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This article deals with optimization of the truss structure. A genetic algorithm is used for this opti-
mization. Within the strength calculation of the truss structure a normative assessment of the beam and 
their buckling stability is implemented. Also, the entire calculation is designed to use only standard pro-
files. In the first task, the optimization is focused on the weight of the structure, and in the second, on its 
price. There are also developments using different population sizes for individual cases, which will be 
described below. At the end of the work, a hypothesis is made for the link between price optimization 
and weight reduction. 
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 Introduction 

The structure optimization is long-standing prob-
lem that is decoded for many years. For engineers, this 
problem is linked to material development and stiff-
ness analysing. Currently, the most widespread opti-
mization procedure is the use of mathematical optimi-
zation to find a minimal solution [17]. For example, 
this is widely used in the automotive industry to opti-
mize the machine's carrier frame, which must transfer 
loads from payload, differential, wheels and more 
[7, 8, 9, 14]. The stiffness analysis brings the possibility 
of indicating which beams are oversize and engineer-
ing optimization suggest better solutions. It is a way to 
find a better solution that should have similar or better 
mechanical properties [4]. 

This paper is focused on the optimization of the 
truss structure using genetic algorithm. In many cases, 
weight and price are very important aspects for the de-
sign of a steel structure. It outlines the inclusion of the 
price and weight of the steel truss structure in the 
overall calculation chain. Therefore, for a thorough 
understanding of the optimization issue, these criteria 
were chosen separately. In this case, the optimization 
criterion will be weight or cost. 

The genetic algorithm was chosen for the optimi-
zation because it is a very up-to-date method that ex-
periences a great expansion in engineering applica-
tions [11]. In most scientific articles published on the 
topic of truss structure optimization the buckling sta-
bility of members is neglected [10]. Without calcula-
tion the buckling stability of beams, it is not possible 
to design a truss structure for real application, of 
course, brings a logical follow-up to the profiles used, 
which are selected only from standardised. As an ex-
ample of engineering application, the optimization 

was performed on 3D truss construction with 25 
beams.  

 Algorithm 

Since the 1970s, the deformation variation finite el-
ement method (FEM) has been a widely accepted 
method, gaining popularity on the rise of PC compu-
tational possibilities. Nowadays, this method is the 
dominant solution to truss structures. FEM is based 
on the Lagrange Variation Principle and premises of 
linear mechanics. This case was defined using a system 
of algebraic equations, these equations are adjusted to 
the following matrix form, see equation 1 [15], 

 \] ∙ ]̂ � _` ∙ \ ∙ ^ � a,  (1) 

where: 
kg…element stiffness matrix in global coordinate sys-
tem [N·mm-1], 
δg…matrix of deformation parameters in global coor-
dinate system [mm], 
TT…transposed transformation matrix [-], 
k…element stiffness matrix in local coordinate system 
[N·mm-1], 
δ…matrix of deformation parameters in local coordi-
nate system [mm], 
F…matrix of external force [N]. 

 Genetic algorithm 

The genetic algorithm (also referred to as “GA”) is 
an optimization method, which belongs among popu-
lation-based meta-heuristic optimization methods, 
along with simulated annealing, swarm optimization 
etc. These methods work with multiple solutions at 
the same time. The GA is based on some principals of 
the evolutional biology and was firstly introduced by 
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J. H. Holland in [5]. This method is useful for solving 
tasks where the exact solution does not exist or it is 
hard to find it. Nowadays, the GA is often used in a 
wide spectrum of optimizations tasks and engineering 
applications. The main advantages are the simplicity 
of its implementation, algorithm autonomy and high 
probability to obtain a solution lying near the global 
extrema [13]. 

GA works with population of candidate solutions, 
and each member of this population, often called in-
dividual or chromosome, consists of genes in which 
optimized parameters are encoded. There are exist 
multiple ways how to encode these parameters into 
genes – binary, integer, real, etc. Choosing of the right 
encoding depends on the type of a solving task [16].  

In a typical implementation of a GA (a generation 
model), the first generation is composed of randomly 
generated individuals. Next, in the transition to the 
new generation, the fitness function is evaluated for 
each individual. The functional value of the fitness 
function expresses the quality of the solution repre-
sented by the individual. All individuals are sorted ac-
cording to their fitness value and next by applying ge-
netic operators (selection, crossover and mutation) the 
new population (offspring) is created. The process is 
repeated and the quality of solutions in the population 
increase. The algorithm usually stops when a sufficient 
quality of one or more solutions is achieved or after a 
predetermined number of iterations (generations). It 
should be noted that in a GA a stochasticity plays an 
important role. 

