
BRNO UNIVERSITY OF TECHNOLOGY
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ
FACULTY OF INFORMATION TECHNOLOGY
FAKULTA INFORMAČNÍCH TECHNOLOGIÍ
DEPARTMENT OF INFORMATION SYSTEMS
ÚSTAV INFORMAČNÍCH SYSTÉMŮ

ACTIVITY ALARM FOR CRYPTOCURRENCYBLOCKCHAINS
ALARM NA AKTIVITY V BLOCKCHAINECH KRYPTOMĚN

MASTER’S THESIS
DIPLOMOVÁ PRÁCE
AUTHOR Bc. LUKÁŠ VOKRÁČKO
AUTOR PRÁCE
SUPERVISOR Ing. VLADIMÍR VESELÝ, Ph.D.
VEDOUCÍ PRÁCE

BRNO 2018

Abstract
Cryptocurrencies are becoming popular and the demand for monitoring transactions inside
them increases alongside with it. In this thesis, I describe few of the most widespread cryp-
tocurrencies built on top of a blockchain and how to obtain information of their transactions
in order to raise alarms. I discuss existing solutions and describe application Cryptoalarm
designed for monitoring transactions involving specific addresses in order to raise alarms.
Cryptoalarm scans blockchains of cryptocurrencies such as Bitcoin, Bitcoin Cash, Litecoin,
Zcash, Dash, Ethereum and raises alarms about address activities in real-time.

Abstrakt
Popularita kryptoměn roste a s ní také poptávka po nástrojích, které umožňují monitorování
transakcí. V této práci se zabývám několika nejrozšířenějšími kryptoměnami postavených na
technologii blockchain a popisuji možnosti, jakými je možné detekovat výskyt specifických
adres v transakcích. Zhodnotil jsem již existující nástroje a popisuji aplikaci Cryptoalarm,
která je navržena pro systematické monitorování transakcí za účelem detekce zapojení speci-
fických adres v transakcích. Cryptoalarm skenuje blockchainy kryptoměn Bitcoin, Bitcoin
Cash, Litecoin, Zcah, Dash, Ethereum a umožňuje zasílání notifikací v reálném čase.

Keywords
Blockchain, cryptocurrency, alarm, monitoring, notification, transaction, Bitcoin, Bitcoin
Cash, Litecoin, Dash, Zcash, Ethereum

Klíčová slova
Blockchain, kryptoměna, alarm, monitorování, notifikace, transakce, Bitcoin, Bitcoin Cash,
Litecoin, Dash, Zcash, Ethereum

Reference
VOKRÁČKO, Lukáš. Activity Alarm for Cryptocurrency Blockchains. Brno, 2018. Mas-
ter’s thesis. Brno University of Technology, Faculty of Information Technology. Supervisor
Ing. Vladimír Veselý, Ph.D.

Rozšířený abstrakt
Kryptoměny jsou distribuovaná a čistě virtuální alternativa k běžným, státem vydávaným
měnám. Na rozdíl od státních měn, kryptoměny jsou založeny na síti distribuovaných uzlů,
nevyžadují důvěru ve třetí strany a jsou zabezpečeny asymetrickou kryptografií. Většina
kryptoměn máte také limitovaný počet mincí a neumožňuje umělou inflaci. Kryptoměny
jsou imunní vůči regulacím a neumožňují zakázat transakce mezi vybranými lidmi nebo
skupinami. V poslední době se kryptoměny těší zvýšené pozornosti a díky tomu se dostá-
vají do hledáčku lidí, kteří se o kryptoměny do této chvíle nezajímali. Díky tomu se
objevuje i zájem o sledování pohybů mezi určitými účty tak, jak je možné sledovat ve
všech bezhotovostních platbách v bankovním systému. Blockchain (technologie, na které
jsou kryptoměny postaveny) je ze své podstaty transparentní. Libovolná osoba tak může
zkoumat transakce mezi jednotlivými účty. Na druhou stranu tu pak jsou technologie
rozšiřují blockchain o možnost skrytí detailních informací o transakcích za použití další
kryptografické vrstvy. Tato práce je zaměřena na monitorování transakcí v reálném čase
mezi několika nejrozšířenějšími kryptoměnami, jmenovitě Bitcoin, Bitcoin Cash, Litecoin,
Dash, Zcash, Monero a Ethereum. Během analýzy jednotlivých kryptoměn jsem zjistil,
že v kryptoměně Monero není možné transakce monitorovat, jelikož detaily transakce jsou
skryté pomocí kruhových podpisů a jednorázových adres pro příjem mincí. Přínosem této
práce je nově vytvořená aplikace Cryptoalarm, která umožňuje systematické monitorování
transakcí pro uživatelem definované adresy. Tato aplikace může najít uplatnění jak mezi
normálními uživateli kryptoměn, tak i pro vládní a finanční instituce nebo orgány činné
v trestním řízení. Tato aplikace je vyvinuta v rámci sady nástrojů pro forenzní analýzu
kryptoměn projektu Tarzan zastřešeného výzkumnou skupinou NES@FIT zabývající se
počítačovými sítěmi a vestavěnými systémy na Fakultě informatiky Vysokého učení tech-
nického v Brně. Aplikaci Cryptoalarm jsem navrhl tak, aby byla snadno rozšiřitelná o
další kryptoměny. Mimo monitorovaní transakcí také umožňuje sledování převodů tokenů
v systému smart kontraktů vycházejících ze specifikace ERC20 pro kryptoměnu Ethereum.
Navržená aplikace umožňuje zasílaní notifikací v okamžiku výskytu monitorované adresy
uvnitř transakce, a to buď jako email nebo pomocí REST API. Pro správu monitorovaných
adres je vytvořena webová aplikace, ve které je možné definovat typ výskytu adresy, a to
buď jako odesilatel nebo příjemce. Dalším z výstupu této práce je parser identit, který
zpracovává data z internetového fóra Bitcointalk a páruje získané identity s jejich adresami.
Dále vznikla komponenta pro identifikaci kryptoměn, do kterých adresa patří, a to na zák-
lade formátu adres jednotlivých kryptoměn. Pro verifikaci správné funkčnosti vyvinuté
aplikace byla vytvořena testová sada pokrývají interakce s blockchainy kryptoměn a gen-
erování notifikací. Jelikož má aplikace sloužit pro monitorovaní transakcí na velkém počtu
adres, Cryptoalarm byl podroben i testovaní škálovatelnosti. Navrhl jsem několik testů s
různým počtem monitorovaných adres a zjišťoval, jak se mění čas zpracování transakcí. Pro
testovaní transakcí jsem vytvořil blok s 2073 transakcemi (což odpovídá průměrnému počtu
transakcí v posledních 10 000 blocích Bitcoinu) d průměrem 2.5 vstupnímich adres a 2.5
výstupních adres pro každou transakci. Z naměřených výsledků vyplívá, že Cryptoalarm
je možné používat i pro monitorovaní tisíců adres bez značného dopadu na výkon. Cryp-
toalarm dosahuje času zpracováni v jednotkách sekund, a to i pro tisíce monitorovaných
adres.

