference frame Fy,.

In addition to that the position of the direction of the airflow sensors cause an apparent
velocity due to airplane rotation. Equation 2.22 describes this effect in following form:

Uxp = UGH + Gob 2Xb — Tob YXb (3.4a)
UXb = VG + Tob TXb — Pob ZXb (3.4b)
Wxp = WGh + Pob YXb — Gob TXb (3.4c)
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3.1.3 Measurement and process noise

The measurement noise describes the stochastic error of a sensor. The measurement
noise of most of the sensors exhibits Gaussian normal distribution.

The probability density function p (¥) of a normal distribution N of a general ¥ ~ N (ﬁx, EX)
is defined as:

- 1 o T wl/> =
= exp | —= (¥ — X — 3.5
P (X) \/(QW)"X ot ( X) p ( 9 (X ,Ux) X (X X)) ( )

where n, is the count of elements of X, X is a covariance matrix of normal distribution and
i1 is a mean of normal distribution.

The process noise is the way to resolve uncertainties in inputs to a dynamic system.

Because input variables are measured similarly to output variables, process noise has also a
normal distribution. For the purposes of this thesis, the turbulence is neglected.

3.1.4 Kalman Filter
Kalman Filter is based on the nonlinear kinematic Equations of motion described in Sec-
tion 2.4.2.

A bayesian model for the uncertainties is based on the Bayesian estimation theory and

assumed a—priori known probability densities of p (5) and p (7). The conditional probability
density p (5 ‘ Z) can be expressed using the Bayes’ rule as:

0
p(%)

o (717) = p(29)» (9) 56)

where 4 is the vector of parameters and 7 is the measured output vector.

If § has a normal distribution defined as:

i ~ N(0,3,) (3.7)

(2m)" det (33,)
where n is the number of parameters.

The probability density p (5 ‘ 2') can be expressed using Equation 3.6 as:

1
2m)NT" det (R) det (2,)

)75
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exp (= (7= x0) R (2o x0) - 5 (7-,) 3,0 (7-,) ) 69

where R is the measurement noise covariance matrix, X is the matrix of regressors and

with the most probable estimate ] being:

g— m(?xp (5‘5) (3.10)

The cost function J () for minimization is derived to have following form:
N 1/, N N 1/ NT o (~ =
J(0) = 5( - x0) R (7- X0) +5 (7-4,) =" (7-4,) (3.11)

A discrete state—space model can be described by following set of equations:

Z(k+1)=®Z(k)+Tu(k) (3.12a)
i (k) = CZ (k) + Di (k) (3.12b)
Z(0) =2 (3.12¢)

where k is the sample number, ® is the discrete state matrix and I' is the discrete input
matrix.

The transformation of the continuous state—space matrices to the discrete state—space ma-
trices becames [, 11]:

Adt 5 0t 50t

ot 6t2 5t3
r:/ B = F:Bét+A?B+A2?B+-~ (3.14)

O . .

where §t is a time step.

The most commonly used state estimation algorithm is the Kalman Filter (KF). The KF al-
gorithm is divided into the prediction step and the correction step. The prediction step uses
the system input to predict the probable state. Correction step uses a noisy measurement
to improve the prediction of the state. The basic KF is a discrete version of the Linear
Kalman Filter. The Linear Kalman Filter is an optimal estimator [27].

Assuming a discrete linear dynamic system with a process and measurement noises and a
zero feed-through matrix as described by equation [27]:

Fh+1)=®7 (k) + T (k) + Aw (k) (3.15a)
Z(k) = C T (k) + 7 (k) (3.15b)
7(0) = (3.15¢)

where A is a discrete noise input matrix and @ is the process noise with a normal distribution
defined as:
W o~ N(0,Q) (3.16)

where (Q is the process noise covariance matrix.
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The prediction step of a Linear Kalman Filter is defined using following equation:
Z(k+1k)=®Z(klk)+Tu(k) (3.17)

where & (k + 1]k) is the state vector in step k + 1 based on information in step k.

The prediction of the probability of state £ is P defined in equation:

P(k+1k) =@ P (klk)®T + AQAT (3.18)

The correction step of a Linear Kalman Filter is defined using following equation:
F(k+1k+1)=Z(k+1|k) + Kpp1 [Z(k+1) — CZ(k + 1]k)] (3.19)

where K1 is the Kalman gain matrix in step k + 1 defined in equation:

-1
Ky = P(k+1K) CT[CP(k+1k)CT + R (3.20)

The correction of the probability of state Z is P defined in following equation:

Pk+1k+1) = [I — Kj1C] P (k + 1|k) (3.21)

The Extended Kalman Filter (EKF) is an approximate filter for nonlinear systems, based
on local first-order linearization (see Section 2.5.1) and utilization of Linear Kalman Filter.

Assume discrete continuous dynamic system without feed—through inputs described by equa-
tion:

Z(k+1)=f (F(k),d k), (k)) (3.22a)
g(k)="n (Z(k)+ 7k (3.22b)
7 (0) = %o (3.22¢)

where f’() is the discrete state function and A’ () is the discrete output function.

The prediction step of the Extended Kalman Filter is defined using the equation:

Z(k+1|k) = f' (& (k|k) @ (k) ,0) (3.23)

Prediction of the probability of the state & is P defined in Equation 3.18 in which ® and
A are equal to:

_Of (Z(k[k), @ (K),0)

P 3.24
o7 (3.24a)
of' (Z (klk),ud(k),0
ow
The correction step of a Extended Kalman Filter is defined using equation:
F+1k+1) = Z(k+ 1k) + Ky [Z(k +1) =K (F(k+ 1|k;))} (3.25)
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where K11 is the Kalman gain matrix, computed using Equation 3.20 and C'is the defined
in equation:
on' (f(k + 1|k))
C = =
0%

(3.26)

The correction of probability of state & is P defined in Equation 3.21.

Because the EKF use local linearization, it is no longer an optimal estimator. Iterative
EKF uses internal iteration to compensate inaccuracies from linearization of output equa-
tion [29, 47].

The prediction step uses EKF Equations 3.18, 3.23 and 3.24.

The correction step is iterative and it starts with assigning 77; to predicted state:

7 =7 (k + 1]k) (3.27)

Next, output matrix C' and Kalman gain K are computed using Equations 3.26 and 3.20.
Then, new corrected state 775 is computed using equation:

T = (k + 1|k) + Ky [E(k +1) =K (i) — C (& (k+ 1]k) — 771)] (3.28)
Iteration stops if condition of inequality 3.29 is met:

¢> I —mll (3.29)
171l

Next iteration starts with assigning 777 to last estimate 7j,:

T =1} (3.30)

After the stop of iteration process, the corrected state is equal to:

Z(k+1k+1) =1 (3.31)

The correction of the probability of the state Z is P defined in Equation 3.21.

