
BRNO UNIVERSITY OF TECHNOLOGY
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ

FACULTY OF ELECTRICAL ENGINEERING AND COMMUNICATION
DEPARTMENT OF CONTROL AND INSTRUMENTATION

FAKULTA ELEKTROTECHNIKY A KOMUNIKAČNÍCH TECHNOLOGIÍ
ÚSTAV AUTOMATIZACE A MĚŘICÍ TECHNIKY

FAST FEATURE MATCHING FOR SIMULTANEOUS
LOCALIZATION AND MAPPING

BACHELOR’S THESIS
BAKALÁŘSKÁ PRÁCE

AUTHOR ONDŘEJ MIKŠÍK
AUTOR PRÁCE

BRNO 2010

VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ
BRNO UNIVERSITY OF TECHNOLOGY

FAKULTA ELEKTROTECHNIKY
A KOMUNIKAČNÍCH TECHNOLOGIÍ
ÚSTAV AUTOMATIZACE A MĚŘICÍ TECHNIKY

FACULTY OF ELECTRICAL ENGINEERING AND
COMMUNICATION
DEPARTMENT OF CONTROL AND INSTRUMENTATION

FAST FEATURE MATCHING FOR SIMULTANEOUS
LOCALIZATION AND MAPPING
RYCHLÉ VYHLEDÁVÁNÍ OBRAZOVÝCH VLASTNOSTÍ PRO SOUČASNOU
LOKALIZACI A MAPOVÁNÍ

BAKALÁŘSKÁ PRÁCE
BACHELOR’S THESIS

AUTOR PRÁCE ONDŘEJ MIKŠÍK
AUTHOR

VEDOUCÍ PRÁCE KRYSTIAN MIKOLAJCZYK, PhD., MSc.
SUPERVISOR

BRNO 2010

ZDE VLOŽIT LIST ZADÁNÍ

Z důvodu správného číslování stránek

ABSTRACT
The thesis deals with the fast feature matching for simultaneous localization and map-
ping. A brief description of local features invariant to scale, rotation, translation and
affine transformations, their detectors and descriptors are included. In general, real–time
response for matching is crucial for various computer vision applications (SLAM, object
retrieval, wide–robust baseline stereo, tracking, . . .). We solve the problem of sub–linear
search complexity by multiple randomised KD–trees. In addition, we propose a novel
way of splitting dataset into the multiple trees. Moreover, a new evaluation package for
general use (KD–trees, BBD–trees, k–means trees) was developed.

KEYWORDS
Local Invariant Features, Feature Detectors and Descriptors, KD–trees, BBD–trees, K–
means trees, Simultaneous localization and mapping (SLAM), Performance Evaluation

ABSTRAKT
Bakalářská práce se zabývá rychlým vyhledáváním lokálních obrazových vlastností v roz-
sáhlých databázích pro simultánní lokalizaci a mapování prostředí. Součástí práce je
krátký přehled detektorů a deskriptorů invariantních vůči rotaci, translaci, změně mě-
řítka a affinitě. Pro řadu aplikací z oblasti počítačového vidění (SLAM, object retrieval,
wide–robust baseline stereo, tracking, . . .) je odezva reálném čase naprosto nezbytná.
Jako řešení sublineární časové náročnosti vyhledávání v databázích bylo navrženo pou-
žití vícenásobných náhodně generovaných KD–stromů. Dále je předkládán nový způsob
dělení dat do vícenásobných KD–stromů. Navíc byl navržen nový, obecně použitelný vy-
hodnocovací software (podporovány jsou KD–stromy, BBD-stromy a k-means stromy.)

KLÍČOVÁ SLOVA
Lokální invariantní vlastnosti, Detektory, Deskriptory, KD stromy, BBD stromy, K–means
stromy, Simultánní Lokalizace A Mapování (SLAM), Vyhodnocení výkonosti

MIKŠÍK, Ondřej Fast Feature Matching for Simultaneous Localization and Mapping:
bachelor’s thesis. Brno: Brno University of Technology, Faculty of Electrical Engineering
and Communication, Department of control and instrumentation, 2010. 91 p. Supervised
by Krystian Mikolajczyk, PhD., MSc.

DECLARATION

I declare that I have elaborated my bachelor’s thesis on the theme of “Fast Feature
Matching for Simultaneous Localization and Mapping” independently, under the super-
vision of the bachelor’s thesis supervisor and with the use of technical literature and
other sources of information which are all quoted in the thesis and detailed in the list of
literature at the end of the thesis.
As the author of the bachelor’s thesis I furthermore declare that, concerning the

creation of this bachelor’s thesis, I have not infringed any copyright. In particular, I have
not unlawfully encroached on anyone’s personal copyright and I am fully aware of the
consequences in the case of breaking Regulation § 11 and the following of the Copyright
Act No 121/2000 Vol., including the possible consequences of criminal law resulted from
Regulation § 152 of Criminal Act No 140/1961 Vol.

Brno .
(author’s signature)

ACKNOWLEDGMENTS

I am very grateful to my supervisor Dr. Krystian Mikolajczyk for his advices, feedback
and leadership. I would also like to thank my consultant Dr. Luděk Žalud as well as to
all the other people who helped me with my internship in the Centre for Vision, Speech
and Signal Processing at the University of Surrey in Guildford.

At last but not least, I am very grateful to all my family and my girlfriend Markéta for
their support.

Brno .
(author’s signature)

vi
DEPARTMENT OF CONTROL AND INSTRUMENTATION
Faculty of Electrical Engineering and Communication

Brno University of Technology

CONTENTS

1 Introduction 1

1.1 Problem Formulation . 2

1.2 Challenges . 4

1.3 Applications . 5

1.4 Thesis Structure . 7

2 State of the Art 8

2.1 Overview of Local Invariant Features 8

2.2 Local Feature Detectors . 10

2.2.1 Corner Detectors . 10

2.2.2 Blob Detectors . 12

2.2.3 Region Detectors . 13

2.2.4 Efficient Implementations . 14

2.3 Local Image Descriptors . 17

2.3.1 Distribution Based Descriptors 17

2.3.2 Spatial–Frequency Techniques 19

2.3.3 Differential Descriptors and Complex Filters 19

2.3.4 Others Techniques . 20

2.4 Efficient Data Structures . 22

2.4.1 Tree Structures . 22

2.4.2 Splitting and Shrinking Rules 26

2.4.3 Search Techniques . 28

2.4.4 Locality Sensitive Hashing . 30

3 Performance Evaluation 31

3.1 Data Sets . 31

3.2 Evaluation Criterion . 32

3.2.1 Ground Truth . 33

3.2.2 Precision . 36

3.2.3 Recall . 38

3.2.4 Speed–up . 38

3.3 Overview of Experimental Framework 39

3.3.1 Database . 39

3.3.2 Efficient Data Structures . 40

3.3.3 Query Images . 41

3.3.4 Fast Feature Matching . 41

3.3.5 Performance Evaluation . 43

vii
DEPARTMENT OF CONTROL AND INSTRUMENTATION
Faculty of Electrical Engineering and Communication

Brno University of Technology

3.3.6 Implementation . 43

4 Experimental Results 45

4.1 Matching Strategies . 45

4.2 Interpretation of Figures . 46

4.3 Properties of Data Sets . 47

4.4 Ground truth . 49

4.5 ANN Search . 50

4.6 Multiple Randomized Tree Structures 52

4.7 Priority Search . 55

4.8 Data Distributions . 57

4.9 Descriptor Dimensionality . 59

4.10 Maximum Visited Leaves . 60

4.11 Database Size . 63

4.12 Tree Construction Time . 65

5 Discussion and Conclusions 66

Bibliography 67

List of symbols, physical constants and abbreviations 74

List of appendices 75

A Tools 76

A.1 compute descriptors . 76

A.2 feature eval . 76

A.2.1 Usage . 77

A.2.2 Input and Output Files . 78

A.3 Performance Evaluation tools . 79

A.4 Other . 80

B Local Feature Detectors 81

B.1 Corner Detectors . 81

B.1.1 Harris/Plessey Detector . 81

B.1.2 Harris–Laplace . 82

B.1.3 Harris–Affine . 83

B.2 Blob Detectors . 85

B.2.1 Hessian Detector . 85

B.2.2 Hessian–Laplace/Affine . 86

B.3 Region Detectors . 87

viii
DEPARTMENT OF CONTROL AND INSTRUMENTATION
Faculty of Electrical Engineering and Communication

Brno University of Technology

B.3.1 Intensity–based Regions . 87

B.3.2 Maximally Stable Extremal Regions 88

C Enclosed DVD 91

ix
DEPARTMENT OF CONTROL AND INSTRUMENTATION
Faculty of Electrical Engineering and Communication

Brno University of Technology

LIST OF FIGURES

1.1 DARPA challenges winning robots 1

1.2 Various robotic platforms . 2

1.3 Overview of SLAM–like systems . 3

1.4 Challenges in computer vision . 5

1.5 Applications of local invariant features 6

1.6 3D object recognition with occlusion 7

2.1 Local features . 8

2.2 Harris and Harris–Laplace corner detectors 11

2.3 Harris–Affine transformation . 11

2.4 Hessian–Laplace/Affine blob detector 12

2.5 MSER detector . 13

2.6 Robust wide baseline stereo . 14

2.7 SIFT detector overview . 15

2.8 Concept of integral images . 15

2.9 Box filter . 16

2.10 FAST detector . 16

2.11 SIFT descriptor . 18

2.12 Gaussian derivatives and complex filters 20

2.13 KD–tree and its spatial decomposition 23

2.14 Comparison of KD–trees and BBD–trees 24

2.15 K–means trees . 25

2.16 Splitting rules . 26

2.17 Priority search . 29

3.1 Graffiti data set . 32

3.2 Examples of PASCAL VOC 2007 data set 33

3.3 Parameters A, A∗ . 34

3.4 Parameter A+ . 35

3.5 Overlap error . 36

3.6 Parameter B . 37

3.7 Criterion B∗ . 37

3.8 Correct Matches . 38

3.9 Reference images . 40

3.10 Query images . 42

3.11 Overview of the performance evaluation framework 44

4.1 Properties of test sequences . 48

4.2 Comparison of original and extended database 49

4.3 Performance evaluation – single KD–tree 50

x
DEPARTMENT OF CONTROL AND INSTRUMENTATION
Faculty of Electrical Engineering and Communication

Brno University of Technology

4.4 Multiple Randomized Trees . 52

4.5 Performance evaluation – multiple randomized KD–trees I. 53

4.6 Performance evaluation – multiple randomized KD–trees II. 54

4.7 Performance evaluation – ANN priority search 55

4.8 Performance evaluation – ANN priority search 56

4.9 Data distributions . 57

4.10 Performance evaluation – Data Distributions 58

4.11 Performance evaluation – Descriptor Dimensionality 60

4.12 Performance evaluation – Maximum Visited Leaves, ST 61

4.13 Performance evaluation – Maximum Visited Leaves, SB, SBA 62

4.14 Performance evaluation – Database Size 63

4.15 Construction time . 65

B.1 Harris corner detector . 82

B.2 Harris–Laplace corner detector . 83

B.3 Harris–Affine transformation . 84

B.4 Affine normalization . 84

B.5 Hessian blob detector . 85

B.6 Hessian–Laplace/Affine blob detector 86

B.7 Construction of Intensity Based Region 87

B.8 MSER detector . 88

B.9 Robust wide baseline stereo . 88

xi
DEPARTMENT OF CONTROL AND INSTRUMENTATION
Faculty of Electrical Engineering and Communication

Brno University of Technology

LIST OF TABLES

4.1 Number of detected features in the Graffiti data set 48

4.2 Number of features used in database 48

4.3 ANN search, single KD–tree, SA . 51

4.4 ANN search, single KD–tree, SB . 51

4.5 ANN search, single KD–tree, SBA . 51

4.6 Standard ANN search, single KD–tree, speed evaluation 51

4.7 Dimensionality . 59

4.8 Time measurements for different maximum visited leaves (all test set) 61

4.9 Comparison of large and small databases 64

B.1 Overview of local invariant feature detectors 90

1
DEPARTMENT OF CONTROL AND INSTRUMENTATION
Faculty of Electrical Engineering and Communication

Brno University of Technology

1 INTRODUCTION

The mobile robotics community made an enormous effort to build robots with ele-

ments of autonomous behavior during the past two decades. The field of possible

objectives is various from maze solving robots, letter–carrier robots to fully autono-

mous vehicles which can operate in an unknown environment.

Many successful projects has proven in the past that the idea of fully autonomous

vehicle is not utopia. The most famous are probably projects Argo [13] or No Hands

Across America [52]. The essential boom started with the three challenges organi-

zed by Defense Advanced Research Projects Agency (DARPA). In the first DARPA

Grand Challenge in 2004 (Mojave Desert), the best robot which was built by Car-

negie Mellon University (CMU) made only an 11.78km length run, nevertheless it

was a great achievement, because they proved that it is possible to do it.

(a) Stanley, Stanford Racing, courtesy of [62] (b) Boss, Tartan Racing, courtesy of [64]

Fig. 1.1: DARPA challenges winning robots

One year later the route was even more difficult, but all robots exceeded the

largest run from the previous competition. The winner was Stanley created by Stan-

ford Racing Team. In 2007, DARPA Urban Challenge took place in Victorville. The

competition was more challenging because vehicles had to follow all Californian traf-

fic regulations. The winner Boss was made by Tartan Racing (CMU).

One might seem, that the DARPA competitions were disposable, however tech-

nologies which were used can be applied in various fields like army autonomous

vehicles preventing human casualties or space exploration robots. Afterwards, these

technologies will enforce in our everyday life like safety systems in cars, mapping of

abandoned mines, etc.

2
DEPARTMENT OF CONTROL AND INSTRUMENTATION
Faculty of Electrical Engineering and Communication

Brno University of Technology

1.1 Problem Formulation

The general problem of mobile robot navigation can be summarized by three essen-

tial questions [12]:

• Where am I?

• Where am I going?

• How should I get there?

Answers for these questions are necessary for both the teleoperated as well as

fully autonomous robots, however fully autonomous robots are able to solve these

problems themselves. The most interesting case is when robots are able to operate

in an unknown environment. Then, arises one of the most fundamental problem

of robotics – the Simultaneous Localization And Mapping (SLAM). The SLAM1

is not an unique algorithm, rather it is a set of different approaches solving the

chicken–and–egg problem of incremental acquiring of a consistent map of unknown

environment while its relative location to this map is simultaneously determined

[18, 6, 65].

(a) Mars rover, JPL Caltech, courtesy of [36] (b) Orpheus–AC, LTR BUT, courtesy of [50]

Fig. 1.2: Various robotic platforms

The SLAM exists and is implemented in a number of different forms from indoor

robots to outdoor, underwater and airborne systems. Let us mention historically the

earliest probabilistic approach which influenced many recent algorithms – the Ex-

tended Kalman Filter (EKF) SLAM or one of the most actual progressive approach

based on particle filter – the FastSLAM (2.0) [45].

1Other widely used term is Concurrent Mapping and Localization (CML)

3
DEPARTMENT OF CONTROL AND INSTRUMENTATION
Faculty of Electrical Engineering and Communication

Brno University of Technology

Fig. 1.3: Overview of SLAM–like systems

The figure 1.3 describes one possible block scheme of SLAM. We aims at image

processing pipeline which may contain preprocessing block (equalization, denoising,

subsampling, . . .), local invariant feature extraction and description, indexing fea-

tures to large database and matching of features, refinement of found matches, and

creation of ranking list which is used as an output. The most time consuming steps

are feature detection and matching. Several efficient implementations of feature de-

tectors and descriptors exist (SIFT, SURF, FAST, . . .), so we can assume that this

step is partially solved, however feature matching in a large database is a serious

bottleneck problem when the real–time response is required.

4
DEPARTMENT OF CONTROL AND INSTRUMENTATION
Faculty of Electrical Engineering and Communication

Brno University of Technology

1.2 Challenges

SLAM algorithms use different types of sensors. Many of them are designed to get

data from ultrasound sensors, radar or recently laser range finders. Another challen-

ging goal may be to develop a SLAM which will use information obtained by camera.

SLAM based on camera should be useful, because it is a cheap sensor and besides,

robots usually use cameras for different tasks. Another benefits may be ability not

just to detect any objects and landmarks, but rather recognize and distinguish them

and track moving objects (not to consider them just as a noise). It is possible to

classify those landmarks and objects, therefore smarter path planning could be de-

veloped. Even humans receive most information by vision.

However, computer vision is not easy, due to the several reasons. Even if we

passover all troubles connected with image acquisition process, there still exists

many reasons why it is quite difficult to retrieve objects. Let us summarize some of

them:

• Viewpoint changes – objects are seen under different viewpoint. It is abso-
lutely necessary to deal with rotation, translation, scale and affine invariant.

• Partial occlusion by other objects – object are usually occluded by diffe-
rent objects like people, cars, trees, etc.

• Different illumination conditions – objects or their fragments are seen
under different illumination throughout the day, even at the same time, due

to shadows or oversaturated parts of a scene.

• Data amount – it is necessary to process a huge amount of data

Many of these problems are solvable by a progressive idea of local invariant fea-

tures. Various feature detectors and descriptors have been proposed. This approach

may be roughly described in a few steps. After image preprocessing, the local in-

variant features are detected, described and stored in a database. Then, extracted

features from the query image are matched to the database and different classifiers

are used to recognize the objects.

All of these steps may be time consuming. During the past decade, several effici-

ent implementations of the local image detectors and descriptors have been propo-

sed. However, sufficient descriptors are highly dimensional and the databases usually

contain hundreds of samples. Consequently, a brute–force (linear) search in the data-

base may take much time, up to few hours or days. In particular, we are interested

5
DEPARTMENT OF CONTROL AND INSTRUMENTATION
Faculty of Electrical Engineering and Communication

Brno University of Technology

(a) Viewpoint change – Duke of Kent Building, University of Surrey

(b) Occlusion by other objects – York Minster

(c) Different illuminations – Big Ben

Fig. 1.4: Challenges in computer vision, courtesy of [51]

in on–line SLAM, therefore the fast feature matching very close or equal to the

real–time is crucial.

1.3 Applications

Our motivation for fast feature matching is clear as we have described above. In

addition, fast feature matching allows the following applications (and even more):

• Image based recognition – it is not necessary to assign images or videos by
text tags, it is possible to search similar to the query one.

• Panorama stitching – extracted features are used to find correspondences
to create fully automated panorama.

• 3D scene modeling – accurate feature localization is used to build a sparse
3D model of the viewed scene.

• Detection of unsafe images – it is possible to detect unsafe images or videos
for kids (murders, . . .) and prevent watching.

6
DEPARTMENT OF CONTROL AND INSTRUMENTATION
Faculty of Electrical Engineering and Communication

Brno University of Technology

(a) Automatic panorama stitching (80 input images), courtesy of [14]

(b) Visualization of a part of spatially related images, courtesy of [15]

(c) PASCAL Visual Object Classes Challenge 2007, courtesy of [19]

(d) 3D reconstruction of scene (35 views), courtesy of [7]

Fig. 1.5: Applications of local invariant features

7
DEPARTMENT OF CONTROL AND INSTRUMENTATION
Faculty of Electrical Engineering and Communication

Brno University of Technology

1.4 Thesis Structure

The rest of the thesis is organized as follows: in chapter 2, state of the art on local

invariant feature detectors, descriptors and efficient data structures is briefly dis-

cussed. Then, we continue with description of used data sets, standard evaluation

criterion which are used for the experiments and with an overview of our perfor-

mance evaluation framework in chapter 3. Chapter 4 deals with results obtained

from various experiments. Finally, all conclusions are discussed and summarized in

chapter 5. Moreover, appendix A describes usage of each part of our performance

evaluation framework, appendix B describes local feature detectors more in detail

and appendix C summarize contents of enclosed DVD.