Activity Alarm for Cryptocurrency
Blockchains

Declaration
Hereby I declare that this master’s thesis was prepared as an original author’s work under
the supervision of Mr. Ing. Vladimír Veselý, Ph.D. All the relevant information sources,
which were used during preparation of this thesis, are properly cited and included in the
list of references.

. .
Lukáš Vokráčko

May 23, 2018

Acknowledgements
I would like to thank my supervisor Mr. Ing. Vladimír Veselý, Ph.D. for his guidance and
valuable suggestions.

Contents

1 Introduction 3

2 Analysis 5
2.1 Cryptocurrency . 5

2.1.1 Blockchain . 7
2.1.2 Terminology . 10

2.2 Bitcoin . 10
2.2.1 Segregated witness . 12
2.2.2 Lighting network . 13
2.2.3 CoinJoin, Coinmixing . 13
2.2.4 Bitcoin clients . 14

2.3 Bitcoin Cash . 15
2.4 Litecoin . 15
2.5 Dash . 16

2.5.1 Master nodes . 17
2.5.2 PrivateSend . 17
2.5.3 InstantSend . 17

2.6 Zcash . 18
2.7 Monero . 19
2.8 Ethereum . 20

2.8.1 Smart contracts . 21
2.9 Summary . 22
2.10 Identity pairing . 23
2.11 Existing solutions . 23

3 Design 25
3.1 Requirements . 25
3.2 Database . 26
3.3 Monitoring application . 29
3.4 Web application . 33

3.4.1 AddressMatcher . 34
3.4.2 IdentityParser . 34

4 Implementation 37
4.1 Monitoring application . 37

4.1.1 Dependencies . 38
4.2 Web application . 38

4.2.1 AddressMatcher . 38

1

4.2.2 IdentityParser . 38
4.2.3 Dependencies . 39

5 Testing 40
5.1 Verification . 40
5.2 Integration testing . 41
5.3 Performance testing . 42

6 Conclusion 45

Bibliography 47

A The content of CD 49

B RPC API responses 50
B.1 Bitcoin RPC API: block data structure . 50
B.2 Bitcoin RPC API: transaction data structure 51
B.3 Ethereum RPC API: block data structure 52
B.4 Ethereum RPC API: transaction data structure 53

C Poster 54

2

Chapter 1

Introduction

Cryptocurrencies are distributed and pure virtual alternative to fiat currencies issued and
backed by governments. Unlike any fiat currency, cryptocurrencies are based on distributed
network and do not require trust among its users. They are secured by an asymmetric
cryptography. Most of them have only limited supply of coins and do not allow artificial
inflation. They are also immune to regulations and do not allow authorities to froze funds
or to forbid transactions for specific people or groups. These properties have been with
cryptocurrencies from the beginning. The first cryptocurrency was Bitcoin introduced in
2008, but the whole field is starting to gain more traction only recently. Even among people
outside of the typical audience. So far, most users of cryptocurrencies have been people
interested in the underlying technology or people seeking refuge from the old-fashioned
banking system or even the governments for various reasons. Some of these reasons could
be classified as permitted by law (i.e. privacy) or outside of it (i.e. payments for prohibited
substances or money laundering). Demand for tracking transactions grows alongside with
cryptocurrencies’ audience as it is standard feature available to all cash-less transactions in
fiat banking. And blockchain, the technology behind the majority of cryptocurrencies, is by
its nature transparent. Everyone can see details of every transaction and thus allows such
tracking. On the other hand, source code of cryptocurrencies is usually published as an
open-source. People with technical and IT background are able to quickly create their own
cryptocurrencies based on open-source Bitcoin/blockchain codebase. And some of those
new cryptocurrencies aim to provide additional privacy over Bitcoin, where the possibility
to track transactions, its senders and recipients is not possible. This is done by obscuring
transaction data by using another layer of cryptography which does not violate any of the
above-mentioned properties of cryptocurrency.

