
BRNO UNIVERSITY OF TECHNOLOGY
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ

FACULTY OF INFORMATION TECHNOLOGY
FAKULTA INFORMAČNÍCH TECHNOLOGIÍ

DEPARTMENT OF COMPUTER GRAPHICS AND MULTIMEDIA
ÚSTAV POČÍTAČOVÉ GRAFIKY A MULTIMÉDIÍ

NEURALNETWORK TRAINING PROGRESS
VISUALIZATION
VIZUALIZACE PRŮBĚHU TRÉNOVÁNÍ NEURONOVÉ SÍTĚ

BACHELOR’S THESIS
BAKALÁŘSKÁ PRÁCE

AUTHOR SILVIE NĚMCOVÁ
AUTOR PRÁCE

SUPERVISOR Ing. KAREL BENEŠ
VEDOUCÍ PRÁCE

BRNO 2021

Brno University of Technology
Faculty of Information Technology

 Department of Computer Graphics and Multimedia (DCGM) Academic year 2020/2021

 Bachelor's Thesis Specification

Student: Němcová Silvie
Programme: Information Technology
Title: Neural Network Training Progress Visualization
Category: Artificial Intelligence
Assignment:

1. Get acquainted with modern neural networks
2. Get acquainted with recent techniques for inspection of their training
3. Select a set of those and implement them as a toolkit
4. Demonstrate its capabilities on a suitable task
5. Propose and execute a novel inspection experiment

Recommended literature:
Hao Li, Zheng Xu, Gavin Taylor, Christoph Studer, and Tom Goldstein: Visualizing the Loss
Landscape of Neural Nets. 2018.
Ian J. Goodfellow, Oriol Vinyals, and Andrew M. Saxe: Qualitatively characterizing neural
network optimization problems. 2015.

Requirements for the first semester:
Items 1, 2 and 3.

Detailed formal requirements can be found at https://www.fit.vut.cz/study/theses/
Supervisor: Beneš Karel, Ing.
Head of Department: Černocký Jan, doc. Dr. Ing.
Beginning of work: November 1, 2020
Submission deadline: May 12, 2021
Approval date: October 30, 2020

Powered by TCPDF (www.tcpdf.org)

Bachelor's Thesis Specification/23446/2020/xnemco06 Page 1/1

Abstract
This work studies a neural network model during its training. The aim of this thesis is
to visualize the training of the model and to examine the training. To achieve this goal I
choose to implement a set of tools in Python language. The implementation successfully
reproduces the linear path experiment, the identification of robust and ambient layers
and the visualization of the loss surface. In addition the quadratic path experiment is
presented in this thesis as novel method for analyzing the neural network training progress
visualization.

Abstrakt
Tato práce se zabývá studiem průběhu trénování modelu neuronové sítě. Cílem je zobrazit
a zkoumat trénovací proces modelu neuronové sítě. Pro tyto účely jsem zvolila imple-
mentaci v jazyce Python. Implementace úspěšně replikuje vizualizaci průběhu trénování
pommocí lineární interpolace, identifikaci robustních a ambient vrstev a zobrazení plochy,
vytvořené účelovou funkcí okolo natrénovaného modelu. V této práci je navržena a před-
stavena metoda zobrazovaní průběhu trénování pomocí kvadratické interpolace parametrů.
Výsledek práce je znázorněn grafy a diskuzí nad dopady změn parametrů modelu na jeho
trénování.

Keywords
Artificial intelligence, neural networks, neural network training, Python, neural network
training visualization.

Klíčová slova
Umělá inteligence, neuronové sítě, trénování neuronové sítě, Python, vizualizace trénování
neuronové sítě.

Reference
NĚMCOVÁ, Silvie. Neural Network Training Progress Visualization. Brno, 2021. Bache-
lor’s thesis. Brno University of Technology, Faculty of Information Technology. Supervisor
Ing. Karel Beneš

Rozšířený abstrakt
V minulosti trpělo strojové učení několika problémy. Velmi komplexní a vysoce výpočetně
náročné trénování neuronových sítí byl jedním z nich. Se vzrůstajícím výpočetním výkonem
dostupných strojů a objevením nových efektivních algoritmů se strojové učení znovu těší
velké oblibě. I přesto se nadále v oblasti trénování vyskytují nejasnosti, pochyby o schop-
nosti trénovacího algoritmu překonat lokální optima nebo sedlové body. Cílem této práce je
umožnit zobrazení průběhu trénovaní neuronové sítě na různých úrovních a pomocí různých
metod. Tyto metody poté porovnat a navrhnout vhodnou metodu pro zobrazování průběhu
trénování za účelem hlubšího zkoumání trénování neuronových sítí.

Prvním krokem bylo důkladně nastudovat neuronové sítě a jejich trénování. Práce se
zaměřuje na jednoduchý model konvoluční neuronové sítě a trénování pomocí stochastic
gradient descent (SGD) algoritmu. Dále jsou popsány typická problematická místa během
trénování.

Pro zkoumání průběhu trénování neuronových sítí je úspěšně zreprodukována metoda
lineární interpolace parametrů pro celý model, prezentována Goodfellowem a ostatními v [5].
Na základě této metody je navržena metoda pro zkoumání jednotlivých vrstev či parameterů
modelu. Tento návrh byl úspěšně implementován. Experiment může úkazat význam vrstev
a jednotlivých parametrů pro daný model a tak umožnit zhodnocení efektivity architektury
modelu neuronové sítě.

Nově navrhovaná metoda je metoda kvadratické interpolace na úrovni modelu, vrstev a
parametrů. Tato metoda je navržena na základě lineární interpolace s cílem dodat výsledky
věrnější realitě a tak umožnit přesnější zhodnocení modelu bez zvýšení nároků na výkon.
Tato metoda byla úspěšně implementována s využitím Lagrangeova interpolačního poly-
nomu pro získání koeficientů kvadratické rovnice potřebných pro výpočet interpolovaných
hodnot. Výsledky tohoto experimentu korespondují s výsledky linerání interpolace a podle
očekávání podávají výsledky podobnější reálných datům.

Další zkoumanou oblastí v průběhu trénování neuronové sítě je zkoumání okolí natréno-
vaného modelu pomocí 3D vizualizace hodnot účelové funkce v okolí natrénovaného mod-
elu. Zobrazení okolí natrénovaného modelu bylo provedeno pomocí projekce v náhodných
směrech podle metody navržené Goodfellowem a ostatními v [5] i pomocí směrů vybraných
pomocí analýzy hlavních komponent, metody prezetované Li a ostatními v [9].

Zobrazení prostou projekcí v náhodných směrech nemusí vždy poskytovat vhodné pod-
mínky pro zobrazení cesty, kterou zvolil optimalizační algoritmus. Ve vysoce dimenzionál-
ním prostoru je velká pravděpodobnost, že dva náhodně vybrané směry na sebe budou or-
togonální a tak by nemusely efektivně zobrazit cestu [9]. Řešení výše zmíněného problému
navrh Li a ostatní ve svém článku [9]. Navrhuje metodu projekce ve směrech, vybraných
pomocí PCA na základě nejvíce vypovídající hodnoty. Tento experiment byl úspěšně repro-
dukován a jeho výsledky ukazují, že zvolený optimalizační algoritmus bezpečně konverguje.

Navržený a implementovaný nástroj může sloužit výzkumníkům pro zkoumání průběhu
trénování neuronové sítě nebo pro identifikaci reduntantních vrstev a analýze efektivity
architektur neuronových sítí.

Neural Network Training Progress Visualization

Declaration
I hereby declare that this Bachelor’s thesis was prepared as an original work by the author
under the supervision of Ing. Karel Beneš. I have listed all the literary sources, publications
and other sources from which I gathered information.

. .
Silvie Němcová

May 9, 2021

Acknowledgements
My sincere gratitude goes to my supervisor, Ing. Karel Beneš, for his guidance and contin-
uous support when creating this project.

Contents

1 Introduction 2

2 Introduction to Neural Networks 3
2.1 Learning Algorithms in Artificial Intelligence 3
2.2 Neural Networks . 5
2.3 Feed Forward Neural Networks . 6
2.4 Convolutional Neural Networks . 7

3 Neural Network Training 10
3.1 Introduction to Neural Network Training 10
3.2 Loss Functions . 11
3.3 Backpropagation . 11

4 Neural Network Training Progress Visualization 14
4.1 Linear Path Examination . 14
4.2 Quadratic Interpolation of the Parameters 15
4.3 Loss Function Landscape Visualization . 15

5 Implementation 17
5.1 Design . 17
5.2 Technology . 17

6 Examining the Training Progress of Neural Network 19
6.1 Preliminary experiments . 20
6.2 Linear Path Experiment . 22
6.3 Quadratic Path Experiment . 28
6.4 Comparison Between the Quadratic and Linear Path 33
6.5 Loss Function Surface Visualization . 36

7 Conclusion 38

Bibliography 39

1

Chapter 1

Introduction

Neural networks are computational models inspired by biological neurons and connections
between them, generally used for making decisions or recognizing patterns. Nowadays,
they have many practical applications such as computation of self-driving cars collision
probability estimation or speaker, face or handwriting recognition.

The origin of the artificial neural networks dates back to the 40s of the 20th century
when Warren McCulloch and Walter Pitts introduced a computational model of the neural
networks based on an algorithm called threshold logic [12]. Donald Hebb took the idea
further in his book, The Organization of Behaviour [6], proposing that some neural con-
nections could have a bigger impact on the result after each successful use. In 1958, Frank
Rosenblatt introduced the Perceptron. The Perceptron builds on top of McCulloch’s model
[18]. The inability to solve nonlinear problems like logical exclusive or is the drawback of
the Perceptron. Thus, in the 1960s, the research of neural networks stagnated. In 1969,
Minsky and Papert published a book [13], where they introduced two major problems with
neural networks. The first of them concerned with the inability of the single layer networks
to solve nonlinear problems and the second one is dealing with the lack of computation
power to compute the output of the complex neural networks. Since the 1990s, the re-
search of neural networks continues. Nowadays neural networks are a popular tool among
computer scientists.

The training of the neural networks is even more computationally demanding task than
the output computing is. In this thesis, the training process is visualized and examined. I
focus on experimenting with modificating the parameters of a model of the neural network
to find which of them are crucial for training and which are not. The experimental results
provide useful information for optimizing and analysing the training process of the neural
networks. Ideas on how to optimize the training process of neural networks could be later
derived from the experiments.