3.2 A-priori values acquisition

A-priori aerodynamic parameters are usually computed using predictive tools, based on
statistical data or advanced numerical simulations. Prediction tools based on the Vortex
Lattice Method (VLM) theory, mainly software packages Tornado and Athena Vortex Lat-
tice (AVL) were used in this thesis. To augment the computed results with a set of differently
estimated data, the United States Air Force (USAF) Datcom predictions have been utilized.

All above mentioned sources of the a—priori values are described in detail in following sec-
tions.
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3.2.1 Tornado

The Tornado is a VLM software for the estimation of flight parameters on the basis of
airplane geometry [32]. The shape of the airplane is transformed to its planar representation
featuring respective airfoil data. The planar representation of the airplane serves as an input
for the solver.

A missing support for fuselage parts modeling is the main disadvantage of the Tornado
calculations. Although the fuselage can be substituted by its planar representation or can
be completely omitted for the case of longitudinal motion analysis.

The Tornado software covers the effects of the linear acrodynamics [32], which can limit
its usability. However, for the purposes of this thesis its prediction fall into the region of
validity.

The Tornado software is programmed in Matlab and distributed as source code under a
GNU General Public License.

3.2.2 AVL

The AVL (Athena Vortex Lattice) is a VLM software for the analysis of a rigid aircraft
flight mechanics [10]. For the output, the AVL offers linearization of the flight parameters
in any flight state and mass properties settings. Linearization is based on small perturbations
theory and is not completely valid when velocity perturbations from the free-stream become
large.

The main advantage of AVL is the support of a slender-body models for fuselages and
nacelles. All bodies has to have circular cross—section. According to manual, the non-round
bodies must be approximated with an equivalent round body which has roughly the same
cross—sectional areas.

The AVL software is programmed in Fortran and distributed in source code and binaries
for major platforms. The AVL software is released under the GNU General Public License.

3.2.3 Datcom

The USAF Datcom is systematic summary of methods for estimating stability and control
characteristics in preliminary design phase [19]. The Datcom was developed by McDonnell
Douglas Corporation [19] under contract of USAF in cooperation with Wright—Patterson
Air Force Base.

Limitations of Datcom is lack of support of the tapered wing, the H-tail and canard control
surface. Those limitations are not important for light airplane category which is focus of
this thesis.

The USAF Datcom is written completely in American National Standards Institute (ANSI)
Fortran.
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3.3 Estimation methods

Parameter estimation uses system models and optimization methods to estimate the values
of investigated parameters.

The two basic approaches in estimation are the offline estimation and the online estimation.
The offline estimation uses all measured values in all iterations of the algorithm. The online
estimation uses currently measured values and previous estimate in current iteration of
algorithm.

Two different estimators can be conveniently used for an offline parameter estimation: Least—
Squares estimator and maximum likelihood estimator. Least—Squares is a simple estimator
providing very good results. The maximum likelihood estimator requires complex knowledge
of the investigated system, but its estimates provide high fidelity results.

There is a variety of estimation approaches for the estimation of the flight parameters. The
most often used and also the most often recommended methods are: Equation Error Method
(based on the Least-Squares estimator), Output Error Method (based on the maximum
likelihood estimator) and Recursive Least-Squares (based on the Least-Squares estimator).
These approaches are described in Sections 3.3.1 to 3.3.3.

3.3.1 Equation Error Method

The Equation Error Method (EEM) is based on the Least-Squares model, which was perhaps
the first approach to the concept of optimality. The Least—Squares technique is mainly
known in its application to the curve fitting or regression analysis. In these problems it is
desired to represent the measured data by simple functional relationship or by a smooth
curve. The solution minimizes the sum of the squares of deviations between data points
and corresponding points obtained from the solution.

Measurement vector consists of the output vector and measurement noise :
Z=y+U (3.32)
Simplification of the dynamic system equations to linear combination of regressors to:
j=X0 (3.33)
where X is the matrix of regressors.

Ordinary Least-Squares (OLS) model is well-known estimation model. Model is assumption
free, so no a—priori known probability densities of p (5) and p (V) are required. OLS is
sometimes called just a Least—Squares. Model uses cost function expressed as a sum of

J (é’) - % (2— Xé’)T (2— Xé) (3.34)

Generalization of the Ordinary Least-Squares to Weighted Least-Squares (WLS) uses in-
version of weight matrix R~! and cost function became to:

squares [25]:

J (5) - % (z— X§)T R (5— X§> (3.35)
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The extension of the Least—Squares technique to the estimation of parameters of the dynamic
system from measured time histories of the input and output is based on the assumption:

=7 3.36
] (3.36)

Using this assumption measured output 7" is equal to:

F=I47 (3.37)
Given that:

e 7 and @ are known from the measurements without errors; and

e 7 are measured values, corrupted by measurement errors.

Using the measured data and above mentioned equations, the resultant aerodynamic forces
and moments acting on the airplane are expressed by means of the aerodynamic model
equations which may be written as

T=00+ 00T+ + 0 T+ Opg1 U+ + Oy U (3.38)

In this equation z represents the resultant coefficient of the aerodynamic force or moment,
0, through 6,,,, are the stability and control derivatives, 6y is the value of any particular
coefficient corresponding to the initial steady-state flight conditions, &1 to Z, are the airplane
states, and 1 to i, are the control variables.

By substituting % in Equation 3.38 the measured values of x and u could be taken into form
of Equation 3.33. Then the equation error can be expresses as:

7=7Z—-X0 (3.39)

where:
X = [1, fl, ey fn, 171, ey ﬁm] (340&)
0 =100, 01, ..., Opim]” (3.40D)

The minimization of the cost function 3.34:

J () = % (*— X§)T (2— Xé’) (3.41)

is obtained by setting
——=0 (3.42)

Because of

0J (5) )
—r = -XT (z— Xé’) =0 (3.43)



then 5 can be solved as ) 1
I-(x"x) X7z (3.44)

This result is called the Least—Square estimate of g.

The estimation of longitudinal motion model parameters utilizes a linear model structure
described in Equation 2.78. As an example for parameter estimation, the velocity can be
used. In this case the vectors of parameters, regressors are defined as follows:

X = [‘7, a q 6. 6, F*p} (3.452)

§ = [Dv, Da, Dy, Dy, Ds,, Dr,]" (3.45b)
The derivative of velocity was numerically computed using the smoothed local numerical
differentiation and it is considered as the left side of Equation 3.38. Both regressor and
derivative are substituted into Equation 3.44.