(a) (b)

Fig. 1.6: 3D object recognition with occlusion from local scale–invariant features,

courtesy of [32]

8
DEPARTMENT OF CONTROL AND INSTRUMENTATION
Faculty of Electrical Engineering and Communication

Brno University of Technology

2 STATE OF THE ART

In this chapter we discuss previous work. We begin with description of properties

of local invariant features, their detectors and descriptors. In section 2.2 we present

the state of the art on a local feature detectors. Then, in section 2.3 main modern

local feature descriptors are discussed. Finally in section 2.4 we describe different

data structures for sublinear search time. More information about feature detectors

may be found in appendix B.

2.1 Overview of Local Invariant Features

A local feature1 can be point, edgel (edge pixel) or image patch which differs from

its neighborhood in their properties such as intensity, color, or texture, but fea-

tures are not necessarily localized exactly on this change [42, 66]. It is not just a

method to select interesting points or to speed up the analysis but rather it is a

new representation of the image because local features are distinctive, robust to

occlusion and clutter and do not need the segmentation. Recently, many approaches

are focused on making these features invariant. Usually, local features are detected

through some measurements taken from sliding windows (regions) and converted

into the new image representation with descriptors. Next, the features are usually

stored in a database and used in a wide range of applications such as wide baseline

matching [37], building panoramas [14], object or texture recognition [33, 29], image

retrieval [55], robot localization [56], tracking [25], etc.

(a) (b)

Fig. 2.1: Importance of corners and T–junctions for perception of objects (a), cour-

tesy of [11] and local features extracted by Harris detector (b), courtesy of [66]

1Other widely used terms are interest point, region of interest, . . .

9
DEPARTMENT OF CONTROL AND INSTRUMENTATION
Faculty of Electrical Engineering and Communication

Brno University of Technology

Local features usually have some spatial extend over their support regions, this

can be any subset of image. Some uninteresting (mainly homogeneous) areas of an

image may be uncovered, other regions do not have to correspond to object boun-

daries, there might be an overlap of multiple support regions.

Local invariant2 features may have different properties depending on application.

We will summarize some general properties which should be common for ideal fea-

tures [66]:

• Repeatability – high percentage of the features should be detected and
matched on the scene part visible in two different images.

• Distinctiveness – each feature should be matched to a large database of
objects.

• Locality – the detected features should be local, so they should be robust to
occlusion and clutter, different viewpoint and/or illumination, blur, discreti-

zation effect, etc.

• Accuracy – the features should be accurately localized in the image and
should respect scale and possibly shape.

• Quantity – Even for small objects should be detected many features. Number
of the features should be adaptable by a simple threshold, because optimal

number of features depends on application.

• Efficiency – detection of features should be close to the real–time.

It has been such a long time since it has been understood that intersections of

straight lines and straight corners are strong indications of man made structures [5].

Many papers, journals and books were written about local feature detection over

more than the last fifty years. There exists many directions of research, for example

corner detectors, analyze of image intensities, other methods are based on derivati-

ves or color information. Another brach is inspired by the human brain. Recently,

many approaches deal with geometric transformations like scale and/or affine in-

variant detection. We focus on the main modern approaches as Harris and Hessian

affine regions [41], Scale Invariant Feature Transformation (SIFT) [33], Speeded Up

Robust Features (SURF) [8] or Maximally Stable Extremal Regions (MSER) [37]

feature detectors and SIFT [33], GLOH [42], PCA–SIFT [26] and Moment Invariants

descriptors [22].

2In fact, local features are covariant to some class of transformations, invariant are local pho-

tometric descriptors due to the normalization, however the term invariant is widely used.

10
DEPARTMENT OF CONTROL AND INSTRUMENTATION
Faculty of Electrical Engineering and Communication

Brno University of Technology

2.2 Local Feature Detectors

In this section, we summarize various local invariant feature detectors. We focus on

so–called corner detectors in section 2.2.1. Next, we briefly discuss blob detectors in

section 2.2.2 and region detectors in section 2.2.3. Finally, section 2.2.4 deals with

widely used efficient implementations of local feature descriptors.

2.2.1 Corner Detectors

As we have already noted, it has been such a long time since the first publication

of results of the observation about importance of structures like corners and T–

junctions in computer vision and pattern recognition [5]. The detected points do

not necessarily correspond to the corners of real objects. In fact, corner detectors

are sensitive even to various types of junctions, highly textured surfaces, etc, however

it does not matter – the goal is to have a set of stable and repeatable features [66].

Moravec proposed one of the earliest corner–like local feature detector which was

used for navigation of the Stanford Cart [47]. Moravec detector defines the corners

as points with a large intensity variations in eight principal directions. Nowadays,

the most widely used is Harris detector (other well known approaches are SUSAN

[60], Shi & Tomasi [57], . . .). Next, we discuss the Harris detector and its scale and

affine invariant extensions.

Harris/Plessey Detector

The Moravec detector was improved by Harris and Stephens in 1988 [23]. By com-

parison with the Moravec detector, the corner score is measured directly instead of

using shifted windows and has isotropic response. It is based on eigenvalues of the

second moment matrix (auto–correlation matrix), which represents the most prin-

cipal signal changes in two orthogonal directions around the point – Harris points

are detected if both eigenvalues are large [66].

Harris corner detector is invariant under rotation and translation only, many

features are localized on edges instead of real corners and sensitive to noise.

Harris–Laplace

Harris–Laplace detector was proposed by Mikolajczyk and Schmid [39] as an scale

invariant extension to the Harris corner detector. It is based on multi–scale Harris

corner detector and the characteristic scale is selected as was proposed by Lin-

denberg in 1998 [31]. Firstly, scale–space representation is built with the Harris

11
DEPARTMENT OF CONTROL AND INSTRUMENTATION
Faculty of Electrical Engineering and Communication

Brno University of Technology

(a) (b) (c) (d)

Fig. 2.2: Features extracted by Harris (a), (b) and Harris–Laplace (c), (d) corner

detectors, courtesy of [66]

function. Then for each initial point it is checked whether the LoG attains a maxi-

mum at the scale of the point.

Harris–Laplace detector provides efficient method extracting rotation, translation

and scale invariant local features [41, 66].

Harris–Affine

Harris–Laplace detector fails in the case of significant affine transformations when

the scale change is not necessarily the same in every direction. Harris–Affine [40]

is an affine invariant extension to Harris–Laplace detector. The main idea is to use

a second moment matrix in affine Gaussian scale-space where an elliptical affine

regions are used instead of circular region.

Fig. 2.3: Iterative detection of an affine invariant feature by Harris–Affine detector,

courtesy of [66]

Harris–Affine detector is invariant to rotation, translation, scale and affine trans-

formation. The number of detected local invariant features depends on the type of

scene and the threshold [41, 66].

12
DEPARTMENT OF CONTROL AND INSTRUMENTATION
Faculty of Electrical Engineering and Communication

Brno University of Technology

2.2.2 Blob Detectors

In this section, we briefly describe fundamentals of blob detectors. We begin with a

derivative–based method called Hessian detector 2.2.2. Next, we continue with scale

and affine 2.2.2 invariant extensions to this detector.

Hessian Detector

The class of Hessian detectors are based on the Hessian matrix, which is obtained

as the second matrix from the Taylor expansion of the image intensity function.

Location and scale for which the trace and the determinant of the Hessian matrix

attains the local extremum simultaneously are used to detect more stable maxima,

because the trace maximize the curvature and the determinant penalizes small se-

cond derivations in only a single direction [66].

Hessian–Laplace/Affine

The concept behind the Hessian–Laplace detector is similar to the Harris-Laplace,

however by comparison with Harris–Laplace, the Hessian–Laplace detector is ini-

tialized from the determinant of the Hessian matrix, instead of Harris detector.

Hessian–Laplace/Affine detectors were also proposed by Mikolajczyk and Schmid

[41].

Hessian based detectors are complementary to the Harris detectors, because they

are sensitive to the different parts of the image. Scale and affine invariant properties

of the detectors are provided in a similar manner – Hessian detector localize blobs in

space, Laplacian in scale and iterative approach is used for affine invariance. Hessian

based detectors are translation, rotation, scale and affine invariant [42, 66].

(a) (b) (c) (d)

Fig. 2.4: Features extracted by scale invariant Hessian–Laplace blob detector (a, b),

and affine invariant features extracted by Hessian Affine detector (c, d), courtesy of

[66]

13
DEPARTMENT OF CONTROL AND INSTRUMENTATION
Faculty of Electrical Engineering and Communication

Brno University of Technology

2.2.3 Region Detectors

In this section, we summarize detectors which extract image regions. We begin with

Intensity–based Regions. Then, we focus on Maximally Stable Extremal Regions.

Let us note that the importance of segmentation based methods (superpixels) is

growing, but they are not discussed in this thesis.

Intensity–based Regions

Intensity–based regions were proposed by Tuytelaars and Van Gool in 2000 [67]. The

main idea of this approach is following: the neighborhood of a point with extrema

intensity (detected at multiscale) is searched along each ray of the region and the

points for which is reached the maximum are invariant under both affine linear

photometric and geometric transformations.

Maximally Stable Extremal Regions

Maximally Stable Extremal Regions (MSER) were proposed by Matas et al. in 2002

[37]. The MSER are obtained by thresholding the image. The set of all connected

components, for which the binarization is stable over a large range of thresholds (all

intensities within the area are lower or higher than pixels on boundaries), is the set

of all MSERs (set of all maximally stable extremal regions).

(a) (b)

Fig. 2.5: Features (regions) extracted by Maximally Stable Extremal Regions detec-

tor (a) and fitted ellipses based on the first and second shape moments (b), courtesy

of [66]

MSER features are accurately localized, because it is sensitive to region bounda-

ries. The algorithm is very efficient for structured scenes with regions separated by

strong intensity changes. The main drawback of MSER is the sensitivity to image

blur.

14
DEPARTMENT OF CONTROL AND INSTRUMENTATION
Faculty of Electrical Engineering and Communication

Brno University of Technology

(a) (b)

Fig. 2.6: Estimated epipolar geometry and points associated to the matched regions

for robust wide baseline stereo from MSER, courtesy of [37]

2.2.4 Efficient Implementations

Many of previously discussed local invariant feature detectors are computationally

expensive, due to the computation of derivatives or second moment matrices. For-

tunately, there exists several efficient implementations of local invariant feature de-

tectors, which can be used for real–time applications. In this section, we discuss the

most important approaches as Scale Invariant Feature Transformation, Speeded Up

Robust Features and Features from Accelerated Segment Test.

Scale Invariant Feature Transformation

Scale Invariant Feature Transformation (SIFT) was proposed by Lowe in 1999

[33, 32, 66]. The detector use well–known approximation of the Laplacian of Gaussian

by the Difference of Gaussian. It is based on searching the maxima in scale–space re-

presentation of DoG filter response. Firstly, the scale–space representation L(x, y, σ)

of the image I(x, y) is computed by convolution of the image with a variable–scale

Gaussian G(x, y, σ)

L(x, y, σ) = G(x, y, σ) ∗ I(x, y), (2.1)

G(x, y, σ) =
1
2πσ2

e−
x2+y2

2σ2 (2.2)

where ∗ denotes the convolution. Next, the stable keypoint locations in scale space
of Difference–of–Gaussians are computed from the difference of two nearby scales

separated by a constant multiplicative factor k

D(x, y, σ) =
(
G(x, y, kσ)−G(x, y, σ)

)
∗ I(x, y) = L(x, y, kσ)− L(x, y, σ) (2.3)

Local maxima in these steps are located both in space and in scale with non-maxima

suppression. After a few steps, the process continues with subsampling of the image

15
DEPARTMENT OF CONTROL AND INSTRUMENTATION
Faculty of Electrical Engineering and Communication

Brno University of Technology

and computing next octave. Additional filtering step may be used for filtering strong

responses of the Laplacian on edges.

. . .

Gaussian
Difference of

Gaussians (DoG)

Scale

.

List of (x, y, σ)

Scale
(first octave)

Scale
(next octave)

σ

σ

σ= 2

1

4
-

sampling step

σ = 2
4

Original Image

Fig. 2.7: SIFT detector overview, courtesy of [33]

Speeded Up Robust Features

Speeded Up Robust Features (SURF) are based on the idea of integral images, which

allow fast computation of Haar wavelets or any other box–type filters:

IΣ(x, y) =
i<x∑
i=0

j<y∑
j=0

I(i, j) (2.4)

SURF detector is based on the Hessian–Laplace detector, but both the location

and scale are measured by the determinant of Hessian matrix. The approximated

box–type filters are used instead of discretized Gaussian filters which allows fast

computation of the second order derivatives due to used integral images [8, 66].

Fig. 2.8: Concept of the integral images allows to count in four additions sum of in-

tensities over any rectangular area independently on its size (∑=D−B−C+A), courtesy

of [63]

The SURF detector with box–type filters has comparable results with the dis-

cretized Gaussians, however is five times faster than difference–of–gaussians.

16
DEPARTMENT OF CONTROL AND INSTRUMENTATION
Faculty of Electrical Engineering and Communication

Brno University of Technology

Fig. 2.9: Comparison of the discretized Gaussian second–order partial derivatives

and their approximations by SURF (gray pixels denote zero), courtesy of [66]

Features from Accelerated Segment Test

Features from Accelerated Segment Test (FAST) detector is based on the extension

of the SUSAN detector [53, 66]. FAST compares intensities of the pixels only on the

circle of fixed radius around the point instead of all pixels in the neighborhood. The

algorithm begins with the comparing of pixels labeled 1 and 2 with the threshold,

3 and 4 respectively. Then, all other pixels are compared in the same way and the

pixels are classified into three subsets. The ID3 algorithm and entropy measurements

are used to determine whether the pixel represents corner or not. This process runs

iteratively until the entropy of a subset is zero.

2

4 3

1

Fig. 2.10: Concept of FAST detector, courtesy of [66]

The FAST detector is very efficient, it can run 30× faster than DoG detector,
however it is no invariant to scale. This can be overcome by a multi–scale detector.

17
DEPARTMENT OF CONTROL AND INSTRUMENTATION
Faculty of Electrical Engineering and Communication

Brno University of Technology

2.3 Local Image Descriptors

In this section we briefly summarize various local invariant descriptors. We begin

with Distribution Based Descriptors and their representatives in section 2.3.1, then

we describe basics of Spatial–Frequency Techniques in section 2.3.2 and Differential

Descriptors in section 2.3.3. We conclude with Moment Invariants in section 2.3.4.

2.3.1 Distribution Based Descriptors

Distribution based descriptors are usually based on histograms representing their

characteristics. In this section we discuss approach proposed by Lowe which use

Scale Invariant Feature Transform (SIFT detector is discussed in section 2.2.4) and

its extensions like Gradient Location–Orientation Histogram and PCA–SIFT. Next,

we discuss similar descriptor called Shape Context.

SIFT Descriptor

Local invariant SIFT descriptor was introduced as same as the detector by Lowe

[33]. Firstly, for all pixels of each image L(x, y) gradient magnitude m(x, y) and

orientation θ(x, y) are precomputed

m(x, y) =
√
(L(x+ 1, y)− L(x− 1, y))2 + (L(x, y + 1)− L(x, y − 1))2, (2.5)

θ(x, y) = tan−1
L(x+ 1, y)− L(x− 1, y)
L(x, y + 1)− L(x, y − 1)

(2.6)

Next, the 36 bins orientation histogram which covers 360 degree range of orien-

tations is created from the gradient orientations in the region around the keypoint

point. Each contribution added to the histogram is weighted by a circular Gaussian

window with a σ 1.5 times the scale of the keypoint. All peaks which magnitude is

higher than 80% of the highest peak in the orientation histogram are selected.

Then, the histograms are grouped into (usually 4×4) areas and 8 bins histogram
(quantized) descriptors are created. Thus, a vector of the SIFT descriptor usually

has 4 × 4 × 8 = 128 dimensions. Finally, the vector is normalized to length unit
due to the contrast invariance. Brightness invariance is provided because the image

gradients are computed from pixel differences. Consequently, the SIFT descriptor

is invariant to affine changes in illumination and geometry as same as to rotation,

translation and scale. The influence of large gradient magnitudes is reduced due to

limiting of non–linear illumination changes.

18
DEPARTMENT OF CONTROL AND INSTRUMENTATION
Faculty of Electrical Engineering and Communication

Brno University of Technology

Image gradients Keypoint descriptor

Fig. 2.11: SIFT Descriptor – gradient magnitudes and orientations around the key-

points are weighted by a circular Gaussian (blue circle). Next, orientation histograms

are computed (the figure shows 2×2 descriptor computed from 8×8 array), courtesy
of [33]

Gradient Location–Orientation Histogram

Gradient Location–Orientation Histogram (GLOH) descriptor was introduced by

Mikolajczyk and Schmid in 2004 [42]. It is an extension of SIFT and was proposed

to increase its robustness and distinctiveness. By comparison with SIFT, GLOH

use log–polar location grid with (usually) three bins in radial and eight in angular

direction. The central bin is not divided into angular directions (17 bins together).

The gradient orientations are quantized into 16 bins, therefore the GLOH histogram

has 17× 16 = 272 dimensions. Finally, the dimension of the vector space is reduced
by Principal Component Analyses (PCA).

PCA–SIFT

PCA–SIFT descriptor is based on gradient orientations in x and y directions com-

puted within the support region (usually 41 × 41) centered at the keypoint. Thus
the input vector has 2× 39× 39 = 3042 dimensions. The vector space is normalized
to unit length to reduce illumination changes. Finally, the PCA–SIFT descriptor is

created by reduction of the vector space by PCA [26].

Also, it is good to noted that there exist other modifications of SIFT as Maha-

lanobis SIFT [38], Colored SIFT [1], . . .

19
DEPARTMENT OF CONTROL AND INSTRUMENTATION
Faculty of Electrical Engineering and Communication

Brno University of Technology

Shape Context

Shape Context is similar to the SIFT class of descriptors, however it is based on

edgels instead of keypoints. Firstly, edges are estimate by Canny edge detector.

Next, next locations and orientations of edge points are quantized to the 3D log–

polar histogram of locations and orientations. Usually, 9 radial bins and four angular

(horizontal, vertical and two diagonals directions) are used. Therefore, the Shape

Context descriptor has 9× 4 = 36 dimensions.

Let us note that it is possible to add weighting of each histogram sample by its

magnitude. It was reported that this approach has better results than the original

Shape Context algorithm [42].

2.3.2 Spatial–Frequency Techniques

The Fourier transform decompose the image into the set of basis function. However,

these function do not describe the spatial relations between the points and the basis

functions are infinite. There exists a ways, how to adopt the Fourier transformation

to describe the characteristics of a local patches, for example Gabor transform or

generally Short Time Fourier Transformation in general or wavelets. The main dra-

wback of these approaches is that it is necessary to have large number of these filters

to describe small changes in frequency and orientation [61].

2.3.3 Differential Descriptors and Complex Filters

Differential Descriptors are based on a set of image derivatives which approximates a

point neighborhood. Steerable filters steer derivatives in a particular direction given

the components of the local jet. Steering derivatives in the direction of the gradient

makes them invariant to rotation.

