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Mechanical response of a perfect bcc tungsten crystal to a multiaxial loading was investigated from first principles. The multiaxial
stress state consisted of the shear stress and a superimposed compressive triaxial stress with various levels of differential stresses.
The studied shear system was ⟨111⟩{110}. Results obtained within a relatively wide range of the compressive stresses showed that
increasing hydrostatic triaxial stress (with zero differential stresses) increased the shear strength almost linearly. On the other hand,
triaxial stresses with greater portion of the differential components did not have such a simple effect on the shear strength: we found
a certain optimum value of the superimposed triaxial stress yielding the maximum shear strength. Any change (both increase and
decrease) in the triaxial stress then reduced the ideal shear strength value.

1. Introduction

First-principles (ab initio) approaches have proven useful
and reliable not only in chemistry and condensed matter
physics [1, 2] but also in many other scientific areas including
materials science [3, 4]. For this reason, they are routinely
employed in simulations of deformation processes, predic-
tions of limits of stability and strength, studies of inherent
properties of crystals, and so forth [3, 5, 6]. There is no
doubt that there are problems that are beyond the reach of
these methods such as interactions of defects in crystal lattice
(requiring very large computational cells due to periodic
boundary conditions) or the effect of temperature. Attempts
to overcome computational difficulties related to avoiding
some of the approximations embedded in the ab initio
methods have not yielded any efficient and generally accepted
solution so far. On the other hand, there are many research
problems that cannot be solved using available experimental
tools and the ab initio methods then represent the only way
to obtain reliable data.

Typically, investigation of the stress-strain response of
a crystal lattice far from its equilibrium is experimentally
hardly accessible. The major reason is a presence of lattice
defects that reduce the attainable level of mechanical stresses

by several orders of magnitude in comparison with the
ideal strength [7]. As a consequence, the strains that can
be applied to the crystal lattice are also remarkably lowered
due to structure relaxation by movement and interactions of
the defects. Fortunately, the computational approaches based
on quantum mechanics are able to supply results that are
equally reliable both close to the crystal equilibrium and
far from it. A lot of computational effort has therefore been
invested into mapping the limits of strength and stability of
solid crystals. Although real material samples always contain
certain amount of defects, properties of ideal crystal can
serve as important input parameters in various multiscale
models of complex deformation processes. Moreover, mod-
ern experimental equipment makes it possible to approach
limits of strength in several specific cases such as the tensile
testing of nanowhiskers [8], compression of nanopillars [9],
or nanoindentation testing [10] of well-prepared samples.

The major problem is thus not obtaining the data but
their interpretation. Relatively high computational demands
of these methods not only impose serious limitations on
the size of the simulation cell mentioned above but also
motivate researchers to make their simulations relatively
simple to keep the computational time within acceptable
limits. In the particular case of ideal (theoretical) strength, the
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models usually try to mimic ideally uniaxial loading [11–13]
or simple shear [14, 15]. Unfortunately, in majority of real
situations, crystal loading is very different from the simple
stress states considered in such calculations. Several examples
of theoretical studies on multiaxial loading are, however, also
available (see, e.g., the review [6] and the references therein).

In the present paper, our attention will be paid to a
multiaxial stress state described as a combination of shear and
normal stresses. Such a stress state occurs, for example, under
the nanoindenter tip. Former studies [16–18] suggested that
the shear strength of many metals can be raised by super-
position of a compressive stress acting normal to the shear
planes. Recently, we reported remarkable difference in the
responses of shear strength of bcc tungsten crystal to normal
stresses when two distinct cases of the superimposed stresses,
the uniaxial and the isotropic stresses, were considered [6].
Here we intend to describe the effect of triaxiality of the
superimposed stress on the ideal shear strength in a more
detailed way.

2. Computational Details

In the present study, the crystal is subjected to a superposition
of the shear stress 𝜏 and the three normal stresses 𝜎1, 𝜎2, and𝜎3 illustrated in Figure 1. Although directions of the arrows
in Figure 1 correspond to tensile normal stresses, the stresses
considered in our study are mostly compressive. For the sake
of simplicity, the superimposed normal stresses fulfill the
relation

𝜎1 = 𝜎2 = 𝜆𝜎3, (1)

where the compressive stress 𝜎3 oriented perpendicular to
the shear planes pushes the shear planes closer to each other.
From now on, this stress will be denoted (consistent with
our former studies) 𝜎𝑛. The other two stresses 𝜎1 and 𝜎2
correspond to normal in-plane stresses that stretch or shrink
the shear planes. According to (1), differential stresses linearly
decrease with increasing 𝜆. The parameter 𝜆 can also be
used to express the stress triaxiality and its values 0 and
1 are associated with the purely uniaxial and the isotropic
(hydrostatic) loadings, respectively. Stress triaxiality factor 𝑇,
which is usually defined by the ratio of hydrostatic stress to
the equivalent von Mises stress, can be expressed in terms of
𝜆:

𝑇 = 1 + 2𝜆3 (1 − 𝜆) . (2)

In our study, however, we prefer describing the stress state
using 𝜆 over using𝑇, value of which is infinity for hydrostatic
stress. The stress state (superimposed to the shear) is thus
described using the parameters 𝜎𝑛 and 𝜆 and the ideal shear
strength can be calculated as their function.

