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Abstract: Studying the properties of complex molecules on surfaces is still mostly an unexplored
research area because the deposition of the metal complexes has many pitfalls. Herein, we probed
the possibility to produce surface hybrids by depositing a Co(II)-based complex with chalcone
ligands on chemical vapor deposition (CVD)-grown graphene by a wet-chemistry approach and by
thermal sublimation under high vacuum. Samples were characterized by high-frequency electron
spin resonance (HF-ESR), XPS, Raman spectroscopy, atomic force microscopy (AFM), and optical
microscopy, supported with density functional theory (DFT) and complete active space self-consistent
field (CASSCF)/N-electron valence second-order perturbation theory (NEVPT2) calculations. This
compound’s rationale is its structure, with several aromatic rings for weak binding and possible
favorable π–π stacking onto graphene. In contrast to expectations, we observed the formation of
nanodroplets on graphene for a drop-cast sample and microcrystallites localized at grain boundaries
and defects after thermal sublimation.

Keywords: graphene; cobalt complexes; hybrid material; magneto-chemistry

1. Introduction

Nearly three decades have already passed since the first description of the slow relaxation of
magnetization in the polynuclear cluster [Mn12O12(O2CCH3)16(H2O)4] known as Mn12 [1–3], which
started the whole new research field of molecular magnetism [4]. These so-called Single-Molecule
Magnets (SMMs) exhibit magnetic bistability up to a specific blocking temperature manifested by an
intrinsic spin-reversal barrier energy (Ueff). The barrier is a function of the total spin in the ground
state (S) and the axial component of magnetic dipole–dipole interaction (D) as follows: Ueff = |D| × S2

for integer spins and Ueff = |D| ×
(
S2
−

1
4

)
for non-integer spins, respectively, in axial symmetry. This

alone would imply that by increasing the number of magnetic centers, a better SMM would be
obtained; however, there is a dependency of D ∝ 1

S2 that stems from spin-orbit contributions to the
D-tensor [5]. This dependency shifted the interest from rather large molecules with many magnetic
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atoms to Single-Ion Magnets (SIMs) [6]. Several challenges need to be addressed before fully utilizing
these SIMs in real applications. One of the challenges is increasing the blocking temperature, which
was recently found to be 80 K in dysprosium metallocene in 2018 [7]. This temperature, above the
boiling point of liquid nitrogen (77 K), already holds promise for possible applications in spintronics [8],
quantum computing [9], and molecular electronics [10]. The second challenge is finding the way from
bulk material to functional surfaces.

The magnetic properties of magnetic molecules can be precisely measured by high-frequency
electron spin resonance (HF-ESR) both in bulk [11–20] and on a surface [21–23]. Primarily, the Zeeman
and zero-field-splitting (ZFS) contributions to the spin Hamiltonian with information about the intrinsic
magnetic properties of a molecule can be determined. Today, the current effort is focused on making thin
films, ordered arrays, or self-assembled monolayers that will lead to technological applications [24,25].
The key for this is to understand the behavior and adsorption of complex molecules on surfaces
since their exposed surface offers many application possibilities but also brings many challenges,
as these molecules can oxidize, decompose, or degrade in ambient conditions. There are two main
ways to produce nanostructured magnetic thin films. They can be deposited onto a substrate via a
wet-chemistry protocol from a solution [26–28] or by thermal sublimation in vacuum [29–34].

The electrical addressing of SMMs can be provided via a conductive substrate. A promising
candidate is an atomically thin layer of graphite, known as graphene [35], which is an interesting
substrate due to its high electron mobility [36,37], mechanical strength [38], and thermal
conductivity [39]. The original preparation technique firstly used to prepare graphene in 2004
was micro-mechanical cleavage [40]. This method is suitable for tens-of-micrometers-large flakes;
however, more industrial techniques for large and homogeneous surface coverage soon emerged,
such as graphene production by chemical vapor deposition (CVD) [41], on silicon carbide [42], by
liquid-phase exfoliation [43], or by large-scale roll-to-roll printing [44]. The perfect graphene is a
zero-gap semiconductor, which helps the charge carrier mobility but also limits the applications.