Complex filters are derived from the family [54, 42]

K(x, y, θ) = f(x, y)eiθ (2.7)

where θ is the orientation. Filters are usually computed up to the fourth or sixth

order.

20
DEPARTMENT OF CONTROL AND INSTRUMENTATION
Faculty of Electrical Engineering and Communication

Brno University of Technology

(a) (b)

Fig. 2.12: Gaussian derivatives (a) up to fourth order. Complex filters (b) up to

sixth order, courtesy of [66]

2.3.4 Others Techniques

Moment Invariants

Another approach could be Moment Invariants based descriptors. These descriptors

are better to use for color images due to the moments of higher order and degree are

sensitive to small geometric and photometric distortions. Hence, with color images,

it is possible to compute moment invariants for each color channel and between them.

Mindru et al. proposed Generalized Color Moments [44]. They characterize the

shape, the intensity and the color distribution of the region pattern in a uniform

manner

Mabc
pq =

∫∫
Ω

= xpyqI(x, y, R)aI(x, y,G)bI(x, y, B)c dxdy (2.8)

with order p + q, degree a + b + c and R,G,B denotes color channels of image I.

They are independent and can be computed for any order and any degree, however

usually are used up to the second order and first degree.

Visual Vocabularies

A method adapted from the text search (inspired by Google web search) was pu-

blished by Sivic and Zissermann [59]. It is based on representation of a feature

descriptor by a vector of word frequencies. The method term frequency—inverse

document frequency (tf–idf) is computed as follows: given a vocabulary of k words,

then each image is represented by a tf–idf weighted vector

v = (t1, . . . ti, . . . tk)T (2.9)

where

ti =
nwi

ni

log
N

nw

(2.10)

21
DEPARTMENT OF CONTROL AND INSTRUMENTATION
Faculty of Electrical Engineering and Communication

Brno University of Technology

where nwi is the number of occurrences of word w in the image i, ni is the total

number of words in the image i, nw is the number of occurrences of the word w in

the whole database and N is the number of images in the database. The idea behind

the weighting of vectors is that the words which occurs often in a particular image

helps to describe the image. On the other hand, words which appear often in the

database are downweighted, because they do not help to distinguish the different

images.

22
DEPARTMENT OF CONTROL AND INSTRUMENTATION
Faculty of Electrical Engineering and Communication

Brno University of Technology

2.4 Efficient Data Structures

The most time consuming part of many computer vision applications is a search of

the nearest neighbours matches in high dimensional spaces. Due to our two claims,

fast response which will be close to the real–time and a large database of features,

it is clear that it is necessary to use some algorithm with sublinear searching time.

We can define our objective as follows: given a data set of n features FD in d–

dimensional Euclidean space Rd, these points must be preprocessed in such a way

that finding the nearest neighbor (or k–nearest neighbors) of a new query Fq in

FD whose distance to some point from FD is minimum and this search is execu-

ted efficiently. This distance can be defined in many ways, e.g. Euclidean distance,

Manhattan distance, . . . In object recognition applications, FD represents the set of

image descriptors located in the database and Fq is a set of query image descriptors

[3, 38].

2.4.1 Tree Structures

KD–Tree

Concept of KD–tree was introduced by Bentley [9] in 1975 as a straightforward

generalisation of the binary search tree in higher dimensions. KD–tree belongs to

a category of a geometric data structures and is based on iterative partitioning of

input dataset. This splitting of Rd space into subspaces can be performed as follows:

let us have a hyperrectangle, which is the d–fold product of closed intervals on the

coordinate axes (x1, x2, . . . , xd). Each internal node of the KD–tree is associated with

a hyperrectangle and a hyperplane orthogonal to one of the coordinate axis which

divide the hyperrectangle in half at each level of the tree. If this splitting is done at

the median of the dimension of the largest variance, it will create a balanced binary

tree with depth log 2N . The resulting subcells are then associated with the two child

nodes in the tree and this process iteratively continuous until the number of data

point in the hyperrectangle falls below some given threshold or until convergence.

Subdivision of space into hyperrectangles is defined by the hyperrectangles associa-

ted with the leaf nodes. These hyperrectangles are called buckets. Data points are

stored only in the leaf nodes of the tree, not in the internal nodes [2].

Let us note that the aspect ratio (the ratio of the length of the longest side to the

shortest side) of these buckets are not bounded, so these buckets may be long in one

dimension and short in others, therefore these elongated cells may be intersect during

the search by a query sphere. However, there exist many variations on this splitting

23
DEPARTMENT OF CONTROL AND INSTRUMENTATION
Faculty of Electrical Engineering and Communication

Brno University of Technology

rule, but there is no assurance that the tree will be balanced. For example Silpa-

Anan and Hartley [58] introduced an improved version of the KD–tree algorithm in

which multiple randomized KD–trees are created to speed–up approximate nearest

neighbor search. The main difference is that the split dimension is chosen randomly

from the first D dimensions on which the data has the greatest variance. The nearest

neighbor search should not take more than O(log n) time.

u

10
p

p

1
p

9
p

3
p

2
p

8
p

1
p

10
p5

p4
p

6
p

7 p

9
p

8
p

7
p

6
p

5
p

4
p

3
p

2

Fig. 2.13: A KD–tree of bucket–size one and the corresponding decomposition, [48]

It is reported in many papers that the biggest speed–up is up to 10 dimensions

[68, 38]. Unfortunately, the most robust descriptors used in computer vision have

many more dimensions (e.g. SIFT has 128 dimensions), however it could be overcome

by Approximate Nearest Neighbor (ANN) search (will be discussed in section 2.4.3).

Balanced Box–Decomposition Tree

As we have discussed above, the aspect ratio of KD–trees is not bounded. Thus, it

may be inefficient to use KD–tree on highly clustered data. Balanced Box–Decomposition

(BBD)–tree should provide greater robustness on highly clustered data.

BBD–trees are closely connected with the KD–trees. The fundamental difference

between BBD–tree and KD–tree is that each node of the BBD–tree is not associa-

ted simply with hyperrectancle, but each node of the BBD–tree is associated with

a subspace called a cell. The cell is defined by a box or the set theoretic difference

of two boxes, outer box and an optional inner box. All data points lying within the

cell are associated with this cell. Points which lie on the boundary between two cells

may be assigned to either cell, because cells are thought to be closed.

The construction of BBD–trees is again based on iterative partitioning of input

dataset, but by comparison with KD–trees, BBD–trees are constructed through

regular split and a more general decomposition called shrinking. These operations

represent two different ways of partitioning a cell into two smaller subcells. Regular

24
DEPARTMENT OF CONTROL AND INSTRUMENTATION
Faculty of Electrical Engineering and Communication

Brno University of Technology

split partitions a cell by an axis–orthogonal hyperplane into two subcells that are

called low child and high child. A shrinking rule use rather a shrinking box than a

hyperplane to split a cell into disjoint subcells (inner child and outer child).

(a) KD–tree (b) BBD–tree

Fig. 2.14: Comparison of KD–tree and BBD–tree. Blue denotes hyperplane splits

and box partitions (shrinking) are red, courtesy of [38]

The question is, whether to use splitting or shrinking. More approaches are avai-

lable and usual it is determined at each step of the algorithm. One of the simplest

strategy is that these rules are applied alternately: splitting rule provides that the

geometric size will decrease exponentially as we descend a tree and shrinking rule

provides the same for the number of points associated with each cell node. Division

of the space is repeated until the number of associated points is less than some thre-

shold (bucket size). It implies that an evenly partitioned balanced tree with bounded

aspect ratio of cell is constructed. BBD–tree for a set of n data points in Ed can be

constructed in O(dn log n) time and has O(n) nodes [4, 38].

Hierarchical K–Means Tree

Another efficient data mining method are hierarchical k–means trees. We discuss

two main approaches: a top–down approach called divisive and bottom–up appro-

ach called agglomerative.

Divisive hierarchical k–means trees are derived from original k–means algorithm.

The k–means algorithm could be described as partitioning method based on unsu-

pervised learning. The input dataset is divided into k clusters, where k is fixed a

priori. The objective is to find a partition in which points within each cluster are as

close to the cluster center (the points have lowest variance) as possible and as far

25
DEPARTMENT OF CONTROL AND INSTRUMENTATION
Faculty of Electrical Engineering and Communication

Brno University of Technology

from centers in other clusters as possible. It is often initialized randomly by k cen-

ters which may lead to different results from run to run. The first stage of iteration

is to assign every point from input dataset to the closest center. The next stage is

recalculating of the clusters centers – it is calculated as a mean of clusters. This

algorithm should converge to a local optimum after a few iterations (the iterations

stop when the k centers do not change much). Benefit of k–means is the efficiently

of the partitioning method. On the other hand, the several drawbacks are sensitivity

to outliers, centroids far from real clusters resulting in large cells or difficulties with

setting appropriate k (centers may lie between more real clusters). Clustering of N

data points of d dimensions with k centers and ℓ iterations is computational cheap

because could be done in O(Nkℓd) time, but complexity grows up when its k is

comparable with N [28, 30, 38, 49].

(a) (b)

Fig. 2.15: Projections of hierarchical k–means trees, courtesy of [38, 49]

Agglomerative clustering represents bottom–up approach to hierarchical k–means

trees. It builds a hierarchical merging tree from the leaves to the root. The algo-

rithm is initialized by assigning every point in leaf nodes to its own cluster and

then iteratively selecting and merging pairs of closest clusters in parent node until

the top node is reached. The crucial parameter is the criterion used for selecting

of merging clusters. For example average–link criterion is based on the measure-

ment of the similarity of two candidate clusters as the average pairwise similarity

between their members. The main advantage of agglomerative clustering is that it

allows to specify the size or compactness of the resulting clusters. On the other

hand, time O(N2 logN) and space O(N2) complexity is the main drawback. Fortu-
nately, post-processing can reduce number of nodes by merging some parents with

children, however it is still inconvenient for large datasets due to space requirements

[17, 30, 38].

26
DEPARTMENT OF CONTROL AND INSTRUMENTATION
Faculty of Electrical Engineering and Communication

Brno University of Technology

Bottom–up trees provide efficient nearest neighbour search, but have more com-

plexity. Top–down trees may have some problems caused by their structures. Middle–

out technique represents trade-off between efficiency and compactness of the tree

[38, 46].

2.4.2 Splitting and Shrinking Rules

Many parameters of tree structures can be influenced by a set of different splitting

and shrinking rules. In this section, we briefly discuss some of them.

Standard Splitting Rule

The splitting dimension is the dimension of the maximum spread of the current

subset of input data points. The splitting point is the median of the coordinates

of the subset along this dimension. A median partition of the points set is then

performed. This rule guarantees that the final tree has height log 2n, and size O(n),
but the resulting cells may have arbitrarily high aspect ratio (cited [48]).

(a) Standard split (b) Midpoint split (c) Sliding midpoint split

Fig. 2.16: KD–trees produced by different splitting rules, courtesy of [35]

Midpoint Splitting Rule

The midpoint splitting rule guarantees that the cells have bounded aspect ratio. It

cuts the current cell into two identical subcells by a hyperplane passing through its

midpoint and orthogonal to the longest side. The main disadvantage of this rule is

that it can produce trivial splits (all of the points of current subset lie to one side of

the splitting plane), so the resulting tree can be very large. This drawback can be

overcome by simple modification called sliding–midpoint rule: if a trivial split is a

27
DEPARTMENT OF CONTROL AND INSTRUMENTATION
Faculty of Electrical Engineering and Communication

Brno University of Technology

result of splitting, it tries to avoid this by sliding of the splitting plane toward the

points until it finds the first data point. Maximum depth of the tree is n and size

O(n) [4, 48].

Fair–Split Rule

Fair split rule is an efficient combination of the standard splitting rule and the

midpoint splitting rule. The objective is to get balanced and partitioned tree without

any elongated cells. The algorithm first selects the sides which could be split without

violating a constant which defines maximum aspect ratio. Next, one side with the

points largest spread is selected. Then, the cell is split under some assumptions:

to preserve the aspect ratio, the longest side (other than this side) is selected and

is determined how narrowly could be this side cut. This approach should be more

robust than simple standard splitting rule or midpoint rule, however for highly

clustered data the size of the tree may exceed O(n). Modification of this approach,
which is based on theory that there are two types of good cells for splitting is called

sliding fair–split rule. Firstly, the algorithm determines the longest side, selects the

side, which could be split without violation of the maximum aspect ratio and among

these, selects the side with the largest spread as same as fair–split does. Finally, the

algorithm tries to do the most extreme cut which is allowed by the maximum aspect

ratio [35, 48].

Simple Shrinking Rule

Simple shrinking rule depends on two fixed constants c and g and computes distances

between each side of the rectangle for current subset of input data points and the

corresponding side of the current cell’s bounding rectangle. If at least c of these

distances are larger than the length of the longest side of the cell’s rectangle times

g, then it shrinks all sides whose gaps are at box of the shrink and the outer box

contains no point. If none of the gaps is large enough, then no shrinking is performed,

and splitting is performed instead (cited [48]).

Centroid Shrinking Rule

Centroid shrinking rule depends again on two fixed constants f and m. It iteratively

applies the current splitting rule. At each stage, the algorithm checks which subcell

contains more points and repeat splitting on this part. It runs recursively until the

number of points falls below a fraction of f of the size of the current subset of data

point. If it iterates more than number of dimensions times m, it shrinks to the final

inner box and all other points of the current subset of input data points are stored

in the outer box. Otherwise splitting is performed instead of shrinking [48].

28
DEPARTMENT OF CONTROL AND INSTRUMENTATION
Faculty of Electrical Engineering and Communication

Brno University of Technology

2.4.3 Search Techniques

In this section, we discuss different search techniques. Let us note that the brute

force search is well known and used as a reference search technique. Thus, the brute

force (linear) search which simply computes the distances from the query to each

point in database in O(dn) time is not discussed here in detail.

Range Search

Range search is useful technique if it is necessary to find points with different distance

in each dimension from the query point. The objective is to find all data points

within some distance from query or to find all data points whose coordinates lie in

a specified query range. The search can be defined as follows: given a query region

R and v denotes current node in the tree. Let us assume that current v is a leaf.

Then search verifies whether the points stored in v lie in R and reports positives.

If the v is internal node, then search visits all subtrees as follows: if its region lies

entirely in R, search reports all data point stored within the current subtree. If the

current subtree partially overlaps R, search proceeds iteratively. All other nodes are

ignored [10].

Standard k Nearest Neighbor Search

Standard search was introduced by Friedman et al. in 1977 [20]. The search starts by

descending the tree to find appropriate bucket within query point lies. The algorithm

then iteratively visits surrounding cells to determine whether the radius of the B

ball centered at the query point is intersected and whether the radius is equal to

distance between the query point and the closest data point visited so far. The

nodes are checked until k leafs are discovered. The distance to the k–th neighbour

determines which points are then reported as nearest neighbours [2].

Approximate k Nearest Neighbor Search

In many literature it is reported that k nearest neighbor search is inefficient for high

dimensional trees (more than 10 dimensions), because query sphere can intersect

many (especially elongated) cells and all of these cells have to be visited. This

drawback could be overcome by reducing the number of the leaves to visit. One

way could lead through maximum visited leaves criterion. Other approach, called

ϵ–approximate k–nearest neighbor search was introduced by Arya et al. [3]. The

main thought of this approach is that the search terminates if the distance from the

29
DEPARTMENT OF CONTROL AND INSTRUMENTATION
Faculty of Electrical Engineering and Communication

Brno University of Technology

closest cell to the query point exceeds

δ =
d(p, q)
1 + ϵ

(2.11)

where p is the nearest neighbor found so far, q is the query point and ϵ is the positive

termination parameter. In other words, p is within relative error ϵ of the true nearest

neighbor. Approximate k–nearest neighbor search is efficient search with sufficiently

precision, because many parts of computer vision algorithms are inaccurate [27, 38].

Priority Search

Priority search was described by Arya and Mount in 1993 [2]. Standard k–NN search

usually explores the nearest neighbor before it visits all cells. Priority search presents

more efficient way how to get nearest neighbors because it can terminates earlier. On

the other hand, the search does not guarantee that the nearest neighbor was found.

This search visits the cells in increasing order of distance from the query point. This

can be efficiently performed by priority subtrees as follows: if the current node is

internal, the distances from the query point to the cells of children are computed and

the closer child is traversed iteratively. The farther child is added on the priority

queue and sorted by distance. If the current node is leaf, distances to the points

stored within this cell are computed and the algorithm proceeds by the next item

from the top of the queue. The search terminates either when the priority queue is

empty or when the distance to the nearest cell on the priority queue is farther than

distance to the closest data point [2, 3, 48, 58].

Fig. 2.17: Illustration of priority search – query tree is represented by a red dot, the

nearest neighbour lies in cell 3. The algorithm works exactly as we describe above,

courtesy of [58]

30
DEPARTMENT OF CONTROL AND INSTRUMENTATION
Faculty of Electrical Engineering and Communication

Brno University of Technology

2.4.4 Locality Sensitive Hashing

Another possibility for sub–linear search by reduction of high–dimensional space is

Locality Sensitive Hashing (LSH) introduced by Indyk and Motwani [24]. The main

idea is to use a family of locality-sensitive hash functions to hash nearby objects in

the high–dimensional space into the same bucket, because the objects that are close

to each other have a higher probability to fit than object their distances to each

other are farther [34, 21]. There exists many extensions which allow to use different

distances like Hamming distance, or are based on p–stable distributions which have

O(log n) time complexity. The hash function is defined as:

ha,b(v) =
ab+ v

W
(2.12)

where a is a d–dimensional random vector with entries chosen independently from

a p–stable distribution and b is a real number chosen uniformly from b ∈< 0,W >.

The p–stable distributions are for example Gaussian distribution or Cauchy distri-

bution [16].

LSH techniques have high accuracy, however need to use multiple hash tables to

produce a good candidate set.

31
DEPARTMENT OF CONTROL AND INSTRUMENTATION
Faculty of Electrical Engineering and Communication

Brno University of Technology

3 PERFORMANCE EVALUATION

In this chapter, we describe used datasets for performance evaluation in section 3.1.

Then, we discuss standard evaluation criterion in section 3.2, overview of perfor-

mance evaluation framework in section 3.3 and finally implementation details in

section 3.3.6.

3.1 Data Sets

We are using two different data sets1 to create the database – the Grafitty data set

for reference and query images and the PASCAL data set images as padding.

The Graffiti Data Set

The Graffiti data set is provided by the University of Oxford. It consists of eight

image sequences with different geometric and photometric transformations. Each

image sequence is composed by six images in png or ppm format. The ground truth

homography (plane projective transformation) between the first image and the rest

of images in the sequence is provided. The data set sequences show six different trans-

formation: rotation, scale change, viewpoint change, image blur, jpeg compression

and change in illumination (acquiring process and transformations are discussed in

detail in [42]). Also, two different scene types are provided: structured scenes (homo-

geneous regions separated by distinctive edges) and the other contains of repeated

textures of different forms.

All images in each sequence are related by the ground truth homography estima-

ted between the first image and the rest of images in the sequence. The homography

matrices are computed in two steps. The first step consists of estimation of the

homography using the manually selected correspondences. Then, the images are

aligned with the reference image. The second step is to compute an accurate re-

sidual homography between the reference image and the transformed image, with

automatically detected and matched points of interest. Finally, the homography es-

timation is based on combination both, the approximate and residual homography

results in an accurate homography between the images.