The investigated shear system in the bcc W crystal is
one of the ⟨111⟩{110} ensemble. Directions of the arrows
in Figure 1, representing 𝜎1, 𝜎2, and 𝜎3 (𝜎𝑛), can thus be
parallel, for example, to the respective [112], [111], and [110]
crystallographic directions.

𝜎3

𝜎2

𝜎1

𝜏

Figure 1: The model of multiaxial loading composed of the shear
stress 𝜏 and normal stresses 𝜎1, 𝜎2, and 𝜎3.

For the first-principles calculations of the stress tensor,
we employed the Abinit code [19, 20], a common project of
theUniversité Catholique de Louvain, Corning Incorporated,
and other contributors (URL http://www.abinit.org/). The
valence electrons were described using the ultrasoft pseu-
dopotential. The exchange-correlation contribution to the
energy was evaluated by means of the generalized gradient
approximation with the parametrization by Perdew et al. [21].
The cut-off energy was set to 400 eV and the mesh of 23 ×
23 × 23 k-points was used for sampling over the Brillouin
zone. The self-consistent cycle was finished after the total
energywas convergedwithin 10−7 eV.The crystal was partially
relaxed using our external program for optimization of the
cell shape (to converge the controlled stress tensor compo-
nents to the predetermined values with allowed deviations
below 0.15GPa). Namely, all the components of the resulting
stress tensor

[[
[

𝜆𝜎𝑛 0 0
0 𝜆𝜎𝑛 𝜏
0 𝜏 𝜎𝑛

]]
]

(3)

were controlled with the only exception of the shear stress 𝜏
whose value was calculated for set of shear strains in order to
find its maximum. The stress tensor was taken directly from
the output of the Abinit code [22]. As a benchmark, we eval-
uated the stress also from finite differences of the total energy
(computed as a function of the axial strain). The agreement
was very good (within the considered computational error of
10−1 GPa).

3. Results and Discussion

The very first step in any simulation of crystal deformation
is always an optimization of the structure and finding its
ground state. This way we obtained the stress-free bcc W
crystal with the lattice parameter of 3.17 Å which agrees well
with the measured value of 3.16 Å [23]. Also the computed
bulk modulus of 317GPa is close to the experimental value of
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Figure 2: The ideal shear strength 𝜏max as a function of the
superimposed normal stress 𝜎𝑛 for several values of the parameter
𝜆.

310GPa [23]. Then we applied a simple shear (i.e., for 𝜎𝑛 = 0)
and calculated the shear stress maximum 𝜏max,0. Its value of
17.3 GPawas in a good agreementwith the ideal shear strength
value of 17.5 GPa computed by Ogata et al. [14].

The same shear procedure was then employed to calculate
the shear strength 𝜏max for several values of 𝜎𝑛 and for five
different values of the parameter 𝜆 ranging from −0.25 to
1. The results are displayed in Figure 2 in terms of 𝜏max(𝜎𝑛)
dependencies, each corresponding to a different value of 𝜆.

As can be seen, the responses of 𝜏max to the normal stress
strongly depend on the parameter 𝜆. When the triaxial stress
state is isotropic (𝜆 = 1), the shear strength steadily increases
with increasing compressive 𝜎𝑛. The displayed dependence
can be approximated by a linear function 𝜏max = 𝜏max,0 + 𝑘𝜎𝑛,
where 𝑘 = −0.16 expresses the slope of the linear fit. Reducing
𝜆 results in noticeable bending of 𝜏max(𝜎𝑛) dependence. The
superimposed stresses then increase the ideal shear strength
only within a certain range of 𝜎𝑛 and, after reaching an
optimum 𝜎𝑛 value corresponding to the maximum value
of 𝜏max, further increase in 𝜎𝑛 rapidly reduces the shear
strength. When the superimposed stress is uniaxial (𝜆 = 0),
the optimum 𝜎𝑛 value is approximately equal to −19GPa.
The corresponding data points are almost identical with
those reported formerly [18], though the present results were
obtained using somewhat different computational settings.
We also tried to combine the normal compression with a
transverse tension (with corresponding value 𝜆 = −0.25)
which reduced the optimum value of 𝜎𝑛 to about −13 GPa.
As far as we know, the limited number of studies focused
on the effect of normal stresses on the shear strength (e.g.,
[16–18]) considered mostly the stress state corresponding
to 𝜆 = 0. Comparing the present results for tungsten
with those computed earlier for other bcc metals [18], one
can see a very similar response obtained for Mo crystal.
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Figure 3: Evolution of the normal strains 𝜀1 (open symbols) and 𝜀3
(solid symbols) in the W crystal during shear straining. The circles
illustrate evolution of the strains during the pure shear. The squares
and triangles display the data points corresponding to superimposed
hydrostatic and uniaxial stresses of −20GPa, respectively.

