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Abstract
The goal of this work is to propose a way to improve precision of program analysis in the 2LS
framework, based on its existing concepts, mainly template-based synthesis of invariants.
2LS is a static analysis framework for analysing C programs which relies on the use of
an SMT solver and of abstract interpretation for automatic invariant inference. In a case
when 2LS can not decide whether a program is correct, the proposed solution analyses
the invariants computed in various abstract domains and identifies parts of the invariants
that potentially cause undecidability of the verification. Using the obtained information,
the designed method is able to identify variables of the original program that possibly
determine whether the verification is successful. The output of our solution can be used as
a feedback to indicate variables with problematic values that should be constrained. Also,
it can be utilized by the 2LS developers for debugging purposes during development of new
analyses. The solution has been implemented in the 2LS framework. Testing our solution
on various benchmarks from the International Competition on Software Verification (SV-
COMP) shows that it can identify variables that cause undecidability of the verification in
more than half of the programs where the verification currently fails.

Abstrakt
Cílem této práce je navrhnout způsob vedoucí ke zvýšení přesnosti analýzy programů po-
mocí nástroje 2LS, založený na existujících konceptech, a to hlavně na syntézi invariant na
základě šablon. 2LS je nástroj pro statickou analýzu programů napsaných v jazyce C, který
využívá SMT solver a abstraktní interpretaci k automatickému odvození invariant. V pří-
padě kdy 2LS nedokáže rozhodnout zda je program správný, navrhované řešení analyzuje
invarianty vypočítané v různých abstraktních doménách, a identifikuje takové části invari-
ant, které mohou s největší pravděpodobností způsobit nejednoznačnost verifikace. Pomocí
těchto získaných informací, dokáže navrhnutá metoda identifikovat proměnné původního
programu, na kterých pravděpodobně závisí úspěch verifikace. Výstup tohoto řešení může
posloužit jako zpětná vazba indikující proměnné, jejíchž problematické hodnoty by měly
být omezeny. Také může být výstup využit vývojáři 2LS pro účely debugování při vývoji
nových analýz. Řešení bylo implementováno v nástroji 2LS. Na základě různých experi-
mentů mezinárodní soutěže ve verifikaci programů SV-COMP, dokáže řešení identifikovat
proměnné způsobující nejednoznačnost verifikace ve více než polovině programů, na kterých
verifikace momentálně selhává.
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Rozšířený abstrakt
2LS je verifikační nástroj kombinující řadu známých technik pro analýzu programů takovým
způsobem, který umožuje jejich současný běh a efektivní výměnu informací. Díky tomu
je 2LS schopen dokázat či vyvrátit škálu různých vlastností programu. Verifikační proces
2LS je založen na výpočtu invariant cyklů a funkcí zdrojového programu s využitím SMT
solveru. Tyto invarianty jsou poté použity k dokazování různých vlastností programu.

V případě analýzy complexních programů, verifikační program často nedokáže rozhod-
nout zda je program správný. V kontextu 2LS je tato nejednoznačnost často způsobena
nepřesnými částmi vypočtených invariant. Takové vypočtené invarianty mohou být dlouhé
i několik desítek řádků a jsou obtížně čitelné, protože obsahují symbolické proměnné na
místo proměnných původního programu.

Vzhledem k výše zmíněným problémům je navrhnuto řešení v nástroji 2LS, které je
schopno identifikovat části verifikovaného programu, které jsou určitým způsobem problem-
atické pro daný verifikační nástroj. K symbolickým proměnným identifikovaných nepřes-
ných částí vypočtených invariant, je tak možno nalézt odpovídající proměnné v původ-
ním programu. Poté může uživatel upřesnit hodnoty těchto problematických proměnných
(s použitím tzv. “assume” konstrukcí) v analyzovaném programu, a tímto tak dopomoci
k úspěšné verifikaci programu. Zároveň, toto řešení může být užitečné i pro vývojáře
nástroje 2LS s debugováním v průběhu přidávání nových funkcí.

Pro naše řešení jsou narženy dvě metody využívající přístupu abstraktní interpretace
v 2LS k výpočtu invariant. K verifikaci programů využívá 2LS koncept indukčních in-
variant, ale protože je výpočet takových invariant výpočetně drahý používá se tzv. šablon.
Šablony představují redukci tohoto problému, který je vyjádřitelný ve druhém řádu prediká-
tové logiky, na problém který je řešitelný pomocí iterativní aplikace solveru prvního řádu.
Přistup k verifikaci je takto zjednodušen na výpočet invariant cyklů za pomoci paramter-
izovaných šablon, kde SMT solver je využíván právě k nalezení vhodných hodnot těchto
parametrů. Takto jsou všechny abstraktní domény v 2LS založeny na výpočtu invariant
cyklů pomocí šablon, tzv. abstraktní domény založené na šablonách.

První navržená metoda slouží tedy k identifikaci nepřesných výrazů šablon v interval-
ové abstraktní doméně a heap doméně. Tyto výrazy odpovídají symbolickým proměnným
v 2LS, jejíchž hodnoty jsou omezeny pomocí vypočtených invariant cyklu. Účelem je tedy,
po vypočtení hodnot parametrů šablon, identifikovat v dané abstraktní doméně ty sym-
bolické proměnné, které mají odpovídající hodnotu parametru označenou jako nepřesnou
v dané abstraktní doméně. Identifikovali jsme tyto nepřesné hodnoty, odpovídající vyjádření
hodnot suprema v dříve zmíněných abstraktních doménách. Tímto pomocí navržených al-
goritmů, specificky pro každou ze zmíněných domén, dojde k určení výrazů šablon, které
mají hodnoty parametrů označené jako nepřesné v daných doménách.

Ze získaných informací předchozích metod (jedná se o jména symbolických proměnných)
jsme schopni určit odpovídající zdrojové informance za pomocí vnitřích reprezentací pro-
gramů používaných v 2LS. S využitím jmenných konvencí jsme schopni obdržet původní
jména proměnných, jejich lokaci ve vnitřní reprezentaci a další informace, které jsou součástí
zpětné vazby řešení. Za pomocí nyní získaných elementů ve vnitřní reprezentaci dokážeme
zjistit lokaci elementu začátku a cyklu, alokace proměnných, atd. S pomocí uložených infor-
mací o zdrojovém programu v instrukcích control-flow grafu reprezentace programu, jsme
schopni tak lokalizovat odpovídající symbolické proměnné v původním programu a určit
tak řádky cyklů, na kterých identifikovaná nepřesnost nastává.

Účelem této práce byl návrh řešení sloužící k identifikaci nepřesných částí invariant
vypočtených v nástroji 2LS, které mohou s největší pravděpodobností určit zda-li je veri-



fikace úspěšná. Toto řešení identifikuje proměnné původního programu, které mají nepřesné
hodnoty a cykly, ve kterých tato nepřesnost nastává. V případě dynamických objektů
(allokovaných na haldě) je schopno určit řádek alokace v daném kódu, a navíc případě
strukturovaných objektů také původní jména jejich polí (ve struktuře), které drží nepřesné
hodnoty.

Byly navrženy dvě metody vedoucí k identifikaci těchto proměnných: (1) metoda pro
identifikaci nepřesných částí vypočtených invariant v různých abstraktních doménách a (2)
metoda pro lokalizaci proměnných odpovídající těmto částem s použitím vnitřní reprezen-
tace programů napsaných v jazyce C využivané v 2LS.

Řešení bylo implementováno v nástroji 2LS. Metoda pro identifikaci nepřesných částí
invariant může být implementována v jakékoliv existující doméně 2LS. Momentálně je tato
metoda implementována v abstraktní intervalové doméně, v heap doméně, v jejich kombi-
naci — heap interval doméně a nakonec v rozšíření — heap intervalové doméně se symbol-
ickými cestami. Metoda pro lokalizaci byla integrována do modulu SSA analyzer v 2LS.

Bylo ukázáno na příkladech, že toto řešení je schopno identifikovat nepřesné proměnné
invariant a lokalizovat ty části analyzovaného programu, ve kterých tyto nepřesnosti nastávájí.
Navíc bylo ukázáno na příkladu, že zpětná vazba tohoto řešení je užitečná pro uživatele
a napomáhá jemu ke správné verifikaci programu. Provedli jsme řadu testů z testové
sady SV-COMP 2017 a ve většině z programů, na kterých verifikace selhává, je schopno
toto navržené řešení lokalizovat ty části invariant, které potencionálně způsobují nejednoz-
načnost verifikace.

V budoucnosti bychom rádi oficiálně integrovali toto rozšíření do nástroje 2LS. Toto
řešení by mohlo být hlavně užitečné pro vývojáře nástroje 2LS při vývoji nových funkcí.
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Chapter 1

Introduction

Software verification tools are mostly designed to target a specific problem domain and
focus on certain properties defined by the type of the tool. They prove to be good at their
problem domain, but are necessarily limited outside their primary focus area. Most non-
expert users tend to use them rather for debugging, than to formally prove correctness.
Users who need absolute verification invest in customizing a tool that is more suited to
their product. One of the solutions that aims to cover this demand — to offer a free wide
range tool for proving various classes of program properties, even for non-experts, is the
2LS verification framework.

2LS combines a range of well-known program analysis techniques in a way that enables
them to work simultaneously and efficiently exchange information. This enables 2LS to
prove and refute various different classes of program properties, while being more user-
friendly. The verification process of 2LS is based on computing invariants of loops and of
functions of the source program by utilizing an SMT solver. These invariants are then used
to reason about various program properties.

When analysing complex programs, verifiers often cannot decide whether the programs
are correct. For 2LS, this undecidability is usually caused by imprecise parts of computed
invariants. Such computed invariants might be even tens of lines long and are not very
readable, since they consist of symbolic variables instead of the original program variables.

With respect to the above, we propose a solution in the 2LS framework, to identify
parts of the verified programs that cause problems to the verifier. By identifying imprecise
parts of the computed invariants, it is possible to map the symbolic variables back to the
original program. Then, the user can refine values of problematic variables (e.g., using
special “assume” constructions) in the analysed program, which can help the verification
to succeed. At the same time, this may help the developers of the 2LS framework with
debugging when e.g. adding new features. A motivation example is presented in Section 1.1
below.

There are many different literature approaches to inferring invariants, many of which
are not efficient enough e.g., to infer strong loop invariants. Because of 2LS’ template-based
approach to computing invariants, it is not only efficient in producing all kinds of invariants
but also allows us to design a viable solution for our problem. In Chapter 2 we introduce
basic concepts of program verification and the current state of the art of 2LS.

Implementation of our solution in the 2LS framework requires a specifically designed
algorithm to work with its computational approach of using various classes of templates over
its representations of analysed programs. The designed solution is described in Chapter 3.

3



The proposed solution was implemented in the 2LS framework. The solution is able
to identify and locate variables that cause the undecidability of the verification inside loop
invariants, their lines of definition, and the loops in which the imprecision is caused. Based
on various benchmarks taken from the 2LS regression testing suite and from the Interna-
tional Competition on Software Verification (SV-COMP), our solution can identify such
variables in more than half of currently inconclusive programs.

Implementation details are presented in Chapter 4, examples of verification of sample
C programs with our extension, as well as results of various tests are presented in Chapter 5.

1.1 Motivation example
In this section we present a motivational use-case behind this work using a simple example
in the form of a C program given in Figure 1.1.

Even when analysing, at the first sight, a fairly trivial program, as in the case of the pro-
gram in Figure 1.1, the verification of the assertion at line 8 might be inconclusive. Since
2LS computes invariants of loops and of functions to prove program properties, such unde-
cidability might be caused by weak computed invariants. For loop invariant to be classified
as weak, the values of its parts must be imprecise or unconstrained, as is the case with the
program in Figure 1.1.

The dependencies between values of variables 𝑥 and 𝑖, and 𝑦 and 𝑖 where variable 𝑖 de-
termines the number of loop iterations (lines 5-9), are not recognized by 2LS. Therefore
“infinite” loop iterations are expected, resulting in a possibility of overflows for both vari-
ables 𝑥 and 𝑦. The assertion at line 8 is evaluated to unknown, hence the result of the
verification is inconclusive.

1 void main() {
2 int x = 1000;
3 int y = x-1;
4
5 for (int i = 0; i < 100; i++) {
6 x++;
7 y--;
8 assert(y <= x);
9 }

10 }

Figure 1.1: Inconclusive program in C

Whenever this kind of imprecision occurs, it would be convenient for the verifier to
provide the user with a feedback indicating which variables inside the generated invariant
have unconstrained values and are thus a potential cause of undecidability of the verification.
Then the user himself could refine the values of such problematic variables (e.g. using
special “assume” constructions) in a fairly obvious way, e.g. variable 𝑥 can never be less
than 1000 inside the loop between lines 5-9, thus helping the verification to succeed. In
Chapter 5 we demonstrate on this example that our extension is able to identify such
variables and thereby provide a viable feedback.