The identified model in a state—space representation has certain advantages e.g. it is possible
to use it for a stability analysis, express dynamic characteristic of the system. In some cases
it can be useful to express the aerodynamic derivatives directly. This approach requires
to compute the forces and moments acting on the aircraft according to Equation 2.61 and
Equation 2.65:

X=m (u+ Gosinf —rv+quw) (3.46a)
Y =m (0 — Gy cosfsing — pw +ru) (3.46b)
Z=m (w—Ggcosbcosp —qu+pv) (3.46¢)
L:pr—szf“—l-QT(Jz—Jy) —pqJe. (3.46d)
M:Jy4+pr(Jx_Jz)+sz <p2—7’2) (3.466)
N=—Jpp+.i+pq(Jy—Jo) +qr e (3.46f)

and express the forces and moments coefficients in body fixed frame as follows:

m (4 + Go sinf —rv+ qw)

Ov = 3.47
» - (3.47a)
Cy — m (0 — Gy cos@ismqﬁ —pw+Tu) (3.47D)
qas
Cy=™ (w — Gy cos _COS¢5 qu+pv) (3.47c¢)
qs
Jop = Juz? 4 qr (J: = Jy) —pa Ja
o — 3.47d
: 5h (3.47d)
Jy ¢ JI*JZ JIZ 272
o JyHprUs = Jo) + Jus (2 = 17) (3.47¢)
gSc
—Jux . Jz & g, — Jx Jzz
C. — p+ r+pg(b y—Ju) Far (3.47f)
q o Oy

In this case the model for parameter estimation is inspired by the aerodynamic model from
Equations 2.46, the only difference is that it is necessary to add the effect of the aircraft
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propulsion. The regressor and parameter vectors are expressed as follows:
X = [1, V., & q*, o, F}} (3.48a)

b= [Cxp, Cxas Cxq, Cxa., CXFP]T (3.48Db)

where the forces and moments coefficients are taken as the left side of the regression model
described in Equation 3.38. Direct computation of aerodynamic coefficients can be beneficial
for building the dynamic model of the examined aircraft or aerodynamic analysis.

3.3.2 Output Error Method

The Output Error Method (OEM) belongs to the category of the maximum likelihood
parameter estimators and it is a widely used technique in the field of aircraft parameters
estimation. The advantage of this approach is in its simple utilization for systems with
nonlinear dynamics. The necessity of the initial parameters estimate can be taken as a
minor drawback, the OEM is thus assumed as the algorithm for initial model improvement
according to real measurement.

The OEM parameter estimator was designed for the Fisher model structure, that can be
considered in either linear or nonlinear form and is described in Equations (3.49). The
uncertainties are based on a—priori knowledge of the measurement noise 7.

7=HO+7 (3.49a)
Z=h (5) i (3.49D)

The measurement noise ¥ has the normal distribution defined as:

7 ~ N(0,R) (3.50)

In practical applications the noise covariance matrix is usually estimated from measurement

noise v =¢ — h (5) The estimation process is shown in the following equation.

1 N
~ 2.7 (0) 7T (3) (3.51)
=1

R=

Using the property of normal distribution from Equation 3.5: p (2’ ’ 5) is defined as:

= 1 1 AT 5
710) = exp(—=(Z—X0) R' (72— X0 ) 3.52
v () = S oo (5 (- x0) R (5 x7)) e
where n, is the number of measured variables in 7.

The likelihood function is considered to have normal distribution, thus it is possible to
express it as the conditioned probability function from foregoing equation. The Fisher
model is based on the Fisher estimation theory using:

L (z; 9") —p (5‘5) (3.53)
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The maximum likelihood estimator that is recommended for the linear form of the Fisher
model searches a maximum of the following likelihood function.

L(29) = e o (5 (- X0) RO (5o x7)) @

Therefore the parameter estimate g can be expressed as:

5: Ingx]L (7?; 5) (3.55)

The maximum of the likelihood function is found with the utilization of logarithm and the
becoming a negative log—likelihood.

~In []L (% aﬂ = % (z- X5)T R (- Xx0) + %m [det (R)] (3.56)

Using known measurement noise covariance matrix cost function became:
S S A
J (9) =3 ( - Xe) R (z - XH) (3.57)
The cost function for minimization is equal to Weighted Least—Squares.

Using the estimation of measurement noise covariance matrix from Equation 3.51, the cost
function with omitted constant terms becames:

J (é’) - %m [det (R)] (3.58)

The Output Error Method (OEM) minimizes the errors between the actual output and
the model output by using the same input. It is assumed that only measured outputs are
corrupted by noise and that there are no gust or other disturbances to the airplane. The
optimization problem, involved is nonlinear and requires the use of an iterative solution.
The Modified Newton-Raphson (MNR) technique is usually applied because of its good
convergence rate even for large number of unknown parameters. The OEM is also called
the maximum likelihood method because Fisher model is used for the parameter estimation
in the output error cost function.

Linear OEM is based on the linear system described in Equations 2.70 and the measured
output is corrupted by error. Using this assumption measured output Z' is equal to:

=0+ (3.59)

The vector of unknown parameters include, in general, the elements of all matrices in the
model equations and the initial conditions. As indicated in the reference [22], the minimiza-
tion of the cost function with respect to the unknown parameters can be solved by several
gradient—based nonlinear programming methods.

The iteration in these methods in general is given as:

— —

Or41 =0, —c, M' G, (3.60)
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where ¢, is the scalar step size parameter in 7 iteration chosen to improve the convergence,
M, is the information matrix in rt" iteration and G, is the gradient matrix of the cost
function in r* iteration.

The gradient matrix of the cost function of Fisher model (see Equation 3.57) has the form:

‘. 07 (9)
(9)

where S is the sensitivity Jacobian matrix constructed as:

N
= ST @) R [2() —§,0,)] (3.61)
=0,  i=1

[ Oy1  Ou oy1 ]
90, 90, "t 90,
o dy2  Oy2 1
20 96, - 99,
s= | %% ra (3.62)
00 : : - :
OYng OYny OYny
| 799, 00, ' 90, |

The output sensitivities were numerically computed with utilization of central finite differ-

ences.
57 g(9+59j)—y(9—59j)
9 _ _ (3.63)
09 20065

where 59_} is the vector of pertuberation of parameter j =1, ..., ng with other parameters

equal to zero. For the purposes of this thesis, the magnitude of pertuberation \5@] is equal
to 1073.

The Fischer information matrix M, for the Modified Newton-Raphson method is approx-
imated as

N
M, =S 8" (5) RS, (5) (3.64)

i=1
The OEM with the Modified Newton-Raphson algorithm was introduced in [25, 22| and it

has been used extensively for the past several years. It usually takes the results from the
EEM as the initial values for the parameter estimates. As long as the method is applied
to linear flight regimes or where the form of equations is known, it works very well. The
disadvantage of the OEM is in the degradation of the results in the presence of the process
noise. This may result in the computer program not converging or in poor estimates with
large variances and or high correlation coefficients.

Another approach of computing the information matrix that can improve the bad condi-
tioning and which can give more reasonable inverse is the Levenberg—Marquardt method.

Information matrix computed using Equation 3.64 is improved using following equation:

M, ' = (Mg + )" (3.65)

where ) is a positive nonzero scalar parameter. The initial value of A is taken equal to 1073.
As X\ increases, Levenberg—Marquardt method starts to follow the cost gradient vector.
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3.3.3 Recursive Least—Squares

Previous mentioned methods (EEM and OEM) are one step identification methods, that
process all measured data in one step and determine parameters of modeled dynamic sys-
tem, this approach is usually called offline identification. Recursive Least—Squares (RLS)
algorithm process the data recursively over time, the term online identification is used in this
case. It means that parameter estimate 0 (t) is computed partly from estimate in time ¢ — 1
and new information.