2

Chapter 2

Introduction to Neural Networks

Neural networks build learning algorithms on top of the general artificial intelligence learn-
ing algorithms. They implement using the common artificial intelligence learning algo-
rithms, like linear and logistic regression. The combination of these algorithms leads to the
ability of the neural network to learn and provide the desired output. The format of the
output is defined by the specification of the task to be solved by the neural network. This
chapter provides a brief introduction to the use of artifical intelligence algorithms in neural
networks.

2.1 Learning Algorithms in Artificial Intelligence
A learning algorithm describes a process by which a model is able to learn from the input
data. In the Machine Learning by Mitchell T. M. (1997) provides a definition: ”A computer
program is said to learn from experience E with respect to some class of tasks T and a
performance measure P, if its performance on tasks in T, as measured by P, improves
with experience E“ [14]. The computer program represents a computational model using
artificial intelligence algorithms to solve the tasks. Most tasks for artificial intelligence are
formulated as:

• Classification: The model is asked to specify to which of the k categories an in-
put sample from a dataset belongs. Classification is, for example, used in object
recognition which enables recognizing faces.

• Regression: Regression is finding correlations and estimating relationships between
features of the examined data. Solving the regression task shows a trend in the
examined dataset. It is used to answer questions about the impact of one feature on
another feature.

The performance measure P is specific to the task T. The performance of a classification
model is often evaluated by the accuracy. The accuracy is the proportion of examples for
which the model produces the correct output. Equivalent information could be obtained
by measuring the error rate, the proportion of examples for which the model produces
incorrect output. The performance of the model is usually measured on previously unseen
data called test dataset [4].

Loss function is used for training the model. If the output of the neural network deviates
too much from the target output, the loss function would give a large number. The smaller

3

the output of the loss function, the better the model’s performance is. The parameters of
the model are adjusted on the output of the loss function during the training.

Unsupervised learning

Unsupervised learning means that the model is learning independently. The training data
does not have labels, the model has to find a pattern in the examined dataset itself. Thus,
the goal of unsupervised learning algorithms is to find some structure in the dataset. Usu-
ally, the algorithm estimates the parameters of a probability distribution or creates clusters
of data with similar features [4]. The prediction of the model is then done using the learned
structure.

One of the unsupervised learning algorithms is principal component analysis (PCA).
PCA is a multivariate technique that analyzes data in which observations are described by
intercorrelated quantitative dependent variables. Its goal is to represent them as a set of new
orthogonal1 variables called principal components and display the pattern of similarity of
the observations and the variables. PCA depends upon the eigendecomposition of positive
semidefinite matrices and upon the singular value decomposition of rectangular matrices.
The goals of the PCA are to extract the most important information from the input dataset,
simplify and reduce the size2 of the dataset by keeping only the most important information
and analyze the structure of the observations and variables. The principal components are
obtained as linear combinations of the original variables. PCA is used in exploratory data
analysis, for making predictive models, and for reducing dataset dimensionality [1].

Supervised learning

Supervised learning uses a dataset with target labels associated with data samples. The
model is given a training dataset and for a certain number of epochs, the model is trained
on this data. The training is done as follows: The model is given an input data sample.
The model computes output. The model’s output is compared with the expected output.
Feedback of the model’s performance is given to the model and the model’s parameters are
then adjusted. One of the most known supervised learning algorithms is linear regression. It
predicts the value of a scalar 𝑦 based on an input vector 𝑥. The output is an approximation
of 𝑦. The output is computed as a result of the linear regression of the input.

𝑦′ = 𝑏 + 𝑤𝑇𝑥, (2.1)
where 𝑦 is the output of the linear regression algorithm, 𝑤𝑇 is a transposed vector of
parameters, and 𝑥 is the vector of input data. The vector of parameters determines how
much each feature affects the prediction. If a feature’s weight has a large absolute value,
then changing that feature’s value has a large impact on the algorithm’s prediction.

To train the model using linear regression, a loss function is used. Mean squared error
(MSE) is often used as the loss function.

MSE =
1

𝑚

𝑚∑︁
𝑖=0

(𝑦 − 𝑦′)2𝑖 , (2.2)

where 𝑚 is the number of samples in the dataset, 𝑦′ is the output of linear regression, and
𝑦 is the target label.

1Perpendicular, separated features.
2Size of the dataset is number of samples that this dataset is containing.

4

An another algorithm is logistic regression, which is a classification algorithm. It is
considered a regression in statistics, but in it is used as a classifier machine learning. The
logistic regression gives an interpretation of the relative importance of features in a dataset.
Logistic regression has as many inputs as the examined data have features. The logistic
regression is then described as:

𝑧 = 𝑏 + 𝑤𝑇𝑥, (2.3)

𝑦 = 𝜎(𝑧) =
1

1 + 𝑒−𝑧
, (2.4)

where 𝑏 is the bias, 𝑤 is the vector of weights, 𝑥 is the vector of input data, 𝑧 is the
logit (weighted sum) of 𝑤 and 𝑥, 𝜎 is the logistic (sigmoid) function, and 𝑦 is the output
of the logistic regression. Everything except the bias and weights is calculated or given.
These two elements are called parameters. The point of logistic regression is to learn good
parameters to achieve good classification. Learning is a process of measuring how inaccurate
the classification was and then updating the parameters based on this quantification. The
measuring is done using the loss function, which is described later in Section 3.1.

2.2 Neural Networks
Neural network is a computational model that is inspired by the biological brain. It contains
simple units, called artificial neurons, and parameters Θ, which serve as information stor-
age. The artificial neuron is shown in Figure 2.1. Neurons are interconnected via weights in
a way that allows signals to travel through the network. Weights are, along with the biases,
components of the parameters Θ. The computational power of neural networks is derived
from the density and complexity of the interconnections. The parameters Θ are modified
by the experience gained while training the model. The goal is to improve the performance
of a model of neural network.

𝑓
∑︀

𝑤2𝑥2

...
...

𝑤𝑛𝑥𝑛

𝑤1𝑥1

𝑤0𝑥0

inputs weights

Figure 2.1: Model of an artificial neuron. The 𝑥 is a set of the inputs, the 𝑤 is a set of the
weights. The input of the neuron is dot product of these two vectors.

5

The output of the neuron is the value of its activation function:

𝑦 = 𝑓
(︀
𝑏 + 𝑤𝑇𝑥

)︀
, (2.5)

where 𝑓 is the activation function, 𝑤 is the vector of weights, 𝑥 is the vector of input data,
and 𝑏 is bias. Neurons are in the neural network grouped in layers, a simple architecture is
represented in Figure 2.2.

Neural networks use activation functions to propagate the output of one layer forward to
the next layer. Activativation functions take a scalar output of a neuron and yields another
scalar as an activation of the neuron. The activation functions define the behavior of the
model, they introduce nonlinearity into the model [16]. In this thesis, Rectified Linear Unit
(ReLU) is used as the activation function. The ReLU is widely used thanks to its simplicity
and effectiveness [17]. Because the gradient of ReLU is either zero or a constant, it evades
the vanishing gradient issue [16]. ReLU is easy to calculate and converges quickly [10].
Commonly used activation functions are briefly introduced in the following table:

Identity 𝑓(𝑥) = 𝑦

Sigmoid 𝑓(𝑥) =
1

1 + 𝑒−𝑥

ReLU 𝑓(𝑥) =

{︃
0 if 𝑥 ≤ 0

𝑥 if 𝑥 > 0

Table 2.1: Activation functions

2.3 Feed Forward Neural Networks
Feedforward networks are called feed forward because the data flows through the network
only in one direction from the input layer to the output layer. The structure of a feed
forward neural network consists of an input layer, one or more hidden layers, and an output
layer. The input layer contains as many neurons as is the dimensionality of the input data or
more. The hidden layers can contain various amounts of neurons, which are specified by the
model’s architecture. The output layer may have as many neurons as is the dimensionality
of the desired output. For example, it can be 10 neurons for classifying the handwritten
digit. The activation function of each neuron can be different. However, it is common that
neurons in one layer use the same activation function.

6

𝑥
(1)
0

𝑥
(1)
1

𝑥
(1)
2

𝑎
(2)
1

𝑎
(2)
2

𝑎
(2)
3

𝑎(3) 𝑦

Θ(1) Θ(2)𝑎(2) 𝑎(3)

Figure 2.2: Feed forward neural network with one hidden layer. The 𝑥(1) represents input
data, Θ(1) represents parameters for layer 1 the input layer. 𝑎

(2)
𝑖 represents 𝑖-th neuron in

first hidden layer. The Θ(2) represents parameters for the output layer. The 𝑎(3) represents
the output layer and 𝑦2 the output of the network. The arrows indicate direction of data
flow inside the network.

The neural networks can also be represented in a matrix notation, for the network in
2.2 it would be:⎡⎢⎢⎢⎣
𝑥
(1)
0

𝑥
(1)
1

𝑥
(1)
2

⎤⎥⎥⎥⎦
⎡⎢⎢⎢⎣

Θ
(1)
00 Θ

(1)
10 Θ

(1)
20

Θ
(1)
01 Θ

(1)
11 Θ

(1)
21

Θ
(1)
02 Θ

(1)
12 Θ

(1)
22

⎤⎥⎥⎥⎦+

⎡⎢⎢⎢⎣
𝑏
(1)
0

𝑏
(1)
1

𝑏
(1)
2

⎤⎥⎥⎥⎦ activation−−−−−−→

⎡⎢⎢⎢⎣
𝑎
(2)
0

𝑎
(2)
1

𝑎
(2)
2

⎤⎥⎥⎥⎦
⎡⎢⎢⎢⎣

Θ
(2)
00

Θ
(2)
01

Θ
(2)
02

⎤⎥⎥⎥⎦+

⎡⎢⎢⎢⎣
𝑏
(2)
0

𝑏
(2)
1

𝑏
(2)
2

⎤⎥⎥⎥⎦ activation−−−−−−→ 𝑎3
activation−−−−−−→ 𝑦

2.4 Convolutional Neural Networks
Convolutional neural networks (CNN) are a type of feed forward neural networks. They
are classified as feed forward networks because the information flows through the network
from the input to the output. The convolutional NNs are inspired by the visual cortex of
the biological brain [3].

