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Abstract. This paper deals with the optimization of kur-
tosis for complex-valued signals in the independent compo-
nent analysis (ICA) framework, where source signals are lin-
early and instantaneously mixed. Inspired by the recently
proposed reference-based contrast schemes, a similar con-
trast function is put forward, based on which a new fast
fixed-point (FastICA) algorithm is proposed. The new op-
timization method is similar in spirit to the former classical
kurtosis-based FastICA algorithm but differs in the fact that
it is much more efficient than the latter in terms of computa-
tional speed, which is significantly striking with large num-
ber of samples. The performance of this new algorithm is
confirmed through computer simulations.
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1. Introduction
Independent component analysis (ICA) is a statistical

method for transforming an observed multidimensional ran-
dom vector into components that are statistically as indepen-
dent from each other as possible [1]. In a multi-input/multi-
output (MIMO) context, the problem of ICA has found in-
teresting solutions through the optimization of so-called con-
trast (objective) functions [2], many of which rely on higher-
order statistics (e.g., the kurtosis contrast [3], [4]) or can be
linked to higher-order statistics (e.g., the constant modulus
contrast function [5]). These criteria are known to provide
good results.

Recently, contrast functions referred to as “reference-
based” have been proposed [6], [7] which are based on cross-
statistics or cross-cumulants between the estimated outputs
and reference signals [6]-[12]. Due to the indirect involve-
ment of reference signals in the iterative optimization pro-

cess, these reference-based contrast functions have an ap-
pealing feature in common: the corresponding optimization
algorithms are quadratic with respect to the searched param-
eters. Taking advantage of this quadratic feature, a maxi-
mization algorithm based on singular value decomposition
(SVD) has been proposed [6], [7] and was shown to be
significantly quicker than other maximization algorithms.
However, this method generally requires an additional “fix-
point” like iteration to improve the separation quality and
often suffers from the need to have a good knowledge of the
filter orders due to its sensitivity on the rank estimation.

A new kurtosis-based gradient algorithm with refer-
ence signals fixed has been proposed in [11], which over-
comes the drawbacks of SVD based method well. Simi-
larly, an improved algorithm with reference signals update
after each one-dimensional optimization has been presented
in [12], which shows better performance. Based on [11] and
[12], a new family of algorithms to maximize a kurtosis-
based contrast function is proposed [7], whose global con-
vergence to a stationary point is proved. And a tradeoff can
be adjusted between performance and speed of the optimiza-
tion method.

Inspired by [7] and [12], a similar reference-based con-
trast function is constructed, based on which a novel algo-
rithm is proposed for complex-valued signals. More pre-
cisely, the cross-cumulant between estimated signals and ref-
erence signals is utilized as the contrast criterion in terms of
kurtosis. Due to the quadratic dependence on the searched
parameter, the main advantage of our proposed algorithm
consists in the fact that it is much more efficient than the
classical one in terms of computational speed. The perfor-
mance of our method is validated through computer simula-
tions. Note that the work of this paper is the extension of
that in [13] that only considers the real-valued signals.

The remaining of this paper is organized as follows.
Section 2 introduces the system model and assumptions.
The contrast criteria including reference signals and corre-
sponding contrast functions are presented in Section 3. Our
new proposed optimization algorithm is shown in Section 4.
Computer simulations are performed in Section 5. Section 6
concludes this paper.
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2. System Model and Assumptions

2.1 System Model
In this paper, we extend our work in [13] to the

complex-valued signal separation model. The system model
for ICA is shown in Fig. 1, in which the mixing system is
noise-free.
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Fig. 1. System model.

Sources are denoted by s(t) = [s1(t), · · · ,sN1(t)]
T =

[s1r(t)+ is1i(t), · · · ,sN1r(t)+ isN1i(t)]T . The observed
(mixed) signals are denoted by x(t) = [x1(t), · · · ,xN2(t)]

T =
[x1r(t)+ ix1i(t), · · · ,xN2r(t)+ ixN2i(t)]T . The input-output
relationship can be described as

x(t) = As(t) (1)

where A is the mixture matrix of N2 × N1, representing
the linear mixing system, which is composed of N2 row
complex-valued vectors, i.e., A = [a1,a2, · · · ,aN2

]T .