The recursive identification algorithms in general have following important features:

e They are the core part of adaptive algorithms employed in automatic control or signal
processing.

e The memory requirements are much lower when compared to the one step methods.
e They are a suitable approach for online parameter identification.

e They are a part of algorithms for major fault or change detection at observed system.

Recursive Least-Squares method is based on reformulation of EEM to recursive form [27].
New parameter estimate 0,1 is defined as:

Orit = O+ Ko (Frin = 700, (3.66)

where K, ;1 is the update gain matrix defined as:

L[l A
K, 1=P,.% (a +&L, P, xr+1> (3.67)
where a is the forgetting factor and P, is a state covariance matrix. The forgetting factor
can range from 0 (which means remember nothing) to 1 (which means no forgetting).

Update of covariance P, is defined as:

Po1=P,-K, 17, P, (3.68)
The forgetting factor enhance capability of the RLS to cope with time variant parameters.
This approach will perform well when parameters are changing slowly, e.g., change of air
density due to change of flight altitude. Quick changes of parameters due to structural

changes cannot be followed. Therefore an adaptive Recursive Least—Squares parameter
estimation is introduced.

Adaptive Recursive Least—Squares uses estimation of variance V' to work with sudden
changes of system:

N
1 S o 2\
Vr+1 = N Z (Zr—i-i-l - xr—i-{—lQT—i) (3.69)
i=1
where N is size of window for variance estimation.

Update gain matrix is then reformulated as:

K, =P 3,1V} (3.70)
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4. Experimenal results

This chapter contains description of the conducted flight experiments. Firstly, the used
airplane is described in detail. Secondly, it is necessary to describe the used sensors, Data
Acquisition System and the Primary Flight Display, which were used during the flight ex-
periments. Thirdly, the flight maneuvers, the flight campaign and results of the Flight Path
Reconstruction process will be introduced. Fourthly, the a—priori values of the investigated
flight parameters are presented. Fifthly, the estimated flight parameters are presented.
Finally, the summary of a—priori values and estimated flight parameters is given.

4.1 Research airplane

For the purposes of flight tests, the Evektor SportStar RTC! [12] airplane was used. Evektor
SportStar RTC is an experimental Light Sport Airplane (CS-LSA certified) manufactured
by Evektor—Aerotechnik, a.s. The photography of this airplane can be seen in Figure 4.1.

Figure 4.1: Photography of the experimental airplane.

4.1.1 Description of the airplane

The experimental airplane Evektor SportStar RTC is a two—seater airplane. Crew consists
of a qualified test pilot from Evektor s.r.o. and flight engineer from Brno University of
Technology.

Evektor SportStar RTC has a robust all metal airframe made of anodized duraluminum.
The undercarriage consist of a three wheel fixed landing gear with steerable nose wheel and
two main landing gear wheels equipped with hydraulic brakes. The airplane is configured as
low—wing with conventional tail unit. To increase the safety of the flight crew in accordance
to the modern trends is the aircraft equipped with a parachute rescue system |[12].

IRTC - Restricted Type Certificate
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The airplane is controlled via dual control stick and rudder pedal installation. There are
three main control surfaces on this airplane: elevator with a trim surface, ailerons with trim
surface on the left aileron, and rudder without an active trim surface. Flaps are electrically
operated (lever on dashboard) and enable to be set to four positions: cruise position 0°,
take—off position 15° and two landing positions 30° and 50°. This airplane does not have
any air—brakes or spoilers. Deflections of all control surfaces of the Evektor SportStar RTC
are given in Table 4.1.

Table 4.1: Control surface deflections of Evektor SportStar RT'C [9].

Parameter  Notation Value
Elevator e [—25°,420°]
Ailerons da [—17.5°,17.5°]
Rudder or [—30°, 30°]
Elevator trim Ote [—5°,425°]
Aileron trim Ota [—15°, +20°]
Flaps 5 0°,15°,30°, 50°

Evektor SportStar RTC uses the Bombardier Rotax 912ULS engine, which is an internal
combustion piston engine with four stroke cycle, four horizontally opposed cylinders and
reduction gearbox. Its fuel tanks have a volume of 60 liters in each wing. The engine is
designed to use Unleaded fuel RON? 95. The airplane uses a 3-blade composite propeller
of type WOODCOMP KLASSIC 170/3/R. This type of propeller is ground adjustable with
a fixed pitch setting for the flight.

As it is not convenient directly measure the propeller rotational speed, it is proposed to
be beneficial to measure the engine crankshaft speed and to divide the obtained value by
reduction ratio. The propulsion parameters can be found in Table 4.2.

Table 4.2: Propulsion parameters [0, 23].

Parameter Notation Value
Engine reduction ratio n 2.43
Propeller diameter Dp 1.7m
Engine maximum torque — 128 Nm
Engine take—off power — 73.5 kW
The tactical data of the airplane, based on [23], are given in Table 4.3.

2RON —Research Octane Number
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Table 4.3: Tactical data of Evektor SportStar RTC [12, 23].

Parameter Notation  Value
Length of airplane — 5.98m
Height of airplane — 2.48m
Reference wingspan bw 8.65m
Reference wing area S 10.6 m?
Length of MAC c 1.25m
Never exceed speed VNE 75m/s
Maximum flap extended speed VrE 36m/s
Maximum level speed Vi 59m/s
Stall speed Vs1 20.6m/s
Service ceiling Hpox 4720m

4.1.2 Flight envelope
The flight envelope describes the limits of flight. The limitations originate from different
sources such as engine power, maximum speed, stall speed, service ceiling etc.

For the purposes of the flight tests, the flight envelope was limited to the conditions, as alti-
tudes, airspeed and position of center of mass, as consulted with the airplane manufacturer.
The limits reflect the safety constraints to prevent extreme attitudes.

The operational flight envelope and point of testing are presented in Figure 4.2.
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Figure 4.2: Operational flight envelope, the blue area denotes the envelope and red stars
show the testing points.
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4.1.3 Airplane’s center of mass

The mass and the center of mass of the empty airplane was determined experimentally.
First, it was necessary to empty the fuel tanks. Then, every wheel of the landing gear was
put on a weighing scale. For this purpose, three weighing scales Soehnle Professional Digital
Indicators 2755 were used. Next, it was necessary to put small blocks under the main wheels
to ensure that the base plane of fuselage is horizontal, i.e., parallel to the floor.

After that, it was possible to start the measurement. To ensure the high accuracy of the
results, five measurements was taken for each case. These measurements were used not only
for determining the total mass of the empty airplane, but also to find the horizontal position
of the center of mass of the empty airplane in the z4y4 plane.