Herein, we report on the synthesis, crystal structure, magnetic properties, and characterization
of a new tetracoordinate complex [Co(4MeO-L)2Cl2] (1) with the chalcone imidazole-derivative
ligand 4MeO-L = (2E)-3-[4-(1H-imidazol-1-yl)phenyl]-1-(4-methoxyphenyl)prop-2-en-1-on.
The determination of the crystal structure revealed that this compound is tetracoordinate, and its
molecules possess a unique shape with a large angle between the coordinated 4MeO-L ligands (vide
infra). Tetracoordinate Co(II) compounds very often exhibit large easy-axis (D < 0) or easy-plane (D >

0) magnetic anisotropies [45]. Furthermore, the “flat” molecular shape involving the large aromatic
system of the ligands might help to anchor complex molecules on surfaces such as graphene by
non-covalent interactions. Therefore, we decided to thoroughly characterize the electronic structure
of 1 by HF-ESR, to investigate both wet-chemistry and thermal sublimation depositions, and, thus,
to produce a hybrid material composed of highly anisotropic Co(II)-based molecules and graphene.
These samples were then characterized by Raman spectroscopy, X-ray photoelectron spectroscopy
(XPS), and atomic force microscopy (AFM).

2. Results and Discussion

2.1. Synthesis and Crystal Structure of 1

The chalcone ligand 4MeO-L was prepared by the aldol condensation of
4′-(imidazol-1-yl)benzaldehyde with 4-methoxyacetophenone, as is shown in Scheme 1. The
purity and structure of 4MeO-L were confirmed by 1H and 13C NMR spectroscopy, mass spectrometry,
and elemental analysis. The complex 1 was synthesized by a reaction between CoCl2·6H2O and
4MeO-L (molar ratio, 1:2) in methanolic solution, and it precipitated as a blue microcrystalline powder.
Recrystallization from methanol led to the isolation of pale blue crystals suitable for single-crystal
diffraction. The purity of 1 was confirmed by elemental analysis, and the phase purity, by powder
diffraction experiments.
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Scheme 1. Preparation of ligand 4MeO-L.

Compound 1 crystallizes in the monoclinic space group Pc, and it consists of tetracoordinate
[Co(4MeO-L)2Cl2] molecules (Figure 1). The 4MeO-L ligands coordinate to the Co atom by the
imidazolyl nitrogen atoms forming the Co-N bonds (d(Co-N) = 2.014(4) and 2.016(4) Å), while the
chlorido ligands form longer bonds (d(Co-Cl) = 2.255(2) and 2.257(2) Å). The overall shape of the
coordination polyhedron can be described best as a significantly distorted tetrahedron adopting C2v

pseudosymmetry (continuous shape measures index [46,47] for Td: 1.356 in 1). The 4MeO-L ligands
adopt an E conformation and remain planar even after coordination (Figure 1). The N-Co-N angle is
wider than the Cl-Co-Cl one: <(N1-Co1-N2) = 125.7(2) vs. <(Cl1-Co1-Cl2) = 119.44(6).

Figure 1. (a)—molecular structure of 1. Selected bond lengths (Å) and angles (deg): d(Co1-N1) =

2.014(4), d(Co1-N2) = 2.016(4), d(Co1-Cl1) = 2.255(2), d(Co1-Cl2) = 2.257(2), <(N1-Co1-N2) = 125.7(2),
and <(Cl1-Co1-Cl2) = 119.44(6). (b)—a perspective view of the packing of the [Co(4MeO-L)2Cl2]
molecules in the direction of the crystallographic b-axis. Observed π–π stacking interactions were
visualized by depicting the shortest C···C distances (black dashed lines). The hydrogen atoms are
omitted for clarity.

The crystal packing in 1 is stabilized by a plethora of weak hydrogen bonds such as C-H···Cl
and C-H···O. Remarkably, the large aromatic systems of the 4MeO-L ligands form π–π stacking
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interactions (the shortest C···C distances range between 3.27 and 3.45 Å), which stabilize the formation
of supramolecular chains along the b crystallographic axis (Figure 1b).

2.2. Raman Vibrations

We used CVD graphene (Graphenea, San Sebastian, Spain) on a Si/SiO2 substrate. Figure 2 shows
the substrate Raman spectra that helped us to determine the defects involved in the graphene. The Si/SiO2

Raman spectrum has a main strong phonon band at 520 cm−1 and two medium peaks at 301 cm−1 and in
the region 946–976 cm−1 [48,49]. A spectrum of CVD graphene exhibited the strong peaks D at 1347 cm−1,
G at 1595 cm−1, and 2D at 2689 cm−1, with the weaker peaks D′ at 1627 cm−1 and D+D′′ at 2462 cm−1.
The presence of a strong G peak and weak D’ suggests CVD graphene with defects [50].