4



Chapter 2

Program Analysis in the 2LS
Framework

In this chapter, the 2LS framework is introduced alongside with basic concepts of techniques
it uses for program analysis. The purpose of this work is to devise a way to analyze computed
invariants in order to determine parts that cause an undecidability of the verification.
Therefore in this chapter we describe the concepts of 2LS that are needed to understand
the solution we propose.

2LS is a free static analysis and verification tool for analyzing sequential C programs.
It is built upon the CPROVER verification framework [1] and allows verifying memory
safety, user-specified assertions, and termination properties [13, 8]. 2LS was developed
by Peter Schrammel and Daniel Kroening at the University of Oxford, UK. Currently, it
is maintained by Peter Schrammel and company Diffblue Ltd, which is a spin-off of the
University of Oxford [7].

The main strength of 2LS lies in a unique combination of multiple software verification
techniques together, resulting in a single unified algorithm, called kIkI. This algorithm
combines bounded model checking, k-induction, and abstract interpretation into a scalable
framework that allows these techniques to interact and reinforce each other in the process
of verification [3]. In this work, we will mainly focus on the abstract interpretation part
of 2LS which is used to compute so-called inductive invariants of loops and of functions
of the source program. These invariants are inferred using an SMT solver-based approach
and are then used to reason about various program properties. In Section 2.1 we introduce
the abstract interpretation framework and in Section 2.2 we describe the main concepts of
invariant inference and how inductive invariants are used to verify programs in 2LS.

2LS uses so-called templates and a specific form of abstract interpretation to compute
invariants efficiently using an SMT solver in various abstract domains. We describe the
approach of computing invariants over templates in Section 2.3 and in Section 2.5 we present
two of the most important abstract domains currently used in 2LS.

Finally, as a simplification 2LS views the analysed programs as transition systems, but
in order to be more efficient with the solver-based approach the internal representation
of a program is converted to single static assignment form (shortly, SSA) instead. Inter-
nal representation as well as the concept of SSA and conversion into it, are described in
Section 2.4.

5



2.1 Abstract Interpretation
Abstract interpretation is a static analysis framework used to approximate concrete program
semantics in order to verify various dynamic program properties at compile time [5]. The
approach of abstract interpretation is, in order to answer concrete questions about certain
program property, one may sometimes answer it using a simpler abstract question. When
doing an abstract evaluation of a program, computations are described in a universe of
abstract objects, so that the results of abstract evaluation give some information on the
actual computations. The abstract evaluation gives a summary of some facets of the actual
executions of a program. Generally, this summary is easily obtained but may be inaccurate.

A concrete domain 𝑃 denotes a set of concrete program states. An abstract domain
𝑄 denotes a set of abstract values. When doing abstract evaluation of a program, abstract
values in abstract domain 𝑄 are associated with elements from the concrete domain 𝑃 . The
choice of abstract values depends upon the specific dynamic properties we want to analyse
in a program. Provided that this choice of abstract values satisfies the general framework
specifications, correctness and termination of abstract interpretation are guaranteed [4].

An abstract interpretation 𝐼 of a program 𝑃 with the instruction set Instr is a tuple [5]:

𝐼 = (𝑄, ∘,⊑,⊤,⊥, 𝜏) (2.1)

where

∙ 𝑄 is the abstract domain along with well-defined abstraction and concretisation func-
tions:

– 𝛼 : 𝑃 → 𝑄 is the abstraction function that defines the correspondence between
a set of concrete values and an abstract value from the abstract domain,

– 𝛾 : 𝑄→ 𝑃 is the concretisation function that defines the correspondence between
an abstract value and a concrete value of the concrete domain. Then 𝛾(𝑞) denotes
a concrete value represented by 𝑞 ∈ 𝑄 and 𝛼(𝑝) denotes the most precise abstract
value in 𝑄 whose concretisation contains 𝑝 ∈ 𝑃 .

∙ ⊤ ∈ 𝑄 is the supremum of 𝑄,

∙ ⊥ ∈ 𝑄 is the infimum of 𝑄,

∙ ∘ : 𝑄×𝑄→ 𝑄 is the join operator, (𝑄, ∘,⊤) is a complete semilattice,

∙ (⊑) ⊆ 𝑄×𝑄 is an ordering defined as 𝑥 ⊑ 𝑦 ⇐⇒ 𝑥 ∘ 𝑦 = 𝑦,

∙ 𝜏 : Instr×𝑄→ 𝑄 defines the abstract transformers for particular instructions.

Now, let us view source program as a transition system 𝑇 = (𝑆, 𝑆𝑖, 𝑡), where 𝑆 is a set of
program states, 𝑆𝑖 is the set of initial states and 𝑡 ⊆ 𝑆 × 𝑆 is a transition relation between
a program state (defined in the following subsection) and its possible successors. We denote
𝑆𝑟 as the set of all reachable program states as the least fixed point of 𝑡 starting from 𝑆𝑖

after 𝑖 execution steps:

𝑆𝑟 =
⋃︁
𝑖∈𝑁

𝑡𝑖(𝑆𝑖) (2.2)

The least fixed point of the transition relation in concrete domain is generally not com-
putable, therefore abstract interpretation computes an over-approximation of the program
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reachable states by computing the fixed point of 𝜏 in the abstract domain. The fixed point
of the abstract semantics provides a useful information about a program property, but it
may not always hold in the concrete domain. Therefore we want the abstract interpreta-
tion to be sound — whenever a property holds for the computed abstract semantics then it
always holds for the set of all reachable program states as well [6].

For abstract interpretation to be sound, an abstract value must describe at least all
reachable concrete states in a given program location. This can be guaranteed using Galois
connection between the concrete and abstract domains.

Galois connection is a quadruple 𝜋 = (𝑃, 𝛼, 𝛾,𝑄) such that [9]:

∙ 𝑃 = ⟨𝑃,≤⟩ and 𝑄 = ⟨𝑄,⊑⟩ are partially ordered sets,

∙ ∀𝑝 ∈ 𝑃 and ∀𝑞 ∈ 𝑄 :
𝑝 ≤ 𝛾(𝑞)⇐⇒ 𝛼(𝑝) ⊑ 𝑞 (2.3)

Because abstract interpretation computes an over-approximation of the source program
reachable states (concrete semantics), it must always be sound, but not complete, hence
may generate, so-called false positives (i.e., when a property does not hold for the computed
abstract semantics, but it may hold for the set of all reachable program states). In order
to mitigate the number of the false positives, one may, for example, compute the abstract
semantics in a more precise abstract domain.

2.2 Verification Using Inductive Invariants
In this section we describe the approach to program verification using inductive invariants
which is a problem expressible in existential fragment of second-order logic. Due to the
least fixed point being difficult to compute, as described in the previous section, the main
task of abstract interpretation in 2LS is the inference of inductive invariants.

As in the previous section, the analysed programs are viewed as symbolic transition
systems. A program state describes a logical interpretation of logic variables, which corre-
spond to each program variable and the program counter. We can describe a set of states
using a formula — states in the set are models of the formula. Given a vector of variables 𝑥,
we denote the initial program states as a predicate 𝐼𝑛𝑖𝑡(𝑥). A transition relation between
a program state and its possible successors is described using a formula 𝑇𝑟𝑎𝑛𝑠(𝑥,𝑥′). From
these, a set of all reachable states can be determined as the least fixed point of the transi-
tion relation starting from the states described by the predicate 𝐼𝑛𝑖𝑡(𝑥). Since computing
such predicate that describes such a set is difficult, therefore not practical, instead induc-
tive invariant is used. Predicate 𝐼𝑛𝑣 is then an inductive invariant if it has the following
property:

∀𝑥,𝑥′ . (𝐼𝑛𝑣(𝑥) ∧ 𝑇𝑟𝑎𝑛𝑠(𝑥,𝑥′) =⇒ 𝐼𝑛𝑣(𝑥′)). (2.4)

An inductive invariant describes a fixed point of the transition relation, but is not necessarily
the least one, nor it is guaranteed to include 𝐼𝑛𝑖𝑡(𝑥). Some invariants are not sufficient
enough to be used for proving any properties, such as predicate true that describes the
complete state space. From an inductive invariant, it is possible to find loop invariants and
function summaries by projecting it on to a subset of variables 𝑥.

Proving system safety can be often simplified to showing that the reachable states do
not intersect with the set of error states denoted as 𝐸𝑟𝑟(𝑥). Using existential second-order
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quantification (∃2), this can be formalised as [3]:

∃2𝐼𝑛𝑣 . ∀𝑥,𝑥′ . (𝐼𝑛𝑖𝑡(𝑥) =⇒ 𝐼𝑛𝑣(𝑥))∧ (2.5)
(𝐼𝑛𝑣(𝑥) ∧ 𝑇𝑟𝑎𝑛𝑠(𝑥,𝑥′) =⇒ 𝐼𝑛𝑣(𝑥′))∧
(𝐼𝑛𝑣(𝑥) =⇒ ¬𝐸𝑟𝑟(𝑥)).

Even though computing inductive invariants is simpler than computing the least fixed
point of the transition relation, it is still a challenging problem, especially under the concrete
semantics. Therefore, 2LS computes inductive invariants in various abstract domains using
a rather specific form of abstract interpretation.

2.3 Template-based Synthesis of Invariants
In order for Formula 2.5 to be solved directly by a solver, it would need to handle second-
order logic quantification. Since there is currently no efficient second-order solver available,
the problem is thus reduced to a problem solvable by iterative application of a first-order
solver. The reduction is realized by restricting the form of the inductive invariant 𝐼𝑛𝑣 to
𝒯 (𝑥, 𝛿), where 𝒯 is a fixed expression over program variables 𝑥 (referred to as template)
and template parameters 𝛿. This restriction is comparable to choosing an abstract domain
in abstract interpretation, i.e. a template captures only those properties of the program
state space that are relevant for the analysis. Using this restriction in the form of templates,
the second-order search for an invariant is turned into a first-order search for the template
parameters [10]:

∃𝛿 . ∀𝑥,𝑥′ . (𝐼𝑛𝑖𝑡(𝑥) =⇒ 𝒯 (𝑥, 𝛿))∧ (2.6)
(𝒯 (𝑥, 𝛿) ∧ 𝑇𝑟𝑎𝑛𝑠(𝑥,𝑥′) =⇒ 𝒯 (𝑥′, 𝛿))

The problem now being expressible in the first-order logic contains quantifier alternation,
which is not well handled by the current SMT solvers. Therefore, the formula is solved
by iteratively checking the negated Formula 2.6 (to turn ∀ into ∃) for different choices
of constants 𝑑 as candidates for template parameters 𝛿 [3]. For a value 𝑑, the template
formula 𝒯 (𝑥,𝑑) is an invariant if and only if the following formula is unsatisfiable:

∃𝑥,𝑥′ .¬(𝐼𝑛𝑖𝑡(𝑥) =⇒ 𝒯 (𝑥, 𝛿))∨ (2.7)
¬(𝒯 (𝑥,𝑑) ∧ 𝑇𝑟𝑎𝑛𝑠(𝑥,𝑥′) =⇒ 𝒯 (𝑥′,𝑑))

Constant 𝑑 corresponds to an abstract value in abstract interpretation and represents,
i.e. concretises to, the set of all program states 𝑥 that satisfy the formula 𝒯 (𝑥,𝑑). An
abstract value ⊥ , representing the infimum of the abstract domain denotes the empty set
(𝒯 (𝑥,⊥) ≡ 𝑓𝑎𝑙𝑠𝑒), and the supremum ⊤ denotes the whole state space (𝒯 (𝑥,⊤) ≡ 𝑡𝑟𝑢𝑒).

The concretisation function 𝛾 is same for each abstract domain:

𝛾(𝑑) = {𝑥 | 𝒯 (𝑥,𝑑) ≡ 𝑡𝑟𝑢𝑒}. (2.8)

To get the most precise abstract value representing a given concrete program state 𝑥, the
abstraction function is thus:

𝛼(𝑥) = min(𝑑) such that 𝒯 (𝑥,𝑑) ≡ 𝑡𝑟𝑢𝑒. (2.9)
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Since the abstract domain forms a complete lattice, the minimum value 𝑑 is guaranteed to
exist.

The quantifier-free version of Formula 2.7 is used for the invariant inference, where
the value of 𝑑 is initialized to ⊥ and the formula is iteratively solved by an SMT solver.
If the formula is unsatisfiable, then an invariant has been found. If not, then a model of
satisfiability is returned by the solver, representing a counterexample to the current instance
of the template being an invariant. The current value of the template parameter 𝑑 is then
refined by joining with the obtained model using a domain-specific join operator ∘ [10].

2.4 Program Encoding in Single Static Assignment Form
An essential part of this work is to map the symbolic variables used in an invariant onto
actual variables of the original program. Therefore, in this section, we present how programs
are represented in the single static assignment form in the 2LS framework.