The mass of the empty airplane was calculated to be mempry = 375 kg. It is necessary to
say, that the measured airplane had a unique configuration and built—in parachute system,
several sensor systems, including wiring, therefore the above mentioned mass of the empty
airplane is unique for this particular experimental airplane and it cannot be compared to
another unit of the same type.

The position of the center of mass of the empty airplane in Design reference frame was
calculated using following formulas:

MpTrpqg+ ML Trd + MRTRA

Tad = (4.1)
Mempty
_ MpYypd +MLYrLd + MRYR4
Yad = (4.2)
Mempty

where F' is the point of contact of front wheel with weighing scale, L is the point of contact
of left wheel with weighing scale and R is the point of contact of right wheel with weighing
scale.

At last, it was necessary to find the position of the center of mass of the empty airplane in
the z4 axis. For this purpose, two laser distance sensors Leica Geosystems DISTO liteb were
attached to the airplane. Using these sensors the distance from placement of the sensors
to the nearby vertical wall was measured several times. Firstly, one block was inserted
under the front wheel to change tilt of the aircraft. Secondly, the laser distance sensors were
used to measure distance from the same wall again to compute the angle of tilt. Finally,
the distribution of mass on all three wheels was repeatedly measured. The whole process of
inserting blocks below the front wheel, measuring distance from nearby wall and weighing of
all three wheels was repeated three times to obtain sufficient quantity of data to determine
position of center of mass in z4 axis. For this purpose, the following equation was used:

Ta'd — TLd + (CCLd — de) cos 0
sin 0

2Gd = — 2Ld (4.3)
where 6 is tilt angle (pitch angle) and G’ is projection of point G to the horizontal plane
after tilting the airplane.

To obtain center of mass of the experimental airplane, it is necessary to take weight of the
empty airplane and add the weight of other parts. Weights of the pilot and operator with
their safety parachutes and the fuel weight are measured before every flight. Additional
cargo was not present on—board during any of the experimental flights.
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4.2 Instrumentation

During the test flights, the measured values of selected physical quantities were recorded. To
collect and store measured data, a Data Acquisition System (DAQ) described in Section 4.2.1
was used. A list of on—board sensors is given in Section 4.2.2. To ensure that the conducted
flight maneuver meet specified requirements, the Primary Flight Display (PFD) is used (see
Section 4.2.3).

4.2.1 Data Acquisition System

The DAQ used to collect and store data from sensors was composed of selected modules of
industrial CompactRIO? platform manufactured by National Instruments Corporation [34].
The flight ready DAQ was located in the cargo compartment of the experimental airplane
and connected to a network of sensors (listed in following section). The DAQ was powered
by a standalone battery power supply 24 — 28 V', as the experimental airplane was capable
to provide only 12 — 14V from its engine—driven alternator.

The DAQ used in the flight tests is composed of following modules:

e Real-Time Controller NI* cRIO-9022 is powered by a 533 M H z PowerPC processor
and includes 256 MiB DRAM?® and 2 GiB Solid-State Drive (SSD) for data storage.
The Real-Time Controller controls other modules and can be programmed using the
graphical programming system LabView.

e CompactRIO Reconfigurable Chassis NI cRIO-9114 can hold up to 8 modules.
Only six slots were used for the purposes of flight tests. To sequence and synchronize
these modules, Field-Programmable Gate Array (FPGA) Virtex—5 was used.

e High—Speed CAN Module NI 9862 provides an interface to the Controller Area
Network (CAN) bus, which allows to connect devices with baud rate up to 1 Mbps on
the bus with a maximum length of 40 m.

e Isolated Simultaneous Analog Input Module (ISAIM) NI 9239 has 4 channels
to connect the sensors having a signal range of £10V and an update rate of 50 k£.S/s.
This module has 24-bit resolution which is required for critical sensors. It also has
isolated inputs which reduce the risk of interferences and ground loops.

e Universal Analog Input Module (UAIM) NI 9219 has 4 channels to connect sen-
sors having signal range of £10V and an update rate of 100.S/s/ch. This module
has 24-bit resolution which is required for critical sensors. It also provides excitation
current for potentiometers. For the purposes of the flight tests, three Universal Analog
Input Modules are used.

e Analog Input Module (AIM) NI 9205 has 32 channels to connect sensors having
update rate 250 kS/s. Each channel has configurable signal range from +200mV to
4+10V. This module has 16-bit resolution which is sufficient for non—critical sensors.

SRIO — Reconfigurable Input/Output
ANT - National Instruments
SDRAM - Dynamic Random Access Memory
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4.2.2 Utilized sensors

There are eight types of sensors which were connected to the Data Acquisition System
during test flights: Xsens MTi-G, Integrated Flight State and Navigation Sensor (IFNS),
potentiometers, strain gauge, flowmeter, flow vanes, pressure transducers and rotational
speed sensors.

Xsens M Ti—G sensor, manufactured by Xsens Technologies B.V. [50], integrates accelerom-
eters, gyroscopes, GPS and magnetometers in its sensor fusion algorithms. The output of
Xsens are Euler angles, specific forces, angular velocities, translational velocities and geode-
tic position in the WGS84. This sensor is connected to the DAQ using a RS-232 serial port
interface. The Xsens sensor was placed in the cargo compartment behind the pilot’s and
operator’s seats as this location was closest to the center of mass of the airplane.

Integrated Flight State and Navigation Sensor (IFNS), manufactured by Stock Flight
Systems [12], integrates accelerometers, gyroscopes, GPS and magnetometers. Therefore the
outputs of IFNS are FEuler angles, specific forces, angular velocities, translational velocities
and geodetic position in the WGS84 format. This sensor was connected using Controller
Area Network (CAN) bus to the NI 9862 module. IFNS was placed in the cargo compartment
behind the pilot’s and operator’s seats next to the Xsens sensor as this location is close to
the center of mass of the airplane. IFNS was used as a secondary data source in case of the
Xsens’ malfunction.

Potentiometers SRS280°, manufactured by Penny & Giles Controls Limited [35], were
connected to the NI 9219 module. Potentiometers in above mentioned experimental airplane
measure the position and orientation of the elevator, rudder, right aileron, flaps, pilot’s
control stick, throttle lever, and rudder pedals.

Strain gauges CEA-13-250UN-120, manufactured by Vishay Precision Group, Inc. [16],
sense control forces. These strain gauges were mounted on the elevator and left aileron
control rods, and on both rudder links. All strain gauges were wired as full Wheatstone
bridges. They are connected thru a precision amplifier RM4220, manufactured by Hottinger

Baldwin Messtechnik GmbH. [18], to the NI 9205 module.

Flowmeter Floscan 201B, manufactured by FloScan Instrument Co., Inc. [13], measured
the fuel flow on the fuel line from fuel switch to the engine. This sensor was connected thru
a pulse rate to analog converter IFMA 0035, manufactured by Red Lion Controls, Inc. [37],
to the NI 9205 module. Flowmeter was attached near to the firewall.