The PASCAL VOC 2007 Data Set

The other data set, which is used to extend the database is provided by the PASCAL

Visual Object Classes Challenge 2007 [19]. This database consists of jpg images in

1Both data sets are available at http://www.featurespace.org

32
DEPARTMENT OF CONTROL AND INSTRUMENTATION
Faculty of Electrical Engineering and Communication

Brno University of Technology

(a) Bark, Boat: zoom + rotation

(b) Graffiti, Wall: viewpoint change

(c) Bikes, Trees: image blur

(d) Ubc: JPEG compresion, Light: light change

Fig. 3.1: Graffiti data set

medium resolution. The database comprehends 7818 images with different classes

of objects like aeroplanes, trains, birds, boats, . . . Due to the time complexity of all

tests, we use only first 1000 images of PASCAL data set.

3.2 Evaluation Criterion

We use standard and widely accepted evaluation criterion [42] which is based on

the number of correct and false matches. As a quality criterion, ground truth SA,

precision SB and recall SBA are used. For time measurements, speed up ST is used

rather than pure time in seconds.

33
DEPARTMENT OF CONTROL AND INSTRUMENTATION
Faculty of Electrical Engineering and Communication

Brno University of Technology

Fig. 3.2: Examples of PASCAL VOC 2007 data set

3.2.1 Ground Truth

Firstly, the A parameter is determined by a number of detected features in the query

image (file Mq)

A =
i=n∑
i=1

Fi, (3.1)

where Fi denotes i–th extracted local invariant feature in the query image and n

denotes the maximum of detected features.

Next, spatial coordinates of extracted features are projected by the 2D plane

34
DEPARTMENT OF CONTROL AND INSTRUMENTATION
Faculty of Electrical Engineering and Communication

Brno University of Technology

projective transformation (homography) from query image to the reference image x′
1

x′
2

x′
3

 =
 h11 h12 h13

h21 h22 h23

h31 h32 h33


 x1

x2

x3

 (3.2)

where h31 = h32 = 0 and h33 = 1 in the case of an affine transformation [61]. It can

be rewritten in a compact form

x′ = Hx (3.3)

Next, the projection of a spatial coordinates of extracted features can be done

by conversion from homogeneous coordinates (x3 = 1, because we assume that the

point is not a point at infinity2)

x =
x′
1

x′
3

=
h11x1 + h12x2 + h13
h31x1 + h32x2 + h33

(3.4)

y =
x′
2

x′
3

=
h21x1 + h22x2 + h23
h31x1 + h32x2 + h33

(3.5)

Fig. 3.3: Figure shows detected features in a query image (right) and projected featu-

res to the reference image (left). Yellow are accepted features by A∗, red are rejected

features (only in left image, yellow ellipses in right image are A). It is possible to

project features in both directions, because 2D plane projective transformation is

invertible. Only first 15 features are shown for figure clarity.

The A∗ parameter is the number of all projected features by plane projective

transformation (homography) from query image (Mq) to the reference image (Mr),

2Points [x1, x2]T can be expressed in homogeneous coordinates in 3D vector space as

[λx1, λx2, λ]T, where λ ̸= 0. However, usually are used expressions like [x1, x2, 1]T

35
DEPARTMENT OF CONTROL AND INSTRUMENTATION
Faculty of Electrical Engineering and Communication

Brno University of Technology

but the features which projected spatial coordinates are outside of the boundaries

of reference image are rejected.

if Fi(x, y)

{
0 < x < wr

0 < y < hr

⇒ A∗ =
∑

F + Fi Fi ∈ A (3.6)

where Fi is the i–th feature detected in the query image, wr is the with and hr is

the height of the reference image.

Next, by thresholding the Euclidean distance between query points included in

A∗ and (all) reference points by factor ta, we get parameter A+ (Eq. 3.8). The

threshold ta is relatively set and depends on scale

ta =M
√
s1s2, (3.7)

where s1 and s2 are scales of features and M is a multiplication constant.

if d(Fiq, Fr) < ta ⇒ A+ =
∑

F + Fiq, Fiq ∈ A∗, Fr ∈ Mr (3.8)

where d(Fiq, Fr) denotes the Euclidean distance between the i–th query point Fiq

contained in A∗ and reference point Fr from Mr.

Fig. 3.4: Figure shows rejected features by A+ (red), accepted features (yellow) and

correspondences in the reference image (blue). All query features are projected to

the reference image. Only first 15 features from A∗ are shown for figure clarity.

Finally, SA is a ratio between number of correspondences A+ and number of

projected features A∗ to reference image

SA =
A+

A∗ (3.9)

36
DEPARTMENT OF CONTROL AND INSTRUMENTATION
Faculty of Electrical Engineering and Communication

Brno University of Technology

Regions Overlap

Let us note, that an overlap error is usually used instead of ta and tb (discussed

in section 3.2.2). Overlap error describes, how well the regions (depending on the

feature scale) correspond under a homography transformation. It can be defined by

the ratio of the intersection and union of the regions

ϵS = 1−
A ∩HTBH
A ∪HTBH

(3.10)

where A and B are regions and H is homography matrix. Due to the computational

complexity of the numerical enumeration of this approach and a huge amount of

data and experiments, we do not use it.

2% 10% 20% 30% 40% 50% 60%

Fig. 3.5: Overlap error, courtesy of [43]

3.2.2 Precision

The second criterion is a precision SB. The number of correct matches B∗ and po-

tential features B found in a database are needed.

We get the number of potential features B by thresholding the distance between

the query feature (file Mf) and the found feature in the database (efficient data

structure) by factor tkd. A range of values of tkd depends on properties of used

descriptor and efficient data structure. It is possible to use either, the square root

of Euclidean distance or just square of distance 3, 4.

if d(Fiq, Fnn) < tkd ⇒ B =
∑

F + Fiq, Fiq ∈ Mf , Fnn ∈ Mf (3.11)

where d(Fiq, Fr) is the distance between a query point and its nearest neighbour

found in a database.

3In fact, it is possible to use even any other Minkowski distance metric like L1 (Manhatten) or

L∞ (Max) metric, however we use L2 Euclidean metric for all experiments.
4It is necessary to use the same metric for both, fast feature matching in database and for

performance evaluation.

37
DEPARTMENT OF CONTROL AND INSTRUMENTATION
Faculty of Electrical Engineering and Communication

Brno University of Technology

The second parameter, number of correct matches B∗, is a little bit more com-

plicated. At first, it is compared if the IDSR of the image which feature is found in

the database and the IDQS of the image which feature is a query are equal. Next,

homography and another threshold tb is used to check if the query feature is quite

close to the feature in the reference image 5. The features which are not rejected is

a set of correct matches and the size (quantity) of this set is B∗.

Fig. 3.6: Figure shows rejected features by B (red) with threshold set to 122500

(square of Euclidean distance), accepted features (yellow) and potential features

(blue). All query features are projected to the reference image. Only first 15 features

are shown for figure clarity.

Precision is a ratio between the number of correct matches B∗ and potential

features B found in a database

SB =
B∗

B
(3.12)

Fig. 3.7: Figure shows rejected features by B∗ (red), correct matches (yellow) and

appropriate nearest neighbours (blue). All query features are projected to the refe-

rence image. Only first 15 features are shown for figure clarity.

5The threshold tb is determined by SA. We set tb = 0.1467 for all experiments.

38
DEPARTMENT OF CONTROL AND INSTRUMENTATION
Faculty of Electrical Engineering and Communication

Brno University of Technology

3.2.3 Recall

Finally, the last quality criterion is recall SBA. It denotes a ratio between the correct

matches B∗ and correspondences A+

SBA =
B∗

A+
(3.13)

The expected curve shapes and their interpretation is discussed in the next

chapter. Also, let us note, that recall and precision are independent.

Fig. 3.8: Figure shows correct matches for first 15 features.

3.2.4 Speed–up

As we have mentioned in the introduction, the time complexity of feature matching is

crucial for SLAM applications. Therefore, another criterion is necessary to measure

the speed efficiency. We would rather use speed up ST than time in seconds because

raw time measurement is more sensitive to the used computing system. Moreover,

we get how many times are the efficient data structures faster than sequential search

ST =
Tbrute force

Tefficient data structure

Ntrees

=
Tbrute force

Tefficient data structure

Ntrees (3.14)

where Tbrute force is time measured for sequential search, Tefficient data structure is the

time measured for efficient data structure search and Ntrees is the number of multiple

randomized trees.

39
DEPARTMENT OF CONTROL AND INSTRUMENTATION
Faculty of Electrical Engineering and Communication

Brno University of Technology

3.3 Overview of Experimental Framework

In this section, we discuss the overview of the performance evaluation framework

(Fig. 3.11). Our evaluation system consists of three parts. The first step is to com-

pute local invariant descriptors and its parameters for detected features in both,

the Grafitty data set and the PASCAL data set. We use compute descriptors

application provided by Mikolajczyk at Feature Space project6. It is necessary to

compute the descriptors with the same settings for all images.

Next, computed features are divided into database and query images. Only the

descriptors and their parameters for the first image from each sequence from the

Graffiti data set are stored in the database. The database is then extended by

all descriptors and their parameters from the PASCAL data set. The ID to each

image is assigned. The rest of Graffiti data set are then used as query images. After

these steps, it is possible to start with fast feature matching with our application

feature eval. The KD–trees, BBD–trees, k–means trees structures and brute force

(sequential) search are provided (section 3.3.6). The trees are created only from

descriptors (last d numbers on each database row). Also, the queries use only the

descriptors. When the appropriate descriptors are found in the database, the para-

meters of the feature are obtained by the ID of the nearest neighbor (IDF). Finally,

the distance between the query and its nearest neighbor, the IDSR of the relevant

image, retrieved parameters, IDQS of the query sequence and the query parameters

(for the query feature) are produced as a result.

The third part of our system is used to get appropriate scores for the matches.

Only this part of our system is implemented in Matlab, others are written in C++.

It loads in a loop results provided by feature eval, the reference image descriptors

and its parameters, the same for query image, both images and homography matrix.

It computes the entire score set and produces appropriate figures.

3.3.1 Database

The database consists of images from both datasets7. Only first images from each

sequence from Graffiti data set are used as reference images (Fig. 3.9). Then, the

database is extended by other images from PASCAL data set. The number of images

used from PASCAL (or other) dataset is dependent on the required size of the

6http://www.featurespace.org
7It is possible to add more images from various datasets.

40
DEPARTMENT OF CONTROL AND INSTRUMENTATION
Faculty of Electrical Engineering and Communication

Brno University of Technology

database. Figure 3.2 shows examples of PASCAL dataset which are used to extend

the database 8.

(a) Bark, Boat, Graffiti, Wall

(c) Bikes, Trees, Ubc, Light

Fig. 3.9: Reference images

All images are processed by compute descriptors with the same parameters, so

we have files (Mr) with extracted features, their parameters and descriptors (Listing

A.2). The list of these files is stored in another file (Listing A.1) which is used to

determine the files (images) which creates the database.

Next, the file which defines the database (df file) is created by feature eval.

In this step, each feature is assigned with IDSR of its appropriate file. Then, the

database file is used to create efficient data structure. More information about usage

of feature eval could be found in appendix A.2.1.

3.3.2 Efficient Data Structures

The file which contains all features which should be stored in efficient data structures

(df file) is used by feature eval to load all features. Each line which is correspon-

ding with different feature is separated. Only last d numbers on each row are used to

create efficient data structure(s)9. All features parameters are stored in a list, which

is used when a nearest neighbour is found. Detailed description of the database file

is in Listing A.2.

Various efficient data structures are provided. We use KD–trees in all experi-

ments, however BBD-trees and k–means trees are also provided by feature eval.

81000 PASCAL images were used for our experiments.
9d – number of dimensions of used descriptor

41
DEPARTMENT OF CONTROL AND INSTRUMENTATION
Faculty of Electrical Engineering and Communication

Brno University of Technology

Different search strategies (ϵ–Approximated Nearest Neighbour, priority search, . . .)

are available as well as different options of dividing the whole data set into multiple

randomised trees.

All steps described above could be run in off–line, so the time which is consumed

by them is not crucial.

3.3.3 Query Images

The rest of all sequences provided by the Graffiti dataset (it means all images from

Graffiti dataset which are not used to create the database) are used as query images.

All query images are shown below (Figure 3.10). Again, compute descriptors is

used in the same way as in the case of reference files (Mr) and query files (Mq) are

produced.

3.3.4 Fast Feature Matching

Fast feature matching is the most important step for various computer vision ap-

plications which are able to work with the real–time response. As an input of fast

feature matching (feature eval) are used query files (Mq), which are loaded one by

one, just like video frames in real application. The list of files which should be used

for fast feature matching as queries is stored in a file fq. More information about

this file could be found in Listing A.3. Query files are again divided into two parts

– feature descriptors are used for matching and parameters are stored in memory.

Then, fast feature matching works as follows: descriptors are used to find the

nearest neighbour of the feature in efficient data structure (single or multiple trees).

In the case of single tree, it is straightforward: the nearest neighbour is that one,

which was found in the tree. In the case of multiple randomised trees, the shortest

distance between the query and found nearest neighbor is chosen from all found

neighbours in multiple trees. Next, index of the found nearest neighbor (IDF) is

used, to select the appropriate row of parameters from the list of parameters.

Finally, file with results (Mf) is created. The file has the same name as the query

file, however it differs in extension which is used (depending on parameters of efficient

data structure and search). It consists of the distance between the query feature and

found nearest neighbour, IDSR which determines the image which feature was found.

These numbers are followed by parameters of feature which is determined by the

nearest neighbour found in efficient data structure(s). The next number is IDQS

42
DEPARTMENT OF CONTROL AND INSTRUMENTATION
Faculty of Electrical Engineering and Communication

Brno University of Technology

(a) Bark

(b) Bikes

(c) Boat

(d) Graff

(e) Light

(f) Trees

(g) Ubc

(h) Wall

Fig. 3.10: Query images

43
DEPARTMENT OF CONTROL AND INSTRUMENTATION
Faculty of Electrical Engineering and Communication

Brno University of Technology

which identifies the sequence of a query image which was used for matching and this

number is followed by parameters of the feature which was used for matching.

Let us note, that it is important to store the images in the same order in which

query images are used for matching. This rule is required, because it is necessary

to distinguish during the performance evaluation step whether the found feature is

produced by appropriate reference image or not.

Moreover, feature eval saves the time needed for fast feature matching in a file

with the same name as fq, but with extension .tms.

3.3.5 Performance Evaluation

Matlab scripts are provided for performance evaluation of detectors, descriptors and

fast feature matching. It allows to create a file, which contains paths to all required

files (Mr, Mq, Mf), images (reference and query) and homography matrix. These

files may be used by function repeat for batch processing of results.

Next, all evaluation criterion are counted (Section 3.2) and all results are stored

in Matlab matrices. It is possible to load these matrices and use the results, to

produce figures with various curves, for criterion SA, SB, SBA and speed up ST by

files plotEvaluation and timesPlot.

3.3.6 Implementation

Here, we provide a few information about the implementation of our system. It is

discussed more in detail in the appendix A. The feature eval is written in C++,

it could be run either on Windows or Linux operating system. It is based on the two

libraries, for the fast approximate nearest neighbor search in KD–trees and BBD–

trees it uses ANN library written by Arya and Mount [2, 3, 4, 48]. The other library,

which is used for k–means trees is FLANN [49]. The whole framework could be run

easily from command line, thus some PowerShell (for Windows, we expect that every

Unix–like user can use their own) scripts are provided for batch evaluation. More

information about usage of the framework can be found in the appendix A.

44
DEPARTMENT OF CONTROL AND INSTRUMENTATION
Faculty of Electrical Engineering and Communication

Brno University of Technology

Fig. 3.11: Overview of the performance evaluation framework

45
DEPARTMENT OF CONTROL AND INSTRUMENTATION
Faculty of Electrical Engineering and Communication

Brno University of Technology

4 EXPERIMENTAL RESULTS

In this chapter, we produce performance evaluation of all experiments. We begin

with definition of various matching strategies in section 4.1. In section 4.2, we discuss

interpretation of figures and possible curve shapes. Section 4.3 describes properties

of both data sets and section 4.4 provides ground truth, which is used for other

experiments.

Section 4.5 provides results for ϵ approximate nearest neighbour search. Perfor-

mance of multiple randomised KD–trees are summarized in section 4.6. Section 4.7

compares ANN search and priority search. Our novelty data partitioning approach

is discussed in section 4.8. Importance of dimensionality of used descriptors is dis-

cussed in section 4.9. Other important parameter for real–time response, number of

maximum visited leaves is discussed in section 4.10. The last but one experiment

deals with influence of database size in section 4.11. Finally, section 4.12 summarize

construction times of efficient data structures.

4.1 Matching Strategies

The definition of the matching depends on the appropriate matching strategy. Seve-

ral strategies could be used, we briefly discuss three of them. If we use simple thre-

sholding, then we say, that two regions A, B are matched, if the distance between

their descriptors are bellow some threshold. Another approach is nearest neighbour

matching. In this case, the regions are matched, if the descriptor DA is the nearest

neighbor of descriptor DB. The third approach, which is called nearest neighbour

distance ratio (NNDR) matching, is similar to the previous, but the threshold is

applied to the ratio between the first and the second nearest match

∥DA −DB∥
∥DA −DC∥

< threshold (4.1)

In the first case, the descriptor may have several matches and several or even all

of them may be correct/false. In the case of nearest neighbour, the only one match is

possible. It was reported, that nearest neighbour based matching has better results

than threshold based. Also, it was reported, that the results of nearest neighbor

matching and nearest neighbour distance ratio matching are comparable, but NNDR

penalizes the descriptors which have many similar matches. Therefore, the results

are even better than in case of simple nearest matching, however it is difficult to

implement this rule in large databases [42].

46
DEPARTMENT OF CONTROL AND INSTRUMENTATION
Faculty of Electrical Engineering and Communication

Brno University of Technology

4.2 Interpretation of Figures

In this section, we discuss interpretation of figures and expected curve shapes of

evaluation criterion defined in section 3.2. The figures which will be produced for

score SA represent ratio between the number of correspondences depending on ap-

propriate threshold and projected features. The shape of curve for SA criterion is

increasing. An perfect feature detector and descriptor should have SA score as high

as possible (equal to one) for all possible thresholds (overlap errors, . . .).

The second criterion called precision (SB) is a ratio between the correct matches

and a potential features found in database. The figures are produced for various

distance thresholds from the query to the nearest neighbour and the comparatively

set threshold for spatial distance between the reference and projected features co-

ordinates (and ID of sequence of the feature found in database must respond to the

query sequence). The third criterion called recall describes the ratio between the

number of correct matches and correspondences.

An ideal feature detector and descriptor should have recall equal to one for

any precision. However, in practice the precision curve decreases with the growing

distance between the query and its nearest neighbour. On the other hand, recall

increases for an increasing distance threshold as noise which is introduced by image

transformations and region detection increases the distance between similar descrip-

tors. At some point, recall attains its maximum (increase is very slow), due to the

remaining corresponding regions are very different from each other and, therefore,

the descriptors are different [42].

The last criterion is speed up (ST). It simply denotes time complexity of search in

efficient data structure for appropriate parameters. The curve should be increasing

with the number of the multiple randomized trees, because the search may run in

parallel. At some point the speed up factor is saturated and the curve increases

slowly. It could be explained by the consideration of following: when the search

in each multiple tree is done, it is necessary to sequentially select from the found

neighbors that one, which has the shortest distance to the query point. At some

point, the selection of the appropriate neighbor, takes much time (the number of

multiple trees is too high) and the search time in a data structure starts to be very

similar, however it is necessary to do the search in more trees. That is the reason,

why speed up is produced only by the growing number of trees and not by the more

efficient search after that point. The objective is to find the parameters which will

ensure the trade–off between the sufficient recall, precision and the time complexity.