This thesis’s focus is placed on real-time transaction monitoring on few of the most pop-
ular cryptocurrencies, specifically Bitcoin, Bitcoin Cash, Litecoin, Dash, Zcash, Monero and
Ethereum. The results of this work are an application Cryptoalarm for real-time transac-
tion monitoring and web application providing user interface to manage address watchlists.
This application can be useful for tracking movements of illegal funds for governments,
financial institutions or law enforcement agencies.

In the chapter Analysis 2, I discuss each cryptocurrency from a standpoint of monitor-
ing transactions and describe how one can obtain such information from cryptocurrencies’
underlying network. In chapter 3, I describe the design of newly created application Cryp-
toalarm providing means to perform this monitoring in systematic manner across multiple
cryptocurrencies. I described its implementations in chapter 4 and testing in chapter 5. I

3

discuss performance of Cryptoalarm while monitoring large number of addresses in chapter
5.3.

Cryptoalarm was developed as part of a project Tarzan [4], a set of tools for forensic
analysis of cryptocurrencies. Project Tarzan is developed by NES@FIT, networked and em-
bedded systems research group at the Faculty of Information technology of Brno University
of Technology.

4

Chapter 2

Analysis

In this chapter, I describe what cryptocurrency is and its underlying technology - blockchain.
Next, I describe each cryptocurrency in more detail in regards of transaction processing.
Cryptocurrencies discussed in this chapter are Bitcoin, Bitcoin Cash, Litecoin, Dash, Zcash,
Monero and Ethereum.

2.1 Cryptocurrency
Cryptocurrency is a general term used to describe digital currency that is secured by asym-
metric cryptography. It is relatively new field started by the work of Satoshi Nakamoto
(pseudonym), who published a paper about the first cryptocurrency called Bitcoin [18].
Bitcoin is the cryptocurrency that the most of cryptocurrencies are built on top of (and
some of them discussed in this thesis).

Cryptocurrency is based on a network of computers (called nodes) that utilizes dis-
tributed peer-to-peer topology. A distributed system is a system whose components are
connected with computer network and pass messages as means of communication. Dis-
tributed architecture and comparison to other architectures is shown on figure 2.1. Peer-
to-peer model refers to a network of nodes where every node is equal to all other nodes.

Figure 2.1: Network topology - centralized, decentralized and distributed1

A network of equal nodes located across computer network is the result of a combination
of these two models. This network does not have designated authority (as nodes are equal)

1Gosselin, T.: The Blockchain: An Infrastructure for the Commons. [Online; visited 12.3.2018]. Re-
trieved from: https://www.namaste.org/blog/the-blockchain-an-infrastructure-for-the-commons

5

https://www.namaste.org/blog/the-blockchain-an-infrastructure-for-the-commons

or single point of failure. Every decision in the cryptocurrency’s underlying network is made
by a network consensus. The network consensus is a process of reaching agreement between
the majority of network nodes. This is a different approach to currency governance. In cur-
rent banking systems, the currency is completely under the control of a central authority
(an issuing state). This centralized model has a few flaws and cryptocurrencies are trying
to address some of them. State’s control of the currency supply is one of the main flaws of
centralized banking. By controlling the supply of currency, the state can drastically lower
the real value of the currency by emitting new money. This decision is completely under
the control of the government. In cryptocurrencies, the coin supply (money supply) is con-
trolled by a deterministic emission rate or even limited (hard-capped). In cryptocurrencies
with a limited coin supply, new coins are generated only until reaching fixed threshold.
After that, no new coins can be created inside the system. In cryptocurrencies with an
artificial inflation, new coins are generated according to the emission rate which is deter-
ministic process of rewards that are predictable and decreasing in time. Another problem
with state issued currency is banks’ control of transactions. The bank or authority can pro-
hibit transactions of larger amounts or even specific payments (i.e. gambling). There is no
such thing as a transaction control in cryptocurrencies. Every single transaction is treated
equally regardless on its senders and recipients. Also, no one can freeze user’s funds or take
possession of given coins comparing to a common practice experienced by fiat currencies.
Downside of it is inability to deal with misplaced transactions, lost credentials or theft. No
transaction can be undone or funds recovered. There is a no way the user can recover lost
credentials. The movement of stolen coins can only be tracked (in transparent cryptocur-
rencies) but recovery is not possible. The ability to recover stolen coins would undermine
the core idea of a cryptocurrency as it would require central authority. Counterfeiting new
coins is also not possible as cryptocurrencies are secured by a cryptographic riddle. An
attempt to counterfeit coins would be detected and rejected by the network.

Also, cryptocurrencies are (pseudo-)anonymous2. This means that user’s real identity
is not attached to an account unless the user voluntarily associates himself with a specific
account or accounts. There is an exception to this rule when the user wants to trade cryp-
tocurrency in regulated exchanges. Some exchanges may require verification only after a
certain volume is traded or when transferring a fiat currency. Also, some exchanges are com-
pletely decentralized and operate inside a cryptocurrency blockchain such as EtherDelta3.
Downside to decentralized exchanges is usually a limited number of trading pairs and the
missing ability to trade a fiat currency.

Another drawback of centralized banking system in comparison to cryptocurrency is
that users have to trust a third party (a bank) to handle their transactions (unless the
user uses only cash). In cryptocurrencies, the user only needs a computer with network
connection to broadcast transactions. There is no need to trust anyone unless the user
decides to keep his coins in centralized point (cryptocurrency exchange).

