
BRNO UNIVERSITY OF TECHNOLOGY
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ

FACULTY OF INFORMATION TECHNOLOGY
DEPARTMENT OF COMPUTER GRAPHICS AND MULTIMEDIA

FAKULTA INFORMAČNÍCH TECHNOLOGIÍ
ÚSTAV POČÍTAČOVÉ GRAFIKY A MULTIMÉDIÍ

HIGH-QUALITY SHADOW RENDERING FROM
COMPLEX LIGHT SOURCES

DOCTORAL THESIS
DISERTAČNÍ PRÁCE

AUTHOR Ing. JAN NAVRÁTIL
AUTOR PRÁCE

BRNO 2015

Contents

1 Introduction 2

2 Global Illumination and Shadows 4

3 Shadow Quality and Complex Light Sources 9

4 Improved Texture Warping for Complex Light Sources 19

5 Experimental Results and Discussion 28

6 Conclusion 37

1

CHAPTER 1

Introduction

One of the real life tasks which benefit from computational performance of
computers is the generation of images, animation and visualization. Comput-
ers can synthesize images in a nearly photorealistic quality and in real-time.
Realistic rendering of global illumination has been considered the most time
consuming part of the computer graphics for many years. The most difficult
part of the evaluation is computing light transport and visibility correctly for
every point of the entire scene.

In realistic image rendering, numerous visual phenomena have to be taken
into account. They appear as a consequence of light scattering in the scene, e.g.
caustics, reflections, and shadows. Each of these topics is worth discussing. In
this thesis, the shadows for interactive applications will be further investigated.

Shadows constitute an important part of computer graphics rendering meth-
ods because they allow enhanced perception of the depth relations in the scene.
Shadows help human viewers to correctly perceive object positions in the vir-
tually created scene. Virtual scenes are often very dynamic, so if we want
to achieve high quality shadows the algorithm has to be robust and work re-
gardless of the scene’s configuration, specifically the light and camera position.
An example can be seen in applications for modeling and visualization where
developers require fast and accurate shadow casting, independent from light
types, camera position and scene complexity.

Shadow rendering in 3D applications has been investigated for many years.
Various approaches have been published and their usage depends on the appli-
cation and on the required quality of results. The main challenge is to evaluate
a visibility between a rendered point and a light source. The highest quality is
achieved with off-line rendering techniques, such as Ray Tracing or Radiosity.
However, their rendering times are far from interactive rates. It can take hours
or days to produce an high quality realistic image with radiosity or ray tracing.
Frequently used algorithms in interactive applications are shadow volumes or
shadow mapping. The shadow mapping algorithm is fast and easy to imple-
ment on GPUs despite its limitations in resolution and consequently in quality
of rendering.

This thesis is mainly focused on resolving issues that appear in a shadow
mapping algorithm. This algorithm renders the shadows in two steps. In

2

the first step, the discrete representation of the scene is stored into a depth
texture from light point of view. Then, the values in the texture are used
for shadow computation from camera point of view. The representation of
the scene is discretized because of the limited resolution of the texture. The
resolution provides a number of samples that can be used for shadow com-
putation. Since the textures are rectangular, samples are evenly distributed.
This may produce artifacts on shadow boundaries and thus decrease the overall
visual quality of the rendered image.

The purpose of this work is improvement of shadow quality in the shadow
mapping algorithm. Some methods try to reduce the aliasing artifacts by
adapting the distribution of samples to the current scene configuration. This
mostly depends on the mutual position of the camera, the scene, and the light
source. Typically, in outdoor scenes, modelling the sun as a complex light
source is not very efficient, and actually not necessary. In this case, a direc-
tional light source is used as an approximation. For this simple light source,
the parameterization of sampling distribution is very straightforward and easy
to implement. In order to render shadows from more complex light sources,
different approach needs to be employed in comparison to methods that deal
with a directional light source or a spotlight.

When dealing with complex light sources in the shadow mapping algorithm,
the representation of a scene in the depth texture has to be modified, and the
texture generation process as well. Therefore, shadow quality improvement
techniques that are successfully used with simple light sources are no longer
directly usable.

The goal of this thesis is to introduce an approach that is able to render
a scene with complex light sources, reduce aliasing artifacts on the shadow
boundaries and also improve the quality of shadows regardless of the type of
the scene and its configuration. The main contributions are improved shadow
quality through better sampling of the scene, utilization of the shadow map
warping for sampling improvement and evaluation of shadow quality.

3

CHAPTER 2

Global Illumination and Shadows

When people observe an image of some object, such as a room or a scene, they
most likely want the image to look like a real photograph. It is mainly related
to the images generated by a computer. Computers have to simulate at least
how the scene is illuminated by a light. Computation of global illumination
is considered as the most difficult and time consuming task in 3D computer
graphics. However, high quality images can be produced, such that they are
hardly distinguishable from real photographs.

The time complexity arises from a fact that these approaches simulate
natural behavior of the light. Today, such simulation is usually based on
geometric optics model where light travels in straight lines. The most difficult
part of this simulation is evaluating mutual

”
visibility“ of every two points on

the scene surface and summing up their light contribution. During the years,
most of the expensive parts of global illumination have been replaced by simple
models, or approximated by less complex algorithms capable of running in real-
time [14]. This allows to render scenes with dynamic content, light sources and
cameras, while retaining a plausible level of realism.

Shadow rendering is one of the areas where physical-based rendering is be-
ing replaced by simple algorithms in order to run the application at interactive
rates.

2.1 Realistic Image Synthesis

Methods for the computation of global illumination are able to synthesize im-
ages in photo-realistic quality, because they simulate physical rules of light
distribution. This consists of light transport from a light source to an object
in a scene or how the light is reflected from various kinds of materials, All
these phenomena have to be taken into account and stored in the global scene
description. This includes geometry data, properties of materials and specifi-
cation of shape and properties of light sources. Physical based description of
the properties is defined by a model.

Most of the existing algorithms can be categorized into two basic groups.
Firstly, point sampling approaches where the scene is evaluated independently

4

for every pixel of the output image. Secondly, finite elements methods where
the scene is divided into set of elements and the illumination is computed with
respect to mutual relations of the elements. The following text gives a brief
overview of representative techniques from for each group. Specifically, Ray
Tracing [18] and Radiosity approaches are presented.

The idea of photon mapping is slightly different comparing to ray tracing
or radiosity. The main difference can be seen in a different representation
of the illumination information. Instead of storing the illumination tightly
connected with the geometry, it is stored in a separate data structure called
photon map [5].

2.2 Shadows in Interactive Applications

Generation of realistic images takes second or hours in the global illumination
algorithms. Computation of illumination in interactive applications requires
approximation of the most expensive parts of the algorithms [13]. The problem
can be divided into two parts.

Firstly, an expensive computation of BRDF on a surface that is currently lit
can be approximated by shading models (e.g. Blinn-Phong, Cook-Torrance).
In this case, form factors are not needed and the geometric relations are ne-
glected. The shading models evaluate illumination based on position of ge-
ometry and light source. The shading models, however, do not provide any
information of whether the surface lies in shadow or not.

The second part of the global illumination that has to be approximated is
computation of shadows. The global illumination algorithms compute shadows
either by evaluating intersection of shadow rays with geometry (Ray Tracing),
or it results from a small number of photons in a photon map (photon map-
ping). Neither of these approaches is applicable in interactive applications
without additional simplification [10].

The most popular algorithms that are used for rendering shadows in inter-
active applications are planar shadows and the shadow volumes algorithm [3].
The shadow mapping algorithm is investigated in detail in Section 2.3 since
the main contribution of the thesis is improvement of the algorithm.

2.3 Basics of Shadow Mapping Algorithm

This section investigates basic principles of the Shadow Mapping algorithm
[19]. It describes individual steps of the algorithm, its advantages and disad-
vantages. Further, it provides some implementations details in order to present
all necessary aspects that are needed to render shadows on GPU.

5

2.3.1 Shadows in Two Steps

The key concept of all shadow rendering algorithms is that a point on a surface
is considered to be visible to the light source if there is no occluder between
the surface point and the light source. The visibility test might be a difficult
and an expensive task for complex light sources.

