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Abstract. In this paper we address the extended use of transsffers a partial solution [4]. TB models an error system as
fer bound analysis of bit error rate (BER) properties. In a finite state machine (FSM) and applies the results from
conjunction with proper parameter modeling, we offer aFSM theory to searching in its probabilistic state diagram.
method to resolve the problem of transfer bound applicabil This work is a follow-up to our recent conference paper [1].
ity on a system with random and possibly correlatedtin- It was necessary to extend our results to the applications in
uous valuedhuisance parameters. We introduce a new addi-more realistic scenarios including phase estimation error and
tional parameter space into the original error space and joinbuild the solid background to the problem.
them in a product matrix for an extended transfer function .

We are now confronted with a problem of error anal-

evaluation. Example applications with simple trellis codeySiS of a communication system with a finite memory and

for Ray!elgh fadlng channel and phase synchrom;atlon Cladditionalcontinuous valued parameterSuch situation can
ror are investigated to demonstrate the functionality of th

roved principle. Computer simulation results are presented .. normally found in a communication system, which oper-
b principte. b ' : Pr OIates through a wireless channel. The channel impairs output
for two different codes and various fading scenarios, an

comparisons are made amona analvtical and measured s symbols by series of nuisance parameters, which could be
P 9 y Y3eterministic or random. For random ones their statistical
tem error performances.

behavior in time and realizations must be considered in per-
formance analysis. Thus we are mainly focused on adopting
TB method to be able to cope with time dependant contin-
Keywords Eous valued rgndom parameter. Ou_r proposed solution is
ased on a suitable parameter modeling and presents a gen-
BER analysis, Transfer bound, Channel nuisance pa- eral framework for error analysis of finite memory modula-
rameters, Markov models. tion and random continuous correlated nuisance parameters.

At the beginning the paper shows essential prerequi-
) sites to TB analysis and FSM theory. The next section is
1. Introduction devoted to the definition of the main concepts and quanti-
ties, from parameter modeling to extended TB. Section 4
. . shows an application of the proved principles into perfor-
The true BER performance_ gnaIyS|s of ."%r.b itrary qete.c'mance analysis of a real communication system.
tor needs to evaluate all transition probabilities, which is
possible only for elementary cases of communication sys-
tems. That is the reason, why approximate approache .
through pairwise error probability and union bounding teché- Union Bound
nigue come into our consideration [3]. However, the price
generally paid is expected error at low signal to noise ratios  Fojlowing [5], the probability of the first error event is
(SNR), which potentially limit success in bounding of con- gasily evaluated as
catenated codes. Among all concatenated blocks the system
with a finite memory, whose transitions are determined by 7 b
. ) . Ple) < te Pr(tg [te 1
input sequences in finite trellis is of concern. Both the code (e) < Ezp( ) Z r< d| ) @
and an optimum decoder are expected to have the same state ©
description. Optimum detector then makes an error even\tN I I .
: here t. and t; are hypothesized sequences of correct
when he starts to follow the different path from the encoder. © d P g

ncoder and incorrect decoder state transitions. The
Where the brute force search for moderate number of sucF

tata#te

s is not allv tractable. transfer bound (TB r (4|t ) denotes the pairwise error probability between
error events is not numerically tractable, transfer bound ( hose two sequences and for AWGN channel with ML de-
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coding is given by Without regard to transition labels both FSMs are completely
described by their state transition matrices (ST84)and

o & (q(ta), a(.)) Sq. For general ML decoding these matrices become the

Pr (td te) =Q 2—N0 (2) same. STM of multiple concatenated FSMs is Kronecker

product of partial single ones. STM is a square matrix, in
which each row correspond to current states and each col-
umn represents the next states. To evaluate an arbitrary op-

tion, d = [la(tc) — a(fa)| is Euclidean distance between g aion hetween those paths, we must consider a new prod-
encoded signals at the place of the effect of Gaussian NOiSget FSMS = S, ® S, with a new set of product states
- e

and Ny is the one-sided power spectral density. Equation% — (0., 04). The operator denotes the generalized Kro-