Instead of representing the analysed program as a transition system (as mentioned in the
previous section), it is more efficient to translate it into the single static assignment form or
SSA. For acyclic programs, the SSA is a formula that exactly represents the strongest post
condition of running the program. Generally, the SSA form is an intermediate program
representation that satisfies the property that each variable is assigned to only once. For
each variable 𝑥 at each program location 𝑖 where the value of 𝑥 is modified, a new copy of
𝑥 denoted 𝑥𝑖 is introduced.

In order to reason about the abstractions of a program with a solver, 2LS extends the
concept of SSA by over-approximation of the loops [3]. Figure 2.1 shows the control flow
expressed by SSA. In order to track the control flow of the program, special variables called
guards are used. For each program location 𝑖 , a Boolean variable 𝑔𝑢𝑎𝑟𝑑𝑖 is introduced. Its
value represents the reachability of the program location.

unsigned x = 0;

while (x < 10) 
{ 
      x++; 
}

(a) C program loop

before	the	loop
x1	=	0u

loop	head	multiplexer
xphi2	=	guardls4	?	xlb4	:	x1

loop	body
x3	=	1u	+	xphi2

end	of	the	loop	body
xlb4

after	the	loop
(b) SSA encoding of the loop

Figure 2.1: Control flow expressed in the SSA encoding of the C loop in 2LS
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The over-approximation of program loops can be seen as follows. The program path
coming from before the loop joins at the loop head with the path coming from the end
of the loop body (assuming that all paths before and within the loop are reachable and
thus join). Moreover, in Figure 2.1, the loop has been cut at the end of its body: instead
of passing the version of the variable 𝑥 from the end of the loop body (𝑥3) to the loop
head, a free “loop-back” variable 𝑥𝑙𝑏4 is introduced and passed, describing the value of
the last assignment to the variable 𝑥. The havocing of the path coming from the end of
the loop body represents the acyclicity of the SSA. The value of each variable 𝑥 at the
loop-head is then represented using a so-called phi variable —𝑥𝑝ℎ𝑖2, whose value is defined
by a nondeterministic choice between the value coming from before the loop —𝑥1, and the
loop-back value coming from the end of the loop —𝑥𝑙𝑏4, thus representing a join of the value
coming from before the loop and from the end of the loop body. Moreover, at the loop
head, a free Boolean “loop select” variable 𝑔𝑢𝑎𝑟𝑑𝑙𝑠4 is introduced, having an unconstrained
value in order to illustrate the non-deterministic choice.

Precision can be improved by constraining the value of the loop-back variable 𝑥𝑙𝑏4 by
means of a loop invariant, which is inferred during the analysis. Any property in a given
abstract domain that holds at the loop entry (𝑥1) and at the end of the body (𝑥3), can be
also assumed to hold on the feedback variable 𝑥𝑙𝑏4 [3].

As described in the previous Section 2.3, 2LS uses templates, which are fixed quantifier-
free first-order logic formulas describing the desired property of the program, to efficiently
compute loop invariants of the analysed program. As mentioned in Section 2.2 about the
concept of invariants, invariants abstract the set of reachable program states (expressed in
Formula 2.4). Loop invariant is one of the abstractions based on the concept of invariants.
Loop invariant 𝐼𝑛𝑣(𝑥𝑙𝑜𝑜𝑝) is obtained by projecting the invariant on to a subset of variables
𝑥𝑙𝑜𝑜𝑝 ⊆ 𝑥 containing the loop-back variables of a loop. Therefore loop invariants are used
to constrain values of loop-back variables.

2.4.1 Example of a Program Conversion into SSA Form

Being built upon the CPROVER infrastructure, 2LS uses C parser to parse a C program
into an internal representation called GOTO program. GOTO programs are control flow
graphs [12]. GOTO programs store some metadata about the given source program along
with instructions, particularly the original file name and line numbers from which the
instructions were generated. This is crucial for the localization of symbolic variables in
the original program. Since in the verification process 2LS uses the SSA form, the GOTO
program representation is transformed into the SSA form. The transformation is realized
in regard to the specific modifications of 2LS outlined previously in this section. The
transformation is done in following points:

∙ Each assignment to a variable 𝑥 at location 𝑖 introduces a new version of the variable
denoted as 𝑥𝑖 which is used at the left-hand side of the assignment. Each used variable
on the right-hand side of the assignment is renamed to their last introduced versions.

∙ For every modified variable inside every conditional statement and loop, a phi node is
introduced. The choice between two values in the phi node is made on a basis of the
branch condition (in case of a conditional), and on a basis of a free boolean variable
(in case of a loop), as described in the introduction of this section.
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∙ A guard variable is introduced for every entry location of each basic block from GOTO
program. Guard variables express the reachability of the given basic block through
conditions.

∙ Function calls are replaced by the over-approximating function placeholders.

∙ Typical operations manipulating with dynamically allocated objects on the heap are
specifically represented in the SSA. Each instantiation of a new heap object using
malloc function is replaced with instantiation of a new abstract dynamic object. Then
every operation with memory using pointers (read, write or load and store in case of
dynamic data structures) is handled over the abstractions of the concrete dynamic
objects [10].

1 void main()
2 {
3 int x = 1000;
4 int y = x-1;
5
6
7 for (int i = 0; i < 100; i++)
8 {
9

10
11
12
13 x++;
14 y--;
15
16 assert(y <= x);
17
18
19 }
20
21 }

(a) The C program

1
2 guard_0 = TRUE
3 x_1 = 1000
4 y_3 = 999
5
6 i_5 = 0
7 guard_6 = guard_0
8 x_phi6 = (guard_ls12 ? x_lb12 : x_1)
9 y_phi6 = (guard_ls12 ? y_lb12 : y_3)

10 i_phi6 = (guard_ls12 ? i_lb12 : i_5)
11 guard_7 = !(i_phi6 >= 100) && guard_6
12
13 x_7 = 1 + x_phi6
14 y_8 = -1 + y_phi6
15
16 x_7 >= y_8 || !guard_7
17 i_11 = 1 + i_phi6
18 guard_11 = x_7 >= y_8 && guard_7
19 // *12 loop back to location 6
20 guard_13 = i_phi6 >= 100 && guard_6
21

(b) The corresponding SSA

Figure 2.2: Conversion of a C program in to SSA form in 2LS

We illustrate the conversion on the given example in Figure 2.2 [3]. The reachability of
the entry location of the program is expressed by the guard variable guard_0 which is set to
true, since the entry location is always reachable. Definition of both variables 𝑥 and 𝑦 is at
lines 3-4 (in the SSA form) along with the definition of the loop control variable 𝑖 at line 6.
The head of the loop contains three phi nodes for each of the modified variables inside the
loop. The entry of the loop-head is guarded by the variable guard_6. Since the loop-head
is always reachable, its value is set to the value of guard_0. The guard guard_7 at line 11
expresses that the loop body is only reachable if the negation of the loop condition is false
(i.e. the loop condition is true) and the entry of the loop-head (guard_6 ) is reachable. At
lines 13-14, with value assignments, new copies of the variables 𝑥 and 𝑦 are introduced.
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The assertion is expressed by the condition at line 16 and at line 18 the variable guard_11
requires the condition to be true whenever the body of the loop is reached (guard_7 ). At
the end of the loop body, at line 17 the loop control variable 𝑖 gets updated, introducing
a new copy. Finally, guard_13 at line 20 expresses that the location after the loop is
reachable when the loop condition is false and the entry of the loop-head was reached.

2.5 Template-based Abstract Domains
In this section we describe the two most used abstract domains along with brief mention
of combination of domains in the 2LS framework. The purpose of this section is to build
a theory basis for design of our method used for identification of imprecise variables inside
invariants computed in various abstract domains.

In the previous sections, we described the verification approach of 2LS, which consists
of computing inductive invariants — a problem expressible in existential second-order logic
with quantification, which is then reduced to a problem solvable by an iterative application
of a first-order solver. The verification approach is then reduced to computing loop invari-
ants using parametrised templates while utilizing an SMT solver to find suitable values of
the template parameters.

In 2LS, all abstract domains, in relation to its unique computational approach, are based
on templates. This has many benefits e.g., enables easier combination with other domains
to infer various program properties. Each domain has a so-called template form which de-
scribes the program property that is being analysed. Templates of the domains presented
in the following subsections have a form of a conjunction of formulae called template rows.
Since templates are used to efficiently compute loop invariants which constrain the values
of the loop-back variables, each template row corresponds to an SSA loop-back variable
𝑥𝑙𝑏. Additionally, the template row has a row parameter, called abstract row value or tem-
plate row value. This parameter is computed during invariant inference and represents an
abstraction of the concrete value of the variable 𝑥𝑙𝑏. A loop invariant is then obtained by
projecting the template rows and its corresponding template row values on to a subset of
variables containing only the loop-back variables of the given loop [3].

In the following subsections we describe various abstract domains, due to having com-
putation loop based on templates, sometimes labelled as template abstract domains. In
Subsection 2.5.1 we describe the abstract polyhedra domain, in Subsection 2.5.2 we describe
the heap shape domain and lastly we mention combinations of domains in Subsection 2.5.3.

2.5.1 Abstract Polyhedra Domain

One of the most general form of linear invariant generation is polyhedra analysis. The
analysis is performed in the abstract polyhedra domain, a domain used for analysis of
numerical variables using a system of linear inequalities representing numerical values of
variables. Due to its worst-case exponential time and space complexity limitations, a more
restricted domains are used instead [11].

In 2LS, there is a class of templates called template polyhedra domain, used for analysis
of numerical variables. The base template has a form:

𝒯 = (𝐴𝑥 ≤ 𝛿) (2.10)

where 𝐴 is a matrix of fixed coefficients. Each 𝑟𝑡ℎ 𝑟𝑜𝑤 of the template is constrained by
the 𝑟𝑡ℎ row of the matrix.

12



Subclasses of the template polyhedra domain correspond to various known abstract
domains, each having either a template working with a single variable 𝑥 or with a pair of
variables 𝑥 and 𝑦 over a pair of template rows:

∙ Intervals uses the interval template: ±𝑥 ≤ 𝑐,

∙ Zones or differences uses the interval and difference template: 𝑥− 𝑦 ≤ 𝑐, 𝑦 − 𝑥 ≤ 𝑐,

∙ Octagons uses the interval, difference, and sum templates: 𝑥+ 𝑦 ≤ 𝑐, −𝑥− 𝑦 ≤ 𝑐,

In these template expressions, each variable in the set of program variables 𝑥 is rep-
resented using bit-vectors with variable bit-width in order to avoid arithmetic under- and
overflows. The ⊤ value corresponds to the respective maximum values in the type of the
program variables, whereas the ⊥ is encoded as a special symbol [3].

Example. We want to express that variable 𝑥 (of signed integer type) lies in an inter-
val [2, 10] using the intervals template. Then the template, as a conjunction of its template
rows and the computed invariant constraining that variable looks like:

𝒯 = 𝒯0(𝑥, 10) ∧ 𝒯1(−𝑥,−2)

(a) Resulting intervals template

(𝑥 ≤ 10) ∧ (−𝑥 ≤ −2)

(b) Computed invariant

Figure 2.3: Variable 𝑥 of signed integer type lies in interval [2, 10], expressed using the
intervals template

2.5.2 Abstract Shape Domain

Abstract shape domain or abstract heap domain in 2LS is used by heap manipulation
analysis for modeling the shape of the heap — describes the shape properties of the program
heap. The shape analysis in 2LS focuses on describing the reachable shape of the heap,
mainly analysis of the shape of dynamic data structures like singly and doubly-linked lists.
The reachable shape of the heap is described using a set of memory objects a pointer can
dereference into.

Shape analysis assumes that the source programs are defined over a finite set of static
and dynamic memory objects of various types:

∙ 𝑉 𝑎𝑟: a finite set of static memory objects simply corresponding to program variables.

∙ 𝑃𝑉 𝑎𝑟 ⊆ 𝑉 𝑎𝑟: a set of pointer-typed variables.

∙ 𝑆𝑉 𝑎𝑟 ⊆ 𝑉 𝑎𝑟: a set of structure-typed variables, where 𝑃𝑉 𝑎𝑟 ∩ 𝑆𝑉 𝑎𝑟 = ∅.

∙ 𝐹𝑙𝑑: a finite set of fields of structure-typed objects in the given program (corresponds
to fields in a C data structure, defined the using keyword struct).

∙ 𝑃𝐹𝑙𝑑 ⊆ 𝐹𝑙𝑑: a set of all pointer-typed fields.

Dynamic memory objects, i.e. memory objects allocated on the heap using malloc
function, are represented using a set of abstract dynamic objects 𝐴𝑂, where 𝑉 𝑎𝑟∩𝐴𝑂 = ∅.
Dynamic objects may be allocated in a loop at one program location, therefore abstract
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dynamic objects represent a set of all concrete dynamic objects allocated at one allocation
site. Dynamic objects may also be of structure type composed of fields, therefore elements
of the set 𝐴𝑂 × 𝐹𝑙𝑑 represent abstractions of the appropriate fields.