In the Shadow Mapping algorithm, three basic types of the light sources
can be considered: directional light source, spotlight and omnidirectional light
source . However, the algorithm can be used with some additional improve-
ments for complex light sources as well (see Section 3.3). The directional light
source is the simplest one. It is used mostly in outdoor scenes where most of
the light comes from the sun which is considered to be in infinity. Because
of this, all rays can be considered parallel. The spotlight is defined by its
position and direction of a

”
cone“. The light is emitted from a point in space

into the directions limited by the cone. The area of the illuminated part of
the scene is defined by the field-of-view angle. The omnidirectional light source
is also represented as a point in space, but it shines into all directions.

A basic approach to decide whether some object is occluded by another
is to compare its distance to a camera or an observer. In the rasterization
pipeline, a depth buffer is used to store information about the distance of
the object to the camera. In every pixel, the depth buffer stores only the value
of the closest object. In the Shadow Mapping algorithm, the scene is rendered
from the virtual camera in the position of the light source. Then, the depth
buffer contains information about the distance to the objects that are closest
to the light source. This implies that these objects are directly lit by the light
source and everything behind them is in the shadow. The subsequent ren-
dering pass from the camera point of view can read the depth information
from the depth buffer and decide whether the surface being rendered is in
the shadow or not.

camera light source

Figure 2.1: Illustration of the basic principle of the Shadow Mapping algo-
rithm. The depth stored in the shadow map (red dot) is less than projected
pixel visible from a camera (green dot).

6

Naturally, to implement the shadow maps on contemporary computers,
one must consider exploitation of GPUs. Contemporary GPUs have already
integrated support for accelerated computation of the shadows. For instance
in OpenGL, there is API function 1 that allows usage of 3-component vector
for sampling the texture with the depth values:

float texture(sampler2DShadow sampler, vec3 P);

The function fetches the depth value from the shadow map using texture
coordinates that are stored in the first two component of vector P. Then,
the depth value is compared with the third component that should hold the ref-
erencing depth value of currently rendered fragment. The function returns 0,
if the P. z value is greater that the value in the texture, otherwise it returns
1. The code snippet written in GLSL can look like:

1 vec3 texCoords = lightModelViewProjection *
io ObjSpacePosition;

2 texCoords.xyz = normalize(texCoords.xyz);
3 texCoords.z = (Length - near)/(far - near);
4 vec3 P = vec3(0.5*texCoords.xy + 0.5, texCoords.z);
5 float shadow = texture(shadowMap, P);
6 vec4 fragColor = shadow*color;

From the above fragment of code, it is, hopefully, obvious that the shadow
map implementation in contemporary GPU is straightforward and efficient.

2.3.2 Shadow Mapping Issues

The Shadow Mapping algorithm is considered to be very efficient and flex-
ible approach, but it suffers from some issues and visual artifacts including
aliasing. As the depth information is usually stored in a texture, the size of
the texture represents the total number of depth values that can be fetched in
order to compute a shadow. It is common that multiple surface points with
different distances to the light source are projected to a single shadow map
texel. This incorrect sampling rate leads to unpleasant visual artifacts and
aliasing. Section 3.1 explains the aliasing in Shadow Mapping and methods
for its elimination in detail. The following text discusses the most common
visual artifacts produced by Shadow Mapping that are immediately noticeable.

Artifacts caused by wrongly computed self-shadow that arises on the object
surface is called a surface (shadow) acne. The depth value in the shadow map
is quantized, but points from the surface do not all have the same depth. Con-
sequently, some fragments on the surface lie in shadow while other fragments
are considered as lit by the light (see Figure 2.2).

1https://www.opengl.org/documentation/glsl/

7

Figure 2.2: Illustration of source of the shadow acne (left). Depicted surface
acne (middle) and Peter-panning effect (right).

The solution could be adding some bias to the surface in order to eliminate
a difference along the pixels. A slope of the surface might be take into account
to achieve a better results. For instance, the polygon offset is successfully
used for this purpose. Simultaneously, when rendering objects with closed
geometry, the front face culling can be enabled. It causes that the depth map
stores distances to the polygons farther from the camera.

However, an excessive usage of the bias could lead to another artifact on
shadows. This second common visual artifact, called disconnected shadow, or
Peter Panning. It makes the shadow detached from the object and the object
appears to be floating in the air. This usually happens when the algorithm
compares two depth values that are close to each other. When the bias is
applied, the shadow test may mistakenly evaluate the fragment to be lit.

To be sure that the shadow test pass for correct fragments, the bias has to
be adjusted. Also, the view frustum of the light source has to fit as much as
possible in order to improve precision of discrete depth quantization.

8

CHAPTER 3

Shadow Quality and Complex Light Sources

As the basic Shadow Mapping algorithm has been introduced in chapter 2,
this chapter focuses on visual quality of rendered images. It describes how
the quality of shadows is influenced by incorrect sampling and aliasing, and
how the aliasing error can be measured. Further, the chapter presents some
optimization techniques that eliminate disadvantages of the Shadow Mapping
algorithm related to visual artifacts. It shows that the techniques are designed
and implemented for simple light sources where they achieve good results.

This work, however, focuses on improvement quality of shadows for com-
plex light sources where the techniques for simple light sources fail. This
chapter provides an overview of various methods for rendering shadows cast
from omnidirectional light sources. It describes the principles of each method
and discusses their advantages and disadvantages.

3.1 Deriving the Error Metric

The aliasing in the Shadow Mapping algorithm is a significant visual artifacts.
It appears namely on shadow edges due to low resolution of the shadow map,
because a single shadow map texel cannot cover all the details for object further
from light sources . The shadow map sampling rate is typically insufficient to
handle all the scene details sufficiently well.

The sampling scheme is very similar for both camera and light source.
The camera and the light source sample scenes through pixels representing
rectangular areas. All the light rays going through the given rectangular pixel
and the light source or the camera form a beam defined by the pixel. Given
a beam from the camera projects through a pixel onto a scene surface with
width w′

i. Similarly, a beam from the light source through a shadow map texel
is projected on the surface with width w′

l. The aliasing error on such surface
can be approximated by the ratio of the projected beam widths:

m =
w′

l

w′
i

(3.1)

As it can be seen in Figure 3.1, the aliasing error does not depend only on beam
widths and distance of the surface to the camera or light source but also on

9

Figure 3.1: Illustration of beams projected from eye and light source and their
widths on a surface [8].

surface orientation. Stamminger et al. [16] described these two types of alias-
ing: perspective and projection. The aliasing error according to Stamminger
can be quantified as:

m =
w′

l

w′
i

≈ wl

wi

cos θi
cos θl

(3.2)

where wi and wl are the widths of the image and light beams at the point
of intersection and θi and θl are the angles between the surface normal and
the beam directions.

Perspective aliasing is caused when the shadow map is undersampled be-
cause of light source distance while projection aliasing appears when the di-
rection of light rays is parallel to the surface so that shadow stretches along
the surface. The perspective aliasing is the most common one in the Shadow
Mapping algorithm. It occurs when more than one point on the geometry is
projected to the single texel in the shadow map. Pixels by the near plane are
more dense in post-perspective space than pixels by the far plane. However,
the sampling rate of the shadow map remains the same over the entire view
frustum. Because of this, more pixels map to the same texel in the shadow
map.

Some methods exist that attempt to reduce the perspective aliasing arti-
facts on shadow boundaries. The shadow map can be filtered [2] that causes
the shadows to be smooth which, however, is not always desired. The

”
correct“

approach would be to use high shadow map resolution for objects near to
the camera and low resolution for distant objects. Naturally, the high resolu-
tion is not necessary for shadows far from camera as the fine scene details are
not visible due to perspective projection.

In some approaches [4], multiple shadow maps with different resolutions are
used. They are stored in a hierarchy based on resolution and they adapt to
the level of detail desired in individual locations of the rendered frame. Unfor-
tunately, this technique needs multiple rendering passes and some additional
data structures, so acceleration in hardware is not efficient.

10

The projective aliasing is not easy to eliminate and since it is less intrusive,
existing approaches neglect it. The following sections describe how the per-
spective aliasing can be reduced which leads to elimination of jagged edges in
the output image. It happens when the width of the image beam wi equals
the to the light beam width wl.

The Shadow Mapping algorithm works with two types of samples. View
samples are pixels that correspond to points on a scene surface described by
their 3D position (and other properties such as color, normal vector etc.). They
are generated by sampling the scene from a camera point of view. Shadow sam-
ples are generated by sampling the scene from a light source point of view. In
both cases, the sampling is performed using an orthogonal grid with a prede-
fined resolution.