Flow vanes were part of the SpaceAge 100400 Mini Air Data Boom (MADB), manufactured
by the SpaceAge Control, Inc. [39], which was mounted on the right wing. Mini Air Data
Boom was equipped with the angle—of-attack and flank angle flow vanes. Outputs from
these flow vanes were connected to the NI 9219 module.

Pressure transducers DMP 331 and DPS+6, manufactured by the BD Sensors s.r.o. [],
were integrated for measurement of the static and impact pressure. They were connected
to the pitot—static tube and to the NI 9239 module. The pitot—static tube is localed at the
front part of the SpaceAge 100400 Mini Air Data Boom.

Rotational speed sensor was an integral part of the Bombardier Rotax engine [6]. It was

5SRS - Sealed Rotary Sensor
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connected to the NI 9205 module. The rotational speed sensor was the measuring rotational
speed of the engine crankshaft.

4.2.3 Primary Flight Display

Primary Flight Display — PFD was used to show graphs of selected physical quantities to
ensure that the conducted flight maneuvers meet specified requirements (see next section).
It was also used as a secondary flight recording system.

The PFD consists of a display, an ARM microprocessor with 512 MiB RAM’ and 2 GiB
Flash, and two buses — Ethernet bus and CAN bus. The display contains a Liquid Crystal
Display (LCD) panel with Light—Emitting Diode (LED) backlight and a capacitive touch
layer. The size of the display is 10" to increase the user—friendliness/readability of the whole
system (and provide optimal performance even during difficult maneuvers).

On the back side of the PFD, there are six connectors (see Figure 4.3):

e Power input connector has three pins: common negative pin, positive battery pin for
connecting 12V backup battery and positive main power input pin. The main power
input of the PFD is connected to the 14 V' avionics bus thru the circuit breaker.

e Two CANbus connectors have integrated power output and support the CANaerospace
protocol [CANaerospace|. Having two connecters enables a simultaneous connection
of the IFNS and a second display for a more complex avionics solution.

e Ethernet connector is used to provide connection to the DAQ. Data coming thru
Ethernet are presented on the PFD to ensure that the conducted flight maneuver
meets specified requirements.

e The RS—232 connector is used as a debug interface for the PFD. A computer connected
to the RS—-232 connector is able to open a software terminal for managing the PFD
software. Managing of PFD enables reading log messages, checking of the errors and
warnings, and verification of the internal components of the PFD. RS-232 also enables
to download logged records and an upload of new software versions.

e The auxiliary connector is used to connect up to 4 external buttons and an audio
panel. Audio panel connection enables to send the audio information to the pilot’s
and operator’s headphones.

The PFD was designed and developed at the Faculty of Information Technology. For the
purposes of mounting the PFD on—board of the airplane, the airplane manufacturer equipped
the experimental airplane with a custom dashboard containing prepared installation space
according to the PFD specification.

The software for visualization of the flight maneuvers on the Primary Flight Display was
programmed in LabView [33]. The LabView is a graphical system design software.

"RAM — Random Access Memory
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(a) Front view (b) Rear view

Figure 4.3: Photography of the Primary Flight Display.

4.3 Flight data acquisition and preprocessing

The data were recorded during the flight experiments conducted on the experimental air-
plane Evektor SportStar RTC, owned by Evektor s.r.o., which operates an Authorized air-
craft testing laboratory (authorization N° L-3-060 issued by Civil Aviation Authority of
Czech Republic — CAA [11]). The experimental airplane was equipped with Data Acquisi-
tion System sensors and a Primary Flight Display, see Section 4.2.

Gathered data were post—processed using Flight Path Reconstruction.

4.3.1 Dynamic longitudinal stability

The reason behind the acquisition of the flight data is the estimation of dynamic longitudinal
stability characteristics. This task is based on exciting the investigated airplane dynamic
response in longitudinal motion.

For the excitation of the system’s dynamic response, a doublet maneuver was used. The
doublet is a suitable testing maneuver as high complex maneuvers like 3-2-1-1 have to be
executed using an automatic flight control system and simple pulses do not fully excite
dynamic modes of the aircraft [22].

After exciting a dynamic mode of motion with an input and removing the pilot from the
control loop, the system can record an aircraft open loop motion. A physical system’s
dynamic stability analysis is concerned with the resulting time history of motion of a system
when displaced from an equilibrium condition [45].

A sophisticated solution to the aircraft Equations of Motion with valid aerodynamic inputs
can result in good theoretically obtained time histories. However, the fact remains that the
only way to discover the aircraft’s actual dynamic motion is to flight test and record its
motion for analysis [15].

Before the maneuver, the pilot has to meet these conditions [23]:

e Airplane must fly straight, steady and horizontal, so roll angle and flight path angle
must be smaller than 5°.

e Airplane must maintain specified airspeed and at a specified altitude.
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e All forces on control stick must be trimmed, no additional force should appear on the
control stick.

e Airplane must have specified weight and position of center of mass.

e Airplane must have specified position of flaps.

The maneuver is started at specified airspeeds ranging from 1.2 Vg to Vg, or 1.2 Vg to
Vre — 15% with extended flaps [23]. The maneuver is conducted by inducing a doublet
by pushing and pulling the control stick, when subsequent elevator deflection introduce the
longitudinal motion.

4.3.2 Flight campaign

During the flight campaign, seven flights were conducted in the period of July and August
2012. The weather conditions while testing were without significant wind or mechanical
or thermal turbulence. Flights were conducted in altitudes of 915m and 2438 m (3000 ft
and 8000 ft). Three flights were conducted with a front center of gravity position, two of
them were conducted with “fixed control” after inducing the doublet maneuver and one of
it was conducted with “free control”. Another four flights were conducted at the rear center
of gravity position. Two of the flights were conducted with a “fixed control” after inducing
the doublet and two were conducted under “free control” conditions.

All flight tests were performed at a certified aerodrome in Kunovice. ICAO code of aero-
drome is LKKU.

4.3.3 Flight Path Reconstruction

The Flight Path Reconstruction (FPR) post—processes the raw measured data. Angle—of—
attack is being corrected for upwash effect described in Section 3.1.1. Specific forces and
angle—of—attack are corrected for the position error using equations in Section 3.1.2. On the
corrected data, Kalman Filter described in Section 3.1.4 is used to minimize the effects of
measurement noise.

For the purposes of this thesis, the author has implemented the algorithm with all the
corrections necessary. The Flight Path Reconstruction algorithm is implemented in Mat-
lab [31].

An example of few chosen physical quantities during a flight maneuver is presented in
Figure 4.4. Blue lines represent raw measured data and red lines represent data after the
corrections and Flight Path Reconstruction.
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Figure 4.4: Comparison of the data before and after FPR process (Blue lines represents raw
measured data and red lines represents data after FPR).
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4.4 A-—priori data

The a—priori data are the outputs from the softwares described in Section 3.2. All models
used in this thesis are based on the information provided by the airplane manufacturer [23].
More information about the numerical models providing the flight parameters is introduced
in following sections.