The separated signals are denoted by y(t) =
[y1 (t) , · · · ,yN1 (t)]

T = [y1r(t)+ iy1i(t), · · · ,yN1r(t)+ iyN1i(t)]T ,
which results from

y(t) = WHx(t) (2)

where W is the separation matrix of N2 × N1, represent-
ing the linear separating system, which contains N1 col-
umn complex-valued vectors, i.e., W = [w1,w2, · · · ,wN1 ].
WH stands for the Hermitian of W, that is W is transposed
and conjugated. Without loss of generality, we assume the
number of sources equal to that of observed signals, i.e.,
N1 = N2 = N in this paper.

2.2 Practical Model
For practical application of our algorithm for the

complex-valued signals, we are planing to construct a wire-
less communication system with two transmitting and re-
ceiving antennas, which transmits multiple signals simul-
taneously in the same frequency band over wireless chan-
nel and recovers the source signals at the multiple-antenna
receiver by utilizing the statistical characteristics of source
signals and broadcasting characteristics of wireless chan-
nel. Therefore, the spectrum efficiency of this system is high
compared to that of time division multiplexing (TDM), fre-
quency division multiplexing (FDM), and code division mul-
tiplexing (CDM). If it works, our new algorithm can improve

the spectrum efficiency and computational speed of wireless
communication system. The corresponding work will be in-
vestigated and shown in our latter work. We believe this
kind of wireless communication system is very significant
and promising in the future.

2.3 Assumptions
In order to retrieve the sources blindly and success-

fully, we make two assumptions [7], which are shown as
follows:

A1. The sources processes si(t), i ∈ {1, · · · ,N} are
statistically mutually independent.

A2. All the components of s(t) are stationary, zero-
mean and they have unit variances and uncorrelated real and
imaginary parts of equal variances, i.e., E{s(t)s(t)H} = I
and E{s(t)s(t)T}= 0.

3. Contrast Criteria

3.1 Reference Signals
Before introducing the contrast function, we first give

a brief introduction of the reference signals referred to above.
As shown in [6]-[12], the reference signals are expressed in
the form of

z(t) = VHx(t) (3)

where z(t) and V are set similarly as y(t) = WHx(t),
which are denoted by z(t) = [z1 (t) , · · · ,zN (t)]T = [z1r(t)+
iz1i(t), · · · ,zN1r(t) + izNi(t)]T and V = [v1,v2, · · · ,vN ], re-
spectively.

However, the reference signals are artificially intro-
duced in an algorithm for the purpose of facilitating the max-
imization of the contrast function [6], [7]. In [11], the refer-
ence signals are initialized arbitrarily and kept the same dur-
ing the whole optimization process. In [12], the reference
signals are not directly involved in the iterative optimization
computation. In other words, the reference signals update
following the objective signals. More precisely, V updates
following W in each loop iteration step. Then the separation
quality of the algorithm in [10] is better than that in [11].
In [14] and [15], we have done some corresponding work
to investigate the impact of reference signals, which is sim-
ilar to [12]. Combined with [12], we only consider the case
where the reference signals are successively updated after
each one-dimensional optimization. In [13], we have done
some similar work on real-valued signals, which is extended
to the complex-valued signals in this paper. Therefore, the
performance of our algorithms is much better than those in
[14] and [15]. Since no confusion is possible and for sim-
plicity, in the following sections, we drop the time index and
these vectors are denoted respectively by s, x, y and z.
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3.2 Contrast Functions
In order to describe the contrast function used in this

paper, we first introduce some notations. The cumulant of
a set of random variables is denoted by Cum{•}. We con-
sider the cumulant of complex-valued signals [7]. For any
jointly stationary signals y(t) and z(t), with zero-mean, we
set

C{y}=Cum{y(t),y(t)∗,y(t),y(t)∗}
= E{y(t)y(t)∗y(t)y(t)∗}−E{y(t)y(t)∗}E{y(t)y(t)∗}
−E{y(t)y(t)}E{y(t)∗y(t)∗}−E{y(t)y(t)∗}E{y(t)∗y(t)}

= E{|y(t)|4}−2(E{|y(t)|2})2−E{(y(t))2}E{(y(t)∗)2},
(4)

Cz{y}=Cum{y(t),y(t)∗,z(t),z(t)∗}
= E{y(t)y(t)∗z(t)z(t)∗}−E{y(t)y(t)∗}E{z(t)z(t)∗}
−E{y(t)z(t)}E{y(t)∗z(t)∗}−E{y(t)z(t)∗}E{y(t)∗z(t)}

= E{|y(t)|2 |z(t)|2}−2E{|y(t)|2}E{|z(t)|2}
−E{y(t)z(t)}E{y(t)∗z(t)∗}

(5)

where E{•} denotes the mean value and y∗ designates the
complex conjugate of y.