Figure 2. Raman spectra of Si/SiO2 substrate and graphene on Si/SiO2 substrate.

A comparison of bulk compound 1, drop-cast, and two sublimated samples at 75 and 265 ◦C
is illustrated in Figure 3. The Raman spectrum of the bulk compound 1 on the Si/SiO2 substrate
consists of significant peaks (964, 1186, 1366, and 1603 cm−1) and peaks of Si/SiO2. In the case of the
drop-cast sample, significant peaks were overlapped with the peaks of graphene and Si/SiO2, except
one (1190 cm−1). By contrast, the Raman spectra of the sublimated samples all showed significant
peaks due to measurements on a larger crystal and obtaining a stronger signal. The comparison tables
of the Raman spectra can be found in Table S1.

Figure 3. Comparison of Raman spectra of bulk compound 1, drop-cast, and sublimations at 75 and
265 ◦C.
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Optical images of the hybrid material taken along with Raman spectroscopy are shown in Figure 4.
The molecules deposited by drop-casting formed small droplets up to 50 nanometers high. On the
contrary, the molecules on sublimated samples formed microcrystals hundreds of nanometers high
(see ESI, Figure S1).

Figure 4. Images from the optical microscope of the samples after drop-casting and sublimations at 75
and 265 ◦C.

2.3. Chemical Composition and Bonds

The chemical composition was probed by XPS. Figure 5 shows spectra of bulk compound 1
together with the molecular structure.

Figure 5. Molecular structure with survey XPS spectrum and detailed Co 2p, Cl 2p, and N 1s spectra.

The bulk compound 1 spectrum exhibited photoelectron peaks—Co 2p, Cl 2p, N 1s, C 1s, and
O 1s—and Augers peaks: OKLL and CoLMM. The detailed spectra of the selected peaks revealed
specific chemical bonds. The N 1s peak was deconvoluted to two components: graphitic N with three
neighboring C atoms and pyrrolic N with two C atoms and one Co bond [51]. The photoelectron peaks
emitted from the p, d, and f electronic levels are further split by spin-orbit interactions. This helped
us to distinguish, in the Cl 2p spectrum, between organic (Cl–C and Cl–H) and inorganic (Cl–Co)
components [52]. Co 2p exhibited two main components and shake-up satellites. The spin-orbit shift
of the main components Co 2p3/2 and Co 2p1/2 depends on the oxidation state, and with 15.6 eV, the
Co(II) high-spin state predominates [53].

Figure 6 shows the comparison of the hybrid samples with CVD graphene: drop-cast, and
sublimated at 75 ◦C and at 265 ◦C, respectively. In the drop-cast sample, we observed a decrease in
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the graphitic nitrogen component compared to bulk compound 1 and an apparent split of chlorine
to inorganic and organic contributions. In the case of drop-casting, we detected a weak Co 2p signal
on the surface, suggesting a possible complex decomposition (see ESI, Figure S2). In the case of
the sublimated samples, even after several hours of acquisition, we did not obtain any convincing
Co 2p peaks for 75 or 265 ◦C. This may be attributed to the possible partial decomposition of the
complex or the surface sensitivity of XPS, with the complex outmost layers containing only a very
few Co atoms or so-called “dead” layers with oxidized, spoiled molecules. This absence led us to a
semi-empirical quantitative analysis of the powder after each sublimation (see ESI, Figure S3) and
revealed an increased amount of cobalt and chlorine in the powder from the crucible compared to the
bulk powder. This, along with the detected organic chlorine, suggests the possible partial chlorination
of the graphene with a partial decomposition of the complex during both deposition processes. Carbon
and oxygen contributions were discarded since they might be affected by adventitious contaminations
due to the ex situ preparation procedures.

Figure 6. Comparison of detailed XPS spectra of drop-cast and sublimated samples at 75 and 265 ◦C.

2.4. Molecular Adsorption by DFT

We investigated the adsorption of the molecule on graphene in the framework of density functional
theory (DFT) using the Vienna Ab-Initio Simulation Package (VASP) [54–57]. The exchange–correlation
potential was approximated by the generalized gradient approximation in Perdew–Burke–Ernzerhof
(PBE) parametrization [58,59], the pseudopotential approach was used for the interaction between the
valence electrons and ionic core, and Van der Waals forces were considered. Further details can be
found in Section 3.