4.4.1 Tornado software estimates

For the purposes of obtaining the a—priori values from the Tornado software, the author has
created a model of the investigated airplane based on the information provided by airplane
manufacturer [23]. Picture of the airplane’s model is presented in Figure 4.5.

Body z-coordinate

2
Body x-coordinate

Body y-coordinate -3

-4 1

Figure 4.5: Airplane’s model in Tornado software.

The model of the whole airplane has been split into panels of equal ratios. On the figure,
the green stars show the position of the control points and the red dotted lines indicates the
normals to each panel surface. The model coordinates are shown in the Design Reference
Frame Fy.

The model consists of the wing, fuselage, vertical and horizontal tail units. The wing has
been divided into 126 panels. The horizontal and vertical tail units are divided into 24
panels each. The fuselage is substituted by its planar projection, as Tornado does not
support slender body modeling. The fuselage is divided into 130 panels.
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4.4.2 AVL software estimates

For the purposes of obtaining a—priori values from the AVL software, the author has created
a model of the investigated airplane based again on the information provided by the airplane
manufacturer [23]. Picture of the AVL airplane model is shown in Figure 4.6.

Figure 4.6: Airplane model in AVL software.

The model of the whole airplane has been split into panels of similar ratios. In the figure, the
green stars show the position of the control points and the blue lines indicate the normals
to each panel surface. The model coordinates are in the Design Reference Frame Fy.

The model same as in previous case, consists of the wing, fuselage, vertical and horizontal
tail units. The wing has also been divided into 126 panels. The horizontal and vertical tail
units feature 24 panels each. The shape of the fuselage is modeled using circles with the
cross—section characteristics of the actual fuselage, hence AVL does not support fuselage
fully. The fuselage has been divided into 15 parts by planes as shown in the Figure 4.6. The
figure also show the red line indicating the center of the fuselage planes.

4.4.3 Datcom software estimates

A model of the experimental airplane was developed as a part of the “Smart Autopilot”
project. It was based on the outputs of the USAF Datcom introduced in Section 3.2.3.

The model data from Datcom estimates are thoroughly described in [9].

4.5 Parameter estimation

The flight parameters were estimated using methods described in Section 3.3. The author’s
contribution is beyond other also in the software implementation of all three algorithms in
Matlab [31]. Both nonlinear and linear Equations of Motion were considered. Using both
modeling approaches allows for a straight forward comparison of both approaches.
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All flight parameters introduced in Section 2.3.2 were divided into two main types: force
parameters and moment parameters. For the purposes of this thesis, only the longitudinal
parameters are presented.

4.5.1 Force parameters

The force parameters are independent of the center of mass position. The force longitudinal
parameters can be divided to respective drag parameters C'p, and lift parameters Cp,.

The drag curve slope Cp, and lift curve slope Cp, define the basic performance of an
airplane. Both of these flight parameters depend on the shape, size and aerodynamic char-
acteristics of the airplane. The CL, must be positive and its theoretical maximum is equal
to 27r.

The flight parameter Cpg is equal to lift coefficient C, in the case when the angle-of-attack
« is equal to zero, elevator deflection . is equal to zero and pitch rate ¢ is equal zero..
Similarly, the flight parameter Cpg is equal to drag coefficient Cp in case the angle—of-
attack a is equal zero and pitch rate ¢ is equal zero.

Another lift parameter is the Cr, (lift due to pitch rate) and Cp;, (elevator effect on lift).
The Cr4 could be neglected, as the effect of this flight parameter on the lift coefficient Cf,
is very small. The flight parameter C'r5, depends on shape, size and characteristics of the
elevator. The Cp;5, must be positive for classical airframe configurations.

The drag parameters Cp, (drag due to pitch rate) and Cps, (elevator effect on drag) are
neglected, as the effect of those flight parameters on drag coefficient Cp is very small.

The estimation results of the force parameters are shown in Figure 4.7. The lift parameters
are compared to the a—priori values from the Tornado software, AVL software and Datcom.
More details about the a—priori values are presented in Section 4.4.
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Figure 4.7: Graph of force parameters.
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Figure 4.8 shows the dependence of the drag coeflicient Cp whose Taylor’s series expansion
consist of the above discussed flight parameters (Cp,) as a function of the angle—of-attack «.
The blue stars show the data points from the identification maneuvers executed at altitude
915m (3000 ft) and the red stars show the data points from the maneuvers performed at
altitude 2438 m (8000 ft). The orange line presents a linear interpolation of the dependence
of drag coefficient Cp on the angle-of-attack a.
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Figure 4.8: Graph of drag curve.

Figure 4.9 shows the dependence of the lift coefficient C'r, whose Taylor’s series expansion
consist of the above discussed flight parameters (Cr;) as a function of the angle-of-attack a.
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Figure 4.9: Graph of lift curve.
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The blue stars show the data points from the maneuvers executed at altitude 915 m (3000 ft)
and the red stars show the data points from the identification maneuvers executed at altitude
2438 m (8000 ft). The orange line presents a linear interpolation of the dependence of the
lift coefficient C, on the angle—of-attack a.

4.5.2 Moment parameters

The moment parameters depend on the center of mass position. The moment longitudinal
parameters are the pitch moment parameters C,,;.

The pitching moment slope C,, strongly depend on the center of mass position. The Cj,q
should be negative as it defines the level of static stability [11].

The flight parameter Cp,q is equal to the pitch moment coefficient C,,, in the case that the
angle—of—attack « is equal to zero, pitch rate ¢ is equal to zero and elevator deflection d is
equal to zero.

The pitch damping parameter C,,, specifies the dynamic longitudinal behavior of the air-
plane. The parameter Cp,, must be negative, otherwise the airplane will be dynamically
unstable.

The elevator effect on pitching moment C,,,5, is the main control parameter in longitudinal
motion. The flight parameter C,,5, depends on shape, size and characteristics of the elevator.
The C,,s, should be negative for the classical tail configuration.

Results of the estimation of the moment parameters are presented in Figures 4.10 to 4.13.
The position of the center of mass is expressed in a fraction of the Mean Aerodynamic Chord
of main wing in percents.
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Figure 4.10: Graph of parameter Cpy,g.
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Figure 4.13: Graph of parameter Ci,s,.

4.5.3 Model validation

The dataset gathered during the flight campaign mentioned above was split into a training
dataset and a validation dataset. The validation dataset contains the maneuvers used only
for the validation of the estimated flight parameters. The estimated flight parameters were
used for obtaining the simulated flight data. The simulation uses the input signal and initial
conditions from the validation dataset. The outputs of the simulation were compared with
measured flight data (see Figure 4.14).

The blue lines represents the measured flight data after the FPR process and the red lines
represents the simulated flight data based on the estimated flight parameters. It can be
seen in figure, that the airspeed V', angle—of—attack «, pitch angle 8 and pitch rate ¢ have a
good fit. The translational accelerations a, and a, suffer from the vibrations caused by the
4 stroke combustion engine. As previously mentioned, an elevator doublet maneuver was
used for the excitation. The elevator input is shown on last graph and does not contain a
red line as the elevator is the input and thus it is not simulated.