(1). and (2) can be further rearranggd [4] in'order togeta r€hecker type product (GKP). This operator keeps combining
lation between occurrence of Euclidean distances and thejfi, tion of Kronecker product, but generalizes the product

multiplicities operation for arbitrary elements. NeW? x N2 product ma-
trix (PM) S (V. is the number of encoder states) can pro-
d? vide arbitrary operations among all combination of encoder

< ; L. . X X
Ple) < Z AQ 2Ny 3) and decoder states in fact. From Fig. 1 it follows, that el-
ements inS could be further partitioned into two sets, the

The only two variableg 4;, d?} in (3) form an infinite set goodo, = 04 and thebado, # o4 Ones. The good ones be-
called distance spectrum of the code. Average first errofomecorrect if there are no parallel transitions in the trellis.

event probability in (3) is often referred to as a frame error 92N thesimple error events defined by series of transi-
probability. Average bit and symbol error probabilities cantions from good states through some bad ones and back to

be easily obtained from the frame error probability after enulh® EOOd states. .The brute forcz_me:jhod for enumerg_ting all
meration of average number of bit or symbol errors along er?Y¢ events Is via a correspondipgduct state transition
ror paths with distanceg. As an example, the union bound diagram Without any state minimization process, its state

on bit error probability for trellis code becomes complexity remainsV? like a product matrix. Fortunately,
FSM theory offers a simple method for an evaluation of all

required events via matrix operations.

where(@ is the Gaussian complementary distribution func-

d;eD

1 d?
LS k ZBiQ QZ\L]O (4) Let the product matrix be partitioned into the equiv-
i alent G, divergingD, parallelP and mergingM compo-

. . nents. Then th&ansfer matrixfor all accumulated products
where B; is the average number of bit errors on error paths P

with distancesl;, andk is the number of bits per symbol. of error events of the length become

T = G for L =1 5)
2.1 FSM Representation of Error Event T = DPY2M for L>2°

The partitioned product matrix can be easily found from the

The enumeration of a distance spectrum is always dongaturally ordered original one by the following reordefing
through an exhaustive search among all pairs of sequencggrows and columns

that comply with individual first error events. However, the
finite trellis assumption predetermines the application of fi-
nite state machine theory in error events evaluation [6]. The

7, 1=17;
problem can be projected as sequences of transitions inan ~ _ (N, — 1)+ N, + j P> i (6)
encoder and optimal decoder, that have essentially identical i(N; —1)+ N, +j’— 1. i< jf

FSM description (Fig. 1) [7].
where N, is the number of encoder statés;j are state in-

good states good states dexes of the encoder and the decoder ansl product state
encoder! o : L label.
‘ 7. _ 3
: | 3 :
i ! ! . 00 01 10 11 00 11 01 10
: ‘ bad states L : : 00 1 pir  pir 1 00 1 1 iz Dpir
3 S : : . 01 p2 p2z D2z D3 11 1 1 piz  Dpir
decoderq o 8! L3 10 p2  p27 D21 D2 01 p2 p2 p21 D21
: ‘ ‘ : 1 1 p*z piz 1 10 p2 p2 D21 D27
R ERRRRREEEER R & _ Fig. 2. Equivalent product matrices for two state simple TCM
diverging , ,  merging code from [8], left one with natural and right one with
paths parallel paths +  paths reordered mapping.

Fig. 1.  The correct path in the encoder and the error path in
the decoder of length 4.