Transparency is another property of cryptocurrencies. In cryptocurrencies, every trans-
action is stored in blockchain (see 2.1.1) and its details are publicly available. Transparency
can be seen as advantage or disadvantage. It depends on the perspective. Everyone’s ability
to view all transactions of every address can be seen as disadvantage for personal finance.
Everyone can view user’s spending habits once the identity of an address’ user is revealed.
And not just one specific address. Other addresses of the given user can be clustered to-
gether from multiple transactions. Clustering can be done if one transaction has multiple

2pseudonymity - users are identified by pseudonyms
3EtherDelta, https://etherdelta.com/

6

https://etherdelta.com/

inputs. These addresses belong to the same user in the majority of cases (except CoinJoin
transaction, see 2.2.3). On the other hand, transparency can be seen as an advantage in
case of public funding where everyone can see how budgeted money is spent.

Another advantage of cryptocurrencies is that they are not limited by state borders
and can be used worldwide. In the banking system, there are only few currencies that
are accepted worldwide. And even then, the transfer across a state border is usually slow
and expensive. Cryptocurrencies can be used to transfer any amount of coins to anyone,
regardless of their location (physical or network). Also, transaction fees do not depend
on the transferred amount. Transaction fees are usually lower compared to the banking
system. But in certain circumstances, they can get very high as could be seen in Bitcoin
on December 2017 [14]. Bitcoin’s transaction fees skyrocketed as a large number of users
wanted to transfer their coins at the same moment. In cryptocurrencies, transactions with
higher fees are processed first. This is because the fees are used as a reward for the network
node who processes given transaction. Details about how the network of cryptocurrency
works and processes transactions is described in chapter 2.1.1.

2.1.1 Blockchain

Blockchain [18] is the technology originally developed for Bitcoin (the first cryptocurrency)
by Satoshi Nakamoto. Blockchain was invented as a means to prevent Bitcoin users to
spend their coins more than once (double spending) without central authority. Blockchain
is a replicated database. It is used as a public ledger of transactions in cryptocurrencies. All
of the cryptocurrencies described in this thesis use blockchain (there is also DAG [15]). This
ledger stores transaction data in a transparent format and verifiable manner. Blockchain,
as its name suggest, is a chain of blocks — backwards linked list of blocks. It allows
only appending new blocks. Block becomes immutable once it a part of the blockchain.
Immutability is achieved by using hash function to calculate a block hash. Then, the block
hash is used to link blocks together to form a chain. Each block of the blockchain contains:

∙ transaction data

∙ hash of previous block

∙ nonce

∙ time stamp

∙ size

∙ difficulty

∙ and other attributes

Each block of a blockchain is identified with its hash. The block hash is computed
from most but not all of its attributes. Most importantly, the hash of previous block is
also included, which provides immutability of the whole chain. Simplified visualization of
a blockchain and block’s connection by hashes is shown on figure 2.2.

7

Figure 2.2: Simplified visualization of a blockchain4

Blockchain is managed in a distributed peer-to-peer network of computers called nodes.
Nodes are essential part of any cryptocurrency network. They provide several services
such as mining new blocks, verifying blocks mined by other nodes, validating transactions,
storing all blockchain data and sharing those data with other nodes.

Mining is a process of creating new blocks and can be described in several steps. First,
node chooses several transactions from a mempool (a pool of transactions waiting to be
processed) and checks their validity. After that, the node creates a coinbase transaction.
Coinbase transaction is used for miner’s reward. It is a transaction with amount equal
to current block reward and its recipients are chosen by the miner. Next, the node needs
to solve a cryptographic puzzle. This puzzle consists of finding nonce that will result in
a block hash according to current difficulty. Difficulty defines format for the resulting
block hash which needs to be lower than given difficulty. When the resulting hash is not
in the valid format, the node can alter nonce attribute and recalculate the block hash
until hash in the valid format is produced. After producing correct block hash, the new
block is broadcast to the network. Other nodes validate given block and each transaction
inside it. The transaction validation is performed in two steps. First, the transaction
signature is verified against the source address. Second, it is verified that address possesses
the transferred amount of coins. After that, a hash of the transaction is computed. A
block validation consists of checking if selected attributes of the block result in given hash.
Then, the block hash is computed with the given difficulty. All blocks that are not valid
(transactions, hash, rewards, difficulty) are rejected by the network and the miner does
not receive any compensation. Mining new blocks is on purpose very resource expensive
and thus miners are motivated to include as many transactions as they can in a single
block. For each included transaction, the miner receives transaction fee which is specified
by transaction’s sender. Transactions with the highest fees are processed first as it generates
the biggest reward. The mining difficulty is set in a way that it takes approximately block
time of computing power of the whole network to find a nonce resulting in valid block
hash. Mining also secures blockchain against modification of past transactions and blocks
— immutability. The block hash would change in case any information stored in the block
would be modified. And as hash is used as for linking previous blocks, it would render
every newer block hash invalid. A situation where multiple valid blocks are created at the
same time can occur as multiple nodes compete to create a new block. In case of several
valid blocks are created at approximately the same time, the network accepts all of them.

4Sharma, K.: What is Blockchain and how does it work?. [Online; visited 12.3.2018]. Retrieved from:
https://blog.etherbit.in/2017/11/22/what-is-blockchain/

8

https://blog.etherbit.in/2017/11/22/what-is-blockchain/

This leads to multiple branches of blockchain (chain-slit). This situation is visualized on
figure 2.3. Later, when another block is created, it can link to exactly one previous block.
At that time, the network decides to accept only the longest chain (the chain with the most
blocks) as it consumed the most processing power. The probability of such event depends
on various attributes such as block size and block time. This process of securing blockchain
by mining is called proof-of work. Currently, there is also another way to secure blockchain
called proof-of-stake [7].