47
DEPARTMENT OF CONTROL AND INSTRUMENTATION
Faculty of Electrical Engineering and Communication

Brno University of Technology

4.3 Properties of Data Sets

Before we start with performance evaluation of efficient data structures, we briefly

discuss the properties of the database images and test sequences. All images (both

the database as same as the query) are processed by compute descriptors with

the same parameters. We use combination of Harris and Hessian scale invariant

detectors, and Colored SIFT descriptor. By comparison with standard SIFT which

has 128 dimensions, it has additional 64 dimensions for descriptors computed in

opponent color space. Therefore the full descriptor has 192 dimensions. All time

measurements was produced by the same computer1. Square of Euclidean distance

was used for all experiments. We set the thresholds for all experiments to these

values 2: ta =[0.02:0.03454:0.4], tkd =[230:20:450].^2 and tb = 0.1467. The

nearest neighbor matching strategy is used for all experiments.

Table 4.1 summarize the number of a detected features in the Graffiti data set.

Only features detected in the first image of each sequence (44647 features) are used

to create a database. It is shown, that in some cases (Bikes, Light) the number of fe-

atures detected in the images decreases with the difficulty of transformation (images

2 – 6). Table 4.2 recapitulate how many features are stored in database from each

sequence and from each dataset. The Graffiti dataset participates only by 2.947%

on the database. All other features are produced by the PASCAL VOC 2007 dataset.

For all experiments, we use average over the all test sequences of SA, SB, SBA and

speed up ST . Before we start with evaluation of various parameters of efficient data

structures, we used database created only from reference images to evaluate each

test sequence independently by sequential search. It is useful to show the influence

of test sequences to the overall score. The average score is used to distinguish two

different errors. The first one rises when the database is extended and is introduced

by the descriptors quality, the second one is introduced by efficient data structures.

It was observed, that all sequences have similar values of a ratio between number

of correspondences and number of projected features (SA). Others criterion are more

interesting – it can be stated, that the Graffiti data set contains three difficult

sequences (bark, graff, boat). On the other hand, three sequences are quite easy

(bikes, light, ubc) and the rest has similar values close to the average.

1Dell Power Edge 6850, SuSE Linux 9.3, 4× 3.3GHz/8MB cache P4 Xeon EM64T with HT,
32GB RAM, however we have run the tests sequentially.
2Written in a standard Matlab syntax: [a:b:c] a = start number, b = the value of the incre-

ment, c = last number and .^ denotes array power.

48
DEPARTMENT OF CONTROL AND INSTRUMENTATION
Faculty of Electrical Engineering and Communication

Brno University of Technology

Tab. 4.1: Number of detected features in the Graffiti data set

Image

Sequence 1 2 3 4 5 6 Sum

Bark 3 915 3 915 3 915 3 915 3 915 3 915 23 490

Bikes 5 815 4 318 4 150 3 039 2 509 2 379 22 210

Boat 5 779 5 779 5 779 5 779 5 605 5 415 34 136

Graffiti 5 119 5 119 5 119 5 119 5 119 5 119 30 714

Light 4 902 3 860 3 380 3 124 2 956 2 891 21 113

Trees 6 999 6 999 6 999 6 999 6 999 6 999 41 994

UBC 5 119 5 119 5 119 5 119 5 119 5 119 30 714

Wall 6 999 5 983 5 983 5 983 5 983 5 983 36 914

Sum 44 647 41 092 40 444 39 077 38 205 37 820 241 285

Tab. 4.2: Number of features used in database. It is shown that only 2.947% of

features stored in the database is produced by Graffiti dataset images.

Sequence Bark Bikes Boat Graffiti Light Trees UBC Wall PASCAL Sum

features 3 915 5 815 5 779 5 119 4 902 6 999 5 119 6 999 1 470 323 1 514 970

Percentage 0.258 0.384 0.381 0.338 0.324 0.462 0.338 0.462 97.053 100.000

G.D.S % 2.947

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

M

S
A

Seq. search: bark
Seq. search: bikes
Seq. search: boat
Seq. search: graff
Seq. search: light
Seq. search: trees
Seq. search: ubc
Seq. search: wall
Seq. search: average

(a) SA

0.8 1 1.2 1.4 1.6 1.8 2 2.2

x 10
5

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

T
kd

 = [230:20:450]2, scale multiplier = 0.1467

T
kd

S
B

(b) SB

0.8 1 1.2 1.4 1.6 1.8 2 2.2

x 10
5

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

T
kd

 = [230:20:450]2, scale multiplier = 0.1467

T
kd

S
B

A

Seq. search: bark
Seq. search: bikes
Seq. search: boat
Seq. search: graff
Seq. search: light
Seq. search: trees
Seq. search: ubc
Seq. search: wall
Seq. search: average

(c) SBA

Fig. 4.1: Properties of test sequences.

49
DEPARTMENT OF CONTROL AND INSTRUMENTATION
Faculty of Electrical Engineering and Communication

Brno University of Technology

4.4 Ground truth

Next, we evaluate the extended database by sequential search which shows the error

produced by an extended database. Even more important is, that this evaluation

will be used as a ground truth (reference results) for all evaluations of efficient data

structures. As same as the time complexity, which will be used to measure the speed

up. Our objective is to find data structure and its parameters, which quality criterion

will be as close as possible to the sequential search, however the time complexity

will be as close as possible to the real–time.

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

0.4

0.5

0.6

0.7

0.8

0.9

1

M

S
A

Seq. search: PASCAL db
Seq. search: orig DB

(a) SA

0.8 1 1.2 1.4 1.6 1.8 2 2.2

x 10
5

0.43

0.44

0.45

0.46

0.47

0.48

0.49

0.5

T
kd

 = [230:20:450]2, scale multiplier = 0.1467

T
kd

S
B

Seq. search: PASCAL DB
Seq. search: orig DB

(b) SB

0.8 1 1.2 1.4 1.6 1.8 2 2.2

x 10
5

0.48

0.49

0.5

0.51

0.52

0.53

0.54

0.55

T
kd

 = [230:20:450]2, scale multiplier = 0.1467

T
kd

S
B

A

Seq. search: PASCAL DB
Seq. search: orig DB

(c) SBA

Fig. 4.2: Comparison of original and extended database.

It is clear, that the difference between the original, which contains only the re-

ference images (44 647 features) and extended database (1 514 970) is an error

produced by used local invariant feature detector and descriptor. For all next expe-

riments, the results obtained for sequential search in an extended database are used.

As well, the pure time which was consumed by sequential search (613 346 s. per 40

query images ⇒ cca 15 334 s. per image) is used to measure the speed–up factor.

50
DEPARTMENT OF CONTROL AND INSTRUMENTATION
Faculty of Electrical Engineering and Communication

Brno University of Technology

4.5 ANN Search

In this section, we arrange the whole data set into the efficient data structure and

evaluate an influence of ϵ parameter of the approximate nearest neighbor search3 (we

use implementation described in 2.4.3). We use KD–tree structure (for all further

evaluations), however it is possible to use any other efficient data structures which

are (or not) provided by feature eval. Only the KD–tree(s) are used for the

following experiments, due to the time complexity of the whole experimental process.

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

0.4

0.5

0.6

0.7

0.8

0.9

1

M

S
A

Sequential search (extended database)
KD−tree ANN Search e=5, nTrees = 1
KD−tree ANN Search e=10, nTrees = 1
KD−tree ANN Search e=15, nTrees = 1

(a)

0.8 1 1.2 1.4 1.6 1.8 2 2.2

x 10
5

0.3

0.32

0.34

0.36

0.38

0.4

0.42

0.44

0.46

0.48

T
kd

 = [230:20:450]2, scale multiplier = 0.1467

T
kd

S
B

(b)

0.8 1 1.2 1.4 1.6 1.8 2 2.2

x 10
5

0.35

0.4

0.45

0.5

0.55

T
kd

 = [230:20:450]2, scale multiplier = 0.1467

T
kd

S
B

A

(c)

5 10 15
0

100

200

300

400

500

600

700

800

900

e

S
T

KD−tree ANN search, nTree = 1

(d)

Fig. 4.3: Performance evaluation of a single KD-tree and different ϵ. The figure shows

parameters SA (a), SB (b), SBA (c) and ST (d).

3The abbreviation ANN is used for ϵ approximate nearest neighbour search in the remaining

parts of the thesis.

51
DEPARTMENT OF CONTROL AND INSTRUMENTATION
Faculty of Electrical Engineering and Communication

Brno University of Technology

Tab. 4.3: SA parameters for different values of ϵ parameter for a ANN search in a

single KD–tree.

ϵ M

0.020 0.054 0.089 0.123 0.158 0.192 0.227 0.261 0.296 0.330 0.365 0.400

Sequential 0.314 0.667 0.822 0.896 0.936 0.958 0.970 0.978 0.982 0.985 0.988 0.990

5 0.314 0.667 0.822 0.896 0.936 0.958 0.970 0.978 0.982 0.985 0.988 0.990

10 0.314 0.667 0.822 0.896 0.936 0.958 0.970 0.978 0.982 0.985 0.988 0.990

15 0.314 0.667 0.822 0.896 0.936 0.958 0.970 0.978 0.982 0.985 0.988 0.990

Tab. 4.4: SB criterion for different values of ϵ parameter for a ANN search in a single

KD–tree.

ϵ td
84100 96100 108900 122500 136900 152100 168100 184900 202500

Sequential 0.4605 0.4526 0.4465 0.4423 0.4397 0.4379 0.4370 0.4367 0.4365

5 0.4531 0.4391 0.4281 0.4208 0.4156 0.4119 0.4096 0.4087 0.4081

10 0.4049 0.3872 0.3718 0.3598 0.3507 0.3441 0.3394 0.3366 0.3352

15 0.3736 0.3522 0.3331 0.3175 0.3048 0.2954 0.2887 0.2846 0.2820

Tab. 4.5: SBA criterion for different values of ϵ parameter for a ANN search in a

single KD–tree. (ta is set to 0.1467).

ϵ td
84100 96100 108900 122500 136900 152100 168100 184900 202500

Sequential 0.4815 0.4903 0.4966 0.5008 0.5039 0.5058 0.5069 0.5076 0.5078

5 0.4473 0.4561 0.4622 0.4661 0.4690 0.4709 0.4720 0.4726 0.4730

10 0.3646 0.3709 0.3752 0.3782 0.3800 0.3813 0.3822 0.3826 0.3829

15 0.3026 0.3072 0.3106 0.3129 0.3143 0.3153 0.3160 0.3165 0.3167

Tab. 4.6: Speed evaluation for different values of ϵ parameter a ANN search in a

single KD–tree.

time (s.)/query set avg. time (s.)/image speed–up

Sequential 613346 15334 ——–

5 8750 219 70.0925

10 1588 40 386.2040

15 690 17 888.2893

It was observed, that the sufficient accuracy is provided only by ϵ = 5. Also,

the speed–up is significant, however the pure time is too far from the real–time.

Otherwise (ϵ = 10, 15, . . .), the speed is better, however is still so far from the real–

time. In addition, the accuracy of search is not high.

52
DEPARTMENT OF CONTROL AND INSTRUMENTATION
Faculty of Electrical Engineering and Communication

Brno University of Technology

4.6 Multiple Randomized Tree Structures

As it is shown above, the speedup against the sequential search is significant, however

it is still quite far from the real time. In addition, the search with the ϵ = 10, 15 is

quite inaccurate. In this section, we try to overcome these limitations of the single

KD–tree by a multiple randomized KD–trees.

The idea behind this approach is following: the whole dataset is split into subsets

and these subsets are used to create multiple trees. Then, each structure contains less

points. Thus, the chance to find faster a nearest neighbour with sufficient distance

to query is larger. It is possible to split the points into the subsets in a several ways,

in this section, we use only the sparse trees (discussed more in detail in 4.8).

Fig. 4.4: Multiple Randomized Trees – each subset is assigned to another tree

structure.

It was observed, that the speed up produced by the multiple randomized trees is

not linear. At some point, the response will be even slower, due to the linear filtering

of the found nearest neighbors, therefore the real speedup is produced indirectly, be-

cause the biggest benefit of the multiple randomized KD–trees is, that the amount

of data to be search is reduced by the number of the trees, thus, it is possible to use

larger values of ϵ and still have a sufficient accuracy.

53
DEPARTMENT OF CONTROL AND INSTRUMENTATION
Faculty of Electrical Engineering and Communication

Brno University of Technology

0.8 1 1.2 1.4 1.6 1.8 2 2.2

x 10
5

0.3

0.32

0.34

0.36

0.38

0.4

0.42

0.44

0.46

0.48

T
kd

 = [230:20:450]2, scale multiplier = 0.1467

T
kd

S
B

Sequential search (extended database)
KD−tree ANN Search e=5, nTrees = 5
KD−tree ANN Search e=10, nTrees = 5
KD−tree ANN Search e=15, nTrees = 5
KD−tree ANN Search e=10, nTrees = 10
KD−tree ANN Search e=15, nTrees = 10
KD−tree ANN Search e=10, nTrees = 20
KD−tree ANN Search e=15, nTrees = 20

(a) SB

0.8 1 1.2 1.4 1.6 1.8 2 2.2

x 10
5

0.34

0.36

0.38

0.4

0.42

0.44

0.46

0.48

0.5

0.52

T
kd

 = [230:20:450]2, scale multiplier = 0.1467

T
kd

S
B

A

Sequential search (extended database)
KD−tree ANN Search e=5, nTrees = 5
KD−tree ANN Search e=10, nTrees = 5
KD−tree ANN Search e=15, nTrees = 5
KD−tree ANN Search e=10, nTrees = 10
KD−tree ANN Search e=15, nTrees = 10
KD−tree ANN Search e=10, nTrees = 20
KD−tree ANN Search e=15, nTrees = 20

(b) SBA

Fig. 4.5: Performance evaluation of multiple randomized KD–trees and different

values of ϵ – SB (a), SBA (b).

The most significant results are obtained from experiments for 80 multiple ran-

domised trees and ϵ = 15. In this case, both, the precision and recall are fully

comparable with 10 trees and ϵ = 10, however, the speed up is 4× larger. By com-
parison with sequential search, we lose less than 4% in precision and approximately

4% in recall, however the speed up is approximately 2200.

54
DEPARTMENT OF CONTROL AND INSTRUMENTATION
Faculty of Electrical Engineering and Communication

Brno University of Technology

0.8 1 1.2 1.4 1.6 1.8 2 2.2

x 10
5

0.34

0.36

0.38

0.4

0.42

0.44

0.46

0.48

T
kd

 = [230:20:450]2, scale multiplier = 0.1467

T
kd

S
B

Sequential search (extended database)
KD−tree ANN Search e=10, nTrees = 40
KD−tree ANN Search e=15, nTrees = 40
KD−tree ANN Search e=10, nTrees = 80
KD−tree ANN Search e=15, nTrees = 80

(a)

0.8 1 1.2 1.4 1.6 1.8 2 2.2

x 10
5

0.38

0.4

0.42

0.44

0.46

0.48

0.5

0.52

T
kd

 = [230:20:450]2, scale multiplier = 0.1467

T
kd

S
B

A

Sequential search (extended database)
KD−tree ANN Search e=10, nTrees = 40
KD−tree ANN Search e=15, nTrees = 40
KD−tree ANN Search e=10, nTrees = 80
KD−tree ANN Search e=15, nTrees = 80

(b)

5 10 15
0

500

1000

1500

2000

2500

e

S
T

ANN KD−tree search, nTree = 5
ANN KD−tree search, nTree = 10
ANN KD−tree search, nTree = 20
ANN KD−tree search, nTree = 40
ANN KD−tree search, nTree = 80

(c)

0 10 20 30 40 50 60 70 80
0

500

1000

1500

2000

2500

nTrees

S
T

ANN KD−tree search e=5
ANN KD−tree search e=10
ANN KD−tree search e=15

(d)

Fig. 4.6: Performance evaluation of multiple randomized KD–trees and different

values of ϵ – SB (a), SBA (b) and speed up ST with respect to ϵ (c) and number of

trees (d).

55
DEPARTMENT OF CONTROL AND INSTRUMENTATION
Faculty of Electrical Engineering and Communication

Brno University of Technology

4.7 Priority Search

The next evaluation is a comparison of the standard ANN search and Priority search

2.4.3. The Priority search should be faster, due to the usage of priority queues,

however it was observed from the measurements that the priority search has the

both results, the quality criterion and the time measurement worse.

0.8 1 1.2 1.4 1.6 1.8 2 2.2

x 10
5

0.34

0.36

0.38

0.4

0.42

0.44

0.46

0.48

T
kd

 = [230:20:450]2, scale multiplier = 0.1467

T
kd

S
B

Sequential search (extended database)
KD−tree ANN Search e=10, nTrees = 40
KD−tree ANN Priority Search e=10, nTrees = 40
KD−tree ANN Search e=15, nTrees = 40
KD−tree ANN Priority Search e=15, nTrees = 40
KD−tree ANN Search e=10, nTrees = 80
KD−tree ANN Priority Search e=10, nTrees = 80
KD−tree ANN Search e=15, nTrees = 80
KD−tree ANN Priority Search e=15, nTrees = 80

(a)

0.8 1 1.2 1.4 1.6 1.8 2 2.2

x 10
5

0.38

0.4

0.42

0.44

0.46

0.48

0.5

0.52

T
kd

 = [230:20:450]2, scale multiplier = 0.1467

T
kd

S
B

A

Sequential search (extended database)
KD−tree ANN Search e=10, nTrees = 40
KD−tree ANN Priority Search e=10, nTrees = 40
KD−tree ANN Search e=15, nTrees = 40
KD−tree ANN Priority Search e=15, nTrees = 40
KD−tree ANN Search e=10, nTrees = 80
KD−tree ANN Priority Search e=10, nTrees = 80
KD−tree ANN Search e=15, nTrees = 80
KD−tree ANN Priority Search e=15, nTrees = 80

(b)

Fig. 4.7: Performance evaluation of an ANN priority search. The figures show para-

meters SB (a), SBA (b).

56
DEPARTMENT OF CONTROL AND INSTRUMENTATION
Faculty of Electrical Engineering and Communication

Brno University of Technology

10 11 12 13 14 15
400

600

800

1000

1200

1400

1600

1800

2000

2200

2400

e

S
T

ANN KD−tree search, nTree = 40
ANN KD−tree priority search, nTree = 40
ANN KD−tree search, nTree = 80
ANN KD−tree priority search, nTree = 80

(a)

40 50 60 70 80
800

1000

1200

1400

1600

1800

2000

2200

2400

nTrees

S
T

ANN KD−tree search e=10
ANN KD−tree priority search e=10
ANN KD−tree search e=15
ANN KD−tree priority search e=15

(b)

Fig. 4.8: Performance evaluation of an ANN priority search. The figures show para-

meter ST with respect to ϵ (a) and number of trees (b).

It was observed, that for all tested number of trees and values of ϵ, the priority

search has worse results than standard search. The differences are not large, however

priority search has even smaller speed up for all configurations of tested parameters.

Consequently, it is better to use standard ϵ ANN search instead of priority search.

57
DEPARTMENT OF CONTROL AND INSTRUMENTATION
Faculty of Electrical Engineering and Communication

Brno University of Technology

4.8 Data Distributions

The next evaluation is an experiment with the distribution of the data into the mul-

tiple trees. As a novelty, we introduce multiple randomised sparse trees which were

used for all experiments discussed above. In this section, we compare the results

with the results obtained for a compact distribution.