1As it was proved in [4] the ordering of states does not have an influence on transfer function analysis, provided that the rows and columns are orderec
in the same manner.
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It enables the partitioning of product transition matrix product staten to the product state. We need not have
defined an exact form of individual STM&, S; except that
both must contain a useful description of input-output rela-

G Ne:Ne DNe.NZ—N. tionship for given FSMs. In the case of TCM the input code-
S = ( ) () word and relevant constellation symbol for the given state
transition are needed. Then the operation in generalized Kro-
whereN, x N, matrix G denotes the matrix of correct tran- Necker type product combines these quantities to incremental
sitions. The matrixG represents the same state transitionglistances among all transitions in the encoder and all transi-
in an encoder as well as in an decoder state diagram. THENS in the decoder at one time unit. Provided that there are
superscript indexes denote the dimensions of individual su1© parallel transitions, one non-zero entry of the mefiriz

matrices. Fig. 2 shows two equivalent product matrices L s (mm) & (m,n)

with natural and reordered mapping of rows and columns. ~ Sman = 2D (A)T T 12)

It can be noticed at the sight of both matrices, that som

rows and columns are the same. Their equivalence is poteiL—I

tially the first step in systematic state minimization proces

and demonstrates the level of linearity of the given system.

MNZ-Ne,Ne PpNZ-N.,NZ-N.

the transitions are not allowed, the entry associated with

is transition becomes zero. Since there is only one correct

transition at any time, the factdr/2* represents its proba-

bility.

2.2 Transfer Function Bound The distances associated with all error events are found
via adding over their lengths

As an example we consider the problem of a bit error = 0 - (1-2)
. . . ,D(A) =G ™ =G DP M. (13
rate computation for a general code. The equation for a bit ( ) +Z +Z (13)

error probability is then given by [4] = =

An alternative equivalent expression for the transfer function

1 Z f: 22 then becomes
P, < - mi jdg, ;Q - (8 1
A 2o TTDW) =52 2 Ty @DW) (4
i

wherek is the number of information bits per symbadlf

is the number of terms with the same Euclidean distance}%’h::gzzr’ijx?ﬁ '?d'\t”iu?\lf cromfonenr;tstr?f mﬁl t:arr]sLerbfilljilt’\c—
d? and different Hamming distancés, ,, andm; ; denotes on matrix.The facto /N, represents the initial probability

their multiplicities. Because of numerical tractability [9], the of beginning at any good states, which is assumed to be the

classical formula fo function will be further replaced by ;Srﬁir;:tifc())rr] aly;fgegs(;oﬁ]g;o?sugt 3taaltf§]'vw'$ooZtnzzfes,:ﬁ;eam'_n'
its alternate finite integral equivalent P g d ¢ P

plicability of the transfer function based on the transfer ma-
1 (72 a2 trix evaluation, the probability of pairwise error event in (10)
Q(z) = ;/ e 2T dA. (9)  should be in a product form of elements, which correspond
0 to increments of distances. The transfer function in (14) is
The exact formula fo€ () is not in factorisable form and so equivalent to (11), and therefore we can extract the relevant
it is often approximated by the simple exponential functionmultiplicities from (14) in order to obtain the distance spec-

12 . . -
Le=" atthe expense of a suboptimal solution. Reformulatrum {ij\il m; jdm, ;s df}- The exhaustive search method
tion of the (9) using (8) gives for the distance spectrum enumeration was replaced here by
the simple matrix multiplication in fact.

1 M /2 a2
p, < %ZZ /0 mijdp, e oI dA  (10)

1 g=1

L2 g 3. Extended Transfer Bound
_ ﬁ/o aZ[T(LD()\))}‘d)\

I—1,D(x)=e 4N0 sinZ(})

In the following subsection we propose an extension of
where transfer bound, which solves the problem of exact perfor-
mance analysis in a presence of a communication channel

M
T(Z,DW\) =Y > m I D% () ay (2L

i j=1

represents theransfer functionof a trellis code. To find all 3.1 Parametric Channel

distancesl; anddy, ; of error events of lengtl, we can uti-
lize a transfer matrix (5) (Sec. 2.1), where each effipy,, In the presence of a channel parameter, the error event
in the matrixT, represents all distances of lengthfrom  probability depends on channel nuisance paramétensd
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their estimated. Random ones could be eliminated out via Let us assume that, = 0 and the probability of pair-

averaging over their distributions wise error evenfPr (er; V1) = [[,c. Pr(en;dy) is fac-
torisable process. Then tlg = ¢, is the IID parameter
Ple) = //P (e; 0, é) P (9’ é) d0de. (15) and the multidimensional integral in (17) collapses into the
0J6 multiplication of single dimensional ones