Molecules 2020, 25, 5021 7 of 17

We performed a geometric relaxation calculation considering two possible geometries of the
molecule relative to the graphene plane, as shown in Figure 7. The initial position of the molecule
was chosen to mimic an AB-stacking configuration between the carbon rings of the molecule and the
graphene substrate, as shown in Figure 7b,d, and also to take advantage of possible C–H···π hydrogen
bonding between the hydrogen atoms of the molecule and π electrons of the carbon atoms in graphene.
The molecule was placed manually on top of the substrate, such that the distances between the closest
carbon atom of the molecule and the graphene plane was 3.13 and 3.20 Å for Geometries 1 and 2,
respectively. During relaxation, the atoms of the molecule could move freely to their equilibrium
positions, while the atoms of the substrate were kept fixed.

Figure 7. Initial position of the two geometries used for the simulation of molecular adsorption on
graphene. As referred to in the text, (a) Geometry 1, (b) top view of the selected part of (a), with the
graphene substrate in light blue; the closest carbon atom of the molecule to the substrate was placed in
the center of one of the graphene rings. (c) Geometry 2, and (d) top view of the selected part of (c).

After relaxation, we found that the molecule bound to the substrate in both configurations,
with distances of 3.31 Å (Geometry 1) and 3.29 Å (Geometry 2) between the closest carbon atom of
the molecule and the graphene plane. Such distances correspond to the typical distances between
π–π-bonded carbon rings, and we found that there was no considerable change in the molecular shapes
after the adsorption. The binding energies were 0.89 eV per molecule (85.4 kJ/mol) for Geometry 1, and
1.08 eV per molecule (104.0 kJ/mol) for Geometry 2, where the main contribution to this energy comes
from the van der Waals interactions between the carbon atoms of the molecule and substrate. If van
der Waals forces are not considered, the binding energies fall to the meV range, below the thermal
energy at room temperature (25.8 meV at 300 K). Therefore, van der Waals forces play a crucial role in
the adsorption of these cobalt-based molecules on graphene.

2.5. HF-ESR Spectroscopy

Figure 8 shows the HF-ESR spectra acquired for bulk compound 1 at four frequencies—380, 415,
456, and 490 GHz—while sweeping the magnetic field from 0 to 15 T at 5 K.
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Figure 8. (a)—high-frequency electron spin resonance (HF-ESR) spectra for four different frequencies
at 5 K. The dotted line is guidance for Zeeman splitting. (b)—temperature dependence acquired at 410
GHz. Black line in both is experimental, and red/colored line is the simulation.

The used effective spin Hamiltonian for the simulations is the following Equation (1):

Ĥ = ĤZeeman + ĤZFS = µBB·g·Ŝ + D
[
Ŝ2

z −
1
3

S(S + 1)
]
+ E
(
Ŝ2

x − Ŝ2
y

)
(1)

where µB is the Bohr magneton, B is the external magnetic field, g is a tensor linking the external
magnetic field with spin vectors, Ŝ is the electron spin operator, and D and E are axial and rhombic
zero-field splitting parameters, respectively. The best fit was found for the spin Hamiltonian parameters
as follows: D = 14.6 cm−1 with E/D = 0.235, and gx = 2.32, gy = 2.38, and gz = 2.16 (Table 1).

Table 1. Zero-field-splitting (ZFS) parameters obtained by complete active space self-consistent field
(CASSCF)/N-electron valence second-order perturbation theory (NEVPT2) calculations compared
to HF-ESR.

D/cm−1 E/D gx gy gz gav

1 +14.5 0.150 2.325 2.378 2.163 2.289
Geometry 1 +16.4 0.090 2.346 2.364 2.150 2.287
Geometry 2 +17.5 0.132 2.345 2.381 2.143 2.290

