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Abstract. In this paper, the phase space reconstruction of 
time series produced by different instruments is discussed 
based on the nonlinear dynamic theory. The dense ratio, 
a novel quantitative recurrence parameter, is proposed to 
describe the difference of wind instruments, stringed instru-
ments and keyboard instruments in the phase space by ana-
lyzing the recursive property of every instrument. Further-
more, a novel supervised learning algorithm for automatic 
classification of individual musical instrument signals is 
addressed deriving from the idea of supervised non-nega-
tive matrix factorization (NMF) algorithm. In our ap-
proach, the orthogonal basis matrix could be obtained 
without updating the matrix iteratively, which NMF is 
unable to do. The experimental results indicate that the 
accuracy of the proposed method is improved by 3% com-
paring with the conventional features in the individual 
instrument classification. 
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1. Introduction 
Nowadays, the classification of musical instrument 

has become an interesting research field. It could be treated 
as the first step in music information retrieval (MIR) 
systems. The technique of machine learning for signal 
processing enhanced the classification study on musical 
instrument [1], [2]. 

As we know, music signals are usually produced by 
the instruments. Over the last decade, there has been a great 
deal of work on musical instrument classification. A. Ero-
nen adopted Mel-frequency cepstral coefficients (MFCC), 
spectral and temporal features for instrument classification, 
and the identification of 35% for 29 instruments classes 
was achieved [3]. B. Kostek trained wavelet features and 
MPEG-7 descriptors with multilayer neural networks and 
made the mean recognition rate up to 70% for 12 instru-
ments [4]. Recently, E. Benetos et al. utilized a supervised 

non-negative matrix factorization (NMF) algorithm yield-
ing a correct classification rate of 95.2% for 6 instrument 
classes [5]. But, the basis matrices extracted by NMF are 
not orthogonal. Consequently, an improved method was 
presented to perform Gram-Schmite (GS) orthogonaliza-
tion on the basis matrix by utilizing QR decomposition [6]. 
Experimental results demonstrated that the improved 
method outperformed the supervised NMF algorithm.  

Although good performance has been achieved in 
musical instrument classification, there is a problem which 
has not been solved, i.e. the wrong classification between 
the different instrumental families often occurs. For in-
stance, piano is classified as oboe, clarinet and oboe are 
classified as cello, guitar is classified as trumpet and piano, 
etc. [3], [7]. These phenomena do not accord with the audi-
tory system of human ears. The reason is that the conven-
tional features cannot capture the unique properties of 
instruments. 

With the deeper studies of nonlinear dynamics theory, 
the nonlinear signal analysis has got an extensive applica-
tion in the field of audio signal processing. It has been 
proved that the time series of audio signals, including musi-
cal instrument signals, obviously have the typical nonlinear 
characteristics [8], [9]. Therefore, this paper presents a new 
idea, i.e. we can apply the concept of nonlinear dynamics 
into the musical instrument classification. More concretely, 
musical instruments usually have some unique properties 
that can be revealed by the phase space reconstruction of 
the time series produced by the instruments. Furthermore, 
a novel recurrence parameter, dense ratio, is proposed to 
describe the difference of wind instruments, stringed instru-
ments and keyboard instruments in the phase space by 
analyzing the recurrence characteristics of all instruments.  

In addition, a novel supervised learning algorithm 
which could obtain the orthogonal basis matrix without 
updating the matrix iteratively is addressed. For musical 
instrument classification, each class is trained individually 
to gain the orthogonal basis matrix and save it. Afterwards, 
the test data are projected onto each trained basis matrix. 
Feature selection for varying dimensions is also considered. 
Moreover, nearest neighbors (NN), Gaussian mixture 
model (GMM) and radial basis function (RBF) networks 
have been employed for classification and their perform-
ance is evaluated. The results indicate that the classification 



RADIOENGINEERING, VOL. 22, NO. 1, APRIL 2013 61 

accuracy of the proposed method is comparable to the per-
formance of supervised NMF algorithm using in [6] for the 
same experiments. 

The paper is organized as follows. The nonlinear dy-
namic theory that will be used for musical instrument 
classification is introduced in Section 2. The recurrence 
characteristics analysis of musical instrument signals is 
given in Section 3. The proposed method of supervised 
learning algorithm is described in Section 4. Feature 
extraction and selection are briefly presented in Section 5. 
The experimental results for musical instrument classifica-
tion are shown in Section 6. Finally, the conclusions are 
drawn in Section 7. 