The set of all objects of a program abstraction is therefore 𝑂𝑏𝑗 = 𝐴𝑂 ∪ 𝑉 𝑎𝑟. Then the
set of all pointers of a given program abstraction is defined as:

𝑃𝑡𝑟 = 𝑃𝑉 𝑎𝑟 ∪ ((𝑆𝑉 𝑎𝑟 ∪𝑂𝑏𝑗)× 𝑃𝐹𝑙𝑑) (2.11)

Pointers hold symbolic address of objects (or the special value null) from the set of all
addresses 𝐴𝑑𝑑𝑟 defined as:

𝐴𝑑𝑑𝑟 = {&𝑜 | 𝑜 ∈ 𝑂𝑏𝑗} ∪ {𝑛𝑢𝑙𝑙} (2.12)

where &− 𝑜𝑝𝑒𝑟𝑎𝑡𝑜𝑟 represents the access to the object’s address.
As already mentioned, templates are used to compute loop invariants of the analysed

program, which describe properties that hold for some program variables at the end of the
body of loops after each iteration. Since there is only one loop-back pointer variable for
each pointer variable in each loop, the abstract shape domain is limited to the set of all
loop-back pointers 𝑃𝑡𝑟𝑙𝑏 = 𝑃𝑡𝑟 × 𝐿, where 𝐿 is the set of all program loops. Elements
(𝑝, 𝑙) ∈ 𝑃𝑡𝑟𝑙𝑏 are denoted as 𝑝𝑙𝑏𝑖 , where 𝑖 is the program location of the end of the loop 𝑙.

The value of element 𝑝𝑙𝑏𝑖 is an abstraction of the value of the pointer 𝑝 coming from
the end of the body of the loop 𝑙. This property, described by the shape domain is called
may-point-to relation between the sets 𝑃𝑡𝑟𝑙𝑏 and 𝐴𝑑𝑑𝑟. Then the template of the shape
domain is a formula of the form:

𝒯 𝑆 =
⋀︁

𝑝𝑙𝑏𝑖 ∈𝑃𝑡𝑟𝑙𝑏

𝒯 𝑆
𝑝𝑙𝑏𝑖

(𝑑𝑝𝑙𝑏𝑖
) (2.13)

It is a conjunction of the template rows 𝒯 𝑆
𝑝𝑙𝑏𝑖

, where each row corresponds to a loop-back
pointer from the set 𝑃𝑡𝑟𝑙𝑏. The parameter 𝑑𝑝𝑙𝑏𝑖

⊆ 𝐴𝑑𝑑𝑟 of the template row is the abstract
row value and specifies the set of all addresses from 𝐴𝑑𝑑𝑟 that the pointer 𝑝 may point to
at the location 𝑖. We can then express the template row as a quantifier-free formula [13]:

𝒯 𝑆
𝑝𝑙𝑏𝑖

(𝑑𝑝𝑙𝑏𝑖
) ≡

(︂ ⋁︁
𝑎∈𝑑

𝑝𝑙𝑏
𝑖

𝑝𝑙𝑏𝑖 = 𝑎

)︂
. (2.14)

Example. Using the template shape domain we express that loop-back pointer 𝑝 at loca-
tion 1 may point to objects 𝑎𝑜1, 𝑎𝑜2 or 𝑛𝑢𝑙𝑙 and another loop-back pointer 𝑞 at location 2
points to object 𝑎𝑜1. Then the template rows and the resulting template have the form:

𝒯 𝑆
𝑝𝑙𝑏1

= (𝑝𝑙𝑏1 = &𝑎𝑜1 ∨ 𝑝𝑙𝑏1 = &𝑎𝑜2 ∨ 𝑝𝑙𝑏1 = 𝑛𝑢𝑙𝑙)

𝒯 𝑆
𝑞𝑙𝑏2

= (𝑞𝑙𝑏2 = &𝑎𝑜1 ∨ 𝑞𝑙𝑏2 = 𝑛𝑢𝑙𝑙)

(a) Template row for each pointer

𝒯 𝑆 =𝒯 𝑆
𝑝𝑙𝑏1

({&𝑎𝑜1,&𝑎𝑜2, 𝑛𝑢𝑙𝑙}) ∧

𝒯 𝑆
𝑞𝑙𝑏2
({&𝑎𝑜1, 𝑛𝑢𝑙𝑙})

(b) The resulting shape domain template

Figure 2.4: Various pointer locations expressed using the shape domain template
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2.5.3 Combinations of Template-based Abstract Domains

Apart from efficiency benefits, the template-based approach of domains also allows easier
combination of domains to infer various new interesting properties, e.g. inferring properties
about numerical data of data structures. In this subsection we briefly introduce two of such
domains that we aim to design our method for.

The simplest way to achieve a combination of two abstract domains is to use a Carte-
sian product template. It is a combination of different kinds of templates which are used
independently side-by-side. It is accomplished as a conjunction of templates [13]. The
representative example of this approach is the shape interval domain mentioned in the
following list.

A. Shape interval domain is a domain which combines the shape domain and the inter-
val domain. Its template is a conjunction of two templates from both domains. The
resulting template then consists of two types of templates rows: one for numerical
variables, the other for pointer variables. The abstract value for each row is com-
puted in the correspoing domain. This way, it is possible to determine the shape of
dynamic data structues from invariants for pointer-typed fields and at the same time
the content of nodes of these structures from invariants for numerical fields [10].

B. Shape domain with symbolic loop paths is an extension of the shape domain that allows
the invariant of a loop to distinguish which loops were or were not executed before
reaching a given loop. With a utilization of SSA control-flow variables, specifically,
loop-select guards, a symbolic loop path is simply a conjunction of these guards, ex-
pressing thus a reachability of the given loops. Different invariants are then computed
for different symbolic loop paths. This can be used to, e.g. find out which objects
were allocated beforehand and can be then processed in a given loop [13].
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Chapter 3

Design of Imprecise Variable
Identification and Localization
Methods

In this chapter, we propose a solution to the predefined goal of this work: (1) a way to
analyse the computed invariants in order to determine parts of the invariant that cause
undecidability of the verification and (2) a method that uses the obtained information
to identify the original program variables that successful verification may depend on. This
chapter mainly builds on the information about the 2LS framework presented in the previous
chapters.

In 2LS, templates are often composed of multiple parts (e.g., each part corresponds
to a single variable) and an abstract value is computed for each of them individually. In
order to design a method to identify such parts of the invariant that cause undecidability
of the verification, we must first define how to recognise them. In our work, we limit
ourselves to find parts of invariants that correspond to the supremum (⊤) value of the
abstract domain, that the invariant is computed in. Therefore, the goal is to determine in
each supported abstract domain its representative supremum ⊤ value and to find so-called
template variables that correspond to parts of invariants having the supremum value.

Since we analyse loop invariants, these variables are the loop-back SSA variables de-
scribed in Section 2.4. We refer to the discovered variables as to imprecise template vari-
ables. In Section 3.1 we propose algorithms for finding imprecise parts of invariants (and
subsequently for finding the imprecise template variables) for two supported abstract do-
mains: namely for the abstract interval domain (Section 2.5.1) and the heap domain (Sec-
tion 2.5.2).

After identifying imprecise template variables, we can use the existing structures in 2LS,
mainly GOTO programs representation of the analysed program, which have the form of
control flow graphs, to locate the original program variables that the template variables,
more specifically SSA loop-back variables, correspond to.

However, template variables do not necessarily correspond to program variables, since
they may represent dynamically allocated objects that may pose a problem. In Section 3.2
we describe an algorithm that maps the imprecise template variables, be it static or dy-
namic, back to the original program using SSA form and GOTO program representation
of the analysed program.
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3.1 Identification of Imprecise Variables inside Invariants
As described in Section 2.3, 2LS uses templates, which are fixed quantifier-free first-order
logic formulas describing the desired property of the program, to efficiently compute loop
invariants of the analysed program.

In 2LS each template domain has a defined template form, describing the program
property that is being analysed. Templates of the domains presented in the following
subsections have a form of a conjunction of formulae called template rows. Each template
row corresponds to a single SSA loop-back variable 𝑥𝑙𝑏. The template row has a row
parameter, called abstract row value. This parameter is computed during invariant inference
and represents an abstraction of the concrete value of the variable 𝑥𝑙𝑏.

Therefore, in terms of template domains, a loop invariant is obtained by projecting
the template rows and its corresponding template row values on to a subset of variables,
containing only the loop-back variables of the concerning loop.

In the following subsections we present templates of the template polyhedra domain
and the heap domain and also the supremum values in each domain that determine the
imprecise template variables that we search for.

Finally, we propose algorithms to identify imprecise variables inside computed invariants
using templates in the template polyhedra domain, specifically abstract interval domain
and in the heap domain. The proposed algorithms 1 and 2 are described in the following
subsections.

3.1.1 Abstract Interval Domain

As mentioned in the Section 2.5.1, abstract interval domain in 2LS is represented by the
template subclass of template polyhedra, a class of templates used for analysis of numerical
variables. Generally, the subclasses of template polyhedra have the form 𝒯 = (𝐴𝑥 ≤ 𝛿)
where 𝐴 is a matrix with fixed coefficients. Intervals subclass template has the following
form [3]: (︂

+1
−1

)︂
𝑥𝑖 ≤

(︂
𝛿𝑖1
𝛿𝑖2

)︂
(3.1)

The 𝑖-th row of the template is the constraint generated by the 𝑖-th row of matrix 𝐴.
Therefore, for each variable 𝑥𝑖 there are two template rows making one template row pair.
Variables of 𝑥 are represented as signed or unsigned integers.

We analyse invariants generated from these templates and search for variables with
unconstrained values. For a variable 𝑥𝑖, this means that we search for template parameters:(︂

+1
−1

)︂
𝑥𝑖 ≤

(︃
𝑑⊤𝑖1

𝑑⊤𝑖2

)︃
(3.2)

where the computed values of parameters 𝑑⊤𝑖1 and 𝑑⊤𝑖2 correspond to the maximum and the
minimum value of the type of variable 𝑥𝑖, respectively.

Algorithm 1 presents the method of identification of imprecise variables inside the com-
puted invariant in the interval domain.

The set of template row values RowValues is initialized with values of the computed
invariant on line 1. Template rows are searched in a “pair after pair” manner. On lines 5-6
we get the template row value of the first template row using the function GetRowValue
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and also we save the template row expression, which corresponds to the name of the variable.
On line 8 we get the template row value of the second row of the template row pair.
Afterwards we check, on line 9, if both template row values of the pair hold maximum and
the minimum values in the given variable type, respectively. The result of the algorithm is
the set of all identified imprecise SSA loop-back variable names — VarNameSet.

Algorithm 1: Imprecise variable identification in interval domain.
1 𝑅𝑜𝑤𝑉 𝑎𝑙𝑢𝑒𝑠← 𝐷𝑜𝑚𝑎𝑖𝑛𝑉 𝑎𝑙𝑢𝑒𝑠
2 𝑉 𝑎𝑟𝑁𝑎𝑚𝑒𝑆𝑒𝑡← ∅
3 foreach 𝑅𝑜𝑤 ∈ 𝑇𝑒𝑚𝑝𝑙𝑎𝑡𝑒𝑅𝑜𝑤𝑠 do
4 if 𝑅𝑜𝑤 is first row of pair then
5 𝐹𝑖𝑟𝑠𝑡𝑅𝑜𝑤𝑉 𝑎𝑙𝑢𝑒← GetRowValue(𝑅𝑜𝑤,𝑅𝑜𝑤𝑉 𝑎𝑙𝑢𝑒𝑠)
6 𝑅𝑜𝑤𝐸𝑥𝑝𝑟 ← row expression of 𝑅𝑜𝑤

7 else
8 𝑆𝑒𝑐𝑛𝑑𝑅𝑜𝑤𝑉 𝑎𝑙𝑢𝑒← GetRowValue(𝑅𝑜𝑤,𝑅𝑜𝑤𝑉 𝑎𝑙𝑢𝑒𝑠)
9 if 𝐹𝑖𝑟𝑠𝑡𝑅𝑜𝑤𝑉 𝑎𝑙𝑢𝑒 is maximum row value and 𝑆𝑒𝑐𝑛𝑑𝑅𝑜𝑤𝑉 𝑎𝑙𝑢𝑒 is minimum

row value then
10 𝑁𝑎𝑚𝑒← GetName(𝑁𝑎𝑚𝑒𝑆𝑒𝑡,𝑅𝑜𝑤𝐸𝑥𝑝𝑟)
11 𝑉 𝑎𝑟𝑁𝑎𝑚𝑒𝑆𝑒𝑡← 𝑉 𝑎𝑟𝑁𝑎𝑚𝑒𝑆𝑒𝑡 ∪ {𝑁𝑎𝑚𝑒}
12 return 𝑉 𝑎𝑟𝑁𝑎𝑚𝑒𝑆𝑒𝑡

Example. To better illustrate the identification of imprecise variables in the interval do-
main using the presented Algorithm 1, we use the illustrative C program from Chapter 2
shown in Figure 2.2.