After the comparison of the simulated and measured flight data it can be said that the
simulated flight data based on the estimated flight parameters correspond sufficiently to
the measured flight data. Therefore, it can be said, that the estimated flight parameters
sufficiently describe the airplane aerodynamics and created model is sufficiently accurate.
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4.6 Summary

All flight parameters of the experimental airplane, which were estimated from the measured
flight test data fall within the limits presented in Sections 4.5.1 and 4.5.2.

4.6.1 Linear dependency of parameters

The linear characteristics of the force coefficients were presented in Section 4.5.1. The
Figures 4.8 and 4.9 shows the selected part of the flight envelope and a linear interpolation
of force coefficients.

4.6.2 Simulation and model validation

In Section 4.5.3, it was shown, that the simulated flight data based on the estimated flight
parameters sufficiently correspond to the measured flight data. Therefore, it can be said,
that the estimated flight parameters sufficiently describe the airplane aerodynamics and the
created model is sufficiently accurate.

4.6.3 Correction of a—priori values

All sources of the a—priori aerodynamic coefficient values, exhibit difficulties with the drag
flight parameters. The relative values of drag based flight parameters range within [29%, 52%]
of estimated flight parameters. The lift based flight parameters have a good a—priori pre-
diction ranging within [87%, 117%] of estimated flight parameters.

Table 4.4: Comparison of a—priori force parameters and force parameters obtained by esti-
mation methods based on experimental flight data.

Absolute values Relative values

Param. Est. Tornado AVL Datcom Est. Tornado AVL Datcom

Cpo 0.0510  0.0148 0.0244 — 1.00 0.29 0.48 —
Cpa 0.6908  0.2326 — 0.3574 1.00 0.34 — 0.52
Cro 0.4879  0.5619 0.5692  0.4256 1.00 1.15 1.17 0.87
CrLa 5.0702  4.9873 4.8796  4.9805 1.00 0.98 0.96 0.98
Crs, 0.4730  0.5175 0.4419  0.4820 1.00 1.09 0.93 1.02
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Table 4.5: Comparison of a—priori moment parameters and moment parameters obtained by
estimation methods based on experimental flight data at center of mass position 30%MAC.

Absolute values Relative values
Param. Est. Tornado AVL Datcom Est. Tornado AVL Datcom
Cmo —0.1025 —0.0013 0.0266 0.0308 1.00 0.01 —-0.26  —0.30
Chma —0.428 —0.979 —0.476 —-0.777 1.00 2.29 1.11 1.81
Cing —25.379 —10.768 —8.992 —8.182 1.00 0.42 0.35 0.32
Cms. —2.077 —1.373 —1.147 —1.328 1.00 0.66 0.55 0.64

Table 4.6: Comparison of a—priori moment parameters and moment parameters obtained
by estimation methods based experimental flight data at center of mass position 32%MAC.

Absolute values Relative values
Param. Est. Tornado AVL Datcom Est. Tornado AVL Datcom
Cmo —0.0574 0.0102 0.0376 0.0415 1.00 -0.18 —-0.66 —0.72
Chma —0.286 —0.877 —0.389 —0.681 1.00 3.07 1.36 2.38
Cing —24.324  —10.562 —&.840 —8.047 1.00 0.43 0.36 0.33
Cms. —1.839 —1.362 —1.139 —1.319 1.00 0.74 0.62 0.72

4.6.4 Comparison with other airplane category

The ratios of the a—priori values relative to the values obtained by the estimation methods
based experimental flight data on SportStar RT'C are compared the correction factor of the
a—priori values and wind—tunnel data values for a F-18 Hornet model published by J. Kay
et al. [24]. The VLM (Vortex Lattice Method), used by J. Kay et al., is the underlaying
theory in Tornado and AVL software packages.

The relative values of the investigated longitudinal motion flight parameters are given in
Table 4.7.

The differences between the correction factors of the Evektor SportStar RTC and F-18
Hornet models are minor for the lift flight parameters, but higher for the pitch moment
parameters.
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Table 4.7: Comparison of relative values of low subsonic flight parameters between SportStar
RTC and F-18 Hornet.

SportStar RTC

F-18 Hornet

Parameter Est. Tornado AVL Datcom Data VLM Datcom
Chbo 1.00 0.29 0.48 — — — —
Cha 1.00 0.34 — 0.52 — — —
Cro 1.00 1.15 1.17 0.87 — — —
CrLa 1.00 0.98 0.96 0.98 1.00  0.93 0.86
CrLs, 1.00 1.09 0.93 1.02 1.00  0.89 0.84
Cmo 1.00 —-0.18 —-0.66 —0.72 — — —
Cra 1.00 3.07 1.36 2.38 1.00  0.90 0.95

Cmyg 1.00 0.43 0.36 0.33 1.00 1.25 0.90
Cms. 1.00 0.74 0.62 0.72 1.00  0.97 0.89
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5. Conclusion and future work

The objectives of this thesis were to study the theory of the flight data acquisition and flight
parameter estimation; to select and implement algorithms suitable for flight parameters
estimation of a light airplane. These objectives were met and the author identified the
flight parameters of the investigated experimental light airplane.

All flight parameters of the experimental airplane which were estimated based on the mea-
sured flight test data fall within the presented limits. For the purposes of the flight pa-
rameter estimation, the author used the Equation Error Method, Output Error Method
and Recursive Least—Squares methods. The force coeflicients containing the longitudinal
motion exhibit linear character in the investigated region of the flight envelope. The flight
envelope was limited to conditions, in terms of altitudes, airspeed and position of center of
mass, as consulted with the airplane manufacturer. Using the model validation process, the
author have proved, that the simulated flight data based on the estimated flight parameters
sufficiently corresponds to the measured flight data. Therefore, the estimated flight param-
eters sufficiently describe the airplane aerodynamics and the created model is sufficiently
accurate. The flight parameters, the author estimated in this thesis can be used to build a
high fidelity flight simulator, which will be able to match the behavior of the real airplane
more precisely and therefore improve the airplane pilot training.

The lift based flight parameters have a good a—priori prediction ranging within [87%, 117%]
of the estimated flight parameters. The relative values of the drag based flight parameters
range within [29%,52%] of the estimated flight parameters, which points to a weak spot
of the a—priori data sources. The differences between the correction factors of the Evektor
SportStar RTC and F-18 Hornet models are minor for the lift flight parameters, but higher
for the pitch moment parameters. The presented correction factors are useful during the de-
velopment phase of a new airplane to conservatively predict its aerodynamic characteristics.
The resultant correction factors for the presented computational tools can be applied in the
design of a similar category of airplanes, which can lower the expenses of the development
cycle. The possible direction of further research is the estimation of the flight parameters
for the lateral-directional motion.

The presented contributions were published in international conferences (mostly AIAA and
DASC conferences), and these papers were cited several times (see attached List of authors
publications and research activities).
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