The problem of performance analysis is to find a suit-  Pr(e;) = / Pr(er;95)p(¥r)dir
able expression for a pairwise error event probability, which 9

not only satisfies transfer bound constraints, but also al-
lows elimination of nuisance parameters. As we have shown
above, it is not satisfied for non-ergodic continuous random
parameter process. We believe that one way out lies in e$t means, that the continuous IID part 6f, can be eas-
tablishing of the discrete nuisance parameter space [10] afly eliminated from the pairwise error probability and then
joining it with the state space made by product FSM. Let usuch operation also satisfies the fundamental limits of trans-
consider that the nuisance parameter is a mixture of two rarfer bound. The parametey, fluctuation is assumed to be

dom processes—an independent identically distributed (IID$low enough that its actual value can be assumed to as con-
continuous-valued one and the discrete one stant for time duration of a channel symbol. The elimination

of the finite state component of given lengths easily ob-
9n = ¢n + 1971 (16) tained as

II /ﬁ Pr(en; Un)p (9n) ddy  (18)

ner

Q-1 L
whered,, expresses the random 1ID fast parameter fluctua- <
Prier) = > m, > [ Prienidn)by, 5,

tion, and¢,, is modeled in order to account for time corre- . — 1L
lations. Let¢, be modeled by the discrete-time stationary Po=¢1 o "7
Markov chain [11], which outputs the values from the finite ﬁ E(e,)
én

n=1

spacep,, € {¢o,®1,...,00-1}, WwhereQ is the number of
quantization levels andy, = &, (0) is thek-th quantization

interval. It was shown in [12][13] that such model is mostly where the operatdy;, realizes summation over all possi-
sufficient for modeling of channel phase and fading ampli) 4 Q" product terms, andl is the vector of the parame-
tude considering their realistic dynamics. The componenfe, initia| state distribution. Elements in matri(e,,) are

4,, describes the statistical behavior inside the quantlzathme increments of pairwise error event, that vary depending

intedrvla! and. is modeled as tr?e IIderocssrs]. The (f:orr]npos:itsn parameter state transition (Fig. 3). Random IID process
MOael 1S trying ,to separate the random be avior o the orgig gliminated according to its parameter distribution at each
inal parameter into two components and,,, meeting the quantized interval

requirements of error analysis at the cost of an approximate
solution.

I 17 (19)

Elea)y = [ Prlenid)p(0]6)ddbss,  (20)
For the simplicity of the evaluation we considerca @5 (¢5)
state flrst-ordgr Markoy m.Od.e ! fpr anuisance parametgr <’?m\gjvherep(m ¢;) denotes the parameter state conditional prob-
we are conscious of its limitation in modeling of statisti- bility d tj funcii dthe int tion int lis defined
cal behavior for a given parameter [12]. The first-order® ”yh ensity lunction an ?'n egra '03 |n_ehrvr;11 IS detine
Markov chain is defined by it® x Q transition proba- _(In_\rqert € quantization mtervallj ffﬁoqatﬁ with the giwen
bility matrix B, where each entry corresponds to individ- e average error event probability Is then
ual transition probabilities;; = P(¢, = ¢;| o1 =
#;) and the vector of the initial state distributidi = Ple)=> Y"1 | [] E(en)
Tood1 Tdo—da ...77%0:(;59_1] For the unknown continu- L er neer

ous parametétthe general average error probability is givenwheren € ey, represents series af, which correspond to

17 (21)

by the given error everd.
Recall from Section 2.1 that each error event can be
Ple) = /HZ Z Pr(e;0)p(6)do (17) represented as a path in an error state diagram. We have de-
L fined a product state and transfer FSM as generalized Kro-
_ Z Z / Pr(er; ) p () df necker type product of two encoder FSMs. The elements of
e transfer matrix correspond to all accumulated products of er-

ror events of the given length. Our goal is to find a new
wheree;, is the vector of all lengtlL error events. For better form of a transfer function and its components, which also
understanding we found more convenient to show the elimiaccount for averaging over a nuisance parameter. The com-
nation process directly on the error event probability evaluaputation of union bound corresponds to the elimination of
tion. simple pairwise error events from the full error space and
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such process can be joined together with the elimination of
the finite state parameter.