The verification of the program using intervals domain is inconclusive due to unrec-
ognized dependencies between values of variables 𝑥 and 𝑖, and 𝑦 and 𝑖 where variable 𝑖
determines the number of loop unwindings. Therefore, there is a possible overflow detected
for values of variables 𝑥 and 𝑦, and that can be seen in the computed invariant in Fig-
ure 3.1b, where values of both variables were set to the maximum and minimum in their
promoted type.

𝒯0(+𝑥𝑙𝑏12, 𝛿0)

𝒯1(−𝑥𝑙𝑏12, 𝛿1)
𝒯2(+𝑦𝑙𝑏12, 𝛿2)

𝒯3(−𝑦𝑙𝑏12, 𝛿3)
𝒯4(+𝑖𝑙𝑏12, 𝛿4)

𝒯5(−𝑖𝑙𝑏12, 𝛿5)

(a) Interval domain template rows

(+𝑥𝑙𝑏12 ≤ INT_MAX) ∧ (−𝑥𝑙𝑏12 ≤ INT_MIN) ∧
(+𝑦𝑙𝑏12 ≤ INT_MAX) ∧ (−𝑦𝑙𝑏12 ≤ INT_MIN) ∧

(𝑖𝑙𝑏12 ≤ 100) ∧ (−𝑖𝑙𝑏12 ≤ −1)

(b) Computed invariant

Figure 3.1: Generated template and computed invariant of program in Figure 2.2

The generated interval template 𝒯 ({𝑥𝑙𝑏12, 𝑦𝑙𝑏12, 𝑖𝑙𝑏12}, {𝛿0, 𝛿1, 𝛿2, 𝛿3, 𝛿4, 𝛿5}) has in sum-
mary six template rows, as shown in Figure 3.1a. Algorithm 1 then compares row values
of the first and of the second template row (corresponding to the actual computed values
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in the computed invariant 3.1b) in each pair of template rows to the maximum and the
minimum value in the promoted type (here signed integer), respectively. The result of the
algorithm is then a set of the identified imprecise template row variables:

𝑉 𝑎𝑟𝑁𝑎𝑚𝑒𝑆𝑒𝑡 = {𝑥𝑙𝑏12, 𝑦𝑙𝑏12}. (3.3)

3.1.2 Heap Domain

This subsection builds on Section 2.5.2 about shape domain also called the heap domain.
The heap domain is used by shape analysis for modelling the reachable shape of the program
heap.

Since, loop invariants constrain values of the loop-back variables, the heap domain limits
its template row variables to the set of all loop-back pointers 𝑃𝑡𝑟𝑙𝑏 defined in Formula 2.11.
An abstract dynamic object also corresponds to an allocation site (e.g. multiple concrete
heap objects allocated in a loop). Pointers hold symbolic addresses of objects (or the special
value null) from the set of all addresses defined in Formula 2.12. The relation between the
sets of 𝑃𝑡𝑟𝑙𝑏 and 𝐴𝑑𝑑𝑟 described by the shape domain is called may-point-to relation. The
template of the shape domain has the form defined in Formula 2.13 where the may-point-to
relation is expressed between the values of the parameter 𝑑𝑝𝑙𝑏𝑖

⊆ 𝐴𝑑𝑑𝑟 and the template
row pointer 𝑝 of the template row quantifier-free Formula 2.14.

Whenever the shape analysis can not determine the symbolic address of the pointer 𝑝
at location 𝑖, e.g. due to uninitialization or as a result of a dereference of an unknown or
invalid (null) address, the value of the abstract row ( corresponds to parameter 𝑑𝑝𝑙𝑏𝑖 ) is set
to a special value “unknown object” denoted as 𝑜⊥ [13]. Since this special value corresponds
to the supremum value (which is equivalent to true [3]) in the heap domain, we are looking
imprecise template rows whose abstract value is true.

The method of identifying imprecise template rows in the heap domain is shown in
Algorithm 2.

Algorithm 2: Imprecise variable identification in Heap domain.
1 𝑅𝑜𝑤𝑉 𝑎𝑙𝑢𝑒𝑠← 𝐷𝑜𝑚𝑎𝑖𝑛𝑉 𝑎𝑙𝑢𝑒𝑠
2 𝑉 𝑎𝑟𝑁𝑎𝑚𝑒𝑆𝑒𝑡← ∅
3 foreach 𝑅𝑜𝑤 ∈ 𝑇𝑒𝑚𝑝𝑙𝑎𝑡𝑒𝑅𝑜𝑤𝑠 do
4 𝑅𝑜𝑤𝐸𝑥𝑝𝑟 ← row expression of 𝑅𝑜𝑤
5 𝑅𝑜𝑤𝑉 𝑎𝑙𝑢𝑒← GetRowValue(𝑅𝑜𝑤𝐸𝑥𝑝𝑟,𝑅𝑜𝑤𝑉 𝑎𝑙𝑢𝑒𝑠)
6 if 𝑅𝑜𝑤𝑉 𝑎𝑙𝑢𝑒 is true then
7 𝑁𝑎𝑚𝑒← ExprName(𝐷𝑜𝑚𝑎𝑖𝑛𝑁𝑎𝑚𝑒𝑆𝑒𝑡,𝑅𝑜𝑤𝐸𝑥𝑝𝑟)
8 𝑉 𝑎𝑟𝑁𝑎𝑚𝑒𝑆𝑒𝑡← 𝑉 𝑎𝑟𝑁𝑎𝑚𝑒𝑆𝑒𝑡 ∪ {𝑁𝑎𝑚𝑒}
9 return 𝑉 𝑎𝑟𝑁𝑎𝑚𝑒𝑆𝑒𝑡

At line 6, each template row value RowValue of corresponding template row is checked
whether it is true, which corresponds to the ⊤ value in the abstract domain. The row
value is set to true whenever the value of the row object might be non-deterministic. Only
if the template row value at line 6 is true, the name of the non-deterministic row (SSA
variable name) is added to the set of names VarNameSet at line 8, which is the result of
the algorithm.

Example. On example in Figure 3.2 we illustrate the presented algorithm for identification
of imprecise variables in the heap domain. The example 3.2a shows a simple dynamic singly
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linked list creation in the first loop between the lines 9-14 and a list traversal in the second
loop between the lines 18-21. Due to an uninitialized value of pointer head pointing to
an elem_t type at line 7, the traversing of the list at lines 18-21 results in memory access
violation.

1 typedef struct elem {
2 struct elem *next;
3 } *elem_t;
4
5 void main()
6 {
7 elem_t head;
8
9 for (unsigned i = 0; i < 2; i++)

10 {
11 elem_t e = (elem_t) malloc(

sizeof(struct elem));
12 e->next = head;
13 head = e;
14 }
15
16 elem_t e = head;
17
18 while (e)
19 {
20 e = e->next;
21 }
22 }

(a) Simple list traversal in C

before	the	loop	1
head15

loop	body
e45	=	(struct	elem	*)return_value_malloc$143
do$271.next46	=	(e45	=	&do$271	?	...	)
do$270.next46	=	(e45	=	&do$270	?	...	)
head47	=	e45

end	of	the	loop	1	body
headlb51,	do$271.nextlb51,	do$270.nextlb51

after	the	loop	1

before	the	loop	2
e54	=	headphi18

loop	2	head	multiplexer
ephi55	=	(gls57	?	elb57	:	e54)

loop	2	body
	e56	=	(ephi55	=	&do$271	?	do$271.nextphi18
								:	(ephi55	=	&do$270	?	do$270.nextphi18
								:	struct_elem_obj$unknown.next))

end	of	the	loop	2
body
elb57

loop	1	head	multiplexer
headphi18	=	gls51	?	headlb51	:	head15
do$271.nextphi18	=	gls51	?	do$271.nextlb51
																																								:	dob$271.next
do$270.nextphi18	=	gls51	?	do$270.nextlb51	
																																								:	do$270.next

after	the	loop	2

7:

9:

11:

14:

16:

18:

20:

21:

(b) The corresponding SSA form

Figure 3.2: Example of imprecise variable identification in heap domain

The SSA form in Figure 3.2b has had names of dynamic variables and guards shortened
to 𝑑𝑜 instead of 𝑑𝑦𝑛𝑎𝑚𝑖𝑐_𝑜𝑏𝑗𝑒𝑐𝑡 and to 𝑔 instead of 𝑔𝑢𝑎𝑟𝑑. The SSA also shows only the
information relevant for imprecise variable identification in the heap domain. The generated
heap domain template for the example code 3.2a is shown in Figure 3.3a. The template
has been shortened to only four relevant template rows in total. The computed invariant
in Figure 3.3b shows the abstract row values (denoted as 𝑑𝑖 where 𝑖 is the 𝑟-th template
row in Figure 3.3a) for the corresponding template rows of the template.
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𝒯0(ℎ𝑒𝑎𝑑𝑙𝑏51, 𝑑0)
𝒯1(𝑑𝑦𝑛𝑎𝑚𝑖𝑐_𝑜𝑏𝑗𝑒𝑐𝑡$271.𝑛𝑒𝑥𝑡𝑙𝑏51, 𝑑1)

𝒯2(𝑑𝑦𝑛𝑎𝑚𝑖𝑐_𝑜𝑏𝑗𝑒𝑐𝑡$270.𝑛𝑒𝑥𝑡𝑙𝑏51, 𝑑2)

𝒯3(𝑒𝑙𝑏57, 𝑑3)

(a) Heap domain template rows

(ℎ𝑒𝑎𝑑𝑙𝑏51 = &𝑑𝑦𝑛𝑎𝑚𝑖𝑐_𝑜𝑏𝑗𝑒𝑐𝑡$270 ∨
ℎ𝑒𝑎𝑑𝑙𝑏51 = &𝑑𝑦𝑛𝑎𝑚𝑖𝑐_𝑜𝑏𝑗𝑒𝑐𝑡$271) ∧
(𝑑𝑦𝑛𝑎𝑚𝑖𝑐_𝑜𝑏𝑗𝑒𝑐𝑡$271.𝑛𝑒𝑥𝑡𝑙𝑏51 = 𝑡𝑟𝑢𝑒) ∧
(𝑑𝑦𝑛𝑎𝑚𝑖𝑐_𝑜𝑏𝑗𝑒𝑐𝑡$270.𝑛𝑒𝑥𝑡𝑙𝑏51 = 𝑡𝑟𝑢𝑒) ∧
(𝑒𝑙𝑏57 = 𝑡𝑟𝑢𝑒)

(b) Computed invariant

Figure 3.3: Generated template and computed invariant of program in Figure 3.2

Since the computed invariant only constrains the template row variable ℎ𝑒𝑎𝑑𝑙𝑏51, the
other template row variables had their template row values set to true due to their non-
deterministic values. Therefore, the set of identified imprecise template row variables looks
like:

𝑉 𝑎𝑟𝑁𝑎𝑚𝑒𝑆𝑒𝑡 = {𝑒𝑙𝑏57, 𝑑𝑦𝑛𝑎𝑚𝑖𝑐_𝑜𝑏𝑗𝑒𝑐𝑡$271.𝑛𝑒𝑥𝑡𝑙𝑏51, (3.4)
𝑑𝑦𝑛𝑎𝑚𝑖𝑐_𝑜𝑏𝑗𝑒𝑐𝑡$270.𝑛𝑒𝑥𝑡𝑙𝑏51}

3.2 Localization of Variables in the Original Program
In this section we present a solution to localization of imprecise template row variables
identified in various domains, as presented in the previous Section 3.1 in the original pro-
gram.

Since 2LS is built upon the CPROVER infrastructure, the only information about the
source program is through its internal representation — GOTO programs. GOTO programs
are control flow graphs that maintain various information about the source code lines in its
elements — GOTO instructions. The translation to the SSA form is made upon the GOTO
programs. As outlined in Section 2.4.1 about the SSA conversion, the SSA form consists of
SSA variables at various SSA locations also known as nodes. Due to the SSA form being
an over-approximation of GOTO programs and due to its specific modifications in 2LS, it
is not possible to use only the SSA variables when referring to the source program variables
and to the lines in the source code at which they are defined or used. Instead, we must
utilize the existent GOTO instructions in the given GOTO programs to which the SSA
nodes refer.