Convolutional neural networks are usually used to solve difficult pattern recognition
tasks on images. From the input image, the CNN outputs a prediction of a probability
of how much the data sample belongs to a class, like any other type of NN. The CNNs
allow encoding image-specific features into the architecture of the neural network, making
the NN more suited for image-focused tasks and reducing the number of parameters of the
model. The training of CNN consists usually of supervised learning on a labeled data set
[15].

The architecture of convolutional neural networks is usually composed of three types of
layers: convolutional, pooling, and fully-connected layers [15]. A simple CNN architecture
is shown in Figure 2.3. The functionality of this architecture consists of four basic blocks.
The first one is the input layer. This layer holds the pixel values of the input image. The
second layer serves as a feature extraction layer. The layers used for feature extraction are
the convolutional layers and the pooling layers. The convolutional layers search for features
of the input image and the pooling layers reduce the number of the features to reduce the
complexity. Finally, the fully connected layers perform the same operation as presented in
2.3. These layers produce output class probabilities [16].

7

input

0

9

convolution

 w/ReLu pooling

output

fully-connected

w/ ReLu

fully-connected

...

Figure 2.3: A simple convolutional neural network architecture, containing five layers. The
architecture depicts an input layer, holding the pixel values of an input image, the feature
extraction layers (convolutional) and the classification layers (fully connected) [15].

The input layer is where the model loads and stores raw input data of the image. The
input specifies the width, height, and number of channels.

Figure 2.4: Visualization of extracted features obtained after convolution [15].

The convolutional layers are the foundation of how the convolutional neural networks
operate. Convolutional layers transform the input data by using a batch of locally connected
neurons from the previous layer [16]. The batch of these neurons is called a convolutional
kernel. The kernels are usually small in spatial dimensionality but spread along the entire
depth of the input.

The key concept of the convolutional layers is a convolution, represented by Equation
2.6. The convolution is a mathematical operation describing a rule for how to merge two
sets of information. It can extract the features from the input. Because of this, convolution
is used for feature extraction in convolutional neural networks. For example, a detection of
an edge [16]. A visualization of the extracted features is represented by Figure 2.4.

𝑓 [𝑥, 𝑦] * 𝑔[𝑥, 𝑦] =
∑︁
𝑖

∑︁
𝑗

𝑓 [𝑖, 𝑗] · 𝑔[𝑥− 𝑖, 𝑦 − 𝑗], (2.6)

8

where the 𝑓 [𝑥, 𝑦] is original data sample, 𝑔[𝑥, 𝑦] is filter.

0 0

0 1

0

2

0 1 1

4 0

0 0

0

0

0 0 -4

-8

Pooled Vector Kernel Destination Pixel0 0

0 1

0

2

0 1 1

0 0

1 1

0

2

1 1 1

1 0

0 0

0

1

0 1 1

0 0

1 1

0

0

1 1 1

Input Vector

Figure 2.5: Representation of a convolution operation in a convolutional layer [15].

The input to the convolution can be a raw data or a feature map from another con-
volution. The Figure 2.5 represents one step in the convolutional layer. The filter can be
also referred to as the convolutional kernel [16]. At each step, the filter is multiplied by
the input data values, pooled to the same size as the filter is. This creates a single a value
that is mapped to the output of the layer, called an activation map or a feature map. The
values of numbers in the filter are the weights of the network that are updated after each
optimizer step [16]. The feature maps for each filter are stacked together along the depth
dimension to construct the output of the convolutional layer [15].

The pooling layers aim to reduce the dimensionality of the representation. They operate
over each feature map in the input and scale its dimensionality. This is usually done using
the max function, which chooses the maximum value of the pooled vector. The size of the
pooled vector is defined by the kernel size. Usually, the convolutional layer and the pooling
layer, which follows the convolutional layer, use the same size of kernel [15].

9

Chapter 3

Neural Network Training

Training neural network is a process of adjusting the parameters Θ of the model so that the
model can do a more accurate estimation. The Perceptron learning rule is briefly introduced
in this section. This simple rule forms a foundation for more powerful algorithms used for
training neural network models.

The Perceptron Learning Rule

The Perceptron is a model of a single layer feed-forward neural network. This model consists
of a binary threshold neuron 𝑦 = 𝑓(𝑏+

∑︀
𝑖𝑤𝑖𝑥𝑖), where 𝑓() is a binary threshold activation

function, 𝑤 is a vector of weights associated with the input 𝑥. The Perceptron is trained
as follows [19]:

1. Randomly choose a training case.

2. If the predicted output matches the output label, do nothing.

3. If the Perceptron predicts 0 and it should have predicted 1, add the input vector to
the weight vector.

4. If otherwise, subtract the input vector from the weight vector.

This algorithm is limited, it converges only for linearly separable datasets [16]. However, it
gives us a glimpse of the way how updating the vector of weights works.

3.1 Introduction to Neural Network Training
Neural networks are used for solving complex, nonlinear problems. For this reason, it is
necessary to use more advanced algorithms than the Perceptron learning rule. The training
algorithm has to be efficient, able to avoid local optima, and convergent for non-convex
optimization problems. The goal of the neural network model is to do the most possible
accurate prediction. To achieve this, it is necessary to minimize the output of the loss
function.

Training neural networks is considered as highly computationally demanding [11]. Suc-
cessful training relies on good minimizing of non-convex functions. Certain choices for neu-
ral network hyper-parameters like batch size, learning rate, or optimizer affect the training
process. However, the training process consists of iterative updating the parameters of the

10

0.0 0.2 0.4 0.6 0.8 1.0
pyi

0

1

2

3

4

NL
L

=
lo

g(
p y

i)

Figure 3.1: Negative Log Likelihood Visualization. The x-axis represents the value of the
probability 𝑃𝑦𝑖 and the y-axis the value of the negative log likelihood − log(𝑝𝑦𝑖). The
graph clearly shows that as the value of negative log likelihood minimizes, the value of the
probability maximizes.

model until the loss function reaches convergence. The way the parameters should update
is calculated by an optimization algorithm.

3.2 Loss Functions
The loss function measures how much is the output of the model different than the expected
output. The output of the loss function is calculated as the average of the aggregated errors
over the entire data set. Each type of machine learning task has a different appropriate loss
function. However, the choice of the loss function is not constrained since the idea behind
all loss functions is the same.

For classifying problems, the logistic loss is used. Generally, they are used when prob-
abilities are of greater interest than hard classifications. Predicting probability means
generating numbers between 0 and 1. For this reason, the activation function of the last
layer must be the softmax activation function. The negative log likelihood is used in this the-
sis. The logarithm is a monotonically increasing function. Thus, minimizing the negative
log-likelihood is equivalent to maximizing the probability as shown in Figure 3.1.

3.3 Backpropagation
The training process consists of an iterative update of the parameters of the model Θ in
order to find an optimal set of parameters Θ𝑓 for which the loss function has the lowest
output value. The parameters are interdependent, so it is not possible to search for the
best value of a parameter one by one. Changing one weight in the input layer affects the
neuron, it propagates directly, and all neurons in the following layers up to the output.

The optimal set of parameters can be found by randomly guessing the values, but
the dimensionality of the parameters makes it computationally very demanding as many
various combinations exist [19]. Fortunately, the problem of finding the optimal set of

11

X

1.0
0.5

0.0
0.5

1.0

Y

1.0
0.5

0.0
0.5

1.0

Z

2.5
2.0
1.5
1.0
0.5

0.0
0.5
1.0

(a) Classic Saddle

X

1.5 1.0 0.5 0.0 0.5 1.0 1.5

Y

1.5
1.0

0.5
0.0

0.5
1.0

1.5

Z

3

2

1

0

1

2

(b) Monkey Saddle

Figure 3.2: Various types of saddle points [2]

parameters to satisfy the loss function can be generalized as a mathematical optimization
of a multivariable function [7]. Popular optimization methods used in machine learning are
gradient descent methods.

The optimization of the loss function reaches a critical point when the derivative of the
loss function is close to zero. The critical points can be local minima or saddle points.
When the derivative is approaching zero value, the optimization algorithm does not have
any information about the current direction of the parameters. This makes the optimization
difficult, as the loss functions may have many local minima and saddle points or large flat
areas. The problem is even more severe because the loss function is calculated with multi-
dimensional input data. For functions with multidimensional input, it is necessary to use
the partial derivatives. Partial derivative represents how the examined function changes
concerning each of the input data separately. The critical points in the multidimensional
space are located at all points for which the partial derivation is almost zero [4].

Gradient of a function 𝑓 is a vector field ∇𝑓 , whose value at point 𝑝 is a vector consisting
of the partial derivatives of the function 𝑓 at point 𝑝.

Gradient descent is an iterative, first-order method to optimize the loss function 𝐽(Θ)
by updating the parameters Θ. The way the parameters should update is computed with
a gradient of the loss function with respect to the parameters. The calculated change
is then applied to the parameters of the model. This process is repeated until reaching
the optima. The gradient descent method combined with the parameters update is called
backpropagation.

Gradient descent converges for a problem that can be solved by linear regression. How-
ever, neural networks contain nonlinearity caused by their activation functions. Further-
more, the loss functions of the neural network model are usually non-convex, and they are
complex functions with many local optima. Gradient descend might end up in some local
minima [16]. Another problem is that the gradient descent is relatively slow.

To overcome these problems, the gradient descent algorithm can be modified. Both
of these flaws can be reduced by using stochastic gradient descent (SGD). In SGD, the
gradient is computed and the parameters are updated after every training sample [16], but
the gradient is computed using a reduced set of randomly chosen parameters, which reduces
the computational complexity and thus accelerates the optimization. The continual update
of parameters after each SGD step can help to avoid the critical points [20].

12

The backpropagation algorithm combined with SGD can be represented as:

𝑤𝑛𝑒𝑤 = 𝑤𝑜𝑙𝑑 − 𝜂∇𝐿𝑘(Θ), (3.1)

where 𝑤𝑛𝑒𝑤 is the updated value of weight, 𝑤𝑜𝑙𝑑 is the former value of weight, 𝜂 is the
learning rate, and ∇𝐿𝑘(Θ) is the stochastic approximation of the gradient of the loss
function for the parameters Θ. The progress of the SGD is represented in Figure 6.27.
This path was obtained during the experiments, which are described later in Section 6.5.
It can be seen that the SGD converges into the minima with confidence.