Now, we utilize the equivalence between the increment e = [b‘l(m) p(6)do (24)
of the pairwise error event in (18) and (19) and the prod- *
uct matrix element in transfer function bound (12), which\yhere 1, satisfiesz,?_l m. = 1. Quantization intervals

is made by integral representation of tefunction. This  contrary top () are often defined on finite parameter span,
will enable us to form new PM compounded of code PMyhich conflicts with the unity condition and it can be solved
andE(e,,) through the generalized Kronecker type producty,y the following normalizationt;, = ™/ Ek@_l 7. The
Product operation corresponds to error dependent elimingyantization intervals can be chosen uniformly over a pa-
tion process mentioned above in (20). According to (19) angameter set or in such a way that the initial state probabilities
(12) we propose the neextended product transition matrix f g|| states become the same. In the second case we need not
S* which allows the entries to be sub-matrices compute initial state distribution. The transition probability

E a2 (9] ~qgHem matrix of the model has stationary transition probabilities
Smntia) =P D Evlg, [D et )}I " bgig; (22)
parallel
wherep = p(0,_1 — 0, |0,_1) is the correct transition f¢;1(¢j) f¢;1(¢i)p(9n71,9n) df,—1d0,
probability, >>__is the sum over all possible parallel ~ 0ij = 0 do (25)
. paralie . . fq)fl((b.)p( nfl) n—1
transitions,d;,, ,, is the distance of useful signals of correct N

and erroneous detected symbols, affél? is the Hamming  wherep (6,,_1, 6,,) is bivariate PDF of two successive sam-
distance of corresponding input symbols. The extendegles of the parameter time process. As in (24) the transition
transfer function is created by partitioning 8F overm,n  probability matrix can be adjusted in such a way that the
indexes of sub-matrices. The joint initial probability vec- rows sum to oném- = bm./ZjQ:1 i j-

tor now combines both the probability of being at any good

product state anfil asII® = N% [II;,II,, ..., Iy, |. The

expression for the extended transfer function then becomeﬂ Applications

T(2,D)" =°GF1% o+ mPpEpe’

=2

MP1} o , : : ,
g In the following subsection, we shall describe an appli-
(23)  cation of proposed principles on performance evaluation of

whereGE, DE, PE, MF are individual components of the a real communication system.

matrix SE (Sec. 2.1).

4.1 Bit Error Rate Performance for Rayleigh
good product states Fading Channel—Known Channel State
: Information

initial state bad product states
probabilities 900d product states

A modulated signal is passed through the channel with
AWGN and unknown nuisance parameters with the vector

— model
T ‘ x = \/2E diag [g]q + w (26)
diverging I merging
| | : .
paths | Parallelpaths 1 patng whereg,, = a,e?", o, , p,, are the sampled channel ampli-

Fig. 3. The difference between error events produced by ex- tude and phasey is the vector of channel symbols, ands
tended and former product FSMs. the vector of zero mean complex Gaussian random variables

This concept is illustrated in Fig. 3, where the differenceVith the variance [|°""|2} = 2No.

between former and extended error events are depicted. EX-  Eqr the known channel state information the pairwise
tended ones allow for averaging of the nuisance paramete,q, probability is given by [8]

over all length former error event.