HF-ESR +14.6 0.235 2.320 2.380 2.160 2.287

2.6. CASSCF Calculations

To support the analysis of the HF-ESR spectra of 1, we performed complete active space
self-consistent field (CASSCF) calculations complemented by N-electron valence second-order
perturbation theory (NEVPT2) using an ORCA 4.2 computational package [60]. The details of
the calculations are explained in Section 3—Theoretical Methods. The spin Hamiltonian parameters were
extracted by utilizing the effective Hamiltonian theory and we obtained a set of the ZFS parameters—for
S = 3/2, D = + 14.5 cm−1 and E/D = 0.15—and the anisotropy of the g-tensor components was confirmed
(gx = 2.325, gy = 2.378, gz = 2.163, and gav = 2.289). These values are in good agreement with the values
obtained by HF-ESR spectroscopy. Next, we performed additional calculations for the optimized
Geometries 1 and 2 of the [Co(4MeO-L)2Cl2] molecules deposited on the graphene surface as calculated
by periodic DFT. The resulting ZFS parameters are, besides the slightly lower rhombicity, rather similar
to those calculated for 1 (all the calculated values are summarized in Table 1). The visualizations of the
calculated D-tensor principal axes overlaid over the structures of the complex molecules (Figure 9)
underline the similarities among 1 and Geometries 1 and 2. The directions of DZ are practically the
same in all the studied molecules. However, the directions of the DX and DY axes differ among the
studied molecules (Figure 9).
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Figure 9. The CASSCF/NEVPT2 calculated principal axes of the D-tensor labeled DX (red), DY (green),
and DZ (blue) visualized together with molecular structures of 1 (a), Geometry 1 (b), and Geometry 2
(c).

3. Materials and Methods

3.1. Materials

CoCl2·6H2O was bought from PMRLab (Port Elizabeth, South Africa), and
4-(1H-imidazol-1-yl)benzaldehyde, 4-methoxyacetophenone, NaOH, and the solvents (methanol
(MeOH), diethyl ether (Et2O), and the deuterated solvents for the NMR experiments (deuterated
chloroform (CDCl3))) were purchased from VWR International (Stříbrná Skalice, Czech Republic),
Sigma-Aldrich (Prague, Czech Republic), Lach-Ner (Neratovice, Czech Republic), and Litolab
(Chudobín, Czech Republic).

3.2. Synthesis

3.2.1. (2E)-3-[4-(1H-imidazol-1-yl)phenyl]-1-(4-methoxyphenyl)prop-2-en-1-one (4MeO-L)

A methanolic sodium hydroxide solution (40%; 1.2 mL) was added dropwise to a mixture of
4-methoxybenzaldehyde (2 mmol, 0.300 g), 4’-(imidazol-1-yl)benzaldehyde (2 mmol, 0.377 g), and
methanol (5 mL) over a period of 40 min. The resulting solution was stirred at room temperature until
the completion of the reaction. The precipitate was filtered off and washed with a cold methanol–water
mixture (1:10). The resulting product was recrystallized from methanol and dried in a desiccator under
reduced pressure (overnight) [61].

Yellowish solid. Yield: 83%. 1H NMR (400 MHz, Chloroform-d, 298 K, ppm) δ 8.06 (d, J = 8.4 Hz,
2H, C17-H, C21-H), 7.92 (s, 1H, C2-H), 7.84–7.74 (m, 3H, C8-H, C10-H, C13-H), 7.57 (d, J = 15.6 Hz, 1H,
C12-H), 7.46 (d, J = 8.1 Hz, 2H, C7-H, C11-H), 7.34 (s, 1H, C5-H), 7.24 (s, 1H, C4-H), 7.00 (d, J = 8.4
Hz, 2H, C18-H, C20-H), 3.91 (s, 3H, C23-H). 13C NMR (101 MHz, Chloroform-d, 298 K, ppm) δ 188.28
(C14), 163.59 (C19), 142.12 (C12-H), 138.43 (C6), 135.38 (C2-H), 134.23 (C16), 132.72 (C9), 130.87 (C4-H),
130.85 (C8-H, C10-H), 129.86 (C17-H, C21-H), 122.51 (C13-H), 121.45 (C7-H, C11-H), 117.84 (C5-H),
113.91 (C18-H, C20-H), 55.52 (C23-H). ESI+MS (MeOH, m/z): 305.27 (calc. 305.12; 100%; {4MeO-L +

H}+), 327.11 (calc. 327.11; 79%; {4MeO-L + Na}+), 630.81 (calc. 631.67; 88%; {2 × 4MeO-L + Na}+). IR
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(ATR, v, cm−1): 407w, 447w, 521w, 593w, 653w, 770w, 816s, 905w, 958w, 981w, 1015m, 1061w, 1120w,
1168m, 1225m, 1254w, 1309w, 1342w, 1433w, 1523s, 1588s, 1658m, 3103w.