(a) (b)

Fig. 4.9: Two different options of dividing input data set into subsets are shown:

compact trees (a) and sparse trees (b).

In the case of sparse trees, every n–th feature is assigned to a different subset. By

comparison, in the case of compact trees, the dataset is simply divided by a factor

n to create the subsets which are used for multiple randomised trees. Theoretically,

in the first case, the subsets should have larger variance.

It was observed, that the introduced sparse trees outperform the compact trees

in all precision aspects. The time measurements shown, that the compact trees have

better results for the high number of trees, however sparse trees showed better results

for the less number of trees. It may be justified, because in the case of sparse trees,

the features are equally divided in all subsets, so it took more time to get the true

nearest neighbor. However, this drawback is overcome, because sparse trees produce

better results for higher ϵ (for example 40 sparse trees with ϵ = 15 produce almost

the same results as 40 compact trees with ϵ = 10).

58
DEPARTMENT OF CONTROL AND INSTRUMENTATION
Faculty of Electrical Engineering and Communication

Brno University of Technology

0.8 1 1.2 1.4 1.6 1.8 2 2.2

x 10
5

0.3

0.32

0.34

0.36

0.38

0.4

0.42

0.44

0.46

0.48

T
kd

 = [230:20:450]2, scale multiplier = 0.1467

T
kd

S
B

Sequential search (extended database)
KD−tree ANN Search e=5, nTrees = 5, compact
KD−tree ANN Search e=5, nTrees = 5, sparse
KD−tree ANN Search e=10, nTrees = 5, compact
KD−tree ANN Search e=10, nTrees = 5, sparse
KD−tree ANN Search e=10, nTrees = 10, compact
KD−tree ANN Search e=10, nTrees = 10, sparse
KD−tree ANN Search e=15, nTrees = 10, compact
KD−tree ANN Search e=15, nTrees = 10, sparse
KD−tree ANN Search e=10, nTrees = 40, compact
KD−tree ANN Search e=10, nTrees = 40, sparse
KD−tree ANN Search e=15, nTrees = 40, compact
KD−tree ANN Search e=15, nTrees = 40, sparse

(a)

0.8 1 1.2 1.4 1.6 1.8 2 2.2

x 10
5

0.35

0.4

0.45

0.5

T
kd

 = [230:20:450]2, scale multiplier = 0.1467

T
kd

S
B

A

Sequential search (extended database)
KD−tree ANN Search e=5, nTrees = 5, compact
KD−tree ANN Search e=5, nTrees = 5, sparse
KD−tree ANN Search e=10, nTrees = 5, compact
KD−tree ANN Search e=10, nTrees = 5, sparse
KD−tree ANN Search e=10, nTrees = 10, compact
KD−tree ANN Search e=10, nTrees = 10, sparse
KD−tree ANN Search e=15, nTrees = 10, compact
KD−tree ANN Search e=15, nTrees = 10, sparse
KD−tree ANN Search e=10, nTrees = 40, compact
KD−tree ANN Search e=10, nTrees = 40, sparse
KD−tree ANN Search e=15, nTrees = 40, compact
KD−tree ANN Search e=15, nTrees = 40, sparse

(b)

5 10 15
0

500

1000

1500

2000

2500

3000

e

S
T

ANN KD−tree search, nTree = 5, sparse
ANN KD−tree search, nTree = 5, compact
ANN KD−tree search, nTree = 10, sparse
ANN KD−tree search, nTree = 10, compact
ANN KD−tree search, nTree = 40, sparse
ANN KD−tree search, nTree = 40, compact

(c)

5 10 15 20 25 30 35 40
0

500

1000

1500

2000

2500

3000

nTrees

S
T

ANN KD−tree search, e = 5, sparse
ANN KD−tree search, e = 10, sparse
ANN KD−tree search, e= 15, sparse
ANN KD−tree search, e = 5, compact
ANN KD−tree search, e = 10, compact
ANN KD−tree search, e = 15, compact

(d)

Fig. 4.10: Comparison of a performance of sparse and compact trees. The figures

show parameters SB (a), SBA (b), ST with respect to ϵ (c) and number of trees (d).

59
DEPARTMENT OF CONTROL AND INSTRUMENTATION
Faculty of Electrical Engineering and Communication

Brno University of Technology

4.9 Descriptor Dimensionality

As it was shown above, the speed up produced by a multiple randomised trees is

significant, however it is still so far from the real-time. All of the experiments was

done with a 192 dimensional C–SIFT descriptor. Search in a highly dimensional

data is a time expensive even for efficient data structures. Fortunately, it is possible

to use another, less dimensional descriptor (PCA–SIFT, . . .).

In this section, we evaluate the improvements produced by a less dimensional

descriptor. Only the first 50 dimensions of the C–SIFT descriptors are used in this

experiment instead of a completely different descriptor. Consequently, the quality

criterion will be a little bit worse, however it is sufficient for this experiment, because

the results are compared with the sequential search for 50 dimensions and the most

important is a speed–up factor.

It was observed that it is possible to get the real–time response with sufficient

precision of matching for 160 multiple randomised trees with ϵ = 5 and maximum

of visited leaves (cf. 4.10) set to 1000 for less dimensional descriptor (50). However,

in this experiment was used only first 50 dimensions of 192 dimensional C–SIFT,

for appropriate descriptor, the results will be even better.

Tab. 4.7: Speed measurements for a less dimensional descriptor.

nTrees ϵ time (s.)/query set avg. time (s.)/nTrees 1 image (s.)/nTrees

40 5 2007.26 50.1815 1.254

40 10 662.34 16.5585 0.413

40 15 400.94 10.0235 0.250

80 5 3198.6 39.9825 0.999

80 10 1089.54 13.6192 0.340

80 15 678.38 8.47975 0.211

160 5 5021.58 31.3849 0.784

160 10 1772 11.075 0.276

160 15 1132.52 7.07825 0.176

160 – 1000 mvl 5 2991.97 18.6998 0.467

160 – 1000 mvl 10 1287.68 8.048 0.201

160 – 1000 mvl 15 1132.52 7.07825 0.177

60
DEPARTMENT OF CONTROL AND INSTRUMENTATION
Faculty of Electrical Engineering and Communication

Brno University of Technology

0.8 1 1.2 1.4 1.6 1.8 2 2.2

x 10
5

0.24

0.26

0.28

0.3

0.32

T
kd

 = [230:20:450]2, scale multiplier = 0.1467

T
kd

S
B

KD−tree ANN Search e=10, nTrees = 20
KD−tree ANN Search e=10, nTrees = 40
KD−tree ANN Search e=15, nTrees = 40
KD−tree ANN Search e=10, nTrees = 80
KD−tree ANN Search e=15, nTrees = 80
KD−tree ANN Search e=10, nTrees = 160
KD−tree ANN Search e=15, nTrees = 160
KD−tree ANN Search e=10, nTrees = 160
KD−tree ANN Search e=5, nTrees = 160
KD−tree ANN Search e=5, nTrees = 160, mvl=1000

(a)

0.8 1 1.2 1.4 1.6 1.8 2 2.2

x 10
5

0.24

0.26

0.28

0.3

0.32

0.34

0.36

0.38

T
kd

 = [230:20:450]2, scale multiplier = 0.1467

T
kd

S
B

A

KD−tree ANN Search e=10, nTrees = 20
KD−tree ANN Search e=10, nTrees = 40
KD−tree ANN Search e=15, nTrees = 40
KD−tree ANN Search e=10, nTrees = 80
KD−tree ANN Search e=15, nTrees = 80
KD−tree ANN Search e=10, nTrees = 160
KD−tree ANN Search e=15, nTrees = 160
KD−tree ANN Search e=10, nTrees = 160
KD−tree ANN Search e=5, nTrees = 160
KD−tree ANN Search e=5, nTrees = 160, mvl = 1000

(b)

Fig. 4.11: Performance evaluation of a less dimensional descriptor. The figure shows

parameter SB (a) and SBA (b).

4.10 Maximum Visited Leaves

The both, standard ANN search as well ANN priority search terminates after the

sufficient distance is found. However nowhere is defined, how much time the search

takes and it may be serious problem for the real–time applications (even for the

soft real–time). The maximum time complexity can be determined indirectly by the

maximum visited leaves property.

The main idea of this approach is, that the true nearest neighbours should have

closer distance to the query points and the search should terminates quite fast.

However, much time is wasted by the search of the nearest neighbors of queries

which do not have distinctive descriptors and the distance from their nearest nei-

ghbors to them are large. Moreover, this search is useless, because the probability

61
DEPARTMENT OF CONTROL AND INSTRUMENTATION
Faculty of Electrical Engineering and Communication

Brno University of Technology

that the false nearest neighbour will be found is high. Instead of this, a modified

search with maximum visited leaves property terminates in both cases, when the

distance from the nearest neighbor to the query is quite close as well the maximum

of visited leaves is reached.

It was observed that with parameter maximum visited leaves set to 1000, we lost

only cca 1%, however the speed–up is 4× larger for ϵ = 10.

500 1000 1500 2000 2500
2000

2500

3000

3500

4000

4500

5000

MVL

S
T

ANN KD−tree search, e = 10, nTree = 40
ANN KD−tree search, e = 10, nTree = 80

(a)

Fig. 4.12: Performance evaluation of a different number of a maximum visited leaves.

The figures show parameter ST with respect to ϵ (a) and number of trees (b).

Tab. 4.8: Time measurements for different maximum visited leaves (all test set)

ϵ Number of Trees M.V.L. Time (s.) Time (s.) / nTrees

10 40 — 27125.90 678.15

10 40 2500 10100.70 252.52

10 40 1000 8354.06 208.85

10 40 500 5796.92 144.92

10 80 — 40654.80 508.19

10 80 2500 15183.40 189.79

10 80 1000 13296.60 166.21

10 80 500 10481.70 131.02

62
DEPARTMENT OF CONTROL AND INSTRUMENTATION
Faculty of Electrical Engineering and Communication

Brno University of Technology

0.8 1 1.2 1.4 1.6 1.8 2 2.2

x 10
5

0.36

0.38

0.4

0.42

0.44

0.46

0.48

T
kd

 = [230:20:450]2, scale multiplier = 0.1467

T
kd

S
B

Sequential search (extended database)
KD−tree ANN Search e=10, nTrees = 40
KD−tree ANN Search e=10, nTrees = 40, mvl = 2500
KD−tree ANN Search e=10, nTrees = 40, mvl = 1000
KD−tree ANN Search e=10, nTrees = 40, mvl = 500
KD−tree ANN Search e=10, nTrees = 80
KD−tree ANN Search e=10, nTrees = 80, mvl = 2500
KD−tree ANN Search e=10, nTrees = 80, mvl = 1000
KD−tree ANN Search e=10, nTrees = 80, mvl = 500

(a)

0.8 1 1.2 1.4 1.6 1.8 2 2.2

x 10
5

0.4

0.42

0.44

0.46

0.48

0.5

0.52

T
kd

 = [230:20:450]2, scale multiplier = 0.1467

T
KD

S
B

A

Sequential search (extended database)
KD−tree ANN Search e=10, nTrees = 40
KD−tree ANN Search e=10, nTrees = 40, mvl = 2500
KD−tree ANN Search e=10, nTrees = 40, mvl = 1000
KD−tree ANN Search e=10, nTrees = 40, mvl = 500
KD−tree ANN Search e=10, nTrees = 80
KD−tree ANN Search e=10, nTrees = 80, mvl = 2500
KD−tree ANN Search e=10, nTrees = 80, mvl = 1000
KD−tree ANN Search e=10, nTrees = 80, mvl = 500

(b)

Fig. 4.13: Performance evaluation of a different number of a maximum visited leaves.

The figures show parameters SB (a) and SBA (b).

63
DEPARTMENT OF CONTROL AND INSTRUMENTATION
Faculty of Electrical Engineering and Communication

Brno University of Technology

4.11 Database Size

The next evaluation deals with the influence of the database size. The biggest da-

tabase used in the thesis contains cca 1 514 970 features extracted from 8 reference

and 1 000 other images. The smaller database contains only 190 937 features. It is

important to know, how the speed and precision depends on the size, because we

need to be able to decide whether it is enough to create one large database or is it

better for larger datasets to create more databases and run the search in parallel

databases.

0.8 1 1.2 1.4 1.6 1.8 2 2.2

x 10
5

0.36

0.38

0.4

0.42

0.44

0.46

0.48

0.5

T
kd

 = [230:20:450]2, scale multiplier = 0.1467

T
kd

S
B

KD Search e=10, nTrees = 20
Sequential search
KD Search e=15, nTrees = 20
KD Search e=10, nTrees = 40
KD Search e=15, nTrees = 40
KD Search e=10, nTrees = 80
KD Search e=15, nTrees = 80
KD Search e=10, nTrees = 80, large database
KD Search e=15, nTrees = 80, large database

(a)

0.8 1 1.2 1.4 1.6 1.8 2 2.2

x 10
5

0.4

0.42

0.44

0.46

0.48

0.5

0.52

0.54

T
kd

 = [230:20:450]2, scale multiplier = 0.1467

T
kd

S
B

A

KD Search e=10, nTrees = 20
Sequential search
KD Search e=15, nTrees = 20
KD Search e=10, nTrees = 40
KD Search e=15, nTrees = 40
KD Search e=10, nTrees = 80
KD Search e=15, nTrees = 80
KD Search e=10, nTrees = 80, large database
KD Search e=15, nTrees = 80, large database

(b)

Fig. 4.14: Performance evaluation of a smaller database. The figures show parame-

ters SB (a) and SBA (b).

It was observed, that the results depends on database size. It should be a point

at discussion for extremely large databases, whether it is or not useful to split them

into more subdatabases.

64
DEPARTMENT OF CONTROL AND INSTRUMENTATION
Faculty of Electrical Engineering and Communication

Brno University of Technology

Tab. 4.9: Comparison of large and small databases

Features nTrees ϵ time (s.) time (s.) /nTrees

190937 20 10 2802.83 140.14

190937 20 15 1653.55 82.68

190937 40 10 3497.67 87.44

190937 40 10 2067.95 51.70

190937 80 10 4659.70 58.25

190937 80 15 2740.10 34.25

1514970 20 10 17404.50 870.23

1514970 20 15 8851.20 442.56

1514970 40 10 27125.90 678.15

1514970 40 10 14342.50 358.56

1514970 80 10 40654.80 508.19

1514970 80 15 22097.30 276.22

65
DEPARTMENT OF CONTROL AND INSTRUMENTATION
Faculty of Electrical Engineering and Communication

Brno University of Technology

4.12 Tree Construction Time

Our last evaluation aims at the time needed for preprocessing of the dataset during

the construction of efficient data structures. It was observed, that this criterion is not

so important for KD–trees or BBD–trees, which are build quite fast. Moreover, the

trees are precomputed off–line, so the speed is not really an important parameter,

however it can be useful for some future comparison of a different tree structures

like k–means trees which construction process is more time consuming.

0 10 20 30 40 50 60 70 80
0

50

100

150

200

250

nTrees

T
im

e
(s

.)

1 514 970 features
190 937 features

(a)

0 10 20 30 40 50 60 70 80
0

5

10

15

20

25

30

35

40

45

50

nTrees

T
im

e
(s

.)

1 514 970 features
190 937 features

(b)

Fig. 4.15: Construction time of efficient data structures for different number of

points. The figure (a) shows pure time needed for construction of multiple trees

for different databases, figure (b) shows time needed for construction divided by

number of trees.

The time needed for construction strongly (indirectly) depends on number of

trees which should be stored in a data structure, however it is not an important

parameter for KD–trees, because all measured times are quite far. Moreover it is

not the most important criterion in general (even for k–means), because the trees

may be precomputed in off–line.

66
DEPARTMENT OF CONTROL AND INSTRUMENTATION
Faculty of Electrical Engineering and Communication

Brno University of Technology

5 DISCUSSION AND CONCLUSIONS

The thesis deals with fast feature matching for simultaneous localization and map-

ping. The goal was to create a system with real–time response which can be used in

various applications.

We have developed a new performance evaluation system, which can be used

to determine appropriate parameters. The linear time complexity of the brute–

force search was replaced by sub–linear which is produced by different efficient data

structures like KD–trees, BBD-trees or k–means trees.

Several experiments are described and evaluated. It was observed, that the mul-

tiple randomised KD–trees outperform the linear search in time complexity with

sufficient precision. However the pure times are still quite far from the real–time.

We have shown, that it is possible to get close to the real–time response by setting

the maximum visited leaves to 1000. As a novelty, we have shown that the sparse

trees completely outperform the compact trees in precision criterion which allows

us to use a larger ϵ parameter.

An impressive real–time response can be achieved by ϵ–ANN search in multiple

randomised sparse trees constructed by a less dimensional descriptors with setting

the maximum visited leaves. In addition, the new performance evaluation framework

was developed and is available for general use.

For the future work, it may be interesting to start thinking about the trees

with weighted points or adaptive trees with exponential oblivious, which will be

created by dynamically added points into the data structure. Moreover, it could be

interesting to test different detectors or descriptors, however it is a time expensive

job which should be done by the whole community to create the full report.

67
DEPARTMENT OF CONTROL AND INSTRUMENTATION
Faculty of Electrical Engineering and Communication

Brno University of Technology

BIBLIOGRAPHY

[1] Abdel-Hakim, A. E.; Farag, A. A.: CSIFT: A SIFT Descriptor with Color In-

variant Characteristics. In CVPR ’06: Proceedings of the 2006 IEEE Computer

Society Conference on Computer Vision and Pattern Recognition, Washington,

DC, USA: IEEE Computer Society, 2006, ISBN 0-7695-2597-0, pages 1978–

1983.

[2] Arya, S.; Mount, D. M.: Algorithms for Fast Vector Quantization. In Proc. of

DCC’93: Data Compression Conference, IEEE Press, 1993, pages 381–390.

[3] Arya, S.; Mount, D. M.: Approximate nearest neighbor queries in fixed dimensi-

ons. In SODA ’93: Proceedings of the fourth annual ACM-SIAM Symposium on

Discrete algorithms, Philadelphia, PA, USA: Society for Industrial and Applied

Mathematics, 1993, ISBN 0-89871-313-7, pages 271–280.

[4] Arya, S.; Mount, D. M.; Netanyahu, N. S.; et al.: An Optimal Algorithm for

Approximate Nearest Neighbor Searching in Fixed Dimensions. In ACM-SIAM

SYMPOSIUM ON DISCRETE ALGORITHMS, 1994, pages 573–582.

[5] Attneave, F.: Some Informational Aspects of Visual Perception. Psychological

Review, volume 61, nr. 3, 1954: pages 183–193.

[6] Bailey, T.; Durrant-Whyte, H.: Simultaneous localization and mapping

(SLAM): part II. IEEE Robotics & Automation Magazine, volume 13, nr. 3, Sep-

tember 2006: pages 108–117, ISSN 1070-9932, doi:10.1109/MRA.2006.1678144.

[7] Bastanlar, Y.; Yilmaz, E.; Yardimci, Y.; et al.: 3D Reconstruction for a Cultural

Heritage Virtual Tour System. 2008, page B5: 1023 ff.

[8] Bay, H.; Ess, A.; Tuytelaars, T.; et al.: Speeded-Up Robust Features (SURF).

Comput. Vis. Image Underst., volume 110, nr. 3, 2008: pages 346–359, ISSN

1077-3142.