In order to optimize the truss construction pre-
sented in this article, a generation model of GA was 
chosen. The optimized parameters were beam types 
(shape and size) and they were chosen from the Table 
2. Although the values to describe beam types could 
be only in the form of integer (corresponds to table 
rows), these values had been normalized to an interval 
<0; 1> and when the fitness function was calculating, 
values were denormalized. The fitness function was 
the strength calculation of the truss structure including 
the buckling and optimization criterium was weight of 
the structure and next price of the structure. For both 
criteria, the goal of the optimization was minimization. 

The following is a description of the genetic oper-
ators. For selection, individuals were chosen by using 
tournament selection [3] in which two individuals 
were randomly chosen from population and one with 
better fitness remains. This process was repeated until 
the “group of winners” had same size as population. 
Next, offspring generation was created from this 
group. This process is called crossover, and during 
crossover a new individual – offspring is created from 
genes of two selected individuals – parents. In this 
case, the one-point crossover [6] was used. Finally, a 
mutation operator was applied to a randomly selected 
gene of a randomly selected individual with relatively 

low probability, which inversely depends on number 
of genes [12]. The main purpose of this operator is to 
change some offspring in such way, that they do not 
contain any exact combination of genetic information 
from their parents. Due to the mutation, individuals 
do not stagnate and can escape from local extremes.  

Elitism was used to preserve the best individu-
als [1]. The elitism is a process in which a certain num-
ber of individuals are moved directly to the next pop-
ulation, so they are not lost during application genetic 
operators.  

See Table 3 below for more details. 

 Conditions 

The project – optimization algorithm including 
computational model of a truss structure – was pre-
pared in the programming language Python version 
3.7. It was calculated on a computer with a 64-bit op-
erating system, 32 GB RAM and AMD Ryzen 7 
2700X 3.70 GHz processor. All times listed below are 
converted to single-threaded task. 

As described in the previous chapter, the initial in-
itialization of individuals is required to trigger a genetic 
algorithm. The number of individuals in the popula-
tion is the one of the attributes that changes the size 
of the searched space. The number of individuals was 
selected at 250, 2500 and 25000. Furthermore, the lim-
itation criteria, namely the number of generations per 
100 or if the value of the fitness function has not 
changed for 30 generations, were also chosen in which 
GA should be terminated. The initialization split is 
uniform distribution at the interval <α, β>. Therefore, 
its probability density of function f(x) is given by equa-
tion 2, where 

 c(P, � �d+e for α ≤ x ≤ β. (2) 

An interval of <0; 1> was selected for this project 
[2]. 

One-dimensional optimization with weight mini-
mization was chosen as the first example. A truss 
structure that will have a minimum mass regardless of 
production costs is wanted. The second example was 
chosen as cost minimization. A truss structure is being 
sought, which will have a minimum cost regardless of 
weight. 

 Engineering applications 

The 25-bars reference truss construction was se-
lected as seen in the Fig 1. Points A, B, C and D are 
fixed and there are limited displacements and rotations 
of these joints at these points. Members that cross 
each other but have not defined a joint in their contact 
do not affect each other. In point I and J, 50 kN forces 
are applied in the negative direction of the Z axis as 
seen in Fig 2. Furthermore, the applied gravity in the 
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form of force acting on each beams is adequate to its 
weight.  

The calculation of this structure is considered as a 
truss with all beams assumptions and joints. The 
points are connected by trusses and the coordinates of 
the points can be found in Table 1. For calculation of 
buckling stability was used European standard; EN 
1993-1-1 (2005): Eurocode 3: Design of steel struc-
tures – Part 1-1: General rules and rules for buildings. 
Standardized profiles according to standards were also 
used, see attached Table 2. 

 

Fig 1 Truss construction design of members and links in glo-
bal coordinate system. 

 
Fig 2 FEM model of truss construction with load and boun-

dary conditions in NX. 

Tab. 1 Table of points in global coordinate system. 
Point name X [mm] Y [mm] Z [mm] 

A -2540 -2540 0 
B 2540 -2540 0 
C 2540 2540 0 
D -2540 2540 0 
E -952 -952 2540 
F 952 -952 2540 
G 952 952 2540 
H -952 952 2540 
I -952 0 5080 
J 952 0 5080 

Tab. 2 Table of standardized profiles. 