𝜏max(𝜎𝑛) dependencies calculated for crystals of Fe, Ta, or
Nb were almost linear in the whole range of investigated
stresses. Within a limited range of normal stresses in similar
studies devoted to ⟨111⟩{112} shear system in bcc crystals
[17], 𝜏max(𝜎𝑛) dependencies computed for the same group of
elements were qualitatively the same, that is, almost linear.

Differences in computed 𝜏max(𝜎𝑛) curves for different
values of 𝜆 can be easily understood from the crystal behavior
during shear straining. Shifting neighboring planes requires
the atoms to overcome an energy barrier. Corresponding
𝜏max value is proportional to the height of the barrier which
depends, besides other things, on a distance between the
shear planes and a distance of atoms measured in the plane
perpendicular to the shear direction. There is no doubt that
the larger these distances are, the lower the barrier is. Thus
the crystal can respond to a shear deformation by an increase
of the related normal strains. Figure 3 displays the normal
strains 𝜀1 and 𝜀3 (corresponding to directions of the stresses in
Figure 1) as functions of the shear strain (up to the strain value
corresponding to 𝜏max). Data for a pure shear (𝜎𝑛 = 0) show
that the values of 𝜀3 growmore rapidly than those of 𝜀1, which
means that the crystal prefers expanding perpendicular to the
shear planes (increasing interplanar distance) over extending
the planes.

To illustrate the effect of 𝜆 on structural relaxation of the
W crystal, we extended Figure 3 by the data for superimposed
normal stresses of the magnitude 𝜎𝑛 = −20GPa. For clarity,
the figure only contains strains computed for the hydrostatic
(𝜆 = 1) and uniaxial (𝜆 = 0) superimposed stresses.
Results for the hydrostatic stress show that crystal relaxes
practically the same way as during a pure shear except that
the curves for both strains are shifted by about −0.02 since
the crystal is isotropically compressed. Such a constraintmust
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substantially raise both the energy barrier and 𝜏max. Uniaxial
stress, however, changes the crystal relaxation during shear-
ing remarkably: the strain 𝜀1 increases more rapidly (even
more than 𝜀3) which means that the Poisson expansion in
this direction facilitates the shear process by reducing the
energy barrier (as well as 𝜏max) in comparison with the case
of hydrostatic stress.

This result is not very surprising. It has, however, impor-
tant consequences for construction of multiscale models of
deformation processes. For example, models intended for
interpretation of nanoindentation data must consider triaxi-
ality of the stress state very carefully since the normal stresses
occurring in critical microvolumes where the resolved shear
stress reaches the ideal shear strength can be very high. For
example, Zhu et al. [24] evaluated the stress state in their
nanoindentation model for Cu and obtained a triaxial stress
above 8GPa and the shear strength of about 4.6GPa. For
tungsten these values are, of course, higher exceeding 30GPa
for normal stresses. In such a case, 𝜏max values computed
under uniaxial and hydrostatic normal stresses differ bymore
than 30% and the difference rapidly increases with increasing
𝜎𝑛 (as can be seen from Figure 2). Fortunately, the data in
Figure 2 also show that results computed for superimposed
stress states with 𝜆 above 0.5 and those for the hydrostatic
stress state are very similar. Thus, in certain cases, multiscale
models assuming only the hydrostatic superimposed stresses
(as, e.g., the recent nanoindentation model [25]) can supply
reliable predictions even if the real stress state slightly
deviates from the assumption. Nevertheless, considering the
appropriate stress state in multiscale models of deformation
processes is crucial for guaranteeing correctness of the results.

4. Conclusions

Theoretical shear strength of the bcc tungsten was computed
fromfirst principles as a function of the superimposed triaxial
compressive stress. The results revealed that the effect of the
superimposed stresses on the shear strength depends not only
on the magnitude of the stresses but also on their triaxiality.
Nearly isotropic stress states raise the shear strength almost
linearly with increasing normal stress magnitude, whereas
the stress states with greater differential stresses have the
increasing effect only up to a certain “optimum” stressmagni-
tude, exceeding which leads to the right opposite effect. The
optimum level of superimposed normal stresses was found
decreasing with increasing magnitude of differential stresses.
These results are very important for future utilization of ab
initio data in multiscale models of deformation processes
since correct description of the stress state is one of the key
steps in evaluation of results.
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