Figure 2.3: Blockchain splitting and orphaned block. Black represents the longest chain
from genesis block (green) up to current block. Orphaned blocks are purple. These blocks
never become part of the main chain.5

The number of transactions included in a single block is limited in every cryptocurrency
using blockchain. This limit often depends on block time as it would not be possible to
synchronize the whole cryptocurrency network with large blocks and block time in seconds.
This configuration would result in chain splits (as shown on figure 2.3) happening with
great frequency as miners would create new blocks with different preceding blocks.

Every information stored in blockchain is transparent. Blockchain data can be either
downloaded from the internet and then processed or requested from the network nodes.
Another way to obtain blockchain data is to run a network node. There are several relatively
new cryptocurrencies that aim to obfuscate transaction details while keeping the ability to
verify transactions. Zcash (2.6) provides optional feature to mask transaction details with
zero-knowledge proofs [21]. Also, there is another protocol built on top of blockchain which
improves privacy. It is called CryptoNote [23]. Monero is one of few cryptocurrencies built
on top of CryptoNote and I describe it in more detail in chapter 2.7.

So far, I have talked about chain splitting as randomly occurring event. Chain splits can
also be intentional. It is used for creating a new cryptocurrency from existing blockchain.
This process is called forking. By forking, a subset of the cryptocurrency network starts
to accept blocks with a different set of rules. This results in a new branch of blockchain.
This branch continues to exist only in the nodes who adhere to the new rules. The nodes
accepting the original rules will discard these blocks as invalid.

5Sekhon, J. S.: The Consensus Conundrum in Blockchain Systems. [Online; visited 12.3.2018]. Retrieved
from: https://medium.com/@jna1x3/the-consensus-conundrum-in-blockchain-systems-f442eaf23160

9

https://medium.com/@jna1x3/the-consensus-conundrum-in-blockchain-systems-f442eaf23160

2.1.2 Terminology

Terminology in cryptocurrencies is different from terminology of banking systems. There
are terms as address, private key and wallet.

Address is used as an account number. Address is a public key of public/private key pair
generated by an asymmetric cryptography.

Private key is used to sign transactions to prove the ownership of the given public key
(address).

Wallet is a software for address management and network interactions. A wallet can man-
age multiple addresses and provides functionality needed to manipulate with user’s
funds. Also, a wallet can generate new addresses. A wallet needs to have an access to
the whole blockchain to be able to calculate address balance. There are two types of
wallets. First type is a full-node wallet — a wallet that stores the whole blockchain
locally. Second type is a light wallet. A light wallet does not store blockchain data
locally but requests them on demand from a network full-node.

2.2 Bitcoin
Bitcoin was the first cryptocurrency. The concept (blockchain and Bitcoin protocol) was
published by Satoshi Nakamoto in Bitcoin: A Peer-to-Peer Electronic Cash System [18].
Bitcoin uses coins of the same name — Bitcoins. Currently, Bitcoin is the most widely
known and used cryptocurrency. It dominates cryptocurrencies market with 34%6 market
share.

Bitcoin has an artificially limited supply of coins to approximately 21 million. New coins
are emitted only when a new block is created. This is done by verifying a subset of pending
transactions and computing block hash according to the difficulty rules as described in 2.1.1.
A reward for creating new block is a certain number of Bitcoins. The miner who creates a
block also includes coinbase transaction with the current reward. Coinbase transaction has
only outputs that are chosen by the miner. The current reward for creating a block is 12.5
Bitcoins. This reward is being continuously halved every 210 000 blocks7. Next halving is
estimated to happen on June 5. 20207. The last block with reward is projected to be mined
in the year 2140, reaching the final supply of 21 million Bitcoins. Current circulating supply
is approximately 17 million Bitcoins. Transaction fees will be the only reward for miners
when the block reward reaches zero. Bitcoin’s mining difficulty is calculated every 2016
blocks8 (roughly every 2 weeks). Ten minutes is the desired time that the whole network
should spend to find a nonce that results in a valid block hash. This time is called a block
time. The following formula is used to calculate the difficulty:

𝑑𝑖𝑓𝑓𝑖𝑐𝑢𝑙𝑡𝑦 = 𝑑𝑖𝑓𝑓𝑖𝑐𝑢𝑙𝑡𝑦𝑛−1 ×
20160

𝑒𝑙𝑎𝑝𝑠𝑒𝑑 𝑡𝑖𝑚𝑒
(2.1)

Elapsed time is the number of minutes it took to mine the last 2016 blocks.
Originally, Bitcoin was intended to run on user’s computers and mine blocks on CPUs.

Nowadays, Bitcoin is mined on graphic cards, which utilize massive parallelism for block’s
6Bitcoin market share - 18.1.2018, https://coinmarketcap.com/charts/#dominance-percentage
7Bitcoin block reward, http://www.bitcoinblockhalf.com/
8Bitcoin difficulty, hhttp://learnmeabitcoin.com/guide/difficulty

10

https://coinmarketcap.com/charts/##dominance-percentage
http://www.bitcoinblockhalf.com/
hhttp://learnmeabitcoin.com/guide/difficulty

hash calculations. Also, there are specialized hardware solutions (ASICs) designed espe-
cially to mine Bitcoin. Mining is a source of controversy as it is estimated that the whole
Bitcoin network has a power consumption of 62.7TWh (April 24, 20018) [1]. This is com-
parable to the total annual power consumption of Czech Republic in 2015 (61TW/h) [10].
Mining on specialized hardware is usually done in mining farms which undermines the con-
cept of decentralization as a significant part of the network is located in a one place. This
is usually the place with cheap electricity.