13

Chapter 4

Neural Network Training Progress
Visualization

The training of the neural network involves large non-convex optimization problems. This
task was believed to be difficult, with a risk of ending up in local optima or saddle points.
In this thesis, the training progress is visualized and qualitatively examined.

4.1 Linear Path Examination
The trajectory that the SGD follows is complicated and high-dimensional. This visualiza-
tion uses a linear interpolation of the parameters in order to obtain a cross-section of the
loss function along the line, which shows the behavior of the loss function. The method
consists of choosing two sets of parameters Θ0 and Θ1, calculating the linear interpolation
according to the interpolation coefficient 𝛼, and plotting the values of the loss function when
given the interpolated set of parameters Θ. This method is represented by the following
equation:

Θ = (1.0 − 𝛼)Θ0 + 𝛼Θ1, (4.1)

This method was introduced by Goodfellow and others in [5]. Results presented in the
paper were successfully reproduced and extended by examining the loss function behavior
on a lower level.

The examination on the level of the parameters unveils the parameters, which have
negligible impact on the performance of the model and shows that in, some cases, the
parameter optimization is on the edge with updating. The iterative updating of the pa-
rameter oscillates around an optimal point. In this thesis is also observed how far has each
parameter traveled from its initial value during the training.

Examination on the level of a layer can unveil the robust and ambient layers. The robust
layers have a big impact on the performance of the model, the ambient layers have only a
little impact on the performance. The impact is represented by a change in the performance
metrics values when the parameters of the examined layer are reinitialized.

.

14

4.2 Quadratic Interpolation of the Parameters
The Linear Path Examination provides a computationally easy visualization of the training
progress on various levels. However, when the validation loss obtained using the interpo-
lated parameters is compared with the actual values of the validation loss measured during
the training, the linear path shows as quite inaccurate. In this thesis, I propose a novel
approach to the examination of the neural network training progress, the Quadratic Path.
This method interpolates the values of the parameters using a second-degree interpolation
polynomial.

The chosen method for obtaining the polynomial coefficients is Lagrange interpolation
polynomial. The Lagrange interpolation polynomial is calculating the value of the interpo-
lated function at a point 𝑥, using a polynomial of 𝑛-th degree. The Lagrange polynomial,
the value of the interpolated function, is calculated as a linear combination:

𝑃𝑛(𝑥) = 𝑓𝑖ℓ𝑖(𝑥), (4.2)

where 𝑓𝑖 are known values of the interpolated function and ℓ𝑖 are Lagrange basis polyno-
mials.

The degree of the polynomial depends on the number of known points. It can be
calculated as 𝑑 = 𝑘 − 1, where 𝑑 represents the degree of the polynomial and 𝑘 represents
the number of known points. To obtain the quadratic equation, the degree of the polynomial
has to be 𝑑 = 2, so the number of known points has to be 𝑘 = 3. The Lagrange polynomial
of degree 𝑑 = 2 can be represented as follows:

𝑃2(𝑥) = 𝑓0
(𝑥− 𝑥1)(𝑥− 𝑥2)

(𝑥0 − 𝑥1)(𝑥0 − 𝑥2)
+ 𝑓1

(𝑥− 𝑥0)(𝑥− 𝑥2)

(𝑥1 − 𝑥0)(𝑥1 − 𝑥2)
+ 𝑓2

(𝑥− 𝑥0)(𝑥− 𝑥1)

(𝑥2 − 𝑥0)(𝑥2 − 𝑥1)
(4.3)

This equation is used in the Quadratic Interpolation method to obtain the values of pa-
rameters at various points of the interpolation coefficient 𝛼.

The parameters of the model are changing in an unknown way. Most likely it is not
a linear change and thus, the proposed method should output results more faithful to the
reality, since it uses a higher degree interpolation.

4.3 Loss Function Landscape Visualization
Loss landscape visualization shows the landscape of the loss function around a trained
model.

Using one-dimensional visualizing method can be misleading since the non-convexities
in the loss function progress are difficult to visualize in one dimensional projection [9]. The
following two-dimensional method tries to overcome the limitation of high dimensionality
using bidimensional projection of random directions.

The method of visualization of the loss landscape is very computationally demanding
compared to the single-dimensional visualization methods. The single-dimensional methods
require calculating the validation loss of the neural network model only in one dimension
for a chosen number of steps, but the two-dimensional methods require calculating the grid
of the validation loss in the desired number of steps. The computational difficulty of the
two-dimensional methods is quadratic compared to the single-dimensional methods. The
computational burden can be avoided by using a smaller number of steps at the cost of
reduced resolution.

15

Projection in random directions was proposed by Goodfellow et al. in [5]. This method
visualizes the loss landscape in two randomly generated directions. After having the direc-
tions generated, the grid of validation loss is calculated.

To capture the variation in trajectories, it is necessary to use nonrandom directions.
Hao Li et al. in [9] propose using PCA to measure how much variation was captured.
The method chooses the two most explanatory directions. Then it creates a grid of the
validation loss values around the trained model. The method visualizes a simplified path
that the optimization algorithm takes.

The reason to use the PCA directions is that two random vectors in a high dimensional
space will be nearly orthogonal with high probability. This can be problematic when the
optimization trajectory lies in a low dimensional space. In this case, a randomly chosen
vector will lie orthogonal to the low dimensional space of the optimization path and a pro-
jection onto random directions will capture almost no variation. Ineffective visualizations
using the random directions projection are shown in Figure 4.1 [9].

0.50 0.25 0.00 0.25 0.50 0.75 1.00 1.25 1.50
1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

0.
10

0

0.600

1.
10

0
1.

60
0

2.100

2.600

2.
60

0

3.100

3.100

3.
60

0

3.
60

0

4.
10

0

4.100

4.600

4.600

5.
10

0

5.100

5.
10

0

5.
60

0

5.6
00

6.
10

0

6.100

6.
10

0

6.
60

0

6.
60

0

7.1
00

7.100

7.100

7.
60

0

7.600

7.
60

0

8.
10

0

8.100

8.
10

0

8.
60

0

8.600

8.
60

0

9.
10

0

9.100

9.
10

0

9.
60

0

9.
60

0

10
.0

00

10.000

10
0.

00
0

10
0.

00
0

(a)

0.0010 0.0005 0.0000 0.0005 0.0010 0.0015 0.0020
0.0020

0.0015

0.0010

0.0005

0.0000

0.0005

0.0010

0.0015

0.0020

0.100

0.600

1.100

1.600

2.100

2.600

3.1003.600

4.100

4.600

5.100

5.600

6.100

6.600

6.600

7.100

7.100

7.600

7.600

8.100

8.1
00

8.100

8.600

8.600

8.600

8.600

9.100

9.100

9.100

9.100

9.600

9.600

9.600

9.600

(b)

Figure 4.1: Ineffective visualizations of optimizer trajectories [9]. In the Figure 4.1a is
visualized a projection of two PCA chosen directions with biggest variance. The Figure
4.1b represents a projection in two random directions. This projection demonstrates only
limited variance in comparison with 4.1a.

16

Chapter 5

Implementation

This chapter will present the design of a tool to examine the neural network training
progress. It will also, discuss the used technologies and the approach of solution of selected
parts of the tool. The tool is available as Python package1 and the source codes are available
on Github2.

5.1 Design
The goal of the tool is to examine the training progress of a neural network model. It is
necessary to provide model-independent examination techniques. The OOP paradigm was
chosen to achieve this.

Each type of examination of training progress has a class dedicated to it. One base
class for storing the configuration of the experiment exists for both linear and quadratic
experiments. A separate class, inheriting from the base class, is created for each single-
dimensional experiment. This separation has made the code more readable for use in the
future and provides flexibility and independence. The tool can be used on any PyTorch
model, when the data loaders for the model are provided. Similarly, surface visualization
has its class.

Neural network models typically have a large number of parameters. To be able to
examine them, several scripts are provided as an example of the tool. The scripts can be
used as base for creating customized scripts, with use of the tool. Each script is designed
to execute different experiment. Main script provides an interface for the user. Users can
configure the experiment with their own interpolation coefficient, CUDA usage, position of
examined parameter and choose of examined layer. The main script provides an option to
automatically run all available experiments at once.

5.2 Technology
Python was chosen as the implementation language for the tool. The decision to use Python
as the implementation language was made due to its flexibility. Python is an interpreted
high-level programming language, which supports multiple programming paradigms. One
of the supported paradigms is object-oriented programming (OOP). The OOP paradigm
supports overriding methods of objects. Everything is an object in Python. This property

1https://pypi.org/project/nnvis/
2https://github.com/suzrz/nnvis

17

https://pypi.org/project/nnvis/
https://github.com/suzrz/nnvis

allows to perform basic mathematical operations like addition, subtraction, multiplication,
and division between different data types. It is very helpful as the tool handles multidimen-
sional structures, called tensors and scalars on the other side. In Python, it is possible to use
modules implemented with C/C++ language which can significantly increase performance.

PyTorch3 is an open-source machine learning library. This library provides optimized
work with tensors. Besides the tensor operations implementation, it provides several helper
modules. Worth mentioning is the torch.nn module which contains a base class for neural
network model implementation, providing especially easy work with the parameters of the
model. Another great module is torch.nn.functional which provides various types of
layers, enabling easy composition of a neural network model. The PyTorch enables pro-
gramming on NVIDIA4 GPUs through the torch.cuda module, which greatly increases
the speed of the implemented methods. And finally the torch.Tensor module, providing
the tensor operations.

Another very useful used modules are NumPy5, providing various mathematical opera-
tions and fast multidimensional arrays handling, Matplotlib6, a powerful plotting library.

The code for visualizing the loss landscape is inspired by the code provided in a public
repository7 as a supplementary material to the paper authored by Hao Li et al. [9] and
Animating the Optimization Trajectory of Neural Nets project by Chao Yang8.

The tool was implemented with respect to portability. It does not use any system-
specific libraries or features. Paths of the files are the only system-specific constraint. This
is solved using the os module, which detects the operating system during the runtime and
behaves according to it. The tool does not require a CUDA GPU to run. It automatically
detects whether CUDA is available and if the user has not forbidden the usage of CUDA. If
the CUDA cores are not present, the tool will use CPU. Finally, the chosen programming
language Python is also a multiplatform technology.