2. Nonlinear Dynamic Theory 
Nonlinear dynamics theory has recently been adopted 

as a new nonlinear approach for audio signal processing. 
The nonlinear characteristics analysis in audio signals can 
be employed by the phase space reconstruction. Then, the 
basis concept of phase space reconstruction will be given. 

2.1 Phase Space Reconstruction 

The fundamental concept of nonlinear dynamics is 
phase space reconstruction. Each state of the dynamics is 
represented unambiguously by one point in a multi-dimen-
sion space.  

According to the phase space reconstruction method 
proposed by F. Takens [10], the one-dimension nonlinear 
time series of audio signal x = (x1,x2,x3,…,xK)T , where T 
denotes transposition, can be reconstructed to a state matrix 
Y which is given by: 
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where  is the time delay and m is the embedding dimen-
sion. N = K - (m - 1)τ denotes the number of phase points in 
the phase space. And yi is one of points in m-dimension 
phase space which represents the ith state of the system. 
Notice that for m = 1, equation (1) reduces Y to the signal x. 

2.2 Parameter of Phase Space Reconstruction 

It is seen that two parameters need to be predefined 
firstly for the phase space reconstruction. They are the time 
delay τ and the embedding dimension m. In this paper, τ 
and m are calculated by autocorrelation method and false 
nearest neighbor method [11], respectively. For each kind 
of instruments, τ and m are all different because the distri-
butions of them differ from each other in the structure of 
phase space. However, it is unrealistic to compute τ and m 
for large data in the study of pattern recognition. Therefore, 

the statistical method is adopted by calculating the prob-
ability of the values of τ and m for each frame. Then, the 
optimal values of τ and m are taken by finding the position 
of the maximum probability. Finally, we set them manually 
as m = 6,  = 9. 

2.3 Phase Space Reconstruction of Musical 
Instrument Signals 

According to the nonlinear dynamic theory, the 
instrumental signals are reconstructed in the phase space 
and projected onto a three-dimension space in order to ana-
lyze the characteristics of signals visually. The temporal 
waveform and three-dimension phase space trajectory of 
three common instruments are depicted in Fig. 1, where 
Fig. 1(a), Fig. 1(b) and Fig. 1(c) are the temporal wave-
forms of clarinet, cello and piano, and Fig. 1(d), Fig. 1(e) 
and Fig. 1(f) are the corresponding phase space trajectories. 
From the figures of temporal waveforms, we can see that 
clarinet, cello and piano have the characteristics of quasi-
periodic signals obviously, whereas it is difficult to distin-
guish them from each other by the temporal waveforms. 
However, it can be seen from the three-dimension phase 
space that the trajectories of clarinet have strong property 
of periodic recursion. It is very easy to find the number of 
samples T which is the corresponding period of the tempo-
ral signal, for example by the autocorrelation method [12]. 
These T points compose a complete trajectory. In the phase 
space, the total number of trajectories can be expressed as n 
which is calculated by n = N / T, and the trajectories of 
clarinet are close to each other. Furthermore, the trajecto-
ries of cello in the three-dimension phase space have some 
property of periodic recursion, but each trajectory is incom-
pact. In the phase space of piano, the trajectories are ran-
domly distributed, while the all trajectories are in a relative 
steady area. 

The different working principles of wind instrument 
(include woodwind and brass), string instrument and key-
board instrument lead to different distribution in the phase 
space. It is to be noticed that the changes of pitch, rhythm 
and style by players will impact the distribution in the 
phase space, but the characteristics of phase space trajecto-
ries of wind instruments, string instruments and keyboard 
instruments are still similar with Fig. 1(d), Fig. 1(e) and 
Fig. 1(f), respectively. The aforementioned discoveries 
give us an inspiration that it is possible to classify the dif-
ferent instrument families by the nonlinear dynamics 
theory. 

3. Recurrence Characteristics Analysis 
of Musical Instrument Signals 

3.1 Recurrence Plot 

Eckmann [13] et al. have introduced a tool which 
enables us to investigate the m-dimension phase space tra-
jectory through a two-dimension representation of its recur- 
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Fig. 1.  The temporal waveforms and three-dimension phase space trajectories of clarinet, cello and piano. 

rences. This representation is called recurrence plot (RP) 
and it can be mathematically expressed as 

   N,ji,,r jiji, 1yy     (2) 

where N is the number of the considered states yi, ε is 
a predefined threshold, •is the norm (e.g. the Euclidean 
norm) and Θ(•) is the Heaviside function, which is defined 
as 
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RP intuitively represents the m-dimension phase 
space trajectory of the dynamical system through a two-
dimension figure, which reveals the variation regularity of 
the internal structure for the system.  