The localization of the original variables in the source program consists of the following
steps outlined in the following subsections: (1) We retrieve the original name of the given
variable, this concerns mainly working with the SSA names (Subsection 3.2.1), (2) we
localize the corresponding SSA node of the loop-back variable (Subsection 3.2.2), (3) we
retrieve the source information using the localized SSA node and its corresponding GOTO
instruction (Subsection 3.2.3). Finally, we present the algorithm for localization of the
original variables and an illustrative example for both of the abstract domains that are able
to find their imprecise template row variables in Subsection 3.2.4.
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3.2.1 Original Variable Name Retrieval

Variables we want to localize are identified imprecise SSA loop-back variables of the invari-
ants computed in various abstract domains. Such variables are either static variables or
dynamically allocated objects. Such dynamic objects, as mentioned in Section 2.5.2 about
the heap domain, are represented by abstract dynamic objects. Since dynamically allocated
objects are accessed via pointers only, they do not have any names. Therefore, typical heap-
manipulating operations are specifically represented in the SSA. The only operation this
solution is concerned with, is the creation of dynamic objects using the malloc function.
We start by specifying a set of naming rules.

Generally, the original statically allocated variable name 𝑥 is converted to a loop-back
SSA variable name in the following way:

𝑥 −→ 𝑥#𝑙𝑏𝑁 (3.5)

where 𝑁 is the number of the 𝑛-th SSA node where the loop-back version of the variable
is introduced (the last SSA node in the loop).

Since dynamically allocated variables do not have any names, they are specially repre-
sented in the SSA. Each malloc call is replaced by an instantiation of a member of new
abstract dynamic objects and a choice among their symbolic addresses is returned as a result
of the call. Uniqueness of the names of all abstract objects is ensured by the replacement
of the occurrence of malloc in the source program as follows [10]:

𝑚𝑎𝑙𝑙𝑜𝑐(. . .) −→ 𝑔𝑜𝑠1 ? &𝑑𝑜$𝑖#1 : (𝑔𝑜𝑠2 ? &𝑑𝑜$𝑖#2 : (. . .)) (3.6)

where 𝑔𝑜𝑠 are free Boolean variables, so-called object-select guards, &𝑑𝑜$𝑖 is the shortened
version of &𝑑𝑦𝑛𝑎𝑚𝑖𝑐_𝑜𝑏𝑗𝑒𝑐𝑡$𝑖, and 𝑖 is the number of the SSA node of malloc call oc-
curence (i.e. SSA node with location of the allocation site).

Additionally, in 2LS, structure-typed heap objects are split into fields according to their
structure composition, where each field of the structured object is considered a separate
variable. Then the loop-back SSA name of such objects is defined as [13]:

𝑑𝑦𝑛𝑎𝑚𝑖𝑐_𝑜𝑏𝑗𝑒𝑐𝑡$𝑖#𝑦.𝐹 𝑙𝑑#𝑙𝑏𝑁 (3.7)

where 0 < 𝑦 ≤ 𝑘, 𝑘 is the number of all elements in the set of abstract dynamic objects
𝐴𝑂 allocated at one allocation site (it is required that 𝐴𝑂𝑚 ∩𝐴𝑂𝑛 = ∅ for 𝑚 ̸= 𝑛), Fld is
the name of the structure-typed object field, and 𝑁 is the number of the loop-back node,
being the last SSA node in the loop.

Therefore, we use as the original name of the unnamed dynamic objects the names of
the elements of the set 𝐴𝑂— 𝑑𝑦𝑛𝑎𝑚𝑖𝑐_𝑜𝑏𝑗𝑒𝑐𝑡$𝑖#𝑦. In the case of the structure-typed
dynamic objects, we can additionally refer to the name of its structure field using the Fld
in the corresponding abstract dynamic object name.

3.2.2 SSA Node Localization

Having the SSA loop-back variables, be it static variable (according to the naming Rule 3.5)
or dynamic objects (according to the naming Rule 3.7), we locate the SSA node using the
𝑁 number in the 𝑙𝑏𝑁 suffix, which corresponds to the last node in the body of the loop
where the loop-back variable is created. At the same time due to the loops being cut at
the end of their loop bodies, it is the node just before the loop-head node, as illustrated in
the SSA form example in Figure 2.1.
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In the case of dynamic objects, additionally we can get the node of the allocation site
it was allocated at using the 𝑖 number after the $ sign, according to the naming Rule 3.7.

3.2.3 Source Information Retrieval via GOTO instructions

As stated at the beginning of this section, 2LS uses GOTO programs as an internal repre-
sentation of the analysed program. A GOTO program consists of a set of GOTO functions,
which are then composed of a set of GOTO instructions. Each GOTO instruction corre-
sponds to a step in the given source program function and maintains various information
about the source code. Since SSA form is an over-approximation of GOTO program, more
than one SSA node may correspond to one GOTO instruction. From each GOTO function
an SSA form is built, called local SSA.

To get the source code line number of the loop where the variable with the name iden-
tified in Subsection 3.2.1 holds the imprecise value, first we need to get the corresponding
GOTO instruction. In order to locate the GOTO instruction which corresponds to the SSA
node (in the given local SSA) of the imprecise loop-back variable, we need to locate the
SSA node itself using the approach from the previous subsection.

Having the loop-back SSA node of the imprecise variable, which is the last node in the
loop, we can simply get the successor node — the loop-head node of the loop. Now, we
can get the corresponding GOTO instruction. Since a GOTO instruction corresponds to
one step in a concrete function we can get the line number of the loop-head in the source
program using its kept source code information.

Analogously, we can locate the allocation site of the given dynamic object (i.e., line
number where it was allocated using malloc). As already specified in the previous subsec-
tion, we can get the SSA node, and using the corresponding GOTO instruction, we can
ultimately reach the concrete line number in the source code where the allocation occurs.

3.2.4 Localization Method Algorithm

We collect various information about each localized imprecise variable and store it in a sum-
mary. The information in the summary corresponds to the concrete variable properties in
the analyzed program. In the summary, we also define elements used only by the dynamic
objects. The summary 𝑆 of a variable is a tuple:

𝑆 = (𝑉 𝑎𝑟, 𝐿𝑜𝑐𝑙ℎ, 𝐹 𝑖𝑒𝑙𝑑, 𝐿𝑜𝑐𝑠𝑖𝑡𝑒) (3.8)

where

∙ 𝑉 𝑎𝑟: is the name of the variable. In case of static variables, it holds the concrete
variable name. In case of dynamic objects, it holds the symbolic “SSA-introduced”
name.

∙ 𝐿𝑜𝑐𝑙ℎ: is the loop-head location of the loop which the loop-back variable corresponds
to.

∙ 𝐹𝑖𝑒𝑙𝑑: is the name of the field of structure-typed heap object.

∙ 𝐿𝑜𝑐𝑠𝑖𝑡𝑒: is the allocation site location of the dynamic object.

The localization method the of imprecise variables identified in invariants computed in
various abstract domains is described in Algorithm 3.
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Algorithm 3: Localization of original program variables using their SSA names
1 𝑆 ← ∅ // a set of summaries
2 𝑉 𝑎𝑟, 𝐿𝑜𝑐𝑙ℎ, 𝐹𝑖𝑒𝑙𝑑, 𝐿𝑜𝑐𝑠𝑖𝑡𝑒 ← 𝑒𝑚𝑝𝑡𝑦
3 𝑁𝑎𝑚𝑒𝑆𝑒𝑡← set of all imprecise SSA loop-back variable names
4 𝐼𝑠𝐷𝑦𝑛𝑎𝑚𝑖𝑐← 𝑓𝑎𝑙𝑠𝑒 // whether is static variable or dynamic object
5 foreach 𝑁𝑎𝑚𝑒 ∈ 𝑁𝑎𝑚𝑒𝑆𝑒𝑡 do
6 if 𝑁𝑎𝑚𝑒 starts with “dynamic_object$” then
7 𝐼𝑠𝐷𝑦𝑛𝑎𝑚𝑖𝑐← 𝑡𝑟𝑢𝑒
8 𝑉 𝑎𝑟 ← GetPrettyName(𝑁𝑎𝑚𝑒) // original program variable name
9 𝐿𝑜𝑐𝑎𝑡𝑖𝑜𝑛← GetNameLocation(𝑁𝑎𝑚𝑒) // n-th SSA node

10 if 𝐿𝑜𝑐𝑎𝑡𝑖𝑜𝑛 = −1 then // is input variable
11 𝐿𝑜𝑐𝑙ℎ ← input variable
12 else
13 𝐿𝑜𝑜𝑝𝐵𝑎𝑐𝑘𝑛𝑜𝑑𝑒 ← get SSA node at location 𝐿𝑜𝑐𝑎𝑡𝑖𝑜𝑛
14 𝐿𝑜𝑜𝑝𝐻𝑒𝑎𝑑𝑛𝑜𝑑𝑒 ← get loop-head node of 𝐿𝑜𝑜𝑝𝐵𝑎𝑐𝑘𝑛𝑜𝑑𝑒
15 𝐼𝑛𝑠𝑡𝑟𝑙ℎ ← get corresponding GOTO instruction of 𝐿𝑜𝑜𝑝𝐻𝑒𝑎𝑑
16 𝐿𝑜𝑐𝑙ℎ ← get source location of 𝐼𝑛𝑠𝑡𝑟𝑙ℎ
17 if 𝐼𝑠𝐷𝑦𝑛𝑎𝑚𝑖𝑐 = 𝑡𝑟𝑢𝑒 then // is dynamic object
18 𝐹𝑖𝑒𝑙𝑑← GetDynamicField(𝑁𝑎𝑚𝑒)
19 𝑆𝑖𝑡𝑒𝑛𝑜𝑑𝑒 ← get SSA node at location GetSiteLocation(𝑁𝑎𝑚𝑒)

// allocation site
20 𝐼𝑛𝑠𝑡𝑟𝑠𝑖𝑡𝑒 ← get corresponding GOTO instruction of 𝑆𝑖𝑡𝑒𝑛𝑜𝑑𝑒
21 𝐿𝑜𝑐𝑠𝑖𝑡𝑒 ← get source location of 𝐼𝑛𝑠𝑡𝑟𝑠𝑖𝑡𝑒
22 𝑆 ← 𝑆 ∪ {𝑉 𝑎𝑟, 𝐿𝑜𝑐𝑙ℎ, 𝐹 𝑖𝑒𝑙𝑑, 𝐿𝑜𝑐𝑠𝑖𝑡𝑒}

The input of the algorithm is the set of all imprecise SSA loop-back variables 𝑁𝑎𝑚𝑒𝑆𝑒𝑡,
identified in any of the supported domains mentioned in the previous Section 3.1. At line 6,
we differentiate between static and dynamic types of variables according to the naming
rules of variables specified in the Subsection 3.2.1. At line 8, we get the actual program
variable name 𝑉 𝑎𝑟 according to the approach presented in Subsection 3.2.1. Then, we get
the number of the corresponding SSA node using the method presented in Subsection 3.2.2
at line 9. If the location of the variable’s SSA node can not be found then it is considered
an input variable and no more information can be determined (lines 10-11). Having the
variable’s SSA node 𝐿𝑜𝑜𝑝𝐵𝑎𝑐𝑘𝑛𝑜𝑑𝑒, we can now get the next SSA node —𝐿𝑜𝑜𝑝𝐻𝑒𝑎𝑑𝑛𝑜𝑑𝑒
(line 14). Then, at lines 15-16, we get the source location (the line number in the source
program) of the GOTO instruction 𝐼𝑛𝑠𝑡𝑟𝑙ℎ that corresponds to the given loop-head node
(as outlined in Subsection 3.2.3). Generally, if the given variable is a dynamic object, we
get its allocation site location 𝐿𝑜𝑐𝑠𝑖𝑡𝑒 (using the approach from Subsection 3.2.3) from the
metadata about the source code of the given GOTO instruction 𝐼𝑛𝑠𝑡𝑟𝑠𝑖𝑡𝑒 which corresponds
to the SSA node at allocation site 𝑆𝑖𝑡𝑒𝑛𝑜𝑑𝑒 (lines 19-21). If the given dynamic object is
structure-typed we can also get the name of its field 𝐹𝑖𝑒𝑙𝑑, at line 18, according to the
approach from Subsection 3.2.1. All gained information about the given variable is then
added to the set of summaries 𝑆 at line 22.

Also to further illustrate the localization described in Algorithm 3, we provide two
examples. For the numerical variables in the abstract interval domain (Figure 3.4) and for
the pointer-typed variables in the heap domain (Figure 3.5).

24



1 void main()
2 {
3 int x = 1000;
4 int y = x-1;
5
6 for (int i = 0; i < 100; i++)
7 {
8 x++;
9 y--;

10 assert(y <= x);
11 }
12 }

(a) Program in C

0		signed	int	x;
1		x	=	1000;
2		singed	int	y;
3		y	=	999;
4		singed	int	i;
5		i	=	0;
		
7			x	=	1	+	x;
8			y	=	-1	+	y;
9			ASSERT	x	>=	y
10		ASSUME	x	>=	y
11		i	=	1	+	i;
12	dead	i;
14	dead	y;
15	dead	x;

3:

4:

6:

8:
9:
10:

6:
11:
12:

6		IF	i	<	100	THEN

	

(b) The corresponding GOTO program

Figure 3.4: Localization of imprecise numerical variables in the original program

Example. The program in Figure 3.4a has been already described as the example in
Subsection 3.1.1 about identification of imprecise template row variables in abstract interval
domain. Also, the identified imprecise template row variables were shown in Formula 3.3.