3https://pytorch.org
4https://developer.nvidia.com/cuda-zone
5https://numpy.org
6https://matplotlib.org
7https://github.com/tomgoldstein/loss-landscape
8https://github.com/logancyang/loss-landscape-anim

18

https://pytorch.org
https://developer.nvidia.com/cuda-zone
https://numpy.org
https://matplotlib.org
https://github.com/tomgoldstein/loss-landscape
https://github.com/logancyang/loss-landscape-anim

Chapter 6

Examining the Training Progress
of Neural Network

This thesis focuses on examining the SGD optimization algorithm and the negative log
likelihood loss function represented by the following equation:

𝐿𝑖(Θ) = − log(𝑝𝑦𝑖), (6.1)

where 𝐿𝑖(Θ) is the negative log likelihood, 𝑖 represents the 𝑖-th examined data sample,
and 𝑝𝑦𝑖 is the likelihood that the examined data sample belongs to one of the classes. The
logarithm function is a monotonically increasing function, thus minimizing the negative
logarithm likelihood is equivalent to maximizing the probability. The probability 𝑝𝑦𝑖 is
computed as follows:

𝑝𝑦𝑖 =
𝑒𝑥𝑝(𝑦𝑖)∑︀𝑁

𝑛=1 𝑒𝑥𝑝(𝑦𝑛)
, (6.2)

where 𝑦𝑖 is output of the model for 𝑖-th data sample and 𝑁 is the total number of examined
data samples. This is called the softmax function. It converts the unnormalized values at
the end of the neural network model to normalized probabilities in the interval ⟨0; 1⟩.

The implemented tool, presented in Chapter 5, was successfully used to execute the
following experiments and to visualize the results.

Experimental setup

Experiments were performed on the MNIST dataset1. MNIST dataset contains 60000
training samples and 10000 test samples of handwritten digits with labels. The samples
are black and white images of original size 28x28 pixels, transformed to 32x32 pixels. The
goal of the neural network is to correctly predict what digit is on the input immage.

The network architecture I choose to examine contains 5 layers. Model of this network
uses the rectified linear unit activation function (ReLU). The input layer is a convolutional
layer with the size of kernel 3x3. This layer takes as input the 32x32 greyscale image. The
second layer of the network is also a convolutional layer with kernel size 3x3. Max pooling
is done after each convolutional layer. The following two hidden layers and the output layer
are fully connected. The architecture of the examined neural network is based on LeCun’s

1http://yann.lecun.com/exdb/mnist/

19

http://yann.lecun.com/exdb/mnist/

LeNet-5 architecture [8]. LeNet-5 architecture is displayed by Figure 6.1 and the actual
architecture is represented in a simplified way by Table 6.1.

Figure 6.1: Architecture of LeNet-5. Convolutional Neural Network. Each plane is a set of
features. [8]

Table 6.1: Architecture of the examined model

Name Number of Parameters
conv1 60
conv2 880
fc1 69240
fc2 10164
fc3 850

6.1 Preliminary experiments
Experimenting with the neural network training process can be time and power-consuming.
Because of this fact, I decided to do the preliminary experiments first. They include finding
a good number of epochs and sizes of training and test dataset. The goal of this thesis is
to examine the training process and not to have the most accurate model. To achieve this
goal, it is sufficient to use as minimal datasets and the number of epochs as possible to still
have valid results.

Number of epochs

In this experiment, the model has always the same initial parameters, which are randomly
generated before the first run of the experiment. Then the training of the model begins.
After executing a certain number of epochs, the performance of the model is measured.
Results of them are demonstrated in Figure 6.2.

Dataset Size Impact

Reducing the size of the datasets could improve the speed of training and validating the
model. The goal of this experiment is to find the minimum size of the dataset where results
are valid.

20

0 5 10 15 20 25 30
Number of epochs

0.1

0.2

Va
lid

at
io

n
lo

ss

0 5 10 15 20 25 30
Number of epochs

92

94

96

98
Ac

cu
ra

cy

Figure 6.2: Impact of the number of epochs on model’s performance. It is possible to see
that 15 epochs are sufficient for the model to perform well on its task. It is also possible
to see that with the increasing number of epochs, the performance of the model stops
improving rapidly.

For examining the impact of the training dataset on the performance, the model always
has the same randomly generated initial parameters. The number of epochs is 152. Samples
belonging to the examined subset are randomly chosen from the training dataset. Before
training the model with the desired subset size, the model is set to the initial state. Then
the model is trained on the training subset and its performance is then evaluated3. The
final parameters of the model are cleared after evaluating the performance. This process is
repeated until selected subsets are examined. The results are shown in Figure 6.3.

0 10000 20000 30000 40000 50000 60000
Size of training data set

0

1

2

Va
lid

at
io

n
lo

ss

0.0570.0660.080

0 10000 20000 30000 40000 50000 60000
Size of training data set

25

50

75

100

Ac
cu

ra
cy

98.06097.88097.480

Figure 6.3: Impact of training subset size on the performance of the network. Generally, we
can tell that a bigger subset means better results on the performance measuring. Around
10000 training samples, it is possible to see a rapid improvement in the performance of the
model.

2The number 15 I choose based on the results of the previous experiment.
3Performance evaluating is done on the full test dataset.

21

Second part of experimenting with dataset size is examining the stability of the results
of performance measurement with different sizes of the validation subset. This experiment
was realized with a model trained on a complete training dataset4. The model was not
changed during experimenting. The model’s performance was measured 100 times for each
examined number of testing samples.

From the results of the preliminary experiments it is possible to see that around 10000
(16.67 %) training samples are enough to see a rapid improvement in the performance of
the model. The size of the test data set can be reduced to 8000 (80 %) samples as the
Figure 6.4 shows that the results of validation using the reduced dataset are stable enough.

1000 1500 2000 3000 4000 5000 7000 8000 9000 10000
Size of validation dataset

0.04

0.05

0.06

0.07

0.08

Va
lid

at
io

n
lo

ss

1000 1500 2000 3000 4000 5000 7000 8000 9000 10000
Size of validation dataset

97.00

97.25

97.50

97.75

98.00

98.25

98.50

98.75

99.00

Ac
cu

ra
cy

Figure 6.4: Impact of test subset size on stability of network performance measuring. The
performance measurement is confident in measured values when testing the model with
full validation dataset. Though, for the purpose of this thesis, the measurement is stable
enough with 8000 validation samples.

6.2 Linear Path Experiment
The method I chose to visualize the training process on the level of layers is the linear
path visualization. This method was introduced in [5], but in the paper, the loss surface is
examined only on the level of the whole model. In this thesis, the loss function is examined
on the level of layers and individual parameters.

The method consists of a linear interpolation between two chosen sets of parameters.
The goal is to plot the values of the loss function 𝐽(Θ𝛼) along with a series of points for
varying values of an interpolation coefficient 𝛼. This method shows a cross-section of the
loss function along the calculated line [5]. The parameters are calculated in the following
way:

Linear Path Experiment on the Level of Layers

Individual layers are examined in the first experiment. The following process of the exper-
iment is repeated for each layer individually.

The parameters Θ𝑖 are obtained before the training of the model and set as Θ0 for the
interpolation. The parameters Θ𝑓 are obtained after the last training epoch of the model
and set as Θ1 for the interpolation. Then the parameters Θ𝛼 are obtained as a result of

460000 training samples

22

the interpolation for the value of the interpolation coefficient 𝛼. The parameters of the
examined layer are replacing their equivalent in the parameters loaded in the model. The
performance of the model is measured after each interpolation step.

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.5

1.0

1.5

2.0

Va
lid

at
io

n
lo

ss

0.0 0.2 0.4 0.6 0.8 1.0

20

40

60

80

100

Ac
cu

ra
cy

conv1
conv2
fc1
fc2
fc3
all

Figure 6.5: Linear interpolation of parameters in layers. In this figure is demon-
strated a summary of the results of the experiment. It is evident that the first convolu-
tional layer has the biggest impact on the final performance of the model. The second most
important layer is the first convolutional layer.

The result of the experiment presented in Figure 6.5 uncovers robust and ambient layers.
The biggest impact on the validation loss as well as on the accuracy has the first fully-
connected layer fc1. This layer can be classified as robust with confidence, it is a critical
layer for the model to make accurate predictions. Changing its parameters to the initial
state while having others in the trained state caused the model to make more mistakes than
correct predictions. The second most important layer is the first convolutional layer conv1.
The change of the parameters of the conv1 layer causes a deterioration in accuracy until the
interpolation coefficient reaches a value around 𝛼 = 0.1, where the accuracy of the model
acquires its almost final value. The accuracy in this place even overtakes the accuracies
measured with the parameters of other layers in a modified state. The conv1 layer can also
be classified as a robust layer. The other layers also have an impact on the performance of
the model, but not as big as fc1 and conv1 have. According to the observations, the other
layers could be classified as ambient layers.

Linear Path Experiment on the Level of Parameters

The second experiment examined the individual parameters of the model. Chosen param-
eters are examined separately and the individual interpolations are not influenced by each
other. This experiment is repeated for each chosen parameter as follows.

The parameters Θ𝑖 are obtained before the training of the model and set as Θ0 for the
interpolation, the parameters Θ𝑓 are obtained after the training of the model and are set
as Θ1 for the interpolation. Final parameters Θ𝑓 are loaded into the model and thus it is
set to its trained state. Then one chosen parameter is interpolated according to (4.1) and
the interpolated value replaces the value of this parameter in the parameters loaded in the
model. The performance of the model is evaluated after each interpolation step.

In addition, the distance between the initial and final parameters is measured during this
experiment. The distance is measured using the Euclidean demonstrated for 𝑛-dimensional
vectors by (6.3).

23

𝑑(Θ𝑖,Θ𝑓) =

√︁
(Θ

(1)
𝑖 − Θ

(1)
𝑓)2 + (Θ

(2)
𝑖 − Θ

(2)
𝑓)2 + · · · + (Θ

(𝑛)
𝑖 − Θ

(𝑛)
𝑓)2 (6.3)

The result of the experiment executed on the convolutional layers is shown in Figure
6.6. Both of the layers have a perceptible impact on the final value of the loss function. The
parameters of the second convolutional layer have a similar effect on the loss function as
the parameters of the first convolutional layer, despite that the parameters of conv1 have
traveled more distance during the training. The loss function progress with the modified
parameter set in both convolutional layers is corresponding to the shape of the negative
log-likelihood.