The recurrence of a state at time i with regard to time 
j is represented as a two-dimension square matrix with 
black and white points. If the vectors yi and yj are falling 
into a region whose centre is yi and radius is ε, ri,j is repre-
sented as a black point in terms of coordinate (i, j) in the 
RP. On the contrary, if the vectors yi and yj are not falling 
into this region, ri,j is represented as a white point in terms  
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Fig. 2.  Examples of the recurrence plot obtained from clarinet 
(a) and cello (b). Parameters m = 6, τ = 9, and ε = 1.5σ 
are used. 

clarinet and cello are given in Fig. 2, where σ  is the vari-
ance of the instrument signals. Both of them have the obvi-
ous property of periodic recursion, since the distances be-
tween the lines which parallel the main diagonal line with 
a 45 angle are almost equal. The lag of each line is the 
number of samples T which corresponds to the period of 
temporal signal. 

3.2 A Novel Recurrence Quantification 
Parameter 

Zbilut and Webber developed the recurrence quanti-
fication analysis (RQA) [14] to quantify the afore-men-
tioned structures in the RP. However, these RQA parame-
ters reveal the different properties of the random signals 
and the periodic signals effectively [15]. But the signals 
analyzed in this paper are quasi-periodic signals (shown in 
Fig. 2). And the traditional recurrence quantification 
parameters are useless to classify the different instrument 
families. For this problem, a novel recurrence quantifica-
tion parameter is proposed in this section. 

3.2.1 Dense Ratio 

In order to describe the difference among the instru-
ment families, a novel recurrence quantification parameter 
is developed by analyzing the recursive property of every 
instrument family. This parameter is named as dense ratio 
(DR), since it represents the density of every trajectory 
distributed in the phase space. DR is defined by 
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where T is the number of samples corresponding to the 
period of the temporal signals and n = N / T. If the dis-
tance between the vectors yi+jT and yi+kT is close, the value 
of ri+jT, i+kT will be 1, and the position (i+jT, i+kT) in the RP 
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is represented as a black point. All the points of (i + jT, 
i + kT), i = 1,…,T, j, k = 1,…,n - 1, and j ≠ k, compose the 
lines which parallels the main diagonal line with a 45 angle. 
Thus, DR implies the percentage that the coordinates 
(i + jT, i + kT) are represented by black points in the RP. 
From the definition of RP, we know that ri,j is symmetrical 
with respect to the main diagonal line. So the area of i < j 
in the RP is considered for reducing half computational 
quantity.  

3.2.2 Discussion of the Threshold ε 

The capability of DR for distinguishing three instru-
ment families depends on the value of the threshold ε. If ε 
is too large, ri+jT, i+kT  of all musical instrument signals is 
represented as a black point in the RP. And if ε is too small, 
ri+jT, i+kT  of all musical instrument signals is represented as 
a white point in the RP. Therefore, the choice of ε is so 
important that we predefined it from a range of 
ε  {0.1σ,0.2σ,0.3σ,0.4σ,0.5σ,0.6σ}, where σ is the vari-
ance of the instrument signals. Finally, ε = 0.3σ is chosen 
by the experimental results. 

3.2.3 Classification of Instrument Families 
Using Dense Ratio 

RP of note a4 played by clarinet, cello and piano are 
depicted in Fig. 3. The recurrence parameters are chosen as 
m = 6, τ = 9, and ε = 0.3σ. In Fig. 3(a), the black points, 
that is ri+jT,i+kT, compose the lines which parallel the main 
diagonal line. It is seen that the trajectories in the phase 
space of wind instruments are dense and the distance of 
each trajectory is less than the threshold ε. Therefore, the  
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Fig. 3. RP of a4 played in clarinet, cello and piano. 
Parameters m = 6, τ = 9, and ε = 0.3σ are used. 

positions paralleling the main diagonal line are all the black 
points. In Fig. 3(b), the trajectories in the phase space of 
stringed instruments are incompact. So, there are numerous 
isolated recurrence points distributed in the position of 
paralleling the main diagonal line. This indicates that the 
distance of each trajectory is fluctuant around the threshold 
ε. In Fig. 3(c), the trajectories in the phase space of piano 
are randomly distributed. There are few black points in the 
positions of paralleling the main diagonal line. This can be 
explained that the distance of each trajectory is more than 
the threshold ε. 