However, multiple view samples can be projected onto one shadow sample
and then aliasing can be observed in a final image as jagged edges of the shad-
ows. This is caused by uniform rasterization of a texture produced by a graph-
ics hardware. One solution is to parameterize the sampling using a warping
function. The function enlarges important parts of a scene in order to increase
shadow sampling rate. This technique increases a probability that shadows
for different view samples are resolved by different shadow samples. There are
two types of the warping function - global and local. The global warping func-
tion can be defined by a transformation matrix. This warping function mostly
depends on a mutual position of a camera, a light source and geometry and
ignores properties of view samples [16]. The local warping function is derived
from properties of view samples and scene analysis [6, 15]. These approaches
are described in detail in the following sections.

3.2 Methods for Reducing Aliasing

Some methods exist to reduce the aliasing errors caused by the sampling mech-
anisms used in the Shadow Mapping algorithm. As the shadow map size is
typically given by the hardware limitations, these methods exploit non-uniform
sampling of the shadow maps either through non-linear mapping or using dis-
crete smaller maps with different resolutions.

3.2.1 Perspective Shadow Maps and Parallel-Split Shadow
Maps

Perspective Shadow Maps [16] differ from standard shadow maps in that they
are generated after perspective transformation, i.e. in normalized device co-
ordinates. It causes reduction of the perspective aliasing (see Section 3.1) on
the shadow boundaries in a rendered image. The idea of the Parallel-Split
Shadow Maps approach [20] is to split the view frustum in a certain distance
from the camera into several parts in order to minimize the oversampled areas
and thus make use the shadow map efficiently.

11

3.2.2 Rectilinear Texture Warping

Rosen [15] introduced an adaptive shadow mapping approach that also ad-
dresses the aliasing issue. He suggested the Rectilinear Texture Warping
(RTW) technique that is capable of rendering quality shadows. Unlike CSMs,
the RTW uses only one shadow map to cover the entire scene and a set of
importance functions for adaptive scene sampling. The shadow map can be
generated per-frame, and it supports fully dynamic scenes. As the camera
and the light source moves, the RTW adaptively changes the sampling rate,
whereas the standard shadow map remains unchanged as it can be seen in
Figure 3.2.

Figure 3.2: Illustration of rectilinear warping scheme [15].

The crucial step in the algorithm is creating the importance map. The im-
portance can be analyzed in three different ways:

• Forward - Firstly, the depth map is rendered from the light point of
view. Then, the depth map is analyzed and the importance map is built.

• Backward - The depth map is rendered from camera point of view,
projected to the light space and analyzed.

• Hybrid - Combination of most valuable results from both approach in
cost of higher computation time.

The importance analysis in all options is performed using an arbitrary
number of analytical and heuristic-based functions. The output of the analysis
is the importance map which serves as an input to next steps of the algorithm:

12

1 Build the importance map
2 Convert 2-D importance map into 1-D warping maps

begin
3 Collapse rows/columns to 1-D importance maps
4 Blur importance maps
5 Build warping maps from importance maps

end
6 Render the RTW shadow map
7 Render the output image from the desired view

Algorithm 1: RTW algorithm
In the Step 2, the importance map is further processed in order to get

the warping map. Firstly (in Step 3), the maximal importance value from
every row and every column is stored into two 1D importance maps. These
maps are blurred in Step 4 in order to smooth the differences between adjacent
samples and ensure coherency. Finally (in Step 5), the positions are shifted
according to value in the 1D importance map. The computed offsets are then
used to build the warping maps.

The Steps 6 and 7 are well known steps from the standard Shadow Map-
ping algorithm. Step 6 renders the shadow map and Step 7 computes shadows.
However, in both of these steps, the newly built warping map is used for ren-
dering of the shadow map as well as computation of shadow map coordinates
when the shadow is computed.

The biggest disadvantage of the RTW algorithm is the rectilinear grid. In
order to maintain high quality shadows, the algorithm selects the maximal
importance value from the importance map for a given row and column, re-
spectively. This may introduce unneeded resolution for the remaining part of
the row or column. In the worst case, it may lead to decrease in quality of
the output. Another disadvantage that is common for all warping approaches
is that the scene has to be finely tessellated. The warping of the shadow map
curves the long edges of triangles (see Section 2.3.2). This artifact is not vis-
ible when the triangles are reasonably small. Contemporary GPUs supports
hardware tessellation. It slightly increases processing time, but also improves
quality of the rendered image.

Jia et al. [6] introduced Distorted Shadow Mapping (DSM) algorithm that
detects shadow silhouettes from depth discontinuities in the standard shadow
map. It does not employ any regular grid, and increases the sampling rate
locally. However, the DSM algorithm does not consider any other view infor-
mation, and it relies only on information from the shadow map. Hence, some
important details might be missing.

13

3.3 Omnidirectional Shadow Mapping

3.3.1 Cube Shadow Maps

In order to create shadow maps for an omnidirectional light source, the Cube
Shadow Maps algorithm proposes to point the virtual camera into six direc-
tions. The view direction of the virtual camera should be oriented along direc-
tions defined by the axes of the local coordinate system of the cube: positive X,
negative X, positive Y , negative Y , positive Z and negative Z. This is almost
identical to the way how a cube map for environment mapping is generated
except that in this case depth values are stored instead of color.

Basics of the Cube Shadow Maps

The faces of the cube represent shadow maps and directions of the faces shows
the particular direction for the virtual camera . In order to cover the whole
environment, the traditional Shadow Mapping algorithm exploits cube maps
to visualize shadows cast from point lights. To fill the data in the cube shadow
map, six render passes have to be performed. The GPUs generally support
the cube shadow maps which are thus easy to implement.

The biggest disadvantage of the Cube Shadow Maps is that six render
passes are often too expensive. This fact can cause rapid decrease of perfor-
mance for complex scenes with high number of polygons. Even if per-object
frustum culling is applied, rendering of shadows is still very expensive in com-
parison to rendering of the rest of the scene.

3.3.2 Dual-Paraboloid Shadow Maps

The following text discusses an alternative approach for rendering shadows
cast from omnidirectional light sources. The Dual–Paraboloid Shadow Map-
ping algorithm (DPSM) [1] maps 3D positions of a geometry into 2D map.
The Dual-Paraboloid mapping can be used for creating maps of an environment
and among other environment mapping approaches, such as cubical or spheri-
cal, the algorithm introduces better performance in comparison to the cubical
mapping, and better quality in comparison to the spherical mapping. The al-
gorithm is based on two paraboloids attached back-to-back, each capturing one
hemisphere. This section introduces principles of the Dual–Paraboloid Shadow
Mapping algorithm, and how it can be used for rendering shadows.

Mathematical Background

In principle, the idea is based on a mirror. Imagine a totally reflective mirror in
a shape of a paraboloid that reflects incident rays from a single hemisphere into
the direction of the paraboloid (see Figure 3.3). The rays may carry some infor-
mation about the environment (such as color or distance) and the information

14

can be stored into a rectangular map. The 2D coordinates are computed from
the point on the paraboloid surface where the ray intersects the paraboloid.

Figure 3.3: (Left) The paraboloid itself. (Right) Two paraboloids attached
back-to-back can capture the environment from all directions [1].

To implement the Dual–Paraboloid Shadow Mapping algorithm on GPU,
it is necessary to understand how the mapping actually works. This knowledge
will be then used for writing shaders for GPUs. The paraboloid itself is given
by:

f(x, y) =
1

2
− 1

2
(x2 + y2), x2 + y2 ≤ 1 (3.3)

The key concept of the paraboloid mapping is that all incident rays are reflected
in the same direction. The first task is to find the point on a paraboloid surface
where the ray is reflected. This can be computed using the surface normal
vector.

A paraboloid surface point P is given by:

P = (x, y, f(x, y)) (3.4)

To compute the normal vector in P , the tangent vectors have to be computed
by taking the partial derivatives of the function with respect to x and y.
The resulted cross product gives the normal vector:

Tx =
δP

δx
=

(
1, 0,

δf(x, y)

δx

)
= (1, 0,−x) (3.5)

Ty =
δP

δy
=

(
0, 1,

δf(x, y)

δy

)
= (0, 1,−y) (3.6)

NP = Tx × Ty = (x, y, 1) (3.7)

The derived normal vector for the point P is now known for every point on
the paraboloid surface and it expresses the x and y coordinate of the map.

15

Based on the information mentioned above, the mapping can now be de-
fined. The normal vector for the entire paraboloid surface can be computed
as a sum of the incident ray and the reflected ray. As mentioned above,
the reflected ray is always going to be (0, 0, 1) for the front paraboloid and
(0, 0,−1) for the back paraboloid, respectively. This is a crucial concept that
it is the same for a given hemisphere (see Figure 3.3). The normal vector can
be computed as:

NP ⇔ Vincident + Vreflected (3.8)

Based on the Eq. 3.7, the previous equation can be expressed as:

NP = (x, y, 1)⇔ Vincident + Vreflected = Vsum (3.9)

The final step for getting the x and y coordinates is to divide all components
of Vsum by its z part:

NP =
1

zsum
(xsum, ysum, zsum) =

(
xsum
zsum

,
ysum
zsum

, 1

)
(3.10)

As both x and y coordinates of the paraboloid surface is now computed, they
express the point on the surface from which the incident ray is reflected. Also,
they express the coordinates to the map where the information from the en-
vironment is going to be stored. The following text presents how this concept
can be applied to rendering shadows using the Shadow Mapping algorithm.

Depth Texture Generation and Shadow Rendering

When rendering shadows cast from an omnidirectional light source, the Shadow
Mapping algorithm requires to render the shadow map for the entire scene.
Based on the concept of the Dual-Paraboloid mapping, it needs only two render
passes to capture the whole environment.

The omnidirectional shadow rendering works in the same way as the tra-
ditional Shadow Mapping algorithm (see Section 2.3). The virtual camera is
placed in the position of a light source. According to the position and the ori-
entation of the light source, the appropriate model-view-projection matrix has
to be found. In this case, the projection matrix can be identity, because
the projection is performed by the paraboloid mapping. The model-view ma-
trix provides information on where is the scene divided into two hemispheres
and it also expresses the direction of the paraboloid.

The vertex shader on GPU parametrizes only the geometry vertices. The re-
maining part of the rendering process is unchanged. It means, that the parabo-
loid mapping is applied only in the vertex shader and rasterization of polygons
are performed in the traditional way. The vertex shader can be written as:

1 vec4 vertexEyeSpace = in ModelViewMatrix * vec4(in Vertex,1.0);
2 vertexEyeSpace.xyz = normalize(vertexEyeSpace.xyz);
3 vertexEyeSpace.z += 1.0;
4 vertexEyeSpace.xy /= vertexEyeSpace.z;

16

The input geometry is transformed to the light space using model-view
matrix. The resulting vector is normalized and it will serves as the incident
ray for the paraboloid mapping. The next step is to sum the incident ray with
the reflection vector which is (0, 0, 1) (Line 3). Finally, the result is divided by
the z part in order to derive the x and y coordinates. To process the vertex
further in the pipeline, the z and w coordinates have to be set as well:

1 vertexEyeSpace.z = (Length - near)/(far - near); vertexEyeSpace.w =
1.0;

The depth value from the z coordinate is stored in the shadow map in
a fragment shader. The values from the shadow map will be used in the next
step where the shadow is computed.

In the final render pass of the Shadow Mapping algorithm, the depth values
are read from the shadow map and compared with the depth of the current
fragment. The shadow computation is now performed in the fragment shader.
However, the steps for computing coordinates to the shadow map are very
similar with the first rendering pass. The same concept of the paraboloid
mapping is used as well:

1. Find a vector from the light source to the desired object.

2. Use this vector to calculate s and t coordinates (one pair for each hemi-
sphere).

3. Sample both paraboloid maps with the coordinates.

4. Process the sampled values.

The implementation of all steps in the fragment shader is:

1 texCoords.xyz = normalize(texCoords.xyz);
2 texCoords.z += 1.0; texCoords.x /= texCoords.z; texCoords.y /=

texCoords.z;
3 texCoords.z = (Length - near)/(far - near); texCoords.w = 1.0;
4 return vec3(0.5*texCoords.xy + 0.5, texCoords.z);

The resulting x and y coordinates are normalized in order to sample the tex-
ture in range [0..1]. The z coordinates holds the depth of the rendered frag-
ment.

After this step, all the necessary pieces of information are derived for com-
puting shadows using the Shadow Mapping algorithm. The texture coordinates
are derived using the paraboloid mapping, and the depth value that is going
to be compared with the value stored in the shadow map is also computed.

The Dual-Paraboloid Shadow Mapping minimizes the amount of used mem-
ory and the number of render passes that are necessary to cover the whole

17

environment in comparison to . the Cube Shadow Maps technique. Other pa-
rameterization can certainly be found but the proposed parabolic parameteri-
zation maintains its simplicity and performance, e.g. in GPU implementation
[12].

Nevertheless, the DPSM algorithm has also some disadvantages. While
in the Cube Shadow Map approach all the transformations needed to create
the shadow map are linear, they do not need any extra treatment on GPUs.
This mainly concerns the interpolation process between vertex and fragment
shader (see Section 2.3.2). When using the DPSM algorithm, the rendered
scene needs to be finely tessellated, because the mapping is not linear and it
does not work well for large polygons. Unfortunately, it may introduce new
bottlenecks and artifacts on the connected parts of front and back paraboloids.

18

CHAPTER 4

Improved Texture Warping for Complex Light Sources

The Cube Shadow Maps and Dual-Paraboloid Shadow Mapping are methods
that are capable of rendering shadows cast into all directions. Since they
both are based on the Shadow Mapping algorithm, they suffer from issues
caused by the limited resolution of the shadow map represented by a raster
image. The main issue is related to the quality of shadows which is usually
decreased by aliasing. The Parallel-Split Shadow Maps is a technique that
can reduce aliasing in outdoor scenes and large environments. It is optimized
for directional light sources and spotlights. These types of light sources are
the most common in outdoor environment.

This chapter introduces a novel technique for improving quality of shad-
ows cast by omnidirectional light sources. It shows how to improve process
of shadow map rendering in order to get a better sampling distribution of
the scene. It utilizes non-orthogonal warping scheme and it is applicable also
for complex light sources.

The core of the thesis can be expressed by the following statement: Pa-
rameterization of shadow map coordinates based on simple scene analysis can
reduce aliasing error of the shadows cast by complex light sources.

Section 3.1 shows that the highest aliasing error can be observed close to
the near plane of the camera view frustum. For some scenarios, for instance
outdoor scenes lit by the sunlight, the aliasing error can be successfully reduced
with the PSSM algorithm . However, PSSMs do not address the shadow quality
for omnidirectional light sources. The shadow quality for this type of light
sources is discussed in the thesis. They present one of the three types of light
sources that can be usually seen in indoor scenes.

Section 3.3 explains how difficult is to compute shadows for omnidirectional
light source. The thesis shows how to improve the quality of shadows regardless
of the mutual position of the light source and the camera. The improvements
are implemented in both Cube Shadow Maps and Dual-Paraboloid Shadow
Mapping algorithm. Moreover, omnidirectional light sources are successfully
employed not only for direct illumination, but also as virtual point lights for
computing of indirect illumination .

An example of a critical scenario is when the light source is inside the cam-
era view frustum. The scenario introduces two main challenges. Firstly, shad-

19

ows have to be cast into all directions. Secondly, the aliasing error is not
distributed uniformly but it depends on mutual position of the light source
and the camera, and the current scene configuration. The uniform distribu-
tion of the aliasing error is observed from the light source point of view when
the light source is outside the frustum. This applies to all types of light sources.
When the light source is inside the frustum, the alias error changes unevenly.
The approach presented in the thesis handles both of the challenges.

4.1 Improved Non-orthogonal Texture Warp-

ing

The approaches described in previous sections still do not address the problem
of reducing aliasing in general case. They can improve the quality of shadows
for cases where the aliasing error is distributed evenly in the shadow map
[17, 11].

4.1.1 Importance-driven Error Reduction

Section 3.1 defines the aliasing error and shows how it can be measured. It was
also shown that the aliasing error can be evaluated for any point in the camera
view frustum. The idea of the proposed algorithm is to modify the projection
to the shadow map according to value of the aliasing error.

The value of the aliasing error expresses whether the projection of a surface
to the shadow map is undersampled (the value greater than 1), or oversam-
pled (the value less than 1). In case of undersampled areas, jagged shadow
edges appear. When the aliasing error is projected to the light space, it helps
to identify the undersampled and oversampled regions in the shadow map.
In these regions, the sampling rate has to be increased or decreased, respec-
tively. the sampling rate can be modified using an improved parameterization
of the mapping function. The result of the improved parameterization is that
all of the points in the undersampled regions are mapped on a larger area
so that the sampling improves while the sampling density of the previously
oversampled regions is reduced.

Let us suppose that possible method for projection control is a grid that
is placed over the shadow map. By default, the grid cells are rectangular and
the projection corresponds to the standard Shadow Mapping algorithm. By
changing positions of vertices on the grid, the projection can enlarge the under-
sampled parts locally and reduce the oversampled parts. Movements of the ver-
tices should be managed so that the reprojected shadow map reaches the equi-
librium state. The best result is achieved when the alias error is completely
removed so that it equals to 1 in every pixel. However, due to geometric limita-
tions of the shadow map this situation is not achievable. Therefore, the feasi-
ble solution is provided when the aliasing error is as constant as possible over
the entire shadow map. When the grid reaches a steady state, the shadow

20

map is regenerated with the derived warping function. The same function has
to be used in the shadow rendering step. The warping grid projects the sur-
face points on different positions in the shadow map and hence the texture
coordinates have to be parametrized using the same warping function.

This section presents the key concept of the NoTW approach. The idea
of warping grid illustrates how the projection can be modified. The grid no
longer appears in the following text and the improved mapping is derived using
a set of warping functions.

The idea of the parameterization of the texture coordinates using warping
functions is crucial for the remaining text. It presents the efficient way of
improving the shadow quality based on the values of the aliasing error projected
to the light space.

4.1.2 Introduction to Improved Texture Warping

Rosen [15] introduced the first method that addressed problem of important
regions distributed in the depth texture. He introduced the rectilinear warping
maps that could easily control the sampling in particular parts of the depth
texture. This could be controlled by importance function and the approach
could be used for point light sources without complex modification. Neverthe-
less, the rectilinear warping schema is not completely local and some parts of
a scene may receive resolution higher or lower than required and that situation
is not optimal.

Similar approach was published by Jia et al. [6]. They do not limit the ap-
proach to rectilinear grid; therefore, they can control the results more precisely.
However, this approach needs multiple render passes of the scene to analyze
the scene and decides the dividing schema. This can introduce certain issues
for complex scenes.

The improved warping parameterization described in this thesis reduces
the aliasing artifacts, and it allows to render high quality shadows regardless
of a light source or a camera position in the scene.

The approach computes an improved parameterization based on impor-
tance driven depth texture warping. It identifies regions in the depth tex-
ture where the sampling is not optimal and enlarge this regions in order to
get higher sampling rate. Before the traditional Shadow Mapping algorithm,
an additional step of generating the non-orthogonal warping functions have to
be applied. These functions are used later during the shadow rendering.

The main contributions are:

• Introduction of a novel importance function for determining sampling
rate of depth texture. This function extends the set of functions intro-
duced by Rosen et al. [15].

• The Non-orthogonal Texture Warping (NoTW) scheme which leads to
better control of importance-based warping without affecting the nearest
regions in the texture (in the same row and/or column).

21

The Non-orthogonal Texture Warping (NoTW) algorithm is partially based
on Rectilinear Texture Warping (RTW) approach [15] (see Section 3.2.2 for
details). The RTW approach utilizes various properties of view samples, e.g.
distance to a camera, normal vector or edge detection. The warping function
can be constructed using forward, backward or hybrid analysis.

The first step in the forward analysis is rendering of the scene from the light
source point of view. Then, the importance map is computed. In the backward
analysis, the G-buffer with the scene’s depth and color is rendered from a cam-
era point of view. Then, the importance analysis is performed using samples
projected into the light space. The hybrid analysis combines both approaches.

The backward analysis is the fastest method because it requires a scene to
be rendered only two times. The first rendering pass is used to create a depth
buffer from the camera. The second rendering pass creates a warped shadow
map. Its complexity is linear with relation to the number of light sources.

Figure 4.1: Two 1D warping functions enlarge parts of the scene that are
important according to the importance map. It is not always optimal with
the rectangular grid.

The warping function in RTW is composed of two 1D warping functions
that operate in projection plane of a light source (see Figure 4.1). These func-
tions are derived from an importance map. The importance map is constructed
by projection of view samples onto the projection plane of a light source. Mul-
tiple view samples can be projected into one pixel of the importance map. In
every pixel, the importance value is computed based on the view sample prop-
erties. The 1D warping functions are derived separately for column and rows
according to a maximal importance value. Since the functions parameterize
vertical and horizontal component of the shadow map separately they produce
an orthogonal warping grid.

4.1.3 Shadow Rendering Using Warping Functions

The basic idea of the NoTW algorithm presented in the thesis is to achieve
better distribution of view samples in the shadow map. Every shadow sample

22

resolves shadow for all view samples that were projected on it (the detail
explanation of view and shadow samples and their relation to the aliasing
error are presented in Section 3.1). The ideal situation occurs when one texel
from the shadow map samples a surface that is projected onto one pixel in
the image space. However, this is hardly achievable in most of the scenes
because of the scene complexity, geometry and mutual position of the camera
and the light source. Assume that the best result is observed when the number
of view samples for all shadow samples is the same.

In NoTW algorithm, the importance map has the same resolution as the shadow
map. Every pixel in the importance map stores the number of view samples
that were projected onto the given shadow map texel. The importance map
can be created by projection of view samples into to the light space and in-
crease a counter by one. This step can be easily accelerated by contemporary
GPUs.

The complete algorithm for computing shadow consists of the following
steps:

1 Render a scene from a camera point of view to G-buffer
2 Project every view sample into the importance map
3 Compute prefix-sum for every row in the importance map
4 Construct the set of warping functions for rows according to

Equation 4.4. Use the prefix-sum from the Step 3
5 Smoothen the set of warping functions, e.g. using weighted average

6 Project every view sample onto the importance map (and
increment by 1) leveraging the set of warping functions created in
the previous step

7 Repeat the Steps 2-5 for all columns
8 Create shadow map using both sets of warping functions
9 Evaluate shadows in the scene using G-buffer, the set of warping

functions and the warped shadow map

Algorithm 2: Non-orthogonal Texture Warping.

The first step is generation of the G-buffer. Apart from other properties,
it contains positions of view samples. The importance of the samples is then
analyzed. The steps 2-7 are the most important ones and they are used to
construct the set of 1D warping functions. The warping functions are derived
in different manner than Rosen [15]. For every row and every column, 1D
warping function is constructed separately and thus it does not allocate un-
needed resolution in other parts of the shadow map. The degree of freedom for
warping functions is increased using this approach . The steps are described
in detail in the following section.

23

4.1.4 Construction of 1D Warping Functions

For one row of the importance map, let us assume a function f(x) that returns
the number of view samples on a normalized position x and its corresponding
prefix-sum function g(x):

n = f(x) x ∈ 〈0, 1〉 (4.1)

s = g(x) =

∫ x

0

f(x)dx (4.2)

For evenly distributed view samples in the row, the ratio of the number of
view samples on all positions before x, i.e. g(x), and the total number of view
samples g(1) = N is equal to ratio of the position x and the row length:

g(x)

g(1)
=
x

1
(4.3)

Expression g(x)/g(1) > x/1 implies that there are more view samples than
the number of samples x and thus the area needs to be enlarged to achieve
uniform sampling rate. On the other hand, expression g(x)/g(1) < x/1 implies
that there are less view samples and the area can be smaller.

Now, the warping function can be derived so that it is defined as an offset
o(x) that has to be added to the actual view sample position. The offset
function is given by:

o(x) =
g(x)

N
− x (4.4)

Let us assume that the view sample is projected onto a particular row in
the shadow map. Then, a new sample position x′ in the row is given by:

x′ = x+ o(x) (4.5)

Before the algorithm proceeds with construction of warping functions for
columns, the importance map has to be recomputed again. But now, the newly
derived set of 1D warping functions for rows are applied. After this step,
the number of view samples that have to be redistributed in a given column is
nearly constant (see Figure 4.2). When the 1D warping functions for columns
are derived, all the view samples are distributed more uniformly.

Section 3.2.2 mentioned that the RTW algorithm constructs two warping
functions - for vertical and horizontal direction, respectively. This approach
is improved in this work by constructing set of warping functions for all rows
and all columns at the same time. Nevertheless, these functions have to be
smoothed in order to limit the warping amplitude. Otherwise, the large poly-
gons that are linearly rasterized would not be processed by the warping func-
tions correctly. The quality can be controlled by adjusting the size of smooth-
ing window when averaging the warping functions. The wider the window is
the smoother are the warping functions. The smoothing step is included in

24

Figure 4.2: (Left) Five rows of the importance map. Blue dots indicate view
samples. (Right) the importance map constructed using the set of row warping
functions. Columns in the left do not contain the same number of view samples.
Columns in the right contains approximately the same number of view samples.

the RTW algorithm as well. It can be implemented, for instance, as a weighted
average of the results based on the number of view samples on a row or a col-
umn, respectively (see Figure 4.3).

The complete warping function can be expressed as:

warp(x, y) = (x+ o(i)x (x), y + o(j)y (y)) (4.6)

i = by · wc
j = b(x+ o(i)x (x)) · wc

where w is the shadow map resolution (number of pixels in one row), o
(i)
x (x) is

a warping function for ith row, o
(j)
y (y) is a warping function for jth column.

When both sets of warping functions are applied, the view samples pro-
jected onto the projection plane of a light source are better spread as it can
be seen in Figure 4.4.

Once both sets of the warping functions are constructed, the shadow map
can be rendered (see Step 8 of the proposed Algorithm 2). a surface point with
world space coordinate v = (v0, v1, v2, 1) is projected onto the shadow map .

4.1.5 Minimal Shadow Frustum Extension

The Non-orthogonal Texture Warping algorithm is extended with an additional
improvement. The technique for finding a Minimal Shadow Frustum (MSF)
[16] was implemented, and it was extended using rotating caliper . Using
this technique, the NoTW algorithm projects only parts of the scene that are
visible in the camera view frustum and occluders outside the frustum that cast
shadows on objects inside the frustum. However, since the MSF algorithm is
complex, it runs on CPU and thus it may influence rendering speed. Moreover,
issues caused by precision of floating point operations have to be considered
during implementation.

25

100

0

Figure 4.3: (Top, left) Importance map. (Top, right) A set of warping func-
tions for every row of the importance map. (Bottom, left) Smoothed warping
functions. (Bottom, right) the importance map after application of row warp-
ing functions - importance map for columns. Yellow color in warping functions
means positive offset for a particular position in the row.

Rosen presented Desired View (DV) function that works similarly to the MSF.
However, he did not clearly show how it influences the overall quality. The NoTW
algorithm supports the DV as well, but it is only used as pre-process step before
computing the importance map. The DV simply finds minimum and maximum
view samples coordinates in the importance map. In addition, the MSF ro-
tates the bounding box to an optimal position and adjusts near and far planes.
Rosen computes the DV in the RTW approach from the importance map by
finding first/last row and column that contains an importance value greater
than zero. In the NoTW approach, the DV is computed by parallel reduction
over the set of view samples projected into the shadow map space. It does not
contribute to warping process, but it only crop the relevant part of shadow
map.The DV function can be applied before construction of the warping func-
tions .

26

Figure 4.4: (Top, left) Scene rendered from a camera point of view. (Top, right)
the importance map created from view samples. (Bottom, left) Reprojected
view samples using only row warping functions. (Bottom, right) Reprojected
view samples using both sets for warping functions.
It can be seen that importance is more spread across the importance map in
the final stage. Black parts of second image are pixels with no view samples.
These pixels correspond to those shadow map pixels that are useless - they
resolve shadowing equation for invisible parts of the scene. In final image,
these black parts almost disappear.

27

CHAPTER 5

Experimental Results and Discussion

The Non-orthogonal Texture Warping scheme has been evaluated on various
scenes. The experiments performed and described in this chapter show that
the approach is fast and capable of rendering high-quality shadows for complex
light sources. Also, various improvements and extensions that can be used
together with the NoTW algorithm are discussed.

5.1 High-quality Shadows

The NoTW algorithm improves the Shadow Mapping algorithm. The most
important contribution of the NoTW algorithm is the reduction of the aliasing
error in a scene and increasing the quality of rendered shadows. In the Shadow
Mapping algorithm, poor quality shadows can be rendered which produces
“jagged” shadow edges. In order to evaluate precision of rendered shadows,
the Shadow Volumes algorithm was chosen as the ground truth, because it
provides sample-precise shadows (see Figure 5.1).

This Section presents various scenes on which the evaluation has been per-
formed. The output images show incorrectly computed shadow pixels in red
color.

Figure 5.1: The reference image illustrates the Observatory scene (left) and
zoomed detail of the image (right) that is used for evaluation of the quality.

28

5.1.1 Comparison with Standard Shadow Mapping

This section shows differences in quality between the standard Shadow Map-
ping algorithm as introduced in Section 2.3 and the NoTW algorithm. The re-
sults were measured for Observatory scene on 1024×1024 resolution of the out-
put image and with 512 × 512 resolution for the shadow map. In Figure 5.2,
differences from the reference solution are presented.

Figure 5.2: (Left) the reference image of Observatory. (Middle) the detail ren-
dered with the Shadow Mapping algorithm. (Right) the same detail rendered
with the Non-orthogonal Texture Warping algorithm.

The basic Shadow Mapping algorithm has no ability to focus on the current
camera view. It covers the whole scene with the shadow map and the aliasing
error in this case is really high. The red pixels in Figure 5.2 (left) illustrate that
many view samples were projected onto a single shadow map texel. The NoTW
algorithm, on the other hand, project the view samples more uniformly to
the shadow texels.

5.1.2 Comparison with RTW

The Rectilinear Texture Warping (RTW) algorithm is the most similar ap-
proach to the NoTW approach and since some improvements of the RTW
algorithm are suggested in Section 4.1, the visual quality has been explicitly
compared to the RTW algorithm as well. Implementation of RTW algorithm
with backward analysis has been used for creation of the importance map.
Both the Distance to Eye and the Desired View importance functions were
enabled in all reference images (see Section 3.2.2 for more details about the im-
portance functions).

Figure 5.3 (left) shows that the sampling distribution is more uniform in
the RTW algorithm in comparison to the standard Shadow Mapping algorithm
presented in the previous section.

29

Figure 5.3: (Left) the reference image of Observatory. (Middle) the detail
rendered with the Rectilinear Texture Warping algorithm. (Right) the same
detail rendered with the Non-orthogonal Texture Warping algorithm.

5.2 Performance

This section presents experiments related to the speed of the Non-orthogonal
Texture Warping algorithm (NoTW). Every improvement in quality can bring
additional computation cost, however, it still has to maintain interactive rates.
Moreover, the Shadow Volumes algorithm defines a lower boundary for speed.
In the following text, all approaches have been compared to fully optimized and
accelerated Silhouette-based Shadow Volumes approach introduced by Milet
et al. [9].

5.2.1 Basic Shadow Algorithms

Table 5.1 shows frame times for all experimental scenes. This is a basic per-
formance comparison of the NoTW algorithm with different approaches.

Scene Conf. room Sponza Observatory
triangles 126665 261978 52583
gbuffer 2.16 2.229 1.84
SV 9.64 18.41 14.96
SM 0.21 0.40 0.16
RTW 3.14 3.47 3.02
NoTW 3.63 3.84 3.23

Table 5.1: Performance comparison of implemented methods for different
scenes. Times are in milliseconds.

The accelerated Shadow Volumes algorithm (SV) introduced by Milet et
al. is the slowest. It can be seen that the frame times depends on the scene
complexity. This is a common property of all shadow rendering algorithms
and namely the Shadow Volumes. On the other hand, the standard Shadow
Mapping algorithm (SM) is the fastest approach, but it has the worst quality of

30

the output as described in Section 5.1. The RTW as well as NoTW approaches
performs better than SV and the timings are almost equal.

5.3 Complex Light Sources

From the Shadow Mapping algorithm point of view, omnidirectional light
sources are considered to be complex light sources. They require additional
computation steps to be capable of rendering shadows into all direction.

Omnidirectional light sources introduce an advanced use case and it brings
additional complexity to the algorithm. The Non-orthogonal Texture Warping
algorithm supports also this type of light sources and this section presents vi-
sual as well as performance comparison of the Cube Shadow Mapping (CubeSM)
and Dual-Paraboloid Shadow Mapping (DPSM) algorithms (presented in Sec-
tion 3.3) extended with the NoTW scheme. It shows that the NoTW algorithm
is applicable to arbitrary use case when it is integrated into existing algorithms
for omnidirectional shadow rendering and extended with a zooming feature
(e.g. Desired View function or Minimal Shadow Frustum extension).

5.3.1 Omnidirectional Light Sources

To validate robustness of the NoTW algorithm, a simple but still general use
case was chosen. The light source is considered as a dynamic object that can
be easily visible in the camera view frustum as it travels through a scene.
The reason is that in this case, the CubeSM as well as the DPSM have to fully
use their resources. In Figure 5.4, one such a use case is depicted.

The next step in evaluation of the visual quality is comparison of the ren-
dered shadow maps (see Figure 5.5). It illustrates how the improved param-
eterization modifies the shadow map and how the vertices are moved from
their initial positions. It is expected that when warping functions are applied,
the scene rendered into the shadow map is highly deformed and objects are
not be clearly recognizable. Also, it is necessary to apply the same functions
in the process of computation shadows when the samples are projected into
the light space. The warping scheme in the NoTW as well as RTW algorithm
has to ensure that all samples are projected on the correct place in the shadow
map.

Finally, Figure 5.6 illustrates the count maps that were analyzed in order
to derive the warping functions. Closer look shows that DPSM algorithm is
more efficient in using the space available in the map. This is the reason
why the DPSM algorithm extended with the NoTW scheme produces better
results. Since one side of the paraboloid covers a bigger part of the scene than
one cube face frustum, there is more oversampled regions in the shadow map
rendered with the DPSM approach. In other words, there is more space where
the view samples can be distributed.

31

DPSM
DPSM w\
warping

CubeSM
CubeSM w\

warping

Shadow
Volumes

CubeSM CubeSM+warp DPSM DPSM+warpSV

Figure 5.4: Shadow quality can be compared e.g. according to shadow bound-
aries.

”
Jagged“ edges shows that the ratio between view samples and shadow

samples is high. Shadow Volumes algorithm rendered the reference image.

However, the warping functions had to be smoothed as described in Sec-
tion 4.1.4. Therefore, the warping functions do not distribute the view samples
over the entire shadow map. The smoothing factor is controlled by the user
and it was set manually for each of the testing scenes.

Performance

Since the Shadow Mapping algorithm consists of various steps, execution times
of the steps were also measured for all tested approaches.

The Table 5.2 shows that the biggest impact in NoTW approach is observed
in rendering of the shadow map, because of the importance map creation, anal-
ysis, and deriving of the warping functions. It has to be noted that even though
the Shadow Volumes algorithm is fully optimized and capable of running in
real-time, the frame times are not stable between frames. It depends on com-
plexity of the scene and in the worst case, rendering of single frame took 16ms.

32

DPSM
DPSM w\
warping CubeSM

CubeSM w\
warping

Figure 5.5: Comparison of shadow maps. The warping functions cause
the scene is hardly recognizable.

DPSM
DPSM w\
warping CubeSM

CubeSM w\
warping

Figure 5.6: Comparison of count maps. For the Cube Shadow Mapping, only
one face contains most of the shadow samples.

For shadow mapping-based approaches, the times were stable.

Method Frame time SM rendering Shadow computation
SV 4.8* N/A N/A
CubeSM 2.5 0.38 0.10
DPSM 2.3 0.16 0.09
CubeSM w/ warping 5.8 3.6 0.11
DPSM w/ warping 3.4 1.2 0.10

Table 5.2: Performance comparison of implemented methods for omnidirec-
tional shadow rendering. Times are in milliseconds.

5.3.2 Effect of Desired View

Experimental results also showed that extension of the NoTW algorithm with
the Desired View (DV) function (or Minimal Shadow Frustum extension, MSF)
is major part of decreasing alias error, but in some situation it is not suffi-
cient. The main reason for focusing on these methods is that it should confirm
whether the DV or MSF is not sufficient enough to render images of the similar

33

quality. Since Rosen [15] described this importance function, however, he did
not show any results.

The MSF or DV perform better than the texture warping techniques when
a small part of a scene is rendered. However, in real world scenes the cam-
era renders a bigger part of a scene and in this case the warping techniques
perform better (see Figure 5.7). The MSF or DV do not generate the view
frustum small enough and thus artifacts on shadow edges are more apparent.
The performance of DV and MSF depends on current hardware setup. MSF
performs better than DV when running on fast CPU and slow GPU.

The effect of the DV function is nicely visible in Figure 5.7. First image
shows the Observatory scene rendered using the traditional Shadow Mapping
algorithm with a directional light source. Second image, shows how the scene
is zoomed on the part visible in the camera view frustum when only the DV
is applied as a pre-process step in the NoTW algorithm. The RTW includes
the DV function in the set of importance functions by default and it is used
to analyze the importance map and derive the warping functions. The last
image depicts the NoTW algorithm. It is similar to the result from the RTW
algorithm but the parameterization is a bit different which leads to lower alias
error (see the shadow maps in Figure 5.7).

NoTW

shadow map

RTW

shadow map

SM

shadow map

DV only

shadow map

Figure 5.7: Images show shadow maps for Observatory scene. (From left
to right) Shadow Mapping (SM), NoTW with only DV function (no warp-
ing applied), Rectilinear Texture Warping (RTW), complete NoTW including
warping.

The Desired View (DV) function and Minimal Shadow Frustum extension,
MSF) help to generate the high-quality shadows with a small additional cost.
However, when the warping techniques employ all their features, the results
are even better and the impact on performance is not crucial (see Table 5.3)

The similar effect as the DV function has the Improved Paraboloid Shadow
Mapping (IPSM) [17] approach . The IPSM has been designed for optimization

34

Method time per frame
SM 1.596
MIN-SM 1.7
SV 8.750
RTW 3.296
NoTW 4.708
NoTW-DV 2.521

Table 5.3: Performance comparison of implemented methods. Times are in
milliseconds.

of the Dual-Paraboloid Shadow Mapping algorithm in cases when the light
source is outside the camera view frustum.

5.4 Discussion

The motivation for this work has been an idea that most of the researchers
have been focused on improving shadow quality in the Shadow Mapping algo-
rithm, but only for directional light sources, spotlights and large environments,
e.g. Parallel-Split Shadow Maps [20] . The Non-orthogonal Texture Warping
(NoTW) algorithm has been initially designed for methods involved in omnidi-
rectional shadow casting where improving of the shadow quality has not been
explicitly investigated.

Experiments presented in this Chapter showed that the NoTW algorithm
is successfully usable in various environments without any modification. Al-
gorithms that depend on view and scene context could be replaced with one
solution. Applications can save some time when they do not have to deal with
an expensive switching between multiple methods with different data struc-
tures and demands on resources.

The initial proof-of-concept has been implemented on contemporary GPUs
and the algorithm runs in interactive rates. At this point, there is a space
for further optimizations and improvements. The deriving of the warping
functions can be further optimized with parallel processing units, e.g. CUDA.

5.4.1 Limitations

However, the solution has also some disadvantages. The NoTW algorithm
as well as the RTW algorithm have to deal with the linear rasterization unit.
Figure 4.4 (bottom right) shows how the warping functions distorted the space.
Nowadays, the rasterization pipeline can handle only the polygonal mesh. If
the warping function changes rapidly between two vertices, some errors can
be seen . Lloyd introduced the nonlinear rasterizer [7] that could replace
the traditional rasterization pipeline and allow for processing non-linear data.

In the experiments, a few techniques have been used in NoTW to deal with

35

these errors. Firstly, it utilized the adaptive tessellation provided by OpenGL.
The similar improvement was suggested by Rosen et al [15]. Further, the qual-
ity can be controlled by adjusting the size of smoothing window. Another
solution is to use weights during smoothing step. It can influence sizes of
offset values. In the experiments, these parameters were manually set to fit
the current view. When they were set inappropriately, the warping functions
do not work correctly so that it totally deforms the shadow map and also
produces artifacts and incorrectly computed shadows in the output image.

In the future work, some constraints have to be defined that should be
involved in deriving of the warping functions. It should allow for adjusting
the parameters automatically and render the output image with the highest
quality.

The limitation of the NoTW algorithm is also missing support for Mini-
mal Shadow Frustum extension (see Section 4.1.5). It should perform better
that the Desired View function, but due to precision issues in floating point
arithmetic it ended only as a prototype with a very poor performance. How-
ever, the basic version of the technique has been used in the standard Shadow
Mapping algorithm.

5.4.2 Implementation Details

The algorithm has been implemented in OpenGL 4.4 using compute shaders.
For creation of the importance map, image atomic operation imageAtomicAdd
that occurs in OpenGL has been used to save time spent on GPU. The results
were measured on a PC running Intel Core i7 4790 with 16GB of memory.
The scenes were rendered on a high-end GPU: NVidia GTX 980 and Titan X.
Operation system was Linux Ubuntu 14.04.2.

The solution requires additional memory in comparison to the basic Shadow
Mapping algorithm. Deferred shading has been used for creation of the G-
buffer that requires set of 2D textures. Two one-channel floating point 2D
textures have been used for storage of the warping functions with the same
resolution as the shadow map. Furthermore, the algorithm requires few tex-
tures for storing temporary results - the importance map, prefix sum map and
storage for warping functions. The additional memory requirements are thus
dependent on the shadow map resolution.For instance, when using the shadow
map with resolution w = 1024, additional 20 MBytes of the memory needs to
be allocated.

The memory requirements can be decreased by using e.g. another format
of textures. For instance, 16bit textures for the importance map or prefix-
sum map. Also, with increasing number of lights, the memory requirements
increase only for storing the warping functions: 8w2[bytes] for one light source.

36

CHAPTER 6

Conclusion

The main goal of this work has been improvement of the shadow rendering
based on the Shadow Mapping algorithm using Non-orthogonal Texture Warp-
ing of the shadow maps. The goal of the work has been achieved and its main
contribution is experimental evaluation of the hypothesis that parameteriza-
tion of shadow map coordinates based on simple scene analysis can reduce
aliasing error of the shadows cast by complex light sources.

The experimental results demonstrated that the reducing of aliasing error
in shadows could be achieved by modification of projection mapping. This has
been evaluated on various use cases. Further details can be found in Chapter
5. Evaluation of the hypothesis included rendering shadows in indoor as well
as outdoor scenes with various configurations. The experiments showed that
the non-orthogonal warping scheme is applicable to standard Shadow Mapping
algorithm and it improved the sampling rate for complex light sources as well.

Results of the work can be applied in various computer graphics appli-
cations that rely on quality of shadows in real time. The range of possible
applications is from CAD systems e.g. in architecture where shadow rendering
is critical for the realistic perception of the buildings to computer games where
shadow rendering is nowadays required even in complex scenes and appreciated
by the game players as a part of gaming virtual reality.

Future work will be focused on further improvements of robustness and
balancing the warping parameters and on better estimation of the error dis-
tribution on the shadow maps. Possible other direction of focus would be
extensive evaluation of the method on large and complex scenes and mea-
surement of improvement and combination of the warping with other GPU
functions. Very interesting direction would be to connect all approaches that
employ nonlinear functions with nonlinear rasterization pipeline.

37

Bibliography

[1] Stefan Brabec, Thomas Annen, and Hans-Peter Seidel. Shadow map-
ping for hemispherical and omnidirectional light sources. In In Proc. of
Computer Graphics International, pages 397–408, 2002.

[2] Michael Bunnell and Fabio Pellacini. GPU Gems: Programming Tech-
niques, Tips and Tricks for Real-Time Graphics, chapter Shadow Map
Antialiasing. Pearson Higher Education, 2004.

[3] Franklin C. Crow. Shadow algorithms for computer graphics. SIGGRAPH
Comput. Graph., 11(2):242–248, 1977.

[4] Randima Fernando, Sebastian Fernandez, Kavita Bala, and Donald P.
Greenberg. Adaptive shadow maps. In Proceedings of the 28th An-
nual Conference on Computer Graphics and Interactive Techniques, SIG-
GRAPH ’01, pages 387–390, New York, NY, USA, 2001. ACM.

[5] Henrik Wann Jensen. Realistic Image Synthesis Using Photon Mapping.
A. K. Peters, Ltd., Natick, MA, USA, 2001.

[6] Nixiang Jia, Dening Luo, and Yanci Zhang. Distorted shadow mapping.
In Proceedings of the 19th ACM Symposium on Virtual Reality Software
and Technology, VRST ’13, pages 209–214, New York, NY, USA, 2013.
ACM.

[7] D. Brandon Lloyd, Naga K. Govindaraju, Steven E. Molnar, and Di-
nesh Manocha. Practical logarithmic rasterization for low-error shadow
maps. In Proceedings of the 22Nd ACM SIGGRAPH/EUROGRAPHICS
Symposium on Graphics Hardware, GH ’07, pages 17–24, Aire-la-Ville,
Switzerland, Switzerland, 2007. Eurographics Association.

[8] D. Brandon Lloyd, David Tuft, Sung-eui Yoon, and Dinesh Manocha.
Warping and partitioning for low error shadow maps. In Proceedings of

38

the 17th Eurographics Conference on Rendering Techniques, EGSR ’06,
pages 215–226, Aire-la-Ville, Switzerland, Switzerland, 2006. Eurograph-
ics Association.

[9] Tomáš Milet, Jozef Kobrtek, Pavel Zemč́ık, and Jan Pečiva. Fast and
robust tessellation-based silhouette shadows. In WSCG 2014 - Poster
papers proceedings, pages 33–38. University of West Bohemia in Pilsen,
2014.

[10] Tomáš Milet, Jan Navrátil, Adam Herout, and Pavel Zemč́ık. Improved
computation of attenuated light with application in scenes with multiple
light sources. In Proceedings of SCCG 2013, pages 155–160. Comenius
University in Bratislava, 2013.

[11] Jan Navrátil, Pavel Zemč́ık, Roman Juránek, and Jan Pečiva. A skewed
paraboloid cut for better shadow rendering. In Proceedings of Computer
Graphics International 2012, page 4. Springer Verlag, 2012.

[12] Brian Osman, Mike Bukowski, and Chris McEvoy. Practical implemen-
tation of dual paraboloid shadow maps. In Proceedings of the 2006 ACM
SIGGRAPH Symposium on Videogames, Sandbox ’06, pages 103–106,
New York, NY, USA, 2006. ACM.

[13] Jan Pečiva, Jaroslav Přibyl, and Jan Navrátil. Close-to-photorealistic
lighting for simulations and cad. In 2011 International Simulation Multi-
conference - SCS (SCSC, SPECTS, GCMS) - SCSC Proceedings (Hard-
Copy) 11, pages 1–2. SCS Publication House, 2011.

[14] Jan Pečiva, Pavel Zemč́ık, and Jan Navrátil. Mimicking pov-ray photore-
alistic rendering with accelerated opengl pipeline. In WSCG’2011 Com-
munication Papers Proceedings, 19-th International Conference in Central
Europe on Computer Graphics, Visualization and Computer Vision, pages
149–156. University of West Bohemia in Pilsen, 2011.

[15] Paul Rosen. Rectilinear texture warping for fast adaptive shadow map-
ping. In Proceedings of the ACM SIGGRAPH Symposium on Interactive
3D Graphics and Games, I3D ’12, pages 151–158, New York, NY, USA,
2012. ACM.

[16] Marc Stamminger and George Drettakis. Perspective shadow maps. ACM
Trans. Graph., 21(3):557–562, July 2002.

[17] Juraj Vanek, Jan Navrátil, Adam Herout, and Pavel Zemč́ık. High-quality
shadows with improved paraboloid mapping. In Advances in Visual Com-
puting, Lecture Notes in Computer Science 6938, pages 421–430. Faculty
of Information Technology BUT, 2011.

[18] Turner Whitted. An improved illumination model for shaded display.
Commun. ACM, 23(6):343–349, June 1980.

39

[19] Lance Williams. Casting curved shadows on curved surfaces. SIGGRAPH
Comput. Graph., 12(3):270–274, August 1978.

[20] Fan Zhang, Hanqiu Sun, Leilei Xu, and Lee Kit Lun. Parallel-split shadow
maps for large-scale virtual environments. In Proceedings of the 2006 ACM
International Conference on Virtual Reality Continuum and Its Applica-
tions, VRCIA ’06, pages 311–318, New York, NY, USA, 2006. ACM.

40