0.50 0.25 0.00 0.25 0.50 0.75 1.00 1.25 1.50

0.0620

0.0625

0.0630

0.0635

0.0640

0.0645

0.0650

0.0655

Va
lid

at
io

n
lo

ss

(a) First convolutional layer

0.50 0.25 0.00 0.25 0.50 0.75 1.00 1.25 1.50

0.0620

0.0622

0.0624

0.0626

0.0628

0.0630

0.0632

0.0634

Va
lid

at
io

n
lo

ss

(b) Second convolutional layer

Figure 6.6: Linear interpolation of individual parameters. The figure represents
the values of the loss function when one parameter is interpolated from first and second
convolutional layer. The lines intersect at 𝛼 = 1, where the parameters loaded in the model
are according to the Θ𝑓 parameters. The opacity of the line shows how much distance
has the exact parameter traveled. The more opaque, the more distance the parameter has
traveled.

It is also possible to observe how big is the distance that the parameter has traveled
from its initial state to its final state. This can indicate how important the exact parameter
is. The bigger the distance, the bigger the impact on the final validation loss. However,
this can be misleading since the initialization of parameters is random. In this context,
the accuracy can also be observed as a similar metric. When the accuracy does not change
much, then we know that this exact parameter is not much important.

Figure 6.7 provides a closer look on the chosen parameters. The good behaving pro-
gresses of the loss function are presented on the first two rows. Modifying the parameter
has affected the performance of the model perceptibly and the interpolation of this param-
eter from the initial value to the final was accompanied by the well-behaved loss function.
The accuracy metric is more unstable when changing the parameters, this could indicate
that the parameters are critical for the network to make an accurate prediction. The loss
function for the other two parameters is clearly much more unstable. The accuracies of
these parameters are not changing, both of these observations could indicate that these two
parameters are less significant for the network than the first two.

Examination of the parameters in fully connected layers represented by Figure 6.8 shows
that individually the parameters of these layers have negligible impact on the final validation
loss. The majority of them have small changes between their initial value and their final
value. The small change in their values could be explained by the broadness of these layers.

24

0.50 0.25 0.00 0.25 0.50 0.75 1.00 1.25 1.50

0.058

0.060

0.062

0.064

Va
lid

at
io

n
lo

ss

(a)

0.50 0.25 0.00 0.25 0.50 0.75 1.00 1.25 1.50

97.975

98.000

98.025

98.050

98.075

98.100

98.125

Ac
cu

ra
cy

(b)

0.50 0.25 0.00 0.25 0.50 0.75 1.00 1.25 1.50

0.0570

0.0575

0.0580

0.0585

0.0590

0.0595

Va
lid

at
io

n
lo

ss

(c)

0.50 0.25 0.00 0.25 0.50 0.75 1.00 1.25 1.50

98.02

98.04

98.06

98.08

98.10

98.12

98.14

Ac
cu

ra
cy

(d)

0.50 0.25 0.00 0.25 0.50 0.75 1.00 1.25 1.50

0.057170

0.057171

0.057172

0.057173

Va
lid

at
io

n
lo

ss

(e)

0.50 0.25 0.00 0.25 0.50 0.75 1.00 1.25 1.50

94

96

98

100

102

Ac
cu

ra
cy

(f)

0.50 0.25 0.00 0.25 0.50 0.75 1.00 1.25 1.50

3.0

3.5

4.0

4.5

5.0

5.5

Va
lid

at
io

n
lo

ss

1e 7+5.7172e 2

(g)

0.50 0.25 0.00 0.25 0.50 0.75 1.00 1.25 1.50

94

96

98

100

102

Ac
cu

ra
cy

(h)

Figure 6.7: Linear Interpolation of the Parameters of the First Convolutional Layer. Vali-
dation loss is on the left side, accuracy is on the right

25

0.50 0.25 0.00 0.25 0.50 0.75 1.00 1.25 1.50

0.0619

0.0620

0.0621

0.0622

0.0623

0.0624

0.0625

Va
lid

at
io

n
lo

ss

(a) First fully connected layer

0.50 0.25 0.00 0.25 0.50 0.75 1.00 1.25 1.50

0.06185

0.06190

0.06195

0.06200

0.06205

0.06210

Va
lid

at
io

n
lo

ss

(b) Second fully connected layer

0.50 0.25 0.00 0.25 0.50 0.75 1.00 1.25 1.50

0.062

0.063

0.064

0.065

0.066

0.067

0.068

0.069

Va
lid

at
io

n
lo

ss

(c) Third fully connected layer

Figure 6.8: Linear Interpolation of Parameters of the Fully Connected Layers. The figure
represents a summary of the results of the experiment on fully connected layers. The
parameters of the fully connected layers generaly did not change much and their impact on
the validation loss in negligible.

Those which are fully connected are generally broader than the convolutional layers and as
a whole unit, they have an essential effect on the neural network model.

Figure 6.9 provides a closer look on the parameters of the last layer. The lowest value of
the loss function is in the initial state for the first chosen parameter, represented by Figure
6.9a. This can happen as the network works as a decentralized computational model. The
validation loss can be lower for this parameter, but for the whole set of parameters it can
be bigger. The optimization algorithm of the model never reaches this place because of the
high validation loss value when having all parameters in the same state. The parameter
has relatively little impact on the accuracy of the model. The second chosen parameter,
represented in Figures 6.9c and 6.9d, shows that the training progress is a simple line when
the neural network model knows the initial and final values of the parameters. However,
the change in the validation loss is so small that the impact on the accuracy of the model
is immeasurable on this level of precision. The third parameter affects the loss function
wildly but the change is small. The behavior of this parameter during the training can be
considered as noise or that the optimization algorithm is on the edge with its capabilities
for this parameter, it could not decide in which way it should update the parameter. The
impact on the accuracy is immeasurable. The last chosen parameter has similar behavior
of the loss function as the first chosen parameter, but it affects the validation loss more
moderately as the values of the validation loss are smaller and the accuracy of the model
is not affected.

26

0.50 0.25 0.00 0.25 0.50 0.75 1.00 1.25 1.50

18

20

22

24

Va
lid

at
io

n
lo

ss
1e 7+5.717e 2

(a)

0.50 0.25 0.00 0.25 0.50 0.75 1.00 1.25 1.50

94

96

98

100

102

Ac
cu

ra
cy

(b)

0.50 0.25 0.00 0.25 0.50 0.75 1.00 1.25 1.50
0.05714

0.05716

0.05718

0.05720

0.05722

0.05724

0.05726

Va
lid

at
io

n
lo

ss

(c)

0.50 0.25 0.00 0.25 0.50 0.75 1.00 1.25 1.50

94

96

98

100

102

Ac
cu

ra
cy

(d)

0.50 0.25 0.00 0.25 0.50 0.75 1.00 1.25 1.50
4.8

5.0

5.2

5.4

5.6

5.8

6.0

6.2

Va
lid

at
io

n
lo

ss

1e 8+6.20152e 2

(e)

0.50 0.25 0.00 0.25 0.50 0.75 1.00 1.25 1.50

94

96

98

100

102

Ac
cu

ra
cy

(f)

0.50 0.25 0.00 0.25 0.50 0.75 1.00 1.25 1.50

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

Va
lid

at
io

n
lo

ss

1e 8+5.71723e 2

(g)

0.50 0.25 0.00 0.25 0.50 0.75 1.00 1.25 1.50

94

96

98

100

102

Ac
cu

ra
cy

(h)

Figure 6.9: Linear Interpolation of Parameters of the Last Fully Connected Layer.

27

6.3 Quadratic Path Experiment
The proposed method to visualize the training progress more accurately is to interpolate the
parameters of the network using the intersection with a curve. The value of the parameters
is calculated using the Lagrange interpolation coefficient of degree 𝑑 = 2. The calculation of
the parameters at a series of points of interpolation coefficient 𝛼 is done as it is represented
in (4.3). This method should be more accurate than the Linear Path experiment as it uses
a higher degree of interpolation. However, it is still very little computationally demanding.

It is necessary to choose three points to perform the quadratic interpolation of the
parameters. Following data are used in this case:

Table 6.2: Known Data Coordinates

Point Parameters 𝛼

𝑥0 Θ𝑖𝑛𝑖𝑡𝑖𝑎𝑙 0
𝑥1 Θ𝑚𝑖𝑑 0.5
𝑥2 Θ𝑓𝑖𝑛𝑎𝑙 1

These points are used for creating the Lagrange interpolation coefficient of the second
degree represented by Equation 4.3. With this interpolation polynomial, it is possible to
calculate the values of parameters at each point 𝛼.

Quadratic Path Experiment on the Level of Layers

This method examines the neural network training progress on the level of layers. It is
repeated for each layer in the same way, based on the following template.

First, the initial parameters Θ𝑖 are obtained before the model sees any data. Then,
the model is trained, when the model is in half of the training progress, the parameters
of the mid point are obtained as Θ𝑚. Finally, the final parameters Θ𝑓 of the model are
obtained after the model finishes its training progress. The known points for the quadratic
interpolation of the layer parameters are following:

Table 6.3: Known Data for Examining the Layers

x-axis 0 0.5 1

y-axis Θlayer
𝑖 Θlayer

𝑚 Θlayer
𝑓

After obtaining the known parameters, the Lagrange polynomial of second degree, pre-
sented in 4.3, is constructed with Θlayer

𝑖 as 𝑓0, Θlayer
𝑚 as 𝑓1 and Θlayer

𝑓 as 𝑓2.
The constructed polynomial is then used to calculate the value of parameters for each

interpolation coefficient 𝛼. The model has loaded its final parameters, but the examined
parameters Θlayer

𝑓 of the examined layer are replaced with the interpolated values Θlayer
𝛼 for

each interpolation step. The performance of the model is evaluated after each interpolation
step. Both the weights and biases of the layers are interpolated.

The quadratic path on the level of layers supports the results of the linear path experi-
ment from Section 6.2, but it does represent the progress of the training more faithfully to
the reality. The results are presented in the following Figures.