The larger the DR is, the denser the trajectories in the 
phase space are. It is certified that the DR of wind instru-
ments has the maximum value which is from 0.8 to 1, the 
DR of piano has the minimum value which is below 0.3, 
and the DR of stringed instruments has a value which is 
from 0.3 to 0.7. Thus, three instrument families are distin-
guished by DR effectively. 

4. Supervised Learning Algorithm for 
Musical Instrument Classification 
In this section, a novel supervised learning algorithm 

will be addressed inspiring by the idea of supervised NMF 
algorithm. Then, the optimization of the feature subsets 
will be also discussed. First of all, we will review the 
supervised NMF algorithm. 

4.1 Review of Supervised NMF Algorithm 

For a given non-negative n × m matrix V (can be 
regarded as the musical instrument features consisting of n 
vectors of dimension m), NMF finds the non-negative n × r 
matrix W (basis matrix) and non-negative r × m matrix H 
(encoding matrix) in order to approximate the matrix V as 
[16]: 

 WHV  .  (5) 

Usually, r is chosen so that (n + m) r < nm. To find 
an approximate factorization in (5), Kullback-Leibler 
divergence between V and WH is used frequently, and the 
optimization problem can be solved by the iterative 
multiplicative rules. But, the basis vectors defined by the 
columns of matrix W are not orthogonal. Thus, QR 
decomposition was utilized on W in [7], that is W = QR, 
where Qn×r is an orthogonal matrix and  Rr×r is an upper 
triangular matrix. At this time, 

 HQV  .   (6) 

V can be written as a linear combination between an or-
thogonal basis and a new encoding matrix, where Q con-
tains the orthogonal basis and H’ = RH becomes the new 
encoding matrix. This method, however, costs a mass of 
computation for updating W and H iteratively and QR 
decomposition. Thus, a novel supervised learning algo-
rithm is proposed in the next part. 
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4.2 A Novel Supervised Learning Algorithm 

We assume that  
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stands for the musical instrument features. An auxiliary 
matrix F is constructed as follows: 

 XXF T .   (8) 

The form of normalization of X is: 
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where E(xi) and D(xi) represent the mean and variation of 
ith feature, respectively. Consequently, (8) becomes a corre-
lation coefficient matrix (CCM) which is given by: 
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are the cross-correlation coefficients between ix  and jx . 

It should be noted that matrix R satisfies: RT= R. As 
we know, a real symmetrical matrix is consequentially 
diagonalized. So, there exists a m × m orthogonal matrix U  
such that: 
  m21

T λ,,λ,λdiag  ΛRUU    (12) 

where Λ is a diagonal matrix, its elements λ1, λ2,…, λm are 
the eigenvalues of  R, and α1, α2,…, αm are the corresponding 
eigenvectors. 

We suppose that: 
 H = XU  (13) 

where U = (α1, α2,…, αm) is an orthogonal matrix and U-1, 

inverse of U, is also an orthogonal matrix. According to 
(13), the original data matrix X can be decomposed by:  

 X = HU-1.  (14) 

Since matrix U has the property of U-1= UT, (14) can 
be written by the transposition as: 

 XT= UHT.  (15) 

This representation is very similar to (6), where U 
contains the basis vectors and the column vectors of HT 
contains the weights which approximate the corresponding 
column of matrix XT as a linear combination of the col-
umns of U.  

In the problem of classification, X is regarded as the 
features extracted from the original data. The creation of 
the supervised learning method is performed for each data 
class individually as: 

 N,,i,iii 21 UXH ,  (16) 

where N is the number of different classes, Xi is the 
features of class i and Ui is the orthogonal basis matrix for 
each class. It is clear that this method does not need any 
iteration for training. 

During the test procedure, each test sequence is repre-
sented by the feature vector xtest. Afterwards, xtest is pro-
jected onto basis matrix Ui of each class:  

  
itest

i
test Uxh  .  (17) 

For each class, the vector htest is compared to each 
column of Hi by the cosine similarity measure (CSM). The 
vector which maximizes the CSM of Hi is computed as 
a measure of similarity for the class: 
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where hj
(j) represents the jth column of matrix Hi, and the 

class label of the sequence is determined by the maximum 
CSMi: 
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The flow chart of the proposed supervised learning 
algorithm is described in Fig. 4, where the training phase is 
linked by solid line and the testing phase is linked by 
dashed line. 