Bitcoin blockchain stores transaction information in completely transparent way and
does not provide any means to hide transaction senders, recipients or amounts. There
are several tools to explore blockchain data even without running a Bitcoin node called
blockchain explorers. Also, Bitcoin blockchain is a ledger of transactions and not balances.
Inputs of a transaction are previous transactions, not addresses. The right to manipulate
coins is transferred in transactions rather than the coins themselves. The right is trans-
ferred by specifying conditions under which another user can manipulate given coins. The
knowledge of the private key corresponding to the given address is used as this condition.
The user has to prove that he possesses this key in order to manipulate given coins. It is not
possible to transfer the right to move only a fraction of coins for single input transaction.
To send only a fraction of coins, the user needs to split them in a new transaction. This is
done by separating the desired amount of coins to the payment amount and the rest. The
payment amount is sent to the recipient and the rest is sent to change address. The same
address as input can be used as the change address (address reuse). Address reuse is not
recommended as it can reveal all payments made by the same user. Other possibility is to
use a new address as the change address.

Transaction data can be acquired by running a full Bitcoin node or requested from a
full node providing an RPC API. RPC call getblock has to be made with a block hash given
as an argument to obtain information about the block. Block data structure (as shown in
listing B.1) is the result of this call. Information relevant for transaction processing is stored
in the attribute tx. RPC call getrawtransaction has to be made in order to get information
about a specific transaction. Transaction data structure (as shown in listing B.2) is the
result of this call. The attribute vout contains field scriptPubKey. Output addresses are
stored in the attribute addresses. The attribute addresses contains only one address for each
output of type pubkeyhash, which means a regular transaction. The output of type multisig
can contain multiple addresses. This is used for scenarios where multiple addresses can
manipulate with the transaction output. The attribute vin represents an array of inputs,
each having:

∙ txid - a hash of the transaction used as an input for the current transaction

∙ vout - an index to the outputs of the input transaction where a specific address can
be found

Bitcoin blockchain being a ledger of transactions and not balances, each transaction has
a previous transaction as input instead of addresses. To find an address for the current
transaction input, one needs to use the following formula:

As the most used cryptocurrency, Bitcoin is facing scalability issues. Bitcoin can fit
only a certain number of transactions inside every block. This limit is not imposed on
number of transactions but on a size of the block. Bitcoin’s block weight is limited to 4
MB. I describe what a block weight is and how it correlates with its size in section 2.2.1.
The number of transactions that can be included a block of 4 MB is approximately 4 000

11

Algorithm 1 Determine input addresses for Bitcoin transaction
Require: block - a block
Require: N - a transaction index in given block

txid← block["vin"][N]["txid"]
index← block["vin"][N]["vout"]
tx← getrawtransaction(txid)
return tx["vout"][index]["scriptPubKey"]["addresses"]

(transaction size varies depending on its properties). In the end of a year 2017, Bitcoin was
facing problems with transaction processing as there was greater demand for transactions
than Bitcoin could handle. The maximum of 260 9179 transactions waiting to be processed
on December 22, 2017. This caused transaction fees to skyrocket as transactions with larger
fees were processed first.

Bitcoin, being published as an open source, has been forked multiple times. The list of
Bitcoin forks can be found on [3]. Bitcoin Cash is one of these forks and is described in
chapter 2.3. Bitcoin is also used as a base from which new cryptocurrencies are derived.
There are 227 cryptocurrencies based on Bitcoin (and another 346 already abandoned)
according to [5] at the moment of writing this thesis.

2.2.1 Segregated witness

Segregated witness (SegWit) [16] was designed to allow more transactions to be included in
a single block. Segregated witness is an optional improvement. Nodes can operate without
implementing it. The maximum block size was 1 MB before the segregated witness. The
block weight is a new limit defined by SegWit. The block weight is calculated by the
following formula:

𝑤𝑒𝑖𝑔ℎ𝑡 = 𝑏𝑎𝑠𝑒 𝑠𝑖𝑧𝑒× 3 + 𝑡𝑜𝑡𝑎𝑙 𝑠𝑖𝑧𝑒

Total size is the size of a serialized block with transaction data. Base size is the size
of a serialized block with the transaction data without any witness information. Witness
information is stored in the transaction attribute scriptSig and consists of signature and
pubKey. This information is used to prove that the sender has the right to manipulate the
transaction outputs. SegWit nodes synchronize blocks with all information included. Non-
SegWit nodes (legacy nodes) synchronize blocks without any witness information. This way,
the legacy nodes still accept SegWit blocks as they do not violate the block size limit. The
legacy nodes handle the SegWit transactions as can-be-spent-by-anyone thus, the legacy
nodes accept any SegWit transactions as valid. A new address format was designed to
differentiate between legacy and SegWit addresses. SegWit addresses start with 3 or bc1.
Legacy addresses start with 1. Examples of both address types are shown in the following
list:

∙ SegWit

– 3J98t1WpEZ73CNmQviecrnyiWrnqRhWNLy
– bc1qar0srrr7xfkvy5l643lydnw9re59gtzzwf5mdq

9Mempool size, https://jochen-hoenicke.de/queue/#1,all

12

https://jochen-hoenicke.de/queue/##1,all

∙ Legacy: 1BvBMSEYstWetqTFn5Au4m4GFg7xJaNVN2

SegWit was activated on block #481824 which was created at 10:50 AM on July 3,
2017.