28

0.0 0.2 0.4 0.6 0.8 1.0
0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

Va
lid

at
io

n
lo

ss

(a)

0.0 0.2 0.4 0.6 0.8 1.0
97.85

97.90

97.95

98.00

98.05

98.10

Ac
cu

ra
cy

(b)

Figure 6.10: First Convolutional Layer

0.0 0.2 0.4 0.6 0.8 1.0

0.1

0.2

0.3

0.4

0.5

0.6

Va
lid

at
io

n
lo

ss

(a)

0.0 0.2 0.4 0.6 0.8 1.0

92

93

94

95

96

97

98
Ac

cu
ra

cy

(b)

Figure 6.11: Second Convolutional Layer

0.0 0.2 0.4 0.6 0.8 1.0
0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

Va
lid

at
io

n
lo

ss

(a)

0.0 0.2 0.4 0.6 0.8 1.0

40

50

60

70

80

90

100

Ac
cu

ra
cy

(b)

Figure 6.12: First Fully Connected Layer

29

0.0 0.2 0.4 0.6 0.8 1.0

0.075

0.100

0.125

0.150

0.175

0.200

0.225

0.250

Va
lid

at
io

n
lo

ss

(a)

0.0 0.2 0.4 0.6 0.8 1.0

93

94

95

96

97

98

Ac
cu

ra
cy

(b)

Figure 6.13: Second Fully Connected Layer

0.0 0.2 0.4 0.6 0.8 1.0
0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

Va
lid

at
io

n
lo

ss

(a)

0.0 0.2 0.4 0.6 0.8 1.0

88

90

92

94

96

98

Ac
cu

ra
cy

(b)

Figure 6.14: Third Fully Connected Layer

30

Quadratic Path Experiment on the Level of Parameters

The examination of the neural network training progress on the level of the parameters is
done for an interpolation coefficient in the range: 𝛼 ∈ ⟨−0.5; 1.5⟩. The range was chosen to
visualize what could happen if the training would proceed.

The experiment is done similarly to the quadratic interpolation of the parameters on
the level of layers. The initial parameters Θ𝑖, mid parameters Θ𝑚 and final parameters
Θ𝑓 are obtained. The known points for this experiment are following:

Table 6.4: Known Data for Examining the Parameters

x-axis 0 0.5 1

y-axis Θparam
𝑖 Θparam

𝑚 Θparam
𝑓

The Lagrange interpolation polynomial is constructed similarly as is for the quadratic
path on the level of layers, using the Equation 4.3 and substituing functional values Θparam

𝑖

as 𝑓0, Θparam
𝑚 as 𝑓1 and Θparam

𝑓 as 𝑓2.
Similarly to the previous experiment, the final parameters are loaded into the model.

Then during each interpolation step, the interpolated parameters Θparam
𝛼 are replacing

its equivalent in the parameters loaded in the model. After each interpolation step, the
performance of the model is evaluated.

0.50 0.25 0.00 0.25 0.50 0.75 1.00 1.25 1.50

0.06

0.07

0.08

0.09

0.10

0.11

Va
lid

at
io

n
lo

ss

(a) conv1 1011

0.50 0.25 0.00 0.25 0.50 0.75 1.00 1.25 1.50

97.85

97.90

97.95

98.00

98.05

98.10

Ac
cu

ra
cy

(b) conv1 1011

Figure 6.15: Quadratic interpolation of individual parameter of first convolutional layer.

The results are corresponding to the results of the linear path experiment for individual
parameters. It can be observed that the quadratic interpolation has more smooth progress.
The quadratic path gives similar results for certain patterns of the linear path experiment
results. The proposed method diverges from the results of the linear path experiment when
extrapolating the parameters.

The results of the experiment executed on the first convolutional layer are presented in
Figure 6.15. They show that in the first convolutional layer the parameters are behaving
well. The loss function progress has a nice convex shape and for all chosen parameters it
has a similar pattern. The accuracies are more interesting in this case. As in the linear
path experiment, the change in the accuracy is negligible. When the accuracy does not
change much and long flat areas can be observed, the parameter has little impact on the
final performance of the model.

31

0.50 0.25 0.00 0.25 0.50 0.75 1.00 1.25 1.50

0.057

0.058

0.059

0.060

0.061

0.062

0.063
Va

lid
at

io
n

lo
ss

(a) conv2 1102

0.50 0.25 0.00 0.25 0.50 0.75 1.00 1.25 1.50

97.90

97.95

98.00

98.05

98.10

98.15

Ac
cu

ra
cy

(b) conv2 1102

Figure 6.16: Quadratic interpolation of individual parameter of second convolutional layer.

The progress of the training visualized in the parameters of the second convolutional
layer is very smooth. The results are shown in Figure 6.16.

The parameters of the first fully connected layer are expected to have a bigger impact on
the final performance than the parameters of other layers have. This expectation is based
on the results of the layer examination experiments. A closer look at the parameters shows
the opposite. Individual parameters of the most important layer of the model have little
impact on the final performance. The following results agree and support the conclusion
of the linear path experiment executed on the first fully connected layer. The quadratic
interpolation of parameters of the first fully connected layer is shown in Figure 6.17

0.50 0.25 0.00 0.25 0.50 0.75 1.00 1.25 1.50

0.057169

0.057170

0.057171

0.057172

0.057173

0.057174

0.057175

Va
lid

at
io

n
lo

ss

(a) fc1 112265

0.50 0.25 0.00 0.25 0.50 0.75 1.00 1.25 1.50

98.1200

98.1225

98.1250

98.1275

98.1300

98.1325

98.1350

98.1375

98.1400

Ac
cu

ra
cy

(b) fc1 112265

Figure 6.17: Quadratic interpolation of individual parameter of the first fully connected
layer.

The training progress visualized in the parameters of the second and last fully connected
layers is similar to the visualization on the first fully connected layer. The individual
parameters have little impact on the final performance as seen in Figure 6.18.

32

0.50 0.25 0.00 0.25 0.50 0.75 1.00 1.25 1.50

0.0572

0.0573

0.0574

0.0575

0.0576
Va

lid
at

io
n

lo
ss

(a) fc2 4772

0.50 0.25 0.00 0.25 0.50 0.75 1.00 1.25 1.50

98.100

98.105

98.110

98.115

98.120

98.125

98.130

Ac
cu

ra
cy

(b) fc2 4772

0.50 0.25 0.00 0.25 0.50 0.75 1.00 1.25 1.50

0.05690

0.05695

0.05700

0.05705

0.05710

0.05715

0.05720

Va
lid

at
io

n
lo

ss

(c) fc3 0357

0.50 0.25 0.00 0.25 0.50 0.75 1.00 1.25 1.50

98.100

98.105

98.110

98.115

98.120

98.125

98.130

98.135

98.140

Ac
cu

ra
cy

(d) fc3 0357

Figure 6.18: Quadratic interpolation of the parameters of second and third (last) fully
connected layers.

6.4 Comparison Between the Quadratic and Linear Path
The comparison between the linear and quadratic path methods provides a glimpse on the
differences between them.

The comparison was performed on one model. In the visualization, the linear and
quadratic paths are displayed in one graph. The graph axes are shared between the two
methods. Each figure represents a comparison between linear path and quadratic path
examination methods.

The linear path method shows that the SGD algorithm takes a more steep path than
the linear path. Based on this observation, the steepness and shape of the quadratic path
was examined.

On the level of the whole model, the quadratic path definitely performs better than
the linear path examination method. The Quadratic Path is more faithful to the real
validation progress. The SGD in real progress minimizes the validation loss after the first
training epoch. Both of the linear and quadratic paths need more time to reach similar
values of the validation loss. The linear path intersects the actual path at the end of
the interpolation. The quadratic path intersects the actual path much sooner, around the
interpolation coefficient 𝛼 = 0.5. Which is approximately two times faster than the linear
path and thus the quadratic path provides a more accurate visualization of the actual
training progress. The results are shown in Figure 6.19.

Several patterns can be identified at the level of parameters. The patterns always
depend on both of the training progress visualization methods. The comparison on the

33

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.5

1.0

1.5

2.0
Va

lid
at

io
n

Lo
ss

0 2 4 6 8 10 12
Epochs

Linear interpolation
Quadratic interpolation
Real values

(a) Comparison of the methods.

0.4 0.5 0.6 0.7 0.8 0.9 1.0

0.04

0.06

0.08

0.10

0.12

0.14

0.16

Va
lid

at
io

n
Lo

ss

5 6 7 8 9 10 11 12 13
Epochs

Linear interpolation
Quadratic interpolation
Real values

(b) Detail of the intersection of the methods.

Figure 6.19: Neural network training progress examination methods in comparison to real
values of the validation loss. The bottom x-axis represents the progress of the interpolation.
The top x-axis represents the progress of the actual training.

(a) (b) (c)

Figure 6.20: Monotonically Descending Linear – Convex Quadratic. When the linear path
is monotonically descending, the quadratic path has convex shape. The orange curve is
the linear path progress visualization and the blue curve is the quadratic path progress
visualization.

level of parameters was done on 𝛼 ∈ ⟨−0.5; 1.5⟩ of the interpolation coefficient 𝛼. The ticks
and labels of the visualizations were omitted for the sake of readability. The main purpose
of the figures is to show the identified patterns.

Pattern identified as monotonically descending linear – convex quadratic is shown in
Figure 6.20. When the linear path is monotonically descending, then the quadratic path is
convex. Visualization in Figure 6.20b represents a parameter whose value does not change
much during the training. The noise that can be observed is caused by an oscillation of the
parameter value around an optimum point.

Another observed pattern, identified as monotonically ascending linear – concave quadratic
is presented in Figure 6.21. The concave shape of the quadratic interpolation is caused by
the parameters of the middle known point are corresponding to a higher value of validation
loss than the parameters of the end known point.

A flat region pattern can be observed in Figure 6.22. This pattern appears when the
linear path has a convex shape, but the change in the validation loss value is little. The
quadratic path contains a flat region due to the relatively fast descent at the start but a
small change overall. This pattern can be linked to the bump in quadratic pattern, described
in the following paragraph.

In Figure 6.23 can be observed that the quadratic path does a little bump when the
linear path is convex. The quadratic interpolation reacts too fast and too radically with

34

(a) (b) (c)

Figure 6.21: Monotonically Ascending Linear – Concave Quadratic. The orange curve
represents the linear path, the blue curve represents the quadratic path.

(a) (b) (c)

Figure 6.22: Sligthly Convex Linear – Flat Region in Quadratic. The orange curve repre-
sents the linear path, the blue curve represents the quadratic path.

(a) (b) (c)

Figure 6.23: Convex Linear – Bump in Quadratic. The orange curve represents the linear
path, the blue curve represents the quadratic path.

little changes. This causes the bump to appear. This pattern can be linked to the previous
flat region pattern. The difference is that in the flat region pattern, the linear path is
monotonically descending, but in the bump pattern, the linear path starts to ascend before
it reaches 𝛼 = 1.0 value of the interpolation coefficient. The detail of the difference is shown
in Figure 6.24.