Standard Profile Dimension [mm] Minimum order 
length [mm] 

DIN 1025-1 Hot rolled I-sections, I - series 80, 100, 120, 140, 160 6000 
DIN 1025-5 Hot rolled I-beams, IPE - series 80, 100, 120, 140, 160 6000 
DIN 1026-1 Hot rolled U-beam, U - series 65, 80, 100, 120, 140 6000 

DIN 1026-2 Hot rolled U-beam, UPE - series 80, 100, 120, 140, 160 6000 
EN 10055 Hot rolled T-beam, T - series 50, 60, 70, 80, 100 6000 
EN 10210 Seamless pipe 60, 70, 88, 95, 108 6000 
EN 10219 Seamless jӓkl 70, 80, 90, 100, 120 6000 
EN 10056 Hot rolled L-shaped cross-section 60, 80, 90, 100, 120 6000 

 Results 

The FEM was used in this article to calculate the 
strength of the truss structure. This method is used to 
identify the distribution of forces and quantify the size 
of forces in the structure. The above-mentioned ge-
netic algorithm has been chosen for optimization – to 
search through the design space for possible solutions. 
One-dimensional weight optimization was chosen as 
the first example, with a population of 250, 2500 and 

25000 individuals in a generation. As can be seen in 
the Fig. 3 when 250 individuals were used for the cal-
culation, the minimum weight of the structure was 544 
kg. There has been a reduction in convergence rates 
between the 30th and 40th generation, due to a rela-
tively small population. When 2500 individuals were 
used in the calculation, the minimum weight of the 
structure was 526 kg and the convergence rate was re-
duced after approximately 20 generations. The results 
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achieved with population of 25000 individuals are the 
best. The resulting construction weighs 521 kg and the 
results have not improved since the 80th generation. 

 

Fig. 3 Graph showing the progress of the best fitness value for 
each population during weight optimization 

 

Fig. 4 Graph showing the progress of the best fitness value for 
each population during price optimization 

 
In the second example, the goal was to find the 

minimal price of construction – including the mini-
mum order length of individual profiles. Using the al-
gorithm with 250 individuals per generation, a design 
with the minimum price of 20406 CZK was found. In 
this case the convergence rate reduced in two steps, 
the first occurred in the 10th generation and the sec-
ond in the 35th generation. Using 2500 individuals per 
generation, the convergence rate reduced in the 15th 
generation and the minimum price for this structure 
was 18738 CZK. When 25000 individuals per genera-
tion were used, the convergence rate gradually de-
creased and results did not improve since the 90th 
generation. A minimum price of 18257 CZK was 
found for this variant, as seen in Fig. 4. 

The 25-bars reference truss construction was cho-
sen to verify the calculation of the algorithm. The 
model and simulations were performed in a classic 

FEM program. NX was selected as a modelling pro-
gram. MSC APEX software was used to prepare the 
FEM and calculate the forces, see Fig. 5. 

 

Fig. 5 Forces analysis of truss structure, distribution of forces 
in bars, maximum force is 19.4 kN 

 

Fig. 6 Graph of correlation between the price and the weight 
of the structure, 25000 - min f are the best individuals in the 

population for each generation, 25000 - average are the 
average value of all feasible individuals in the population for 

individual generations 
 
In the logical context of the second example, the 

data were analysed for the correlation between the 
price and the weight of the structure. It was found that 
the price optimization of the structure reduce its 
weight with the Pearson correlation coefficients Rmin 
= 0.974643, Rave = 0.998624. Two analyses were per-
formed for the largest population – 25000 individuals 
in the population – and price optimization. In the first 
case, it is the average price and weight of feasible indi-
vidual solutions for each generation. In the second 
case, it is taken to be the individual who has achieved 
the best value of fitness function in each generation. 
See Table 3 for detailed data.
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Tab. 3 Table of resulting data with calculation times. 

Type optimi-
zation 

Size popula-
tion [-] 

Elapsed genera-
tion [-] 

Elapsed time 
[s] 

Best value 
[kg/CZK] 
 

Num. generation 
of best value [-] 

Weight 250 100 1567 544 98 
Weight 2500 100 15633 526 94 
Weight 25000 100 148364 521 75 

Price 250 100 1499 20406 91 
Price 2500 100 15637 18738 98 
Price 25000 100 149695 18257 95 

 Conclusions 

Structural optimization is the main direction in 
which the development of new truss structures devel-
ops these days. This article outlines the possibility of 
solving mass optimization or price optimization. An 
important aspect in solving these problems was the in-
clusion of standards in the strength calculation, as well 
as buckling stability. Another very important point for 
calculating price during its optimization was the inclu-
sion of the minimum order length of beams of the 
profile. In both cases, the best results were obtained 
using the largest population of 25000 individuals. At 
the end of the article, the hypothesis was stated that 
the use of price optimization can also lead to mass op-
timization of the structure, especially when all beams 
are made from the same material. 
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