3.2.2. Complex [Co(4MeO-L)2(Cl)2] (1)

The solution of CoCl2.6H2O (1 mmol, 0.237 g) in 5 mL of methanol was heated up to 50 ◦C, and
then, 2 molar equiv. of 4MeO-L was added (2 mmol, 0.608 g). The solution was cooled down and
stirred at ambient temperature for 2 h. The obtained blue precipitate was collected by filtration and
washed with water (2 × 0.5 mL) and Et2O (2 × 1 mL). The blue solid product was dried in a desiccator
under reduced pressure (overnight) [62].

Blue solid. Yield: 92%. Anal. Calc. for CoC38H32Cl2N4O4 (1): C, 61.80; H, 4.37; N, 7.59%;
found: C, 61.59; H, 4.31; N, 7.42%. ESI+MS (MeOH, m/z,): 305.34 (calc. 305.7; 10%; {4MeO-L +

H}+), 471.07 (calc. 471.21; 100%; {[Co(4MeO-L)(Cl)2] + 2H2O + H}+), 702.21 (calc. 702.14; 71%;
{[Co(4MeO-L)2(Cl)]}+), 774.76 (calc. 775.13; 30%; {[Co(4MeO-L)2(Cl)] + 4H2O}+). IR (ATR, v, cm−1):
399w, 412w, 476w, 501w, 517w, 589w, 612w, 646w, 729w, 809s, 969w, 1013w, 1059w, 1102w 1134w, 1159w,
1212w, 1347w, 1401w, 1497w, 1534w, 1598s, 3129w. Thermal stability up to ca. 310 ◦C was confirmed by
thermogravimetry measurement.

3.3. Deposited Samples

Drop-cast sample was prepared by dissolving the bulk compound 1 in dichloromethane (98%,
Penta, Czech Republic) to make a final solution with a 100 µM concentration. The actual drop-casting
was conducted in a mobile glove bag (Merck, Germany) filled with inert nitrogen gas; 10 µL was
drop-cast onto a substrate. For the thermal sublimation, we used a home-built high-vacuum sublimation
chamber equipped with a quartz crucible heated by tungsten wire, with a thermocouple in thermal
contact with the crucible. The base chamber pressure during the sublimation was 2 × 10−7 mbar. The
sublimations were performed at 75 and 265 ◦C, respectively.

3.4. Raman Spectroscopy (RS)

Raman spectra were acquired on a confocal Raman microscope WITec Alpha300 R+ (WITec,
Ulm, Germany). All measurements were carried out with the excitation laser source with a 532 nm
wavelength and 1 mW power output. Optical images were acquired with a 100× objective (NA 0.9,
WD 0.31 mm).

3.5. Atomic Force Microscopy (AFM)

All topography images and profiles were obtained with the scanning probe microscope Bruker
Dimension Icon in tapping mode.

3.6. X-ray Photoelectron Spectroscopy (XPS)

X-ray photoelectron (XPS) measurements were carried out with a Kratos Axis Supra (Kratos
Analytical, Manchester, United Kingdom) spectrometer at room temperature and under ultra-high
vacuum (UHV) conditions. The instrument was equipped with a monochromatic Al Kα source of
1486.6 eV (15 mA, 15 kV) and a hemispherical analyzer with a hybrid magnetic and electrostatic lens
for enhanced electron collection. Survey and detailed XPS spectra were acquired at normal emission
with fixed pass energies of 160 and 20 eV, respectively. All spectra were calibrated to the hydrocarbon
peak set to 284.8 eV. The Kratos charge neutralizer system was used on all specimens. The inelastic
backgrounds in all the spectra were subtracted according to the Shirley method [63]. Data analysis
was based on a standard deconvolution method using a mixed Gaussian (G) and Lorentzian (L) line
shape (G = 70% and L = 30%, Gaussian–Lorentzian product) for each component in the spectra. The
elemental composition of the samples was evaluated using a semi-empirical approach. The integrated
intensity of each component was corrected with the photoionization cross-section calculated for each
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atom, neglecting the differences in photoelectron escape length as a function of the kinetic energy [64].
The spectra were analyzed using the CasaXPS software (version 2.3.18).