The last identified pattern Rapidly Ascending Linear – Wave in Quadratic is shown
in Figure 6.25. A wave appears in the quadratic path visualization when the validation
loss is growing rapidly. As mentioned before, the quadratic interpolation, through which
the parameters of the quadratic path are obtained, reacts too fast when a strong impulse
appears. Because of that, the quadratic path has to dramatically change its course when
approaching the end known point.

Generally, it can be said that the linear path provides more stable results when the
interpolation coefficient gets behind the range of known points between ⟨0; 1⟩. The quadratic
path starts to run too far away. The quadratic interpolation of the parameters when the

35

0.50 0.25 0.00 0.25 0.50 0.75 1.00 1.25 1.50
0.055

0.060

0.065

0.070

0.075

0.080

0.085

0.090

Va
lid

at
io

n
lo

ss

Linear
Quadratic

(a)

0.50 0.25 0.00 0.25 0.50 0.75 1.00 1.25 1.50

0.057

0.058

0.059

0.060

0.061

0.062

0.063

Va
lid

at
io

n
lo

ss

Linear
Quadratic

(b)

Figure 6.24: Difference between the flat region and bump patterns.

(a) (b) (c)

Figure 6.25: Ascending Convex Linear – Wave in Quadratic. The orange curve represents
the linear path, the blue curve represents the quadratic path.

interpolation coefficient is 𝛼 /∈ ⟨0; 1⟩ takes bigger steps than the linear interpolation at the
same values of 𝛼 and thus the values of the validation loss are corresponding to different
parameters.

The quadratic path method provides results more faithful to the reality, but the method
has limitations. The quadratic interpolation reacts too hastily to little changes and starts to

”running away“ when the interpolation goes behind the known points. However, when the
quadratic path is used for visualization of the training progress inside the range constrained
by known points, it does provide more accurate results than the linear path.

6.5 Loss Function Surface Visualization
The visualization of the loss function landscape provides a look at the shape of the validation
loss around a trained model. The visualization is done by the projection of two random
directions. This method provides information about the complexity of the training progress
of the model.

To achieve this, two random directions are chosen to create a projection of the loss
landscape. Then a loss grid is created, which has its center point at the trained state of the
model. The surroundings are computed with move around the starting point in random
directions with a step size calculated from the resolution.

As discussed in Section 4.3, the projection in the random directions is not ideal for
visualizing the path of the optimizer. Different examination method is used for this reason.
This method chooses the two most explanatory directions from the multidimensional space,
using the principal component analysis. Then the loss landscape around the trained model

36

x

1.0 0.5 0.0 0.5 1.0 1.5 2.0

y

1.0
0.5

0.0
0.5

1.0
1.5

2.0

f(x
, y

)

20

40

60

80

100

20

40

60

80

100

(a) 3D surface

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5
20

40

60

80

100

(b) Heatmap

Figure 6.26: Visualization of the loss landcape of simple convolutional neural network
model.

1 0 1 2 3 4 5

3

2

1

0

1

2

3

4

0.0

1.2

2.4

3.6

4.8

6.0

7.2

8.4

9.6

10.8

Figure 6.27: Visualization of SGD path on the simple CNN model.

is created, the landscape is visualized up to the initial point of the optimization of the loss
function. Finally, the path that the optimizer chooses is visualized in the loss landscape.

The result of the visualization is presented in Figure 6.27. The SGD optimizing algo-
rithm converges to the minima with confidence for the simple CNN model.

37

Chapter 7

Conclusion

The goal of this thesis was to visualize and examine the training progress of neural networks.
The training progress is highly computational demanding task and some of its parts are not
fully examined. The proposed tool in this thesis provides a number of various methods to
visualize the progress. The visualization makes possible to examine the training progress
on the level of whole model, layers and individual parameter.

The visualization of the training progress on the level of the model using the linear path
examination was successfully reproduced. The results of this experiment show that if the
model knew the final parameters, a simple line would do a good job of training. The linear
path on the level of layers has revealed and identified the robust and ambient layers. This
identification could provide a glimpse of the effectiveness of the examined architecture of
a neural network model. The experiment, executed on the level of parameters, provides a
detailed look at the training progress on the individual parameters of the model. This can
help to identify fast and slow-paced changes in parameters.

The proposed quadratic path experiment enhances the linear path experiment. It pro-
vides results that are more faithful to the reality. Especially on the level of the whole
model and parameters can be seen the difference in the accuracy of these two methods.
This can unveil details about the training progress with bigger confidence. The results of
this experiment are corresponding to the results of the linear path experiment.

The loss function surface was visualized using both random directions and the PCA
directions. The random directions projection provides a look at the complexity of the
neural network model and its training. The PCA directions projection allows visualizing
the path that the optimizer algorithm takes during the training.

The implemented tool, providing the experiments, is published under MIT license on
Github and as a Python Package on PyPi.

The results of this work were successfuly presented at Excel@FIT conference and the
paper1 presented at the conference was awarded by experts committee.

1http://excel.fit.vutbr.cz/submissions/2021/021/21.pdf

38

http://excel.fit.vutbr.cz/submissions/2021/021/21.pdf

Bibliography

[1] Abdi, H. and Williams, L. J. Principal component analysis. WIREs Comp Stat. 1st
ed. 2010, vol. 2, no. 4, p. 433–459. DOI: 10.1002/wics.101.

[2] Dauphin, Y. N., Pascanu, R., Gülçehre, Ç., Cho, K., Ganguli, S. et al.
Identifying and attacking the saddle point problem in high-dimensional non-convex
optimization. CoRR. 0th ed. 2014, abs/1406.2572, -. Available at:
http://arxiv.org/abs/1406.2572.

[3] Eickenberg, M., Gramfort, A., Varoquaux, G. and Thirion, B. Seeing it all:
Convolutional network layers map the function of the human visual system.
NeuroImage. 1st ed. october 2016, vol. 152, -. DOI:
10.1016/j.neuroimage.2016.10.001. ISSN 1053-8119.

[4] Goodfellow, I., Bengio, Y. and Courville, A. Deep Learning. 1st ed. MIT
Press, 2016. ISBN 978-0-262-33743-4. Available at:
http://www.deeplearningbook.org.

[5] Goodfellow, I. J., Vinyals, O. and Saxe, A. M. Qualitatively characterizing
neural network optimization problems. 2015. Available at:
https://arxiv.org/abs/1412.6544.

[6] Hebb, D. O. The organization of behavior: a neuropsychological theory. 1st ed. J.
Wiley; Chapman & Hall, 1949. ISBN 978-0805843002.

[7] Im, D. J., Tao, M. and Branson, K. An empirical analysis of the optimization of
deep network loss surfaces. 2017.

[8] LeCun, Y., Bottou, L., Bengio, Y. and Haffner, P. Gradient-based learning
applied to document recognition. Proceedings of the IEEE. 1st ed. Ieee. 1998,
vol. 86, no. 11, p. 2278–2324.

[9] Li, H., Xu, Z., Taylor, G., Studer, C. and Goldstein, T. Visualizing the Loss
Landscape of Neural Nets. 2018. Available at: https://proceedings.neurips.cc/
paper/2018/file/a41b3bb3e6b050b6c9067c67f663b915-Paper.pdf.

[10] Lin, G. and Shen, W. Research on convolutional neural network based on improved
Relu piecewise activation function. Procedia Computer Science. 1st ed. january 2018,
vol. 131, C, p. 977–984. DOI: 10.1016/j.procs.2018.04.239.

[11] Livni, R., Shalev Shwartz, S. and Shamir, O. On the Computational Efficiency
of Training Neural Networks. 2014.

39

http://arxiv.org/abs/1406.2572
http://www.deeplearningbook.org
https://arxiv.org/abs/1412.6544
https://proceedings.neurips.cc/paper/2018/file/a41b3bb3e6b050b6c9067c67f663b915-Paper.pdf
https://proceedings.neurips.cc/paper/2018/file/a41b3bb3e6b050b6c9067c67f663b915-Paper.pdf

[12] McCulloch, W. S. and Pitts, W. A logical calculus of the ideas immanent in
nervous activity. The bulletin of mathematical biophysics. 1st ed. Springer. 1943,
vol. 5, no. 4, p. 115–133.

[13] Minsky, M. and Papert, S. Perceptrons: an introduction to computational
geometry. 1st ed. M.I.T. Press, 1969. ISBN 0-262-13043-2.

[14] Mitchell, T. M. Machine Learning. 1st ed. Boston: McGraw-Hill„ 1997. ISBN
0-07-042807-7.

[15] O’Shea, K. and Nash, R. An Introduction to Convolutional Neural Networks. 2015.
Available at: https://arxiv.org/abs/1511.08458.

[16] Patterson, J. and Gibson, A. Deep Learning: a practioner’s approach. 1st ed.
O’Reilly, 2017. ISBN 978-1-491-91425-0.

[17] Ramachandran, P., Zoph, B. and Le, Q. V. Searching for Activation Functions.
2017.

[18] Rosenblatt, F. The perceptron: a probabilistic model for information storage and
organization in the brain. Psychological review. 1st ed. American Psychological
Association. 1958, vol. 65, no. 6, p. 386.

[19] Skansi, S. Introduction to Deep Learning: From Logical Calculus to Artificial
Intelligence. 1st ed. Springer, 2018. ISBN 978-3-319-73004-2.

[20] Sra, S., Nowozin, S. and Wright, S. Optimization for Machine Learning. 1st ed.
MIT Press, 2012. Neural information processing series. ISBN 9780262016469.

40

https://arxiv.org/abs/1511.08458

	Introduction
	Introduction to Neural Networks
	Learning Algorithms in Artificial Intelligence
	Neural Networks
	Feed Forward Neural Networks
	Convolutional Neural Networks

	Neural Network Training
	Introduction to Neural Network Training
	Loss Functions
	Backpropagation

	Neural Network Training Progress Visualization
	Linear Path Examination
	Quadratic Interpolation of the Parameters
	Loss Function Landscape Visualization

	Implementation
	Design
	Technology

	Examining the Training Progress of Neural Network
	Preliminary experiments
	Linear Path Experiment
	Quadratic Path Experiment
	Comparison Between the Quadratic and Linear Path
	Loss Function Surface Visualization

	Conclusion
	Bibliography