 

Fig. 4. Training and testing procedure of the proposed 
supervised learning algorithm. 
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5. Feature Extraction and Selection 

The musical instrument signals from the instruments 
are windowed into frames of 30 ms which are half over-
lapped with each other. Four groups of features, listed in 
Tab. 1, are used in our feature analysis. They are the eight 
perceptual features, eighty four cepstral features, seven 
timbre features and one recurrence quantification parameter 
[8]. The mean and standard deviation of these features are 
also employed. This results in 200 features in total. Here, 
the instrument discriminative information is quantified 
using Fisher’s F-ratio in each MFCC frequency region 
(More information can be found in [9]). We improve the 
resolution in those frequency regions with high F-ratio 
values and the ninety eight sub-band filters are used to 
form 42 MFCC. 
 

Features Abbreviation Dimension Types 
Zero-crossing rate ZCR 1 
Sub-band energy SE 4 
Root mean square RMS 1 

Bandwidth B 1 
Spectral flux SF 1 

 
 

Perceptual 
features 

Mel-frequency cepstral 
coefficients 

MFCC 42 

The first time 
derivatives of MFCC △ MFCC 42 

Cepstral 
features 

Harmonic Spectral 
Centroid 

HSC 1 

Harmonic Spectral 
Deviation 

HSD 1 

Harmonic Spectral 
Spread 

HSS 1 

Harmonic Spectral 
Variation 

HSV 1 

Spectral Centroid SC 1 
Log Attack Time LAT 1 

Temporal Centroid TC 1 

 
 
 
 

Timbre 
features 

Dense Ratio DR 1 
Recurrence 

Quantification 
Parameter 

Tab. 1. Feature descriptions. 
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Fig. 5.  Performance of several feature subsets used in musical 

instrument classification. 

In order to reduce the dimension of features, a dis-
criminative feature subset should be chosen. The rule of 
selection is to maximize [6]: 

  bwtrJ SS 1   (20) 

where tr(·) stands for the trace of a matrix, Sw is the within- 
class scatter matrix and Sb is the between-class scatter 
matrix. 

The details of feature subset selection can be found in 
[17]. Using the subsets of sizes 40, 60, 80, 100, 120, 140, 
and 160, respectively, to estimate the classification accu-
racy, depicted in Fig. 5, we can see that the set of 60 should 
be considered as the most suitable feature subset for musi-
cal instrument classification. 

6. Experiments  

6.1 Database 

Audio files from CD collections in terms of mono for-
mat are sampled at 44.1 kHz. Overall three hours audio 
data, 127 recordings, contain 11 different instrument 
classes: cello, violin, guitar, clarinet, oboe, saxophone, 
flute, trumpet, horn, trombone, and piano. The specific 
length of each instrument is shown in Tab. 2. The re-
cordings contain sound segments instead of isolated instru-
ment tones. Each test sequence has the duration of about 
4 seconds. The classification accuracy is estimated using 
the leave-one-out method [11] which can achieve a least 
bias evaluation. When using the leave-one-out method, the 
learning algorithm is trained multiple times, employing all 
but one of the training data. 
 

Instrument Data(min) Instrument Data(min) 
cello 25 flute 20 
violin 23 trumpet 15 
guitar 20 horn 8 

clarinet 10 trombone 15 
oboe 15 piano 22 

saxophone 8 total 181 

Tab. 2. Audio sources of instruments. 

6.2 Performance Evaluation 

The supervised NMF algorithm and the proposed 
method are utilized by aforementioned audio data. About 
370 iterations for the supervised NMF algorithm are 
needed for convergence in the training, while the proposed 
method does not need any iteration.  

To evaluate the performance of different algorithm, 
three classifiers: NN, GMM, and RBF are considered. We 
can better assess the accuracy improvements by several 
classifiers and not just by a particular one. The mean value 
of the classification accuracy for the two algorithms and 
three classifiers is shown in Fig. 6. The results indicate that 
two methods show a comparable performance to GMM and 
RBF. The NMF algorithm makes a few improvements of 
0.2% than the proposed method whose mean classification 
accuracy is 90.4%. An obvious advantage of the proposed 
method is that the orthogonal basis matrix can be gained 
without any iteration, although there is not too much 
improvement in the classification accuracy. Hence, the 
proposed supervised learning algorithm seems to be 
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an effective method for the musical instrument classifica-
tion. Next, the individual musical instrument classification 
will be discussed. 