3.7. High-Frequency Electron Spin Resonance (HF-ESR)

HF-ESR spectra were acquired on a newly home-built spectrometer featuring a signal
generator (Virginia Diodes, Charlottesville, VA, USA), an amplifier–multiplier chain (Virginia Diodes,
Charlottesville, USA), a quasi-optical bridge (Thomas Keating, Billingshurst, UK), and a 16 T solenoid
cryomagnet (Cryogenic, London, UK) with heterodyne signal detection. The reference powder sample
of the complex was studied as a pressed powder with a ø 5 mm pellet sample. All ESR spectra were
simulated using EasySpin [65], a toolbox for Matlab.

3.8. Density Functional Theory (DFT)

The density functional calculations for molecular adsorption were performed with the Vienna
Ab-Initio Simulation Package (VASP) [54–57] version 5.4.4, which uses a plane-wave basis for the
Kohn–Sham orbitals, the Projector Augmented Wave (PAW) method [57,66], and pseudopotentials.
The exchange–correlation potential was approximated by generalized gradient approximation in
Perdew–Burke–Ernzerhof (PBE) parametrization [58,59]. Van der Waals corrections were calculated
using the D2 method of Grimme [67]. In all calculations, the kinetic energy cut-off for the plane waves
was 420 eV. For the calculation of the ground state energy of the system molecule+substrate and
graphene substrate, a Γ-centered 2 × 2 × 1 Monkhorst–Pack mesh [68] was used to sample the Brillouin
zone, while a Γ-point calculation was used for the ground-state energy of the molecule. We considered
two different molecular geometries relative to the graphene plane. Geometry 1 lies on top of a 17 × 8
graphene supercell, while a 13 × 7 supercell was used for Geometry 2 (1 × 1 corresponds to graphene’s
unit cell). Since a plane-wave basis was used, the systems were periodic along each lattice vector;
therefore, an array of infinite molecules was simulated, which in principle can interact with each other.
Nevertheless, the distance between the closest atoms of neighboring molecules was no less than 9.0 Å
for Geometry 1 and 5.8 Å for Geometry 2 (the distance between the closest Co atoms was 17.2 Å for
Geometry 1, and 19.7 Å for Geometry 2); therefore, it was assumed that the molecules did not interact
with each other. Geometry relaxation was performed until the forces were below 0.1 eV/Å.

3.9. Theoretical Methods (CASSCF/NEVPT2)

All the theoretical calculations were performed with the ORCA 4.2 computational package [69].
All the calculations employed the triple-ζ def2-TZVP basis functions for all atoms except for
carbon and hydrogen, for which the def2-SVP basis set was applied [70]. Additionally, the def2/J
and def2-TZVP/C auxiliary basis sets were utilized together with RIJCOSX approximation [71,72].
The multiconfigurational character of the studied Co(II) complexes was handled by calculations
utilizing self-consistent field (SA-CASSCF) wave functions [73] with N-electron valence second-order
perturbation theory (NEVPT2) [74]. The active space of the CASSCF calculation was set to five d-orbitals
of Co(II) (CAS(7,5)). The D- and g-tensors, based on dominant spin−orbit coupling contributions from
excited states, were calculated through quasi-degenerate perturbation theory (QDPT) [75]. We utilized
approximations to the Breit–Pauli form of the spin-orbit coupling operator (SOMF approximation) [76]
and effective Hamiltonian theory [77].

3.10. Elemental Analyses (EA)

Elemental analysis was carried out using a Flash 2000 CHNS Elemental Analyzer (Thermo
Scientific, Waltham, MA, USA).



Molecules 2020, 25, 5021 12 of 17

3.11. Mass Spectrometry (MS)

Electrospray ionization mass spectrometry (ESI-MS; methanol solutions) was performed with
an LCQ Fleet ion trap spectrometer (Thermo Scientific, Waltham, MA, USA; QualBrowser software,
version 2.0.7) in both positive (ESI+) and negative (ESI-) ionization modes.

3.12. NMR Spectroscopy

1H and 13C NMR spectroscopy, and 1H-13C gsHMQC and 1H-13C gsHMBC two-dimensional
correlation experiments were performed using CDCl3 (4MeO-L) solution at 300 K using a Varian
spectrometer (Palo Alto, CA, USA) at 400.00 MHz (for 1H NMR) and 101.00 MHz (for 13C NMR),
where gs = the gradient selected, HMQC = the heteronuclear multiple quantum coherence, and HMBC
= the heteronuclear multiple bond coherence. 1H and 13C NMR spectra were calibrated against the
residual CDCl31H NMR (7.26 ppm) and 13C NMR (77.16 ppm) signals. The splitting of the proton
resonances in the reported 1H spectra is defined as s = singlet, d = doublet, dd = doublet of doublets,
sep = septet, m = multiplet, and bs = broad signal.