[9] Bentley, J. L.: Multidimensional binary search trees used for associative sear-

ching. Commun. ACM, volume 18, nr. 9, 1975: pages 509–517, ISSN 0001-0782.

[10] Berg, M. d.; Cheong, O.; Kreveld, M. v.; et al.: Computational Geometry: Al-

gorithms and Applications. Santa Clara, CA, USA: Springer-Verlag TELOS,

2008, ISBN 3540779736, 9783540779735.

[11] Biederman, I.: Recognition-by-components: A theory of human image under-

standing. Psychological Review, volume 94, 1987: pages 115–147.

68
DEPARTMENT OF CONTROL AND INSTRUMENTATION
Faculty of Electrical Engineering and Communication

Brno University of Technology

[12] Borenstein, J.; Everett, H. R.; Feng, L.:Where am I? Systems and Methods for

Mobile Robot Positioning. March 1996.

[13] Broggi, A.; Bertozzi, M.; Fascioli, A.; et al.: The argo autonomous vehicle’s

vision and control systems. International Journal of Intelligent Control and

Systems, 1999: pages 409–441.

[14] Brown, M.; Lowe, D. G.: Recognising Panoramas. In ICCV ’03: Proceedings

of the Ninth IEEE International Conference on Computer Vision, Washington,

DC, USA: IEEE Computer Society, 2003, ISBN 0-7695-1950-4, page 1218.

[15] Chum, O.; Matas, J.: Web Scale Image Clustering – Large Scale Discovery of

Spatially Related Images. 2008.

[16] Datar, M.; Indyk, P.: Locality-sensitive hashing scheme based on p-stable dis-

tributions. In In SCG ’04: Proceedings of the twentieth annual symposium on

Computational geometry, ACM Press, 2004, pages 253–262.

[17] Duda, R. O.; Hart, P. E.; Stork, D. G.: Pattern Classification. Wiley-

Interscience, second edition, 2000, ISBN 978-0471056690, 654 pages.

[18] Durrant-Whyte, H.; Bailey, T.: Simultaneous Localisation and Mapping

(SLAM): Part I The Essential Algorithms. IEEE ROBOTICS AND AUTO-

MATION MAGAZINE, volume 2, 2006: page 2006.

[19] Everingham, M.; Van Gool, L.; Williams, C. K. I.; et al.: The PASCAL Vi-

sual Object Classes Challenge 2007 (VOC2007) Results. http://www.pascal-

network.org/challenges/VOC/voc2007/workshop/index.html.

[20] Friedman, J. H.; Bentley, J. L.; Finkel, R. A.: An Algorithm for Finding Best

Matches in Logarithmic Expected Time. ACM Trans. Math. Softw., volume 3,

nr. 3, 1977: pages 209–226, ISSN 0098-3500.

[21] Gionis, A.; Indyk, P.; Motwani, R.: Similarity Search in High Dimensions via

Hashing. In VLDB ’99: Proceedings of the 25th International Conference on

Very Large Data Bases, San Francisco, CA, USA: Morgan Kaufmann Publishers

Inc., 1999, ISBN 1-55860-615-7, pages 518–529.

[22] Gool, L. J. V.; Moons, T.; Ungureanu, D.: Affine/ Photometric Invariants for

Planar Intensity Patterns. In ECCV ’96: Proceedings of the 4th European Con-

ference on Computer Vision-Volume I, London, UK: Springer-Verlag, 1996,

ISBN 3-540-61122-3, pages 642–651.

69
DEPARTMENT OF CONTROL AND INSTRUMENTATION
Faculty of Electrical Engineering and Communication

Brno University of Technology

[23] Harris, C.; Stephens, M.: A combined corner and edge detector. In Proc. Fourth

Alvey Vision Conference, 1988, pages 147–151.

[24] Indyk, P.; Motwani, R.: Approximate nearest neighbors: towards removing the

curse of dimensionality. In STOC ’98: Proceedings of the thirtieth annual ACM

symposium on Theory of computing, New York, NY, USA: ACM, 1998, ISBN

0-89791-962-9, pages 604–613.

[25] Kalal, Z.; Matas, J.; Mikolajczyk, K.: P-N Learning: Bootstrapping Binary

Classifiers by Structural Constraints. CVPR, 2010.

[26] Ke, Y.; Sukthankar, R.: PCA-SIFT: A More Distinctive Representation for

Local Image Descriptors. 2004, pages 506–513.

[27] Kleinberg, J. M.: Two Algorithms for Nearest-Neighbor Search in High Di-

mensions. 1997, pages 599–608.

[28] Lamrous, S.; Taileb, M.: Divisive Hierarchical K-Means. In CIMCA ’06: Pro-

ceedings of the International Conference on Computational Inteligence for Mo-

delling Control and Automation and International Conference on Intelligent

Agents Web Technologies and International Commerce, Washington, DC, USA:

IEEE Computer Society, 2006, ISBN 0-7695-2731-0, page 18.

[29] Lazebnik, S.; Schmid, C.; Ponce, J.: Sparse Texture Representation Using

Affine-Invariant Neighborhoods. In International Conference on Computer Vi-

sion & Pattern Recognition, volume 2, 2003, pages 319–324.

URL http://lear.inrialpes.fr/pubs/2003/LSP03

[30] Leibe, B.; Mikolajczyk, K.; Schiele, B.: Efficient Clustering and Matching for

Object Class Recognition. In British Machine Vision Conference (BMVC’06),

2006.

[31] Lindeberg, T.: Feature Detection with Automatic Scale Selection. International

Journal of Computer Vision, volume 30, 1998: pages 79–116.

[32] Lowe, D. G.: Object Recognition from Local Scale-Invariant Features. In ICCV

’99: Proceedings of the International Conference on Computer Vision-Volume

2, Washington, DC, USA: IEEE Computer Society, 1999, ISBN 0-7695-0164-8,

page 1150.

[33] Lowe, D. G.: Distinctive Image Features from Scale-Invariant Keypoints. Int.

J. Comput. Vision, volume 60, nr. 2, 2004: pages 91–110, ISSN 0920-5691.

http://lear.inrialpes.fr/pubs/2003/LSP03

70
DEPARTMENT OF CONTROL AND INSTRUMENTATION
Faculty of Electrical Engineering and Communication

Brno University of Technology

[34] Lv, Q.; Josephson, W.; Wang, Z.; et al.: Multi-probe LSH: efficient indexing

for high-dimensional similarity search. In VLDB ’07: Proceedings of the 33rd

international conference on Very large data bases, VLDB Endowment, 2007,

ISBN 978-1-59593-649-3, pages 950–961.

URL http://portal.acm.org/citation.cfm?id=1325851.1325958

[35] Maneewongvatana, S.; Mount, D. M.: It’s Okay to Be Skinny, If Your Friends

Are Fat. In Center for Geometric Computing 4th Annual Workshop on Com-

putational Geometry, 1999.

[36] Mars Exploration Rover Mision. [online], Date of visit to site 10.5.2010.

URL http://marsrovers.nasa.gov/home/

[37] Matas, J.; Chum, O.; Urban, M.; et al.: Robust Wide Baseline Stereo from

Maximally Stable Extremal. In In British Machine Vision Conference, 2002,

pages 384–393.

[38] Mikolajczyk, K.; Matas, J.: Improving SIFT for Fast Tree Matching by Optimal

Linear Projection. In ICCV 2007: Proceedings of Eleventh IEEE International

Conference on Computer Vision, edited D. Metaxas; B. Vemuri; A. Shashua;

H. Shum, IEEE Computer Society, Los Alamitos, USA: IEEE Computer Society

Press, October 2007, ISBN 978-1-4244-1631-8, page 8, cDROM.

[39] Mikolajczyk, K.; Schmid, C.: Indexing based on scale invariant interest points.

In Proceedings of the 8th International Conference on Computer Vision, Van-

couver, Canada, 2001, pages 525–531.

URL http://perception.inrialpes.fr/Publications/2001/MS01a

[40] Mikolajczyk, K.; Schmid, C.: An affine invariant interest point detector. In

Proceedings of the 7th European Conference on Computer Vision, Copenhagen,

Denmark, Springer, 2002, pages 128–142, copenhagen.

URL http://perception.inrialpes.fr/Publications/2002/MS02

[41] Mikolajczyk, K.; Schmid, C.: Scale and affine invariant interest point detectors.

International Journal of Computer Vision, volume 60, nr. 1, 2004: pages 63–86,

ISSN 0920-5691.

URL http://lear.inrialpes.fr/pubs/2004/MS04

[42] Mikolajczyk, K.; Schmid, C.: A Performance Evaluation of Local Descriptors.

IEEE Trans. Pattern Anal. Mach. Intell., volume 27, nr. 10, 2005: pages 1615–

1630, ISSN 0162-8828.

http://portal.acm.org/citation.cfm?id=1325851.1325958
http://marsrovers.nasa.gov/home/
http://perception.inrialpes.fr/Publications/2001/MS01a
http://perception.inrialpes.fr/Publications/2002/MS02
http://lear.inrialpes.fr/pubs/2004/MS04

71
DEPARTMENT OF CONTROL AND INSTRUMENTATION
Faculty of Electrical Engineering and Communication

Brno University of Technology

[43] Mikolajczyk, K.; Tuytelaars, T.; Schmid, C.; et al.: A Comparison of Affine

Region Detectors. Int. J. Comput. Vision, volume 65, nr. 1-2, 2005: pages 43–

72, ISSN 0920-5691.

[44] Mindru, F.; Tuytelaars, T.; Gool, L. V.; et al.: Moment Invariants for Recogni-

tion under Changing Viewpoint and Illumination. Comput. Vis. Imag Underst,

volume 94, 2004: pages 3–27.

[45] Montemerlo, M.; Thrun, S.; Koller, D.; et al.: FastSLAM 2.0: An Improved

Particle Filtering Algorithm for Simultaneous Localization and Mapping that

Provably Converges. In In Proc. of the Int. Conf. on Artificial Intelligence

(IJCAI, 2003, pages 1151–1156.

[46] Moore, A. W.: The Anchors Hierarchy: Using the Triangle Inequality to Survive

High Dimensional Data. In UAI ’00: Proceedings of the 16th Conference on Un-

certainty in Artificial Intelligence, San Francisco, CA, USA: Morgan Kaufmann

Publishers Inc., 2000, ISBN 1-55860-709-9, pages 397–405.

[47] Moravec, H.: The Stanford Cart and the CMU Rover. Proceedings of the IEEE,

volume 71, nr. 7, july 1983: pages 872 – 884, ISSN 0018-9219.

[48] Mount, D. M.: ANN Programming Manual. Technical report, 2010.

URL http://www.cs.umd.edu/~mount/ANN/

[49] Muja, M.; Lowe, D. G.: Fast approximate nearest neighbors with automatic

algorithm configuration. In In VISAPP International Conference on Computer

Vision Theory and Applications, 2009, pages 331–340.

[50] Orpheus Robotic System Project. [online], Date of visit to site 10.5.2010.

URL http://www.orpheus-project.cz/

[51] Panoramio. [online], Date of visit to site 10.5.2010.

URL http://www.panoramio.com

[52] Pomerleau, D.: RALPH: Rapidly Adapting Lateral Position Handler. In IEEE

Symposium on Intelligent Vehicles, September 1995, pages 506 – 511.

[53] Rosten, E.; Drummond, T.: Machine learning for high-speed corner detection.

In In European Conference on Computer Vision, 2006, pages 430–443.

[54] Schaffalitzky, F.; Zisserman, A.: Multi-view Matching for Unordered Image Sets,

or ”How Do I Organize My Holiday Snaps?”. In ECCV ’02: Proceedings of the

7th European Conference on Computer Vision-Part I, London, UK: Springer-

Verlag, 2002, ISBN 3-540-43745-2, pages 414–431.

http://www.cs.umd.edu/~mount/ANN/
http://www.orpheus-project.cz/
http://www.panoramio.com

72
DEPARTMENT OF CONTROL AND INSTRUMENTATION
Faculty of Electrical Engineering and Communication

Brno University of Technology

[55] Schmid, C.; Mohr, R.: Local grayvalue invariants for image retrieval. IEEE

Transactions on Pattern Analysis and Machine Intelligence, volume 19, 1997:

pages 530–535.

[56] Se, S.; Lowe, D.; Little, J.: Global Localization using Distinctive Visual Featu-

res. 2002.

[57] Shi, J.; Tomasi, C.: Good Features to Track. 1994, pages 593–600.

[58] Silpa-Anan, C.; Hartley, R.: Optimised KD-trees for fast image descriptor

matching. In CVPR, IEEE Computer Society, 2008.

[59] Sivic, J.; Zisserman, A.: Video Google: A Text Retrieval Approach to Object

Matching in Videos. In Proceedings of the International Conference on Com-

puter Vision, volume 2, October 2003, pages 1470–1477.

URL http://www.robots.ox.ac.uk/~vgg

[60] Smith, S. M.; Brady, J. M.: SUSAN - A New Approach to Low Level Image

Processing. International Journal of Computer Vision, volume 23, 1995: pages

45–78.

[61] Sonka, M.; Hlavac, V.; Boyle, R.: Image Processing, Analysis and Machine

Vision. Thomson, third edition, 2007, ISBN 978-0-495-08252.

[62] Stanford Racing. [online], Date of visit to site 10.5.2010.

URL http://cs.stanford.edu/group/roadrunner//old/index.html

[63] Svab, J.; Krajnik, T.; J.Faigl; et al.: FPGA-based Speeded Up Robust Features.

In 2009 IEEE International Conference on Technologies for Practical Robot

Applications 2009, November 2009.

[64] Tartan Racing. [online], Date of visit to site 10.5.2010.

URL http://www.tartanracing.org/

[65] Thrun, S.; Burgard, W.; Fox, D.: Probabilistic Robotics. The MIT Press, 2005,

ISBN 978-0-262-20162-9.

[66] Tuytelaars, T.; Mikolajczyk, K.: Local invariant feature detectors: a survey.

Found. Trends. Comput. Graph. Vis., volume 3, nr. 3, 2008: pages 177–280,

ISSN 1572-2740.

[67] Tuytelaars, T.; Van Gool, L.: MatchingWidely Separated Views Based on Affine

Invariant Regions. Int. J. Comput. Vision, volume 59, nr. 1, 2004: pages 61–85,

ISSN 0920-5691.

http://www.robots.ox.ac.uk/~vgg
http://cs.stanford.edu/group/roadrunner//old/index.html
http://www.tartanracing.org/

73
DEPARTMENT OF CONTROL AND INSTRUMENTATION
Faculty of Electrical Engineering and Communication

Brno University of Technology

[68] Wang, Q.; You, S.: Fast Similarity Search for High-Dimensional Dataset. In ISM

’06: Proceedings of the Eighth IEEE International Symposium on Multimedia,

Washington, DC, USA: IEEE Computer Society, 2006, ISBN 0-7695-2746-9,

pages 799–804.

74
DEPARTMENT OF CONTROL AND INSTRUMENTATION
Faculty of Electrical Engineering and Communication

Brno University of Technology

LIST OF SYMBOLS, PHYSICAL CONSTANTS

AND ABBREVIATIONS

M Matrix

F Set

v n–dimensional vector

Rd d–dimensional vector space

O Upper bound of the algorithm’s running time

detA Determinant of A

trA Trace of A

ANN Approximate Nearest Neighbor

BBD Balanced Box–Decomposition

FAST Features from Accelerated Segment Test

GLOH Gradient Location–Orientation Histogram

LSH Locality Sensitive Hashing

MSER Maximally Stable Extremal Regions

PCA Principal Component Analyses

SIFT Scale Invariant Feature Transformation

SLAM Simultaneous Localization And Mapping

SURF Speeded Up Robust Features

75
DEPARTMENT OF CONTROL AND INSTRUMENTATION
Faculty of Electrical Engineering and Communication

Brno University of Technology

LIST OF APPENDICES

A Tools 76

A.1 compute descriptors . 76

A.2 feature eval . 76

A.2.1 Usage . 77

A.2.2 Input and Output Files . 78

A.3 Performance Evaluation tools . 79

A.4 Other . 80

B Local Feature Detectors 81

B.1 Corner Detectors . 81

B.1.1 Harris/Plessey Detector . 81

B.1.2 Harris–Laplace . 82

B.1.3 Harris–Affine . 83

B.2 Blob Detectors . 85

B.2.1 Hessian Detector . 85

B.2.2 Hessian–Laplace/Affine . 86

B.3 Region Detectors . 87

B.3.1 Intensity–based Regions . 87

B.3.2 Maximally Stable Extremal Regions 88

C Enclosed DVD 91

76
DEPARTMENT OF CONTROL AND INSTRUMENTATION
Faculty of Electrical Engineering and Communication

Brno University of Technology

A TOOLS

In this appendix, we summarise and briefly describe tools, which we have used to ob-

tain results discussed in the thesis. Both, the compute descriptors and feature eval

are written in C++ and can be run on any Windows or Linux machine.

A.1 compute descriptors

The application compute descriptors has been implemented by Mikolajczyk1. We

have used this application to detect and describe local invariant features in images.

The application provides several feature detectors (Harris–Laplace/Affine, Hessian–

Laplace/Affine, . . .) and descriptors (SIFT, GLOH, CSIFT, . . .).

A.2 feature eval

The application feature eval is available on enclosed DVD. It provides fast fea-

ture matching of local invariant features. The application is based on ANN [48] and

FLANN [49] libraries.

WARNING: be sure that your computer has enough free memory!

Application may run long time (depends on database size and search op-

tions).

Application provides multiple randomized KD–trees, BBD–trees and k–means

trees. Standard (approximate nearest neighbour) search is available as same as prio-

rity search and brute–force (sequential) search. To see all options, run the application

without any modifier.

1Available at http://www.featurespace.org

77
DEPARTMENT OF CONTROL AND INSTRUMENTATION
Faculty of Electrical Engineering and Communication

Brno University of Technology

A.2.1 Usage

The most important options are (in addition to that, it is possible to use different

splitting and shrinking rules, k–means trees, . . .):

-nt – number of multiple randomized trees (default = 1)

-nn – number of nearest neighbors which are found for each query (default =

1)

-e – the error bound for approximate nearest neighbor search (default = 0)

-mps – number of points to visit before termination (default = -1, denotes the

natural termination condition)

-sqr – use 0 for square and 1 for square root of Euclidean norm (default = 1)

-kd – KD–tree standard search

-kdp – KD–tree priority search

-sf – brute–force search

-dbf – file with the list of files containing reference features

-df – file which contains database features

-qf – file which contains list files containing query features

Firstly, it is necessary to build the database. All other runs, which use the same

database do not need to build the database again, but can be used directly.

Example: the following command loads list of files (files.ref) containing refe-

rence features and stores it to the file database.pts (for next runs, it is not necessary

to use -dbf option again). The application creates 40 randomised multiple sparse

trees. Then, the all files stored in files.qrf are loaded and each feature is used

to search its approximate nearest neighbor with ϵ = 10. The standard, priority and

brute–force search are used. The measured distance is square of Euclidean distance.

The time measurement are stored in file files.qrf.tms, the names of files con-

taining fast feature matches are distinguish by their name, name of database and

parameters:

ann sample.exe -dbf files.ref -df database.pts -qf files.qrf -nt 40 -e

10 -sqr 0 -kd -kdp -sf

78
DEPARTMENT OF CONTROL AND INSTRUMENTATION
Faculty of Electrical Engineering and Communication

Brno University of Technology

A.2.2 Input and Output Files

Application uses several files and expects that a few rules are followed.