2.2.2 Lighting network

Lighting network [20] is the latest improvement designed to solve Bitcoin’s scalability is-
sues. Lighting network is an improvement that implements payment channels. Payment
channel is a channel that enables transactions to be made without writing any data into the
blockchain. By using payment channels, users can receive payments almost immediately
as they do not have to wait for the payment confirmation (transaction being included in
block). To create a payment channel, two parties deposit a certain amount of coins inside
this channel. Payment channel remains open until the deposited amount is exceeded or the
channel is closed by one of the parties. Lighting network also allows for payments using
intermediaries. Intermediary is a user who has open payment channels with both users or
is a part of a link between these two parties. If the user A wants to send a payment to the
user C, he can simply transfer coins using his payment channel with the user B. Then, the
user B transfers those coins with a payment channel with the user C.

Lighting network is called off-chain scaling as transactions inside payment channels
happen outside of the blockchain. Transactions for creation and destruction of payment
channel are the only transactions that need to be stored in the blockchain.

Transactions sent through Lighting network payment channel cannot be intercepted (ex-
cept by intermediary) as they are not written into the blockchain. Transaction monitoring
inside a payment channel would require an open payment channel with every user. And
even then, every user would have to transfer coins using this payment channel. From the
perspective of this work, the transactions that happened inside payment channels cannot
be monitored. The creation and destruction of payment channel are the only transactions
that can be detected.

2.2.3 CoinJoin, Coinmixing

CoinJoin [12] is a technique to improve transaction ambiguity. CoinJoin utilizes Bitcoin’s
ability to have multiple inputs and outputs in a single transaction. Users can cooperate to-
gether and merge their intended transactions into one transaction. This way, the association
between the sender and the recipient diminishes. An observer who monitors transactions
cannot determine which sender has sent the coins to which recipient, unless the sum of
a certain outputs equals exactly to a single input. The transaction identified by the hash
92a78def188053081187b847b267f 0bfabf28368e9a7a642780ce46a78f551ba10 is an example of
CoinJoin transaction between three participants. It has the following inputs and outputs:

∙ Inputs

– A: 0.19280926 BTC
– B: 0.01 BTC
– C: 0.01 BTC

10CoinJoin transaction, https://www.localbitcoinschain.com/tx/92a78def188053081187b847b267f0bfabf28
368e9a7a642780ce46a78f551ba

13

∙ Outputs

– W: 0.18230926 BTC
– X: 0.01 BTC
– Y: 0.01 BTC
– Z: 0.01 BTC
– Fee: 0.00103 BTC

The observer can look at the transferred amounts and try to identify who send coins to
whom. For this transaction, the observer can determine who send coins to the address W as
there is only one input of larger or equal denomination. Also, the output amounts cannot
be the result of any other combination of inputs. This makes the link between the addresses
A and W clear. Users sending the same denominations of coins can prevent linking inputs
and outputs together.

Coinmixing is a different approach to solve the problem of transaction ambiguity. In-
stead of multiple users sending Bitcoins together in the same transaction, users send Bitcoins
to a coinmixing service11,12. When multiple users send their coins to a coinmixing service,
the service can later distribute those coins to different addresses as specified by the users.
This way, the link between the sender and the recipient diminishes as coins sent by the
coinmixing service can come from any user. Coinmixing service also sends transactions in
randomized time delays to prevent linking those transactions together based on the time of
their occurrence. Even with coinmixing, transactions can be linked together by matching
their inputs and output amounts as in CoinJoin. A trusted third-party is a downside of
coinmixing service.

Both of these approaches weaken the association between the input and the output
addresses. This does not interfere with the ability to detect a transaction involving these
addresses.

2.2.4 Bitcoin clients

Bitcoin clients can be run in two modes. A full Bitcoin client (full-node) is the combina-
tion of a wallet and a miner. Full-node stores the whole blockchain, participates in block
validation and optionally can be used to mine new blocks. A light-node is a Bitcoin client
that does not store the blockchain or stores only reduced information. Using a light-node is
less insecure as it depends on information provided by other full-nodes. Also, a light-node
does not perform block or transaction validation.

There are several implementations of a Bitcoin client. The official client is developed
as an open-source by Bitcoin Core13 and is used as the reference for the Bitcoin protocol.
Alternative implementations are developed by third-parties. Those implementations are
Armory14 and Gocoin15. Those implementations comply with the Bitcoin Core RPC API
and for purpose of this work can be used interchangeably.

11CoinMixer.se, https://coinmixer.se/en/
12CoinMixer.io, https://cryptomixer.io/
13Bitcoin Core, https://bitcoincore.org/
14Armory, https://btcarmory.com/
15Gocoin, http://gocoin.pl/

14

https://coinmixer.se/en/
https://cryptomixer.io/
https://bitcoincore.org/
https://btcarmory.com/
http://gocoin.pl/

2.3 Bitcoin Cash
Bitcoin Cash is a fork of Bitcoin. Bitcoin Cash was created as the result of a disagreement in
Bitcoin community regarding scaling issues. Bitcoin Cash’s approach to improve scalability
is to increase the block size (on-chain scaling). Bitcoin cash was created on the block
#478559 that occurred on August 1, 2017.