3.13. Infrared Spectroscopy

A Jasco FT/IR-4700 spectrometer (Jasco, Easton, MD, USA) was used for the collection of the
infrared (IR) spectra of the studied ligand and complex in the range of 400–4000 cm−1 by using the
attenuated total reflection (ATR) technique on a diamond plate.

3.14. Crystallography

A single crystal of 1 was mounted on a Stoe StadiVari diffractometer possessing a Pilatus3R
300 K detector and microfocused sealed tube Xenocs Genix3D Cu HF (λ = 1.54186 Å) at 100 K. The
structure was solved using the program SuperFlip [78] and refined using the program ShelXL (ver.
2018/3) [79] in the crystallographic package Olex2 [80]. The structure was drawn using the Mercury
program [81]. Crystal data for CoC38H32Cl2N4O4 (M = 738.50 g/mol): monoclinic, space group Pc (no.
7), a = 18.7700(3) Å, b = 12.2910(4) Å, c = 7.3969(6) Å, β = 101.392(3)◦, V = 1672.86(15) Å3, Z = 2, T
= 100(1) K, µ(CuKα) = 5.885 mm−1, Dcalc = 1.466 g/cm3, 31,686 reflections measured (3.596◦ ≤ 2Θ ≤
72.338◦), 5367 unique (Rint = 0.0372), used in all calculations. The final R1 was 0.0455 (I > 2σ(I)), and
the wR2 was 0.1211 (all data). The highest peak: +0.28; the deepest hole: −0.53. Crystal structure
refinement: All atoms except for hydrogen were refined anisotropically. The hydrogen atoms were
placed into the calculated positions, and they were included into the riding-model approximation with
Uiso = 1.2Ueq(C) or 1.5 Ueq (CH3) and d(C−H) = 0.95–0.98 Å.

4. Conclusions

This paper reports on the synthesis, crystal structure, magnetic properties, and characterization
of a new Co(II)-based complex with monodentate chalcone ligands and its deposition on graphene.
The magnetic properties were determined from HF-ESR measurements and were found to be in fair
agreement with CASSCF/NEVPT2 ab initio quantum chemical calculations. The spin Hamiltonian
parameters are as follows: D = 14.6 cm−1 with significant rhombicity E/D = 0.235, and gx = 2.32, gy =

2.38, and gz = 2.16. Depositions on graphene were attempted by both drop-casting in an inert nitrogen
atmosphere and by the thermal sublimation of bulk compound 1 in a high vacuum. In both cases, we
observed organic chlorine components, suggesting the partial decomposition of the complex or possible
chlorination of graphene. On the contrary, the Raman spectra showed a good agreement of the peaks
in bulk and on the graphene; however, a few peaks from the complex overlapped with the graphene
peaks, which hindered the analysis. In the case of the drop-cast sample, we observed the formation of
small nanodroplets about 50 nm high on the graphene. Samples prepared by thermal sublimations
revealed the formation of microcrystallites formed mostly at the grain edges and defects on graphene.
DFT simulations of the complex at two geometries on the graphene surface confirmed only weak
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attraction to the graphene surface, with the crucial role of van der Waals forces in the adsorption on
graphene. The outlook for the successful deposition of intact complexes on graphene surfaces requires
the fine chemical tailoring of ligands, promoting adhesion on graphene, and utilizing chelation agents
that protect the complex from detrimental effects such as atmospheric moisture, oxidation, and thermal
decomposition. The next step after successful deposition is to obtain the magnetic properties of a
thin film on the surface, which will be obtained from HF-ESR measurements or from X-ray magnetic
circular dichroism (XMCD) at the synchrotron facility.

Supplementary Materials: The following are available online. Table S1: Comparison of Raman shift peaks (in
cm−1) for drop-casting. Peak intensity is denoted as follows: strong—s, medium—m, and weak—w. Figure S1:
AFM images from drop-cast and sublimated samples at 75 and 265 ◦C. Figure S2: Weak Co 2p peak from the
drop-cast sample. Figure S3: Elemental percentage of atoms in powder from crucible after thermal sublimation at
75 and 265 ◦C. Deposition Number 2034425 (1) contains the supplementary crystallographic data for this paper.
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