Let us introduce the following criteria:

J(w) =C{wHx}, (6)

I(w,v) = Cz{wHx}
∣∣
z=vH x (7)

where J is the well-known kurtosis contrast function, which
has been proved to be a contrast function [3], [4]. I is our
reference-based contrast function, which is similar to those
proposed in [7] and [12]. The consistent convergency of
our reference-based contrast function can be proved by re-
ferring to the Proposition 1 in [7]. Recently, we also have
done some corresponding work by introducing the reference
signals to the negentropy contrast function, based on which
a class of more efficient and robust algorithms has been pro-
posed. These work will be presented in our latter work.

4. Optimization Algorithm
Based on the assumptions and the Proposition 1 in

[7], it can be concluded that the new contrast function I we
propose has local extrema, which means that the stationary
points of it can be found through optimization schemes. In
this section, we give the derivation of our proposed algo-
rithm in detail for the extraction of one source component.

After whitening, the mixing signals x satisfies
E{xxH} = I. According to the assumptions A1 and A2,
E{xxT}= 0 follows straightforward from E{ssT}= 0. Un-
der the constraint E{

∣∣wHx
∣∣2}= ‖w‖2 = 1 and with v update

following w, we can get

I(w,v) = Cz{wHx}
∣∣
z=vH s

= E{
∣∣wHx

∣∣2 ∣∣wHx
∣∣2}−2E{

∣∣wHx
∣∣2}E{∣∣vHx

∣∣2}
−E{(wHx)(vHx)}E{(wHx)∗(vHx)∗}

= E{
∣∣wHx

∣∣2 ∣∣vHx
∣∣2}−2‖w‖2 E{

∣∣vHx
∣∣2}.

(8)

According to the Lagrange conditions, we construct
Lagrange function under the constraint E{

∣∣wHx
∣∣2} =

‖w‖2 = 1:

L(w,λ) = I(w,v)+β(E{
∣∣wHx

∣∣2}−1)
= E{

∣∣wHx
∣∣2 ∣∣vHx

∣∣2}−2‖w‖2 E{
∣∣vHx

∣∣2}+β(‖w‖−1).
(9)

Then the extrema of I(w,v) with respect to w are ob-
tained at points where

∂L
∂w = ∇1I(w,v)+β

∂E{(wT x)2}
∂w

= ∇1E{
∣∣wHx

∣∣2 ∣∣vHx
∣∣2}−4wE{

∣∣vHx
∣∣2}+2βw = 0

(10)

where β ∈ R. Similar to the complex gradient in [16], we
have∣∣wHx

∣∣2 = (wHx)(wHx)∗

= (w1rx1r +w1ix1i + · · ·+wNrxNr +wNixNi)
2

+(w1rx1i−w1ix1r + · · ·+wNrxNi−wNixNr)
2

(11)

where w = [w1r,w1i, · · · ,wNr,wNi], and we assume the fol-
lowing notations

∆1 = w1rx1r +w1ix1i + · · ·+wNrxNr +wNixNi,
∆2 = w1rx1i−w1ix1r + · · ·+wNrxNi−wNixNr.

(12)

Then the first term in (10) can be expressed as

∇1I(w,v) = 2


E{(∆1x1r +∆2x1i)

∣∣vHx
∣∣2}

E{(∆1x1i−∆2x1r)
∣∣vHx

∣∣2}
...

E{(∆1xNr +∆2xNi)
∣∣vHx

∣∣2}
E{(∆1xNi−∆2xNr)

∣∣vHx
∣∣2}



= 2


E{Re{x1(wHx)∗}

∣∣vHx
∣∣2}

E{Im{x1(wHx)∗}
∣∣vHx

∣∣2}
...

E{Re{xN(wHx)∗}
∣∣vHx

∣∣2}
E{Im{xN(wHx)∗}

∣∣vHx
∣∣2}

 .

(13)

and we use Newton method to solve (9). Similar to (13),
the Jacobian matrix of I(w,v), with respect to w, can be ex-
pressed as

∇2
1I(w,v) =

2E




(x2

1r + x2
1i) · · · (xNix1r− xNrx1i)

(x1rx1i− x1ix1r) · · · (xNix1i + xNrx1r)
...

. . .
...

(x1rxNr + x1ixNi) · · · (xNixNr− xNrxNi)

(x1rxNi− x1ixNr) · · · (x2
Ni + x2

Nr)


∣∣vHx

∣∣2


≈ 4E




(x2
1r + x2

1i) 0 · · · 0
0 (x2

1i + x2
1r) · · · 0

...
...