At the moment of writing this thesis, the block size of Bitcoin Cash is set to 8 MB, which
is 8× more than the original Bitcoin. Bigger block size offers more space to accommodate
more transactions to each block. Faster confirmation times and lower transaction fees are
the results of this modification. Bitcoin Cash’s block size is not meant to be permanently
8 MB. Currently, there is a running experiment with the block size reaching up to 1 GB
[22]. Increasing block size is not without drawbacks. Bigger block size favours users who
run nodes on networks with more bandwidth as more data needs to be transmitted for each
block. This puts regular users who run nodes in disadvantage. These users might not be
able to synchronize new blocks in time. Right now, it might not a significant problem as 8
MB can propagate through the network without any obstacles. It could become a problem
when the block size increases significantly. This could lead to increased centralization. With
centralized network, it would become easier for authorities to gain access to nodes run in
their jurisdiction and could potentially interfere with transaction processing.

The block time of Bitcoin Cash is set to ten minutes. The coin supply of Bitcoin Cash is
the same as in Bitcoin, approximately 21 million. A new algorithm for difficulty adjustment
was developed for Bitcoin Cash. The difficulty is adjusted every block and is calculated
from the weighted block times of previous 144 blocks [17]. Other parameters such as the
block reward and reward halving are kept the same as in Bitcoin.

There are several implementations of Bitcoin Cash node, namely BitcoinABC16, Bitcoin
Unlimited17, Bitcoin XT18, Parity Bitcoin19 and Bitprim20. All of these implementations
comply with the Bitcoin’s RPC API definitions (see 2.2.4).

2.4 Litecoin
Litecoin was created as a clone of Bitcoin. Unlike Bitcoin Cash 2.3 which stared from
Bitcoin’s blockchain and share its transaction history and accounts, Litecoin started with
empty blockchain. The idea behind Litecoin was to create a lightweight alternative to
Bitcoin. Litecoin is compared to digital silver while Bitcoin to digital gold.

Litecoin aims to be faster than Bitcoin. Litecoin has a block time of 2.5 minutes.
Shorter block time allows for more payments to be processed in the same time. In ten
minutes (Bitcoin block time), four Litecoin blocks are created. Litecoin has a total supply
of 84 million coins. Block reward is halved every 840 000 blocks. This results in the same
interval as in Bitcoin because block time is four times shorter. The difficulty of Litecoin
mining is computed by the same formula as for Bitcoin 2.1. Also, Litecoin has implemented
Segregated Witness (see 2.2.1) with the block weight limit of 4 MB. To differentiate between
legacy and SegWit addresses, Litecoin uses addresses in a different format. Legacy addresses

16BitcoinABC, https://www.bitcoinabc.org/
17Bitcoin Unlimited, https://www.bitcoinunlimited.info/
18Bitcoin XT, https://bitcoinxt.software/
19Parity Bitcoin, https://github.com/paritytech/parity-bitcoin/
20Bitprim, https://www.bitprim.org/

15

https://www.bitcoinabc.org/
https://www.bitcoinunlimited.info/
https://bitcoinxt.software/
https://github.com/paritytech/parity-bitcoin/
https://www.bitprim.org/

start with L. SegWit addresses start with 3 or M. Examples of both types of addressess are
shown in the following list:

∙ SegWit

– 3AnpJ61g2UcLhVYrrsWm4jFrXZwTtaWhV4
– MGzxbyRdybTmVzpkxkW6tNWFrGXutBd2gr

∙ Legacy: LTU2cds4aSdXFip9sV4gXphnhxGQjgfjmg

Litecoin (being a copy of Bitcoin) uses the same RPC API to obtain information from
underlying network as described in chapter Bitcoin 2.2. Litecoin has two implementations
of a full-node. Those implementations are Litecoin Core21 and ltcd22.

2.5 Dash
Dash [11] is a cryptocurrency based on Bitcoin. Dash introduces several improvements
over the Bitcoin protocol. These improvements are focused on faster (instant) payment
confirmations and on privacy. Dash uses master nodes. Master nodes provide additional
services to cryptocurrency users. Dash uses feature called InstantSend for instant payment
confirmations. PrivateSend is used to improve privacy and fungibility23 of coins. Both of
these features are optional and Dash also provides regular transactions as Bitcoin does.

Dash has limited supply of coins. The final number of coins is not yet determined. The
block reward depends on the difficulty of new blocks. The following formula is used to keep
the reward in interval < 5, 25 >:

𝑟𝑒𝑤𝑎𝑟𝑑 = 𝑚𝑖𝑛

(︃
𝑚𝑎𝑥

(︃
2222222(︂

𝑑𝑖𝑓𝑓𝑖𝑐𝑢𝑙𝑡𝑦+2600
9

)︂2 , 5

)︃
, 25

)︃
(2.2)

The dynamic reward is used to keep the network hash rate above 79Gh/s (giga hash
per second). New miners are motivated to start mining Dash as it becomes more profitable
when the block reward increases as the consequence of low difficulty. The mining difficulty
is adjusted for every block in order to keep the block time around 2.5 minutes. Dash has
the following structure of block rewards:

∙ 45% for the miner

∙ 45% for the master node network

∙ 10% is allocated for funding community projects

Dash is designed to decrease the block reward every year by 7%. It is estimated that
the last block with reward will be mined around the year 2300. A total supply of coins can
be only estimated as it depends on amounts allocated for community projects and a hash
rate of the network. The total supply can be approximated with the following conditions:

21Litecoin Core, https://litecoincore.org/
22ltcd, https://github.com/ltcsuite/ltcd
23Fungibility means that coins can be used interchangeably and do not carry history

16

https://litecoincore.org/
https://github.com/ltcsuite/ltcd

∙ All super blocks are fully allocated

∙ Hash rate never drops below 79