The file files.red contains a pure list of files with features which should be

stored in a database. The order of files is important, because it denotes IDSR

1 data/bark/out1.desc

2 data/bikes/out1.desc

3 data/boat/out1.desc

4 data/graff/out1.desc

5 data/light/out1.desc

6 data/trees/out1.desc

7 data/ubc/out1.desc

8 data/wall/out1.desc

9 database/desc/db_000001.desc

10 database/desc/db_000002.desc

11 database/desc/db_000003.desc

12 database/desc/db_000004.desc

13

Listing A.1: Definition of database files

The database file has the following structure:

1 #comments referenceImage psize dsize x y cornerness scale angle

2 59715

3 39

4 192

5 1 38 192 728.557 490.751 9.42557e+006 72.576 17 35 92 79 45

6 1 38 192 729.723 491.81 9.19975e+006 60.48 13 37 104 87

7

Listing A.2: File with features

Line 1: comments

Line 2: number of features stored in database

Line 3: number of parameters

Line 4: number of descriptors

Line 5, 6, . . . 59715: the first number is ID of sequence followed by 39 parameters

and 192 descriptors of feature

79
DEPARTMENT OF CONTROL AND INSTRUMENTATION
Faculty of Electrical Engineering and Communication

Brno University of Technology

The last important file is files.qrf contains the list of query files. The order of

files denotes the ID of sequence. The sequences are separated by the character #.

1 #

2 data/bark/out2.desc

3 data/bark/out3.desc

4 data/bark/out4.desc

5 data/bark/out5.desc

6 data/bark/out6.desc

7 #

8 data/bikes/out2.desc

9 data/bikes/out3.desc

10 data/bikes/out4.desc

11 data/bikes/out5.desc

12 data/bikes/out6.desc

13 #

14 data/boat/out2.desc

15 data/boat/out3.desc

16 data/boat/out4.desc

17

Listing A.3: files.qrf

The files which contain descriptors use standard format as is produced by the

application compute descriptors.

A.3 Performance Evaluation tools

Performance Evaluation tool consists of several matlab functions. The most impor-

tant function is repeat which take two arguments: path to the file with evaluation

settings and name of the results file.

The file with evaluation settings has following structure

1 \# comments psize dsize x y cornerness scale

2 40

3 7

4 0

5 data/bark/out2.desc.pascal1000.pts.t80.e15 .00.kd data/bark/out2.desc data/bark/

out1.desc data/bark/H1to2p data/bark/img1.png data/bark/img2.png

6 data/bark/out3.desc.pascal1000.pts.t80.e15 .00.kd data/bark/out3.desc data/bark/

out1.desc data/bark/H1to3p data/bark/img1.png data/bark/img3.png

7

Line 1: comments

Line 2: number of files to evaluate

Line 3: number of properties

Line 4: empty

Line 5, 6, . . ., 40: path to the file with results, path to the features query file, path to

the features reference file, path to the homography matrix, reference image, query

image

80
DEPARTMENT OF CONTROL AND INSTRUMENTATION
Faculty of Electrical Engineering and Communication

Brno University of Technology

Other useful files are plotEvaluation.m which produce figures for performance

criterion and plotTime.m which produce the figure for the parameter ST .

A.4 Other

For Windows users, some PowerShell scripts for batch processing are provided. More

information are available in the appropriate directory on the enclosed DVD. It is

expected, that Unix–like user are able to write their own scripts.

More information about performance evaluation framework could be found on

enclosed DVD.

81
DEPARTMENT OF CONTROL AND INSTRUMENTATION
Faculty of Electrical Engineering and Communication

Brno University of Technology

B LOCAL FEATURE DETECTORS

In this section, we summarize local invariant feature detectors more in detail. The

overview discuss the same detectors as in section 2.2, however in this appendix

equations and others are discussed.

B.1 Corner Detectors

As we have mentioned, corners and T–like junctions are important even for human

vision. They are often sensitive to a different parts of image, not just to corners,

however it does not matter. The goal is to have as much as possible stable repeatable

local invariant features.

B.1.1 Harris/Plessey Detector

The Moravec detector was improved by Harris and Stephens in 1988 [23]. By com-

parison with the Moravec detector, the corner score is measured directly instead of

using shifted windows and has isotropic response. It is based on eigenvalues of the

second moment matrix (auto–correlation matrix), which represents the most prin-

cipal signal changes in two orthogonal directions around the point – Harris points

are detected if both eigenvalues are large [66]. This matrix describes derivation dis-

tribution in point neighborhood:

M = σ2Dg(x, y, σI) ∗

[
I2x(x, y, σD) Ix(x, y, σD)Iy(x, y, σD)

Ix(x, y, σD)Iy(x, y, σD) I2y (x, y, σD)

]
(B.1)

where

Ix(x, y, σD) =
∂I(x, y)

∂x
∗ g(x, y, σD), (B.2)

Iy(x, y, σD) =
∂I(x, y)

∂y
∗ g(x, y, σD), (B.3)

g(x, y, σ) =
1
2πσ2

e−
x2+y2

2σ2 , (B.4)

with σD denotes differentiation scale and σI integration scale and ∗ denotes
convolution. The eigenvalues of M decide whether the point is a corner (both eige-

nvalues are large), edgel (either eigenvalues is large, the second is close to zero) or

no point of interest was found (both eigenvalues are small). Also, the less expensive

computational approach was proposed:

cornerness = det(M)− κ · (tr(M))2, (B.5)

82
DEPARTMENT OF CONTROL AND INSTRUMENTATION
Faculty of Electrical Engineering and Communication

Brno University of Technology

with κ is a constant, usually κ ∈< 0.04, 0.06 >, det is determinant of a matrix and
tr is a trace of a matrix. Non–maximum suppression is used to extract features as

local maxima of cornerness function.

(a) (b)

Fig. B.1: Features extracted by Harris corner detector, courtesy of [66]

Harris corner detector is invariant under rotation and translation only, many

features are localized on edges instead of real corners and sensitive to noise.

B.1.2 Harris–Laplace

Harris–Laplace detector was proposed by Mikolajczyk and Schmid [39] as an scale

invariant extension to the Harris corner detector. It is based on multi–scale Harris

corner detector and the characteristic scale is selected as was proposed by Lindenberg

in 1998 [31]. Firstly, scale–space representation is built with the Harris function

(B.5). Then for each initial point it is checked whether the LoG (B.6) attains a

maximum at the scale of the point.

|LoG(x, y, σn)| = σ2n|Ixx(x, y, σn) + Iyy(x, y, σn)| (B.6)

The points for which LoG response attains no extreme or is bellow some threshold

as same as points for which the scale peak does not correspond to the selected

detection scales of an image are rejected due to the lack of a maximum, or inaccuracy.

The LoG is used due to its so-called Mexican hat characteristic shape of the

kernel, which serves as a matched filter when its scale is adapted to the scale of a

local image structure. Harris–Laplace detector provides efficient method extracting

rotation, translation and scale invariant local features [41, 66].

83
DEPARTMENT OF CONTROL AND INSTRUMENTATION
Faculty of Electrical Engineering and Communication

Brno University of Technology

(a) (b)

Fig. B.2: Features extracted by scale invariant Harris–Laplace corner detector, cour-

tesy of [66]

B.1.3 Harris–Affine

Harris–Laplace detector fails in the case of significant affine transformations when

the scale change is not necessarily the same in every direction. Harris–Affine [40]

is an affine invariant extension to Harris–Laplace detector. The main idea is to use

a second moment matrix in affine Gaussian scale-space where an elliptical affine

regions are used instead of circular region.

µ(x, y,ΣI ,ΣD) = det(ΣD)g(ΣI) ∗
(
(∇I)(x, y,ΣD)(∇I)(x, y,ΣD)

T
)
, (B.7)

where ΣI is the differentiation covariance matrix and ΣI is the integration covari-

ance matrix which determines the Gaussian kernels. In fact, this equation is identical

with the second moment matrix used in Harris-Laplace detector. The algorithm runs

iteratively as follows:

1. Initialization with Harris–Laplace detector

2. Estimation of affine shape with the second moment matrix

3. Normalization of an elliptical affine region to the circular one

4. Re–detection of the location and scale in the normalized image

5. Go to step 2, if eigenvalues of the second moment matrix for the new point

are not equal

The objective is to determine the transformation that projects the intensity

pattern of the point neighborhood to one with the equal eigenvalues. It can be

84
DEPARTMENT OF CONTROL AND INSTRUMENTATION
Faculty of Electrical Engineering and Communication

Brno University of Technology

Fig. B.3: Iterative detection of an affine invariant feature by Harris–Affine detector,

courtesy of [66]

shown that the affine transformation is given by the square root of the second

moment matrix just as it can be shown that if the neighborhoods of the points pR
and pL are related by an affine transformation, then their normalized versions are

connected by rotation or mirror matrix

A =M
− 12
R RM

− 12
L , (B.8)

pL =M
− 12
L x

′
L, (B.9)

pR =M
− 12
R x

′
R. (B.10)

Fig. B.4: Affine normalization using second moment matrices, courtesy of [66]

Harris–Affine detector is invariant to rotation, translation, scale and affine trans-

formation. The number of detected local invariant features depends on the type of

scene and the threshold [41, 66].

85
DEPARTMENT OF CONTROL AND INSTRUMENTATION
Faculty of Electrical Engineering and Communication

Brno University of Technology

B.2 Blob Detectors

In this section, we briefly describe fundamentals of blob detectors. We begin with

a derivative–based method called Hessian detector B.2.1. Next, we continue with

scale and affine B.2.2 invariant extensions to this detector.

B.2.1 Hessian Detector

The class of Hessian detectors are based on the Hessian matrix, which is obtained

as the second matrix from the Taylor expansion of the image intensity function I(x,

y):

H =

[
Ixx(x, y, σD) Ixy(x, y, σD)

Ixy(x, y, σD) Iyy(x, y, σD)

]
(B.11)

where Iab(x, y, σD) are second–order Gaussian smoothed partial derivatives. Detec-

tor based on the trace of H is well–known Laplacian (of Gaussian) which can be

efficiently approximated by the Difference of Gaussians (see 2.2.4).

(a) (b)

Fig. B.5: Features extracted by Hessian blob detector, courtesy of [66]

Laplacian detectors often detects local maxima, which are localized close to the

edges or contours (signal changed in one direction). These maxima are less stable be-

cause detectors are more sensitive to noise or small changes in neighboring texture.

Efficient way, how to detect more stable maxima is to detect a location and scale

for which the trace and the determinant of H attains the local extremum simulta-

neously, because the trace maximize the curvature and the determinant penalizes

small second derivations in only a single direction [66].

86
DEPARTMENT OF CONTROL AND INSTRUMENTATION
Faculty of Electrical Engineering and Communication

Brno University of Technology

B.2.2 Hessian–Laplace/Affine

The concept behind the Hessian–Laplace detector is similar to the Harris-Laplace,

however by comparison with Harris–Laplace, the Hessian–Laplace detector is ini-

tialized from the determinant of the Hessian matrix, instead of Harris detector.

Hessian–Laplace/Affine detectors were also proposed by Mikolajczyk and Schmid

[41]. Hessian based detectors are complementary to the Harris detectors, because

they are sensitive to the different parts of the image. Scale and affine invariant pro-

perties of the detectors are provided in a similar manner – Hessian detector localize

blobs in space, Laplacian in scale and iterative approach is used for affine invariance.

(a) (b) (c) (d)

Fig. B.6: Features extracted by scale invariant Hessian–Laplace blob detector (a, b),

and affine invariant features extracted by Hessian Affine detector (c, d), courtesy of

[66]

Number of detected blobs can be controlled by thresholding both determinant

of H and the Laplacian response. Another convenient property is that a large num-

ber of detected features are good covering the image. Hessian based detectors are

translation, rotation, scale and affine invariant [42, 66].

87
DEPARTMENT OF CONTROL AND INSTRUMENTATION
Faculty of Electrical Engineering and Communication

Brno University of Technology

B.3 Region Detectors

In this section, we summarize detectors which extract image regions. We begin with

Intensity–based Regions. Then, we focus on Maximally Stable Extremal Regions.

Let us note that the importance of segmentation based methods (superpixels) is

growing, but they are no discussed in this thesis.

B.3.1 Intensity–based Regions

Intensity–based regions were proposed by Tuytelaars and Van Gool in 2000. The

main idea of this approach is following: the neighborhood of a point with extrema

intensity (detected at multiscale) is searched along each ray of the region:

I(t)

f(t)

t

t

t

Fig. B.7: Construction of Intensity Based Region, courtesy of [66]

f(t) =
|It − I0|

max
(∫ t

0 |It−I0|dt
t

, d
) (B.12)

with t the Euclidean arclength along the ray, I0 the intensity value at extremum, It
the intensity at position t and d, a small constant to prevent division by zero. This

function reached its maximum in positions at intensity suddenly increases/decreases.

The point for which the function (B.12) reached the maximum is invariant under

both affine linear photometric and geometric transformations. All the points which

corresponds the maxima of f(t) along rays originationg from the same local extre-

mum are linked to enclose an affine invariant region. This often irregularly–shaped

region is then replaced by an ellipse having the same shape moments up to the

second order. Finally, the area of the ellipse is doubled to get the more distinctive

feature.

88
DEPARTMENT OF CONTROL AND INSTRUMENTATION
Faculty of Electrical Engineering and Communication

Brno University of Technology

B.3.2 Maximally Stable Extremal Regions

Maximally Stable Extremal Regions (MSER) were proposed by Matas et al. in 2002

[37]. The concept of MSER can be described as follows: sort all pixels of gray level

image by its intensity and consider all possible thresholds. Start with thresholding

of the image for the lowest thresholds. At the beginning, the whole image will be

white. Then, a few pixels will be under the threshold, thus these pixels will be black.

When the threshold will be higher, these spots will grow and at some point, two

neighboring spots will merge. In the end, the whole image will be black. The set of

all connected components, for which the binarization is stable over a large range of

thresholds, is the set of all MSER (set of all maximal regions). The same process

with inverted tresholds is used to get the set of all minimal regions.

(a) (b)

Fig. B.8: Features extracted by Maximally Stable Extremal Regions detector (a)

and fitted ellipse based on the first and second shape moments (b), courtesy of [66]

The word extremal denotes that all pixel in MSER have higher (maxima) or

lower (minimal regions) intensity then all pixels on its boundary. MSER is very fast,

because the complexity of the algorithm is O(n log log n).

(a) (b)

Fig. B.9: Estimated epipolar geometry and points associated to the matched regions

for robust wide baseline stereo from MSER, courtesy of [37]

89
DEPARTMENT OF CONTROL AND INSTRUMENTATION
Faculty of Electrical Engineering and Communication

Brno University of Technology

MSER features are accurately localized, because it is sensitive to region bounda-

ries. The algorithm is very efficient for structured scenes with regions separated by

strong intensity changes. The main drawback of MSER is the sensitivity to image

blur.

90
DEPARTMENT OF CONTROL AND INSTRUMENTATION
Faculty of Electrical Engineering and Communication

Brno University of Technology

T
ab
.
B
.1
:
O
ve
rv
ie
w
of
lo
ca
l
in
va
ri
an
t
fe
at
ur
e
de
te
ct
or
s

In
va
ri
an
ce

L
oc
al
iz
at
io
n

F
ea
tu
re
de
te
ct
or
C
or
ne
r
B
lo
b
R
eg
io
n
R
ot
at
io
n
Sc
al
e
A
ffi
ne

R
ep
ea
ta
bi
lit
y
A
cc
ur
ac
y
R
ob
us
tn
es
s
E
ffi
ci
en
cy

H
ar
ri
s

√
√

⋆
⋆
⋆

⋆
⋆
⋆

⋆
⋆
⋆

⋆⋆

H
es
si
an

√
√

⋆⋆
⋆⋆

⋆⋆
⋆

SU
SA
N

√
√

⋆⋆
⋆⋆

⋆⋆
⋆
⋆
⋆

H
ar
ri
s–
L
ap
la
ce

√
(√
)

√
√

⋆
⋆
⋆

⋆
⋆
⋆

⋆⋆
⋆

H
es
si
an
–L
ap
la
ce

(√
)

√
√

√
⋆
⋆
⋆

⋆
⋆
⋆

⋆
⋆
⋆

⋆⋆

D
oG

(√
)

√
√

√
⋆⋆

⋆⋆
⋆⋆

⋆⋆

SU
R
F

(√
)

√
√

√
⋆⋆

⋆⋆
⋆⋆

⋆
⋆
⋆

H
ar
ri
s–
A
ffi
ne

√
(√
)

√
√

√
⋆
⋆
⋆

⋆
⋆
⋆

⋆⋆
⋆⋆

H
es
si
an
–A
ffi
ne

(√
)

√
√

√
√

⋆
⋆
⋆

⋆
⋆
⋆

⋆
⋆
⋆

⋆⋆

Sa
lie
nt
R
eg
io
ns

√
(√
)

√
√

(√
)

⋆
⋆

⋆⋆
⋆

E
dg
e–
ba
se
d

√
√

√
√

⋆
⋆
⋆

⋆
⋆
⋆

⋆
⋆

M
SE
R

√
√

√
√

⋆
⋆
⋆

⋆
⋆
⋆

⋆⋆
⋆
⋆
⋆

In
te
ns
it
y
ba
se
d

√
√

√
√

⋆⋆
⋆⋆

⋆⋆
⋆⋆

Su
p
er
pi
xe
ls

√
√

(√
)

(√
)

⋆
⋆

⋆
⋆

91
DEPARTMENT OF CONTROL AND INSTRUMENTATION
Faculty of Electrical Engineering and Communication

Brno University of Technology

C ENCLOSED DVD

Enclosed DVD contains the following:

• The whole thesis in PDF.

• Source files for Performace Evaluation Framework in C++ and Matlab.

• The Graffiti and PASCAL data sets.

	Introduction
	Problem Formulation
	Challenges
	Applications
	Thesis Structure

	State of the Art
	Overview of Local Invariant Features
	Local Feature Detectors
	Corner Detectors
	Blob Detectors
	Region Detectors
	Efficient Implementations

	Local Image Descriptors
	Distribution Based Descriptors
	Spatial–Frequency Techniques
	Differential Descriptors and Complex Filters
	Others Techniques

	Efficient Data Structures
	Tree Structures
	Splitting and Shrinking Rules
	Search Techniques
	Locality Sensitive Hashing

	Performance Evaluation
	Data Sets
	Evaluation Criterion
	Ground Truth
	Precision
	Recall
	Speed–up

	Overview of Experimental Framework
	Database
	Efficient Data Structures
	Query Images
	Fast Feature Matching
	Performance Evaluation
	Implementation

	Experimental Results
	Matching Strategies
	Interpretation of Figures
	Properties of Data Sets
	Ground truth
	ANN Search
	Multiple Randomized Tree Structures
	Priority Search
	Data Distributions
	Descriptor Dimensionality
	Maximum Visited Leaves
	Database Size
	Tree Construction Time

	Discussion and Conclusions
	Bibliography
	List of symbols, physical constants and abbreviations
	List of appendices
	Tools
	compute_descriptors
	feature_eval
	Usage
	Input and Output Files

	Performance Evaluation tools
	Other

	Local Feature Detectors
	Corner Detectors
	Harris/Plessey Detector
	Harris–Laplace
	Harris–Affine

	Blob Detectors
	Hessian Detector
	Hessian–Laplace/Affine

	Region Detectors
	Intensity–based Regions
	Maximally Stable Extremal Regions

	Enclosed DVD