3.2 State Space Parameter Modeling

™

Lo 1 /2
‘tk)Z*/ Eq
0

H D (A)eiIAQ71I2] d)\

nelL
In the following paragraph we only pick out the method (27)

to gain essential characteristics of the first-order Markowheref,, = «,, denotes a channel amplitude sample and
chain. In such a case we can follow the simple analytical\g, is the channel symbol difference 6th andk-th mes-
approach, where initial state probabilities are given by sage. Forf, IID process, the expectation operator get
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through the product of independent elements, which wilbe mostly bounded by Chernoff approximation. In our case
only influence the determination of the product state mathe Chernoff bound results in

trix in the standard transfer bound computation by the elim- .
ination of the parameter from its individual elements. The Pr (ti |tkv 9)
fundamental question was how to interpret all components

of extended transfer bound for the mixture parameter de-

fined in (16) (the conditional probability density function whereAq =
p(V| ;) and Markov chain characteristit§ andB). Two
main goals was determined in proper characteristics evalu
tion. The first one is a closeness of a statistical behavior
the composite parameter to the original one, and the secon . H ;. T )
one is identical analytical results of the original and extended9Ntest upper bound. Sindge [(Aq) diag [e™/?] “’} 1S
transfer bound for the random 11D channel parameter. the sum of Gaussian random variables each with zero mean

112
and varianceN, quf) — qg) H , the expectation over right

o~ VRe[V2EL(Aq) T diag[e’’]q™]

IN

o pfemearimi ]

(a® — q) is the difference between the in-
correct patiy(¥) and the correct patg*®), 6 = ¢ — ¢ is dif-
erence between channel and estimated phase [2]. The Cher-
é)ff parameter should be optimized in order to get the most

The elimination of the the 11D part can be done over an ]
original parameter distribution at regular quantized intervalshand side of Chernoff bound then becomes

2

The conditional probability density functigi( 9| ¢;) is de- I |:e,l,Re[(Aq)Hdiag[e—j@}w]j| _ H ov? Nol|a—a) |22
fined as in Fig. 4 and the two consecutive sampleg,of; '
and@,, are assumed to have bivariate Rayleigh distribution " (31)
with the correlation coefficient = |Jo (27 fpT},)| (uniform  For any value o the equation (30) gives an upper bound.
variance of component Gaussian processes) In our case we chose the suboptimal ege= /2E;/2N,
) , ) ?nstead of the complicgted analytica}I solution for the follqw-
p(On_1,60,) = gz(ll,pz)9n719n6_m(9"71+9”) x  Ingreasons. For tht_a first the resulting bound can t_)e written
B in term of distance increments and f&yy = 0 these incre-
X To men—lan) ments correspond to Euclidean distances between channel

(28)  symbols. We have also verified that our bound is able to fol-

wheref, is the Doppler frequency arif}, is the sample pe-  |ow correct error performance for phase varianggs< 0.2.
riod.
The squared distance in the product state matrix ele-

ment then becomes

p(V]¢;)
3.5 i i
; (w040, 0,) = =2 [1 — con (1) )]
2.5 +4 (— coS (z/)ff) — S) + 9n> + cos (On))
/|
2 K : } (32)
s, : wherey)™ . " are the angles of transmitted and estimated
1 ,’ 1 channel symbols. The upper bound on pairwise error proba-
0.5, i bility written in terms of transfer bound results in

005 1 1.5 2 25 3 Y

Fig. 4.  Figure shows the behavior of conditional probability
density functions ford,, 11D parts, four quantization Pr ({;Z. ‘{;k> =Fy H {DE(Aqﬁn)} (33)
intervals and Rayleigh distribution. L
n
Acquired Markov characteristics are substituted into the (22yvhere each product state matrix element is parametrized
in order to get extended transfer function (23). The actual exwith an unknown phase error afitl= e~ %o . The Markov

tended transfer function can be utilized in the same way agodel characteristics could be obtained in the same way as

in (10) for the Rayleigh fading process in the previous paragraph.
p However in the random phase error case two consecutive
L [™271 0 E samples are assumed to have the Gaussian bivariate distri-
P, < — - =T(Z,D . 2 . . . - o
=7 /0 {k 0z (Z,DA) I_J dX (29) bution with the known variance and correlation coefficient.