Figure 3.4b shows the GOTO program representation of the example program. The
numbers in the first column correspond to the line numbers of the original program showing
thus which GOTO instructions are on which line. The numbers in the following column
show the order of GOTO instructions (they are mainly for reference). The arrows illustrate
the control flow between the basic blocks normally expressed using the GOTO statements.

The input of the algorithm is the set of imprecise names of variables 𝑁𝑎𝑚𝑒𝑆𝑒𝑡, we can
get the identified names of imprecise variables using Formula 3.3:

𝑁𝑎𝑚𝑒𝑆𝑒𝑡← {𝑥𝑙𝑏12, 𝑦𝑙𝑏12} (3.9)

The type (static or dynamic) of the variables, their original program name and the location
of the corresponding SSA node is determined according to the naming rule of static variables
presented in Subsection 3.2.1 and to the approach outlined in Subsection 3.2.2, respectively.
Both loop-back variables are static and are at the location 12 (loop-back node) in the SSA
form, shown in Figure 2.2. The next node in the SSA is the loop-head node, which is
linked to the GOTO instruction number 6. Coincidentally, the instruction corresponds to
line 6 in the source program, which is the beginning of the for loop. The resulting set of all
summaries 𝑆 of all imprecise variables looks like:

𝑆 = {(𝑥, 6, 𝑒𝑚𝑝𝑡𝑦, 𝑒𝑚𝑝𝑡𝑦), (𝑦, 6, 𝑒𝑚𝑝𝑡𝑦, 𝑒𝑚𝑝𝑡𝑦)} (3.10)

Example. Using the already described program in Figure 3.2 we illustrate localization of
pointer-typed variables with imprecise values in identified in the invariant computed in the
heap domain.

Figure 3.5 shows the GOTO program representation of the program in Figure 3.2. The
figure follows the same illustrative rules as already described for the GOTO program in the
previous example.

25



The input of the algorithm is the set of all pointer-typed variables with imprecise values
already identified in the example of Subsection 3.1.2. The set of such variable names
𝑁𝑎𝑚𝑒𝑆𝑒𝑡 is therefore defined according to Formula 3.4:

𝑁𝑎𝑚𝑒𝑆𝑒𝑡← {𝑒𝑙𝑏57, 𝑑𝑦𝑛𝑎𝑚𝑖𝑐_𝑜𝑏𝑗𝑒𝑐𝑡$271.𝑛𝑒𝑥𝑡𝑙𝑏51, (3.11)
𝑑𝑦𝑛𝑎𝑚𝑖𝑐_𝑜𝑏𝑗𝑒𝑐𝑡$270.𝑛𝑒𝑥𝑡𝑙𝑏51}

struct	elem	*head;
unsigned	i;
i	=	0;
IF	i	<	2	THEN
	struct	elem	*e;
	e	=	(struct	elem*)malloc$1;
	e->next	=	head;
	head	=	e;
	dead	e;
	i	=	1	+	i;

dead	i;
struct	elem	*e;
e	=	head;
IF	e	!=	((struct	elem*)NULL)
	e	=	e->next;

dead	e;
dead	head;

7:
9:

11:

12:
13:
14:
9:

14:
16:

18:
20:

22:

0
1
2
3
4
5
6
7
8
9
	
10
11
12
13
14
	
15
16

Figure 3.5: The corresponding GOTO program to C program in Figure 3.2a

First, we identify the memory type of variables and determine their original program
name using the approach specified in Subsection 3.2.1. Variable 𝑒𝑙𝑏57 is identified as static
and the other remaining elements in the 𝑁𝑎𝑚𝑒𝑆𝑒𝑡 are identified as dynamic objects with
names 𝑑𝑦𝑛𝑎𝑚𝑖𝑐_𝑜𝑏𝑗𝑒𝑐𝑡$271 and 𝑑𝑦𝑛𝑎𝑚𝑖𝑐_𝑜𝑏𝑗𝑒𝑐𝑡$270. The corresponding SSA node of
𝑒𝑙𝑏57 variable is at location 57 (as shown in the corresponding SSA form in Figure 3.2b).
Its loop-head node corresponds to the GOTO instruction 13, which further corresponds
to the while statement at line 18 in the source program (according to the approach from
Subsection 3.2.3). In the same manner, both dynamic objects correspond to the same SSA
node at location 51. Using the GOTO instruction 3 of their loop-head node we can identify
the line number 9 of the for loop in the original program.

Additionally, we identify name of the fields of both structure-typed dynamic objects
(approach from Subsection 3.2.1) and the SSA node of their allocation site (see Subsec-
tion 3.2.2). SSA node at location 27 (since the SSA form in Figure 3.2b was shortened,
node 27 corresponds to the returned value of malloc at location 47) maps to GOTO in-
struction 5 which in the end is the statement at line 11. Finally, the resulting set of all
summaries 𝑆 of all localized variables looks like:

𝑆 = {(𝑒𝑙𝑏57, 18, 𝑒𝑚𝑝𝑡𝑦, 𝑒𝑚𝑝𝑡𝑦), (3.12)
(𝑑𝑦𝑛𝑎𝑚𝑖𝑐_𝑜𝑏𝑗𝑒𝑐𝑡$271, 9, 𝑛𝑒𝑥𝑡, 11),

(𝑑𝑦𝑛𝑎𝑚𝑖𝑐_𝑜𝑏𝑗𝑒𝑐𝑡$270, 9, 𝑛𝑒𝑥𝑡, 11)}
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Chapter 4

Implementation

The solution designed in the previous Chapter 3 was implemented in the 2LS framework.
The implementation of Imprecision Invariant Identification method is generally available for
any template-based domain in 2LS. Currently the only supported domains are the abstract
interval domain, the heap domain, and their combination domain heap polyhedra domain
with the symbolic paths extension. In the following sections we describe the Architecture
of 2LS, and in Section 4.2 we briefly describe the integration process of our solution in to
the 2LS framework.

4.1 Architecture of 2LS
Being built upon the CPROVER infrastructure, 2LS utilizes various modules of the CPROVER
framework. The verification process of 2LS is composed of many steps which can be di-
vided into three main categories: front end, middle end, and back end. In the following
subsections we describe the categories in steps as shown in Figure 4.1 [12].

Command-line
front	end C	parser GOTO	

conversion
GOTO	

processing

SSA	form

Invariant	
generator

Abstract
domains

SMT	solver

Property
checker

Pass

Fail

Unknown

Static	analyses	&
Instrumentation

Front	end

External	SAT
solver

Middle	end

Back	end

Figure 4.1: 2LS Architecture
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4.1.1 Front end

User-supplied parameters are processed by command-line front end. Using command-line
options, user can configure various properties in 2LS, such as bit-width, type of operating
system, architecture, and other instrumentation and back end functions. After successful
configuration, user-supplied input source program is parsed using a C parser which utilises
an off-the-shelf C preprocessor. From the preprocessed source, a parse tree is built. As an
internal representation of the source program 2LS uses GOTO programs implemented in
the CPROVER framework. The translated source program in GOTO program representa-
tion has a form of a control flow graph. 2LS then processes the GOTO program — performs
various transformations upon the intermediate representation such as function pointer re-
solving, function inlining, or constant propagation.

4.1.2 Middle end

As needed, various static analyses are performed upon the GOTO program before SSA con-
version. These are mainly objects analysis which collects all accessed objects in a function,
points-to analysis, to determine the set of dereferenceable objects for each pointer, and in
the end derives the data flow equations for each GOTO program function. After all needed
static analyses, the GOTO program is converted into the SSA form.

Due to the over-approximation caused by the SSA form (see Section 2.4), loop invariants
and function summaries are inferred and computed in various abstract domains in order
to refine this over-approximation. Currently, 2LS supports a number of abstract domains,
some are more thoroughly described in Section 2.5:

∙ Abstract polyhedra domain: class of domains for analysis of numerical variables. In
2LS numerical variables are signed, unsigned integers and floats represented using
bit-vectors. Subclasses include: Interval domain, Zones domain, Octagon domain

∙ Abstract Shape domain: domain for modeling the reachable shape of the heap (see
Section 2.5.2).

∙ Heap polyhedra domain: a combination domain of the abstract polyhedra and the
abstract shape domains (see Section 2.5.3).

∙ Heap polyhedra domain with symbolic paths: an extension domain for the heap poly-
hedra combination domain. Computes different invariants for various symbolic loop
paths (see Section 2.5.3).

∙ Equalities and disequalities domain: used for analysis of equalities and disequalities
between pairs of variables.

∙ Lexicographic linear ranking function domain: domain used for termination analysis.

Also, to increase efficiency, 2LS performs local constant propagation and expression simpli-
fication.

After computing invariants, the property checker is used to check the validity of user-
supplied assertions and of other supported properties. The SSA form of the source program
is translated into the CNF formula and along with the computed invariantm it is solved
using the SMT solver. Then, negations of programs assertions are checked whether they
are satisfiable. In case there is a satisfiable negation of an assertion, then the verifica-
tion has failed due to an error in the analysed program. If negations of all assertions are
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unsatisfiable, then the verification is successful and the supplied program is valid. Due
to over-approximation, false positives can be found or the verification might be inconclu-
sive [10].

4.1.3 Back end

For computing invariants and property checking, 2LS utilizes an SMT solver. Instead of
using poorly supported incremental SMT solver, 2LS uses external incremental SAT solver,
namely Glucose 4.0 [2], and SMT theories over bit-vectors provided by the CPROVER
framework.

4.2 Integration of the Designed Solution
The designed solution has been implemented in the 2LS framework. The mentioned abstract
domains were extended by the method for identification of imprecise variables designed in
Section 3.1. Furthermore, the SSA analyzer was extended by the method for localization of
the imprecise variables in the original program, as designed in Section 3.2. All algorithms
from Chapter 3 were therefore implemented. In this section we describe some details about
implementation of these extensions.

4.2.1 Imprecise Invariant Identification Method for Abstract domains

Now, every abstract domain can have the imprecision invariant identification method im-
plemented. Currently, this extension is implemented in the polyhedra domain (abstract
interval domain only), the heap domain, the combination of both previous domains — the
heap polyhedra domain, and the heap polyhedra domain with symblic paths.

In the polyhedra domain, as previously mentioned, numerical variables are represented
using bit-vectors. Due to the extension of bit-width in order to avoid arithmetic under- and
overflows, the minimum and the maximum values in the promoted type to be compared,
(as according to the Algorithm 1) must be extended also to the same bit-width.

Heap domain is extended in a straightforward manner according to the Algorithm 2.
Both combination domains (heap polyhedra and heap polyhedra sympath domains) call
imprecision invariant identification methods implemented in their elementary domains be-
cause they are composed of both polyhedra and heap template rows. The result is a unified
set of identified imprecise variables from both elementary domains.

4.2.2 Localization Method for SSA Analyzer

A component called SSA Analyzer which uses various strategy solvers in 2LS’ domains to
infer invariants, was extended with the localization method of imprecise invariants accord-
ing to Algorithm 3. After the invariant gets computed, SSA analyzer calls the imprecision
invariant identification method in the given domain. The localization method can be acti-
vated using the --show-imprecise-vars switch. Whenever used, the imprecise variables
are localized, except for CPROVER auxiliary variables, and the information is saved in
a function summary. At the end of the analysis, the information is printed as a part of
the function summary for every individual function.
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Chapter 5

Results and Experiments

We have proposed a method for identification of imprecise parts of invariants in the original
program and implemented it in the 2LS framework. First, we need to prove that this
extension did not break any of the existing analyses in 2LS. That is proved using the
regression test suite of 2LS in Section 5.1. After we confirm that the integration in no way
affected the existing analyses, we show on our running example the output of this extension
and how it can be of help to the user in the verification process in Section 5.2.

In the rest of this chapter, we perform series of large-scale experiments. We run the 2LS
regression test suite and benchmarks from the International Competition on Software Ver-
ification 2017 (SV-COMP 2017) in which 2LS annually participates. In these experiments,
we concentrate on tasks where the verification is currently inconclusive and we run our
extension on such tasks. As a result, we give a number of tasks in each of the experiments
(and of their categories) where our solution found at least some variables of the analysed
program with an imprecise computed invariant. In such tasks, our solution can potentially
help developers of 2LS to fix the problem causing the inconclusiveness. Results of the
experiments are presented in Section 5.3 (regression tests) and in Section 5.4 (SV-COMP
benchmarks).