. . . 0
0 0 · · · (x2

Ni + x2
Nr)




= 4I = 4E{
∣∣vHx

∣∣2}I
(14)

where the approximation was done by separating the ex-
pectations. Also, E{xxH} = I and E{xxT} = 0 are used
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here. And the last term in (14) results from the constraint
E{
∣∣wHx

∣∣2} = ‖w‖2 = 1 in which v updates following w so

that we have E{
∣∣vHx

∣∣2}= ‖v‖2 = 1.

Then the total approximative Jacobian of (10) is now

J = (4E{
∣∣vHx

∣∣2}−4E{
∣∣vHx

∣∣2}+2β)I = 2βI (15)

which is diagonal and thus easy to invert. We obtain the fol-
lowing approximative Newton iteration:

w′ = w− 2E{x(wH x)∗|vH x|2}−4wE{|vH x|2}+2βw
2β

w′ = w′
‖w′‖ .

(16)

If we multiply both sides of (16) by 2β, then (16) can
be simplified to

w′ = E{x(wHx)∗
∣∣vHx

∣∣2}−2E{
∣∣vHx

∣∣2}w
w′ = w′

‖w′‖ .
(17)

Finally, the derivation of our proposed algorithm is
completed, which is summarized as follows:

 
Step1. Eliminate the mean value of and prewhiten it.  x
Step2. Initialize W, and normalize it. 
Step3. For  repeat Step3 1, 2, ,i = N

−
a. Set ,   0

i
i=w w 0 0

i i=v w
b. For  repeat b max0,1, , 1k k=

 Set 

2

1

2

{ (( ) ) ( ) }

2 { ( ) }

i i H i
k k k

i H i
k k

E

E

∗
+ =

−

w x w x v x

v x w

H

i

 

 Normalize  1
i
k +w

  1
1 1 1

ii i H
k k j jj

−

+ + =
= −∑w w w w w

 Renormalize  1
i
k +w

 Set 1 1
i i
k k+ +=v w  

 
max

i
k −  1i =w w

Step4.   H=y W x
 

In the algorithm above, wi
k+1 corresponds to the ith

source to be retrieved for the (k+1)th iteration step and vi
k+1

is the corresponding reference vector, which updates follow-
ing wi

k+1. From the whole process, we can see the source sig-
nals are restored one by one through each one-dimensional
optimization in a deflationary manner. To prevent differ-
ent one-dimensional optimization converging to the same
maxima, a Gram-Schmidt-like decorrelation scheme [3], [4],
[16] is adopted.

5. Simulation Results and Analysis

5.1 Separability of Our Algorithm
In this section, the separability of our proposed algo-

rithm is investigated through simulations. Here we choose
three independent 16QAM signals as sources, for which the
samples T = 10000 and the iteration parameter kmax = 1000.
The source signals are shown in Fig. 2.

Fig. 2. Three source signals.

The observation signals are mixed through linear ma-
trix, which is chosen arbitrarily, i.e.,

A=

 0.4261−0.3166i −0.0469+1.5955i −1.8124−2.0990i
−1.0562−0.4387i 1.7749−0.7757i −0.5268+0.4839i
−1.1510+0.9457i 0.0562+0.2929i 2.4162−0.5969i


(18)

and the mixing signals are shown in Fig. 3.
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Fig. 3. Three mixture signals.

By using our algorithm introduced above, the recov-
ered signals are shown in Fig. 4.

To verify the separability of our algorithm more pre-
cisely, the separation-mixture matrix is presented as

WH QA = 0.2048−0.5972i −0.0059−0.0025i −0.0013+0.0017i
0.0048−0.0036i 0.0011+0.0023i −0.5823+0.2538i
−0.0026+0.0004i 0.4633+0.4250i −0.0007−0.0041i


(19)

where Q is the whitening matrix, i.e., y = WHx = WHQA =
WHQAs. Note that the element labelled in black corre-
sponds to one of sources.

It can be observed clearly that, compared Fig. 2 and
Fig. 4, our proposed algorithm recovers the source sig-
nals successfully up to some ambiguities, i.e., permutation

Fig. 4. Three separation signals.

and scaling ambiguities. However, it is fortunate that the
ambiguities are common and insignificant in most applica-
tions.