4.3 Simulation Results

4.2 Bit Error Rate Performance for Non-ldeal
Coherent Detection , , ) ,
In this section, some simulation results are presented

In this case the detector metric does not take into acto illustrate the correctness of the proposed algorithm. We
count the error of an estimated parameter and perfect syfave simulated the performance of two rate Ungerboeck
chronization is expected. The suitable form of the exact pairtrellis codes, one with two states and one with four states [8]
wise error probability for phase is still not available and canboth with QPSK mapping (Figs. 5, 6).
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4.3.1 Rayleigh Fading Channel

For the four state one the spectrum begins at higher dis-

The channel fading is modeled as a mixture of fourtances and the union bound approximation has lesser influ-

state quantized and 11D processes, wheré| ¢,) is defined

ence on the analytical performance evaluation. In the simpler

as in Fig. 4. We also noticed that the correctness of th€0de case the correct asymptotic behavior at low SNRs was
analytical performance at low SNR highly depends on théeached by shortening of the maximum length of examined

distance spectrum of the code we have used.

— UB, 10=0.77
— UB, r0=0.94
A Sim, ro=0
Sim, r0=0.54
A Sim, r0=0.77
£ Sim, r0=0.94

I I
0 5 10 15
SNR

Analytical performance versus simulation of two state
trellis code for various correlation coefficiept The
Bit Error Rate as a function of Signal to Noise Ratio.
Simulation curves are tagged by triangles.

— UB, ro=0
UB, r0=0.54
— UB, r0=0.77
— UB, r0=0.94
A Sim, r0=0
Sim, r0=0.54
A Sim, 10=0.77
£ Sim, r0=0.94

10™ L I
0 5 10 15

Fig. 6.  Analytical performance versus simulation of four state

trellis code for various correlation coefficiemt

T

— 2
4

— 7

kes ro=0.77

B,
B,
B,

Ui
ui
ui
Si

Q
Q
Q
im, Ji

al

A

Error performance results of the four state TCM for
different number of quantization intervals (states) ver-
sus simulated performance made by Jakes simulator
for identical correlation coefficient.

error events. Another problem we are interested in is how
accurate our analytical results based on the mixture parame-
ter model correspond to the error performance of the system
with a real fading. Fig. 7 shows the dependence of the er-
ror performance on the number of quantization intervals and
compares both the analytical results and error measure of the
system with a channel amplitude generated by the Jakes fad-
ing simulator. From these curves we see that for a limited
number of quantization intervals we can get nearly correct
error performance asymptotes ranging from low to mid val-
ues of SNR.

4.3.2 Phase Synchronization Error

In the second example the phase synchronization er-
ror is modeled as a mixture of six state quantized and
IID processes. The conditional probability density function
p(¥| ¢;) and Markov chain characteristics are defined from
Gaussian distribution. Fig. 8 compares the real simulated
performance and Chernoff bound for two different correla-
tion coefficients.

T
A Sim, 0=0
A Sim, r0=0.8

SNR

Fig. 8.  Chernoff bound versus simulation of two state trellis

code for phase error withy = 0.4 and two different
correlation coefficienp. The Bit Error Rate as a func-
tion of Signal to Noise Ratio. Simulation curves are
tagged by triangles.

5. Conclusion

We established the general framework for the perfor-
mance analysis of the ordinary finite memory encoder and
the decoder under correlated continuous valued channel pa-
rameter assumption. We have shown that our analytical
solution correctly follows the results obtained by the com-
puter simulation of the same communication system. Our
extended transfer bound is able to predict the nearly correct
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error performance asymptotes of the system in Rayleigh fad-[8] SIMONS, M., ALOUINI, M. Digital Communication over Fading

ing channel. From FSM theory point of view our proposal Channels: A Unified Approach to Performance Analydihn Wiley
extends the existing principles in a general theoretical level & Sons, 2000.
and can be easily utilized in any other application. [9] SIMONS, M., ALOUINI, M. A Unified Approach to the Perfor-

mance Analysis of Digital Communication over Generalized Fading
Channels. INEEE ProceedingsSep 1998, p. 1860 — 1877.
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