The listed experiments and tests were performed on the operating system Ubuntu ver-
sion 16.04 Xenial 64 bit running on a system with following specifications: Intel Xeon X56xx
3.492 GHz quad core. We used 2LS version0̇.7.1.

5.1 Proving the Success of the Integration
We prove that our integration did not break any of the working code in 2LS by running
the regression test suite of 2LS on the original implementation of 2LS and then on the
implementation with our extension activated. Used 2LS options were presereved according
to the predefined options of the suite. The summary of results is shown in Table 5.1.

We can see that our extension did not affect the existing implementation of 2LS. In
the last row “elapsed time” we also provide the time taken to run the tests (average value
taken after three runs). The point to be proven is that our solution should not inflict any
performance hit to the tool. Therefore we can see that the differences between the time
intervals are within a margin of error (though it should be taken with consideration in
respect to the method used).
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Without extension With extension
Correct results 183 183
Incorrect results 52 52
Inconclusive results 33 33
Skipped tests 116 116
Elapsed time 333.618 s 328.756 s

Table 5.1: Difference before the extension integration and after the integration on 2LS
regression tests

5.2 Experiments
In this section we list the output of our extension when verifying following examples. As
outlined in Section 3.2.4 the output of our extension is part of the function summary, which
is printed for every analysed function.

Listing 5.1 shows the output of running our extension on example in Figure 3.2a, which
is focused on localization of pointer-typed variables of the heap domain. Listing 5.2 shows
the output of running our extension on the motivation example in Figure 1.1, which is
focused on localization of numerical variables of the abstract interval domain.

...
invariant imprecise variables:
1: Imprecise value of "next" field of "dynamic_object$27#1"
allocated at line 11; at the end of the loop starting at line 9
2: Imprecise value of "next" field of "dynamic_object$27#0"
allocated at line 11; at the end of the loop starting at line 9
3: Imprecise value of variable "e" at the end of the loop;
starting at line 18

...

Listing 5.1: Identified variables with imprecise values in program 3.2a

We can see that the proposed solution correctly identified the variables with imprecise
values, as described in the localization example for the heap domain in Section 3.5. To
refer to the concrete objects, we use the symbolic names of dynamic objects introduced in
the SSA. We can see that the names of the fields of both structure-typed dynamic objects
were correctly identified, we also refer to the allocation location of both of the objects.

...
invariant imprecise variables:
1: Imprecise value of variable "x" at the end of the loop
starting at line 5
2: Imprecise value of variable "y" at the end of the loop
starting at line 5

...

Listing 5.2: Identified variables with imprecise values in program 1.1

We can see that our extension correctly identified the variables with unconstrained
values inside the program loop, as described in the localization example in Section 3.4. In
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response to the motivation example in Section 1.1 user can utilize the output and take its
usability a little bit further.

Normally, even such “obvious” program may render the result of the verification of 2LS
as inconclusive. In this case, the dependency between the values of variables inside the loop
and the value of the control variable 𝑖 is not recognized by 2LS. The result is the imprecision
already shown in the computed invariant in Figure 3.1b in Chapter 3.

In order for 2LS to recognize such dependency, user can use assume constructions to
constrain the values of such imprecise variables in a fairly obvious way. We can safely
assume that the value of variable 𝑥 will steadily increase over the number of loop iterations
starting from its original value. Analogously, the same can be assumed with the value of
variable 𝑦 —it will continuously decrease, but clearly will never reach below 0. Therefore,
we insert the appropriate assume constructions as seen in Figure 5.1. 2LS then verifies
the program, taking in consideration the newly defined constraints and computes a new
invariant:

(+𝑥 ≤ INT_MAX) ∧ (−𝑥 ≤ −1001) ∧
(+𝑦 ≤ 998) ∧ (−𝑦 ≤ 0) ∧
(𝑖 ≤ 100) ∧ (−𝑖 ≤ −1)

where we can see that interval of values of both variables 𝑥 and 𝑦 do not intersect, in fact the
relation corresponds to the condition of the assertion at line 10. Therefore the verification
of the program is successful.

1 void main() {
2 int x = 1000;
3 int y = x-1;
4
5 for (int i = 0; i < 100; i++) {
6 x++;
7 y--;
8 __CPROVER_assume(x >= 1000);
9 __CPROVER_assume(y >= 0);

10 assert(y <= x);
11 }
12 }

Figure 5.1: Successful verification after “assume” construct insertion
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5.3 Imprecisions Found in the 2LS Regression Tests
In this section we list the results of running the tests of the regression test suite of 2LS.

In order to assist in the development of new features in 2LS, we want to concentrate on
identifying imprecisions in the Knownbug tests (column 𝐾𝑏𝑔). That is, in tests that describe
a faulty or unwanted behavior of 2LS. These tests may either end with the verification result
as failed or inconclusive. We mainly look for inconclusive tests (column 𝐼𝑛𝑐), because as
already mentioned, the imprecisions in invariants are one of the causes of such result.

Therefore in Table 5.2, we list the following columns in order: the total number of
tasks in every category of this suite, the number of tasks where an imprecision was found,
the number of all knownbug tests, number of knownbug tasks where imprecisions were
identified, and lastly number of knownbug tests whose verification result is inconclusive
where imprecisions were identified.

Category Tasks Found Kbg Found & Kbg Found & Kbg & Inc
Nontermination 43 12 12 6 0
Termination 129 31 24 11 5
𝑘𝐼𝑘𝐼 36 6 6 0 0
Preconditions 8 0 1 0 0
Interprocedural 47 2 10 2 2
Invariants 86 9 18 5 5
Heap 19 9 11 3 3
Heap-data 11 10 1 1 0
Memsafety 4 4 0 0 0

Table 5.2: Regression tests in 2LS. Listed columns: Number of tasks with identified im-
precise variables —Ḟound, number of knownbug tasks, and knownbug tasks with identified
imprecisions, and lastly number of knownbug tasks with verification inconclusive result
where imprecisions were identified.

As we can see, at least in some of the knownbug tasks imprecisions were found. We
mainly focus on the Invariants and Heap categories, where all the identified tasks were both
knownbug and inconclusive.

5.4 Benchmarks from SV-COMP 2017
We ran various categories of the SV-COMP benchmarks listed in the table below. All the
tests we run with the options --heap-values-refine, --k-induction, --unwind 5 and
--competition-mode, with preferences a memory limit of 15 GB, and 900 s timeout, and
on all CPU cores.

In total 1503 tests were run, out of which 364 tests terminated with verification result
as inconclusive (column 𝐼𝑛𝑐𝑜𝑛𝑐𝑙𝑢𝑠𝑖𝑣𝑒). In summary, in 262 tests were identified variables
with imprecise values potentially causing such verification result (column 𝐹𝑜𝑢𝑛𝑑).

33



Category Tasks Inconclusive Found
ReachSafety-Loops 210 91 59
ReachSafety-Arrays 231 71 45
ReachSafety-BitVectors 50 29 26
ReachSafety-ControlFlow 74 19 19
ReachSafety-Floats 469 11 6
ReachSafety-Heap 265 108 88
MemorySafety-Heap 115 18 13
MemorySafety-Other 89 17 6

Table 5.3: Number of inconclusive tasks were variables with imprecise values in various
SV-COMP categories. Number of tasks (tests) in every category, number of tasks with the
verification result as inconclusive, and number of

We can see that for each category (except for MemorySafety-Other) in the majority of
all tasks with the verification result inconclusive, we identified at least one variable with an
imprecise value that may potentially be the cause of such result.

34



Chapter 6

Conclusion

In this work, we proposed a solution to identify imprecise parts of invariants computed
by the 2LS framework that possibly determine whether verification is successful. The
solution identifies variables of the original program with imprecise values and the loops in
the analysed program where this imprecision occurs. In a case we identify dynamic objects
(allocated on the heap), we are able to identify the line of allocation, and for structure-typed
objects also the original name of their fields having the imprecise values.

We have proposed two successive methods in order to identify such variables: (1)
a method for identification of imprecise parts of invariants computed in various abstract
domains and (2) a method for localization of variables corresponding to such parts using
the internal representation of C programs utilized by 2LS.

The solution was implemented in the 2LS framework. The method for identification of
imprecise parts of invariants can be implemented in any of the existing abstract domains
in 2LS. Currently, we have implemented the method in the abstract interval domain, in
the heap domain, in their combination — heap interval domain, and lastly in the extension
of the heap interval domain with symbolic paths. The method for localization has been
integrated into the SSA analyzer module of 2LS.

We have shown on various examples that our solution is able to identify the imprecise
variables in the invariants and locate the parts of the analysed program in which these
imprecisions occur. Additionally, we have shown an example when such feedback is useful
for the user and helps him to correctly verify the given program. We have proved on
various benchmarks from the SV-COMP 2017 test suite that in a majority of programs
where the verification currently fails, the proposed solution can be used to localize parts of
the invariants that potentially cause the undecidability of the verification.

In future, we would like to propose an official integration of this extension to the 2LS
framework. This could be mainly of use to the 2LS developers in their feature development
process.
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Appendix A

Contents of the CD

The enclosed CD contains a directory of the 2LS framework with its source codes. The
structure of the main directory looks like:

/
cbmc/....................................CBMC library (CPROVER framework)
doc/...............................................LATEX source files of this text
regression/................................................2LS regression tests
src/............................................................2LS source files
COMPILING................................Instructions on how to compile by 2LS
install.sh ................................................... 2LS install script
LICENSE.............................................................2LS license
README.md ....................................................... README file

The source files of the 2LS can be found in the directory src/. The source directory
is divided into multiple subdirectories, we list all the directories and their source files in
which we implemented our extension, in the list below:

∙ 2ls/ Main 2LS directory, consists of source files of the front-end of 2LS.

– 2ls_parse_options Consists of parsing options definitions and calls other mod-
ules in the verification process of 2LS. We added our own command-line option.

∙ domains/ Directory of existing abstract domains in 2LS. The method for identification
of invariant imprecision was implemented in ithe following domains/files, and also the
localization method was implemented in the SSA analyzer module.

– domain We defined the method for invariant imprecision identification for other
domains that inherit from this base domain source file. Then we implemented
this method in the following source files of the existing domains: heap_domain,
heap_tpolyhedra_domain, heap_tpolyhedra_sympath_domain, and in the
tpolyhedra_domain.

– ssa_analyzer We extended the analyzer module with the localization method.

∙ solver/ We added the activation of our command-line option into the summarizer_fw
source file, in which a function summary is computed and printed, and we defined
our summary in summary source file, which defines the function summary structure.
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Appendix B

How to Compile

The project can be compiled and run using the attached source files. The project can be
compiled in two ways:

A. Using the install.sh script in the main directory of the CD. It downloads the CBMC
library (CPROVER infrastructure), compiles it and then compiles the project itself.

B. Strictly compiling the 2LS source files only using the src/Makefile, but the CBMC li-
brary must be already compiled in its own cbmc/ directory using the (cbmc/src/Makefile).

2LS with the imprecision identification extension can be run using:

$ 2ls SOURCE_FILE --show-imprecise-vars

The output of our extension should then be seen at the end of computed function
summary (if is a summary is computed). If option --competition-edition is used also,
then the function summary is not printed by default.

We also enclose 2LS regression tests described in the following appendix, which can be
used to test our extension. The flags of the tests of the regression suite were modified so
that the option of our extension is used when they are run.
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Appendix C

2LS Regression Tests

2LS contains its own regression tests in directory regression/ divided into number of
categories. The tests can be run using the enclosed Makefile in the directory. Every
category is in its own subdirectory having its own Makefile that can be used to run them
individually. We present the categories with a one line description:

∙ heap Contains tasks focused on the heap-manipulation of programs.

∙ heap-data Tasks that combine manipulation of unbounded data structures and a need
to reason about the data stored in these structures.

∙ interprocedural Contains tasks focused on verifying programs using interprocedural
analysis.

∙ invariants Tests the invariant computation in various domains.

∙ kiki Tests features of the 𝑘𝐼𝑘𝐼 algorithm.

∙ memsafety Tasks aimed at verifying memory safety.

∙ preconditions Tasks aimed at computing forward and backward preconditions and
postconditions of functions of the analysed programs.

∙ nontermination/termination Tasks focused on analysis of termination of functions.

Also we include custom bash scripts, which were used for evaluation of test results.
The results shown after running the tests using the enclosed Makefile in the regression
directory, may not correspond to Table 5.2, since a certain number of tests are skipped by
default (as shown in Table 5.1), because verification of such tests takes more than 5 minutes.
All bash scripts expect the regression tests to be run beforehand.

∙ fast_find.sh Fast search of imprecisions in any of the tasks, prints a simple summary
of number of tasks in each category and number of tasks where imprecisions were
found.

∙ find_imprecision.sh Prints a text table similar to the enclosed Table 5.2 and sum-
mary of results.

∙ test_results.sh Prints a summary of verification results of tasks in each of the
categories, similar to Table 5.1.
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