5.2 Performance Analysis
In this section, we choose three QAM signals as

sources to investigate the performance of our proposed al-
gorithm. The number of samples T varies from 1000 to
10000 and we set the iteration parameter kmax = 1000. The
mean value of mean square error (MSE) and median MSE
between sources and corresponding estimations are chosen
as the performance measure criterion of separation quality.
The average execution time is chosen as the measure cri-
terion of computational speed, for which the computer is
Intel(R) Core 2 Duo CPU, E8400 @ 3.0 GHz, 2.99 GHz,
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3.00 GB RAM. In order to make the simulation results more
reliable and reasonable, we perform 100 independent execu-
tion runs for each simulation, in which the mixing matrix is
randomly chosen.

In this paper, we consider the performance comparison
and analysis among four algorithms, which are denoted by
F1, F2, F3 and F4. F1 denotes the gradient maximization al-
gorithm based on kurtosis, which is similar to the optimiza-
tion schemes in [6]-[12] but differs in the fact that reference
signals are not considered. F2 denotes the optimization al-
gorithm proposed in [7] and [12]. F3 denotes the classical
FastICA algorithm based on kurtosis shown in [3], [4], [16].
F4 denotes our proposed FastICA algorithm with reference
signals introduced.

Note that all the algorithms are implemented on our
computer under same condition. The simulation results are
illustrated in Fig. 5, Fig. 6 and Fig. 7.

It can be observed clearly from Fig. 5 and Fig. 6, that
the value of MSE and median MSE of our proposed algo-
rithm F4 is very close to those of F1, F2 and F3, which
means that our new method converges to the approximately
identically stationary points as others. More precisely, our
new algorithm recovers sources successfully on one hand,
and shows similar performance in terms of separation qual-
ity on the other hand. Moreover, with the number of samples
increasing, the performance of F1, F2, F3 and F4 is so close
that there is no difference among them. Additionally, com-
pared Fig. 5 and Fig. 6, we can see that our proposed method
is very stable.

However, in Fig. 7, it can be clearly observed that the
execution time of F4 is much less than that of F1, F2 and
F3, which means that our new algorithm is more efficient
than others in terms of computational speed. And the advan-
tage of our method is particularly more apparent over others
with the number of samples increasing. Furthermore, the
reference-based algorithms F2 and F4 show quicker conver-
gent speed than F1 and F3, respectively. Note that we mainly
focus on the fact that our new proposed FastICA algorithm
F4 provides better performance than the classical one F3,
which is the initial motivation of this paper.

5.3 Complexity Analysis
In this section, the computational complexity of our

new algorithm F4 and corresponding classical one F3 is
briefly analyzed, which reveals the reason why the former
is much more efficient than the latter in terms of computa-
tional speed. The main difference between F3 and F4 is

wi
k+1 = E{x((wi

k)
Hx)∗

∣∣(wi
k)

Hx
∣∣2}−2E{

∣∣(wi
k)

Hx
∣∣2}wi

k
(20)

wi
k+1 = E{x((wi

k)
Hx)∗

∣∣(vi
k)

Hx
∣∣2}−2E{

∣∣(vi
k)

Hx
∣∣2}wi

k
(21)

where (20) denotes the classical algorithm F3 and (21) de-
notes our proposed one F4.
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Fig. 5. MSE between sources and corresponding estimations av-
eraged over 100 independent runs.
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Fig. 6. Median MSE between sources and corresponding esti-
mations averaged over 100 independent runs.
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It is well accepted that the value of kurtosis has to be
estimated from a measured sample in practice. So from
(20) and (21), we can see that the computational complex-
ity of F3 and F4 is thus an increasing function of the num-
ber of sources, sample size T and iterative parameter kmax.
More precisely, the computational complexity mainly lies in
(wi

k)
Hx, for which w updates after each iteration. However,

the reference signal vector v introduced in our algorithm
updates following w, which means that (vi

k)
Hx is known

advance to a certain extent and is not involved in the it-
eration optimization process. Therefore, the computational
complexity of (21) for our algorithm only relates to w and the
computational resource is reduced significantly compared
with (20) of the classical one, which is significantly striking
with the number of samples increasing.

6. Conclusion
In this paper, a new algorithm is proposed, which is

based on our proposed reference-based contrast function. It
is similar to the classical FastICA algorithm but is much
more efficient than the latter in terms of computational
speed. Computer simulations are performed to validate the
performance of our algorithm. Our future work includes
the extension of this new algorithm to more complex mix-
ing models such as convolution and nonlinear, in which the
noise will be considered.
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