NMF Proposed method NN GMM RBF
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Fig. 6.  Mean classification accuracy for the proposed method, 

supervised NMF algorithm and three classifiers. 

6.3 Individual Musical Instrument Classifica-
tion 

Eleven instruments are directly distinguished from 
each other. As far as the proposed method is concerned, the 
results of individual instrument classification are given in 
Tab. 3. Cello, violin, guitar, clarinet, oboe, saxophone, flute, 
trumpet, horn, trombone, and piano are represented by let-
ters of a-k, respectively. The main diagonal line gives the 
classification accuracy of each instrument. The data, inside 
the bracket, represent the results using conventional fea-
tures alone. Apparently, the cases of wrong classification 
among different instrument families are common. For 
example, 6.5% of trombone sounds are classified as cello. 
The data, outside the bracket, represent the results combin-
ing DR. It is seen that the percentage of wrong classifica-
tion among different instrument families decreases obvi-
ously while employing the proposed method. The approach 
based on conventional features seems to have some prob-
lems in identifying different instruments, contrarily to DR  

 
 a b c d e f g h i j k 

a 
97.7 

(95.1) 
1.4 

 (1.7) 
0.6 

 (0.8) 
0 0 0 0 0 0 

0.3 
 (2.4) 

0 

b 0 
95.3  

(92.4) 
4.1 

 (4.4) 
0 0 

0.4 
 (1.8) 

0 0 0 0 
0.2  

(1.4) 

c 
4.5 

(4.5) 
0 

93.6 
 (90.2) 

0 0 0 0 0 
0.9 

 (2.5) 
0 

1.0 
 (2.8) 

d 
0.9 

(5.4) 
0 0 

80.6 
(75.1) 

0 
9.4 

 (10.3) 
4.8  

(4.9) 
0 0 

4.3 
 (4.3) 

0 

e 
0.8 

(4.0) 
0 0 

3.8 
(3.8) 

87.5  
(81.7) 

0 
2.7 

 (2.7) 
0 0 

5.2  
(5.2) 

0  
(2.6) 

f 0 
0.6 

 (6.9) 
0 

4.6 
(4.6) 

0 
88.6 

  (82.2)
4.0 

 (4.1) 
0 

2.2 
 (2.2) 

0 0 

g 0 0 0 
5.6 

(6.0) 
1.9  

(2.7) 
4.3 

 (4.3) 
85.2 

   (84.0)
0 

3.0 
 (3.0) 

0 0 

h 0 0 0 0 0 
2.2 

 (2.2) 
0 

91.2 
 (91.2) 

2.6 
 (2.6) 

3.9 
 (3.9) 

0 

i 0 0 0 
3.8 

(3.8) 
0 0 

0.9 
 (0.9) 

4.3 
 (4.3) 

84.7  
(84.7) 

6.3 
 (6.3) 

0 

j 
0.4 

 (1.5) 
0 0 0 0 0 

2.3  
(2.3) 

3.2 
 (3.2) 

3.3 
 (3.3) 

89.8 
 (87.6) 

0.9 
 (2.0) 

k 0 0 0 0 
0 

 (2.4) 
0 0 0 0 0 

100 
 (97.6) 

Tab. 3. Confusion matrix for 11 instruments (in percentage). 

 
descriptor which is very efficient means. Especially this 
may be observed in the cases of wrong instruments classi-
fication, such as piano, where its wrong classification rate 
is less than 1%. The overall average classification accuracy 
is 90.4%. The experimental results indicate that the accu-
racy of the proposed method is improved by 3% in the 
individual instrument classification. 

7. Conclusions 
In this paper, the unique properties of different instru-

ment families are revealed by the phase space reconstruc-
tion based on the nonlinear dynamic theory. The dense 
ratio, a novel quantitative recurrence parameter, is pro-
posed to describe the difference between wind instruments, 

stringed instruments and keyboard instruments in the phase 
space by analyzing the recursive property of each instru-
ment. In addition, a novel supervised learning algorithm for 
classifying musical instrument classification using a tradi-
tional features and dense ratio is proposed. The perform-
ance of the proposed method is comparable to the super-
vised NMF algorithm. The most important advantage of the 
proposed method is that the orthogonal basis matrix can be 
obtained without any iteration. The experimental results 
indicate that the accuracy of the proposed method is higher 
than the conventional features in the individual instrument 
classification.  

Future work will focus on how to decrease the 
misclassification from other families and improve the accu-
racy of musical instrument from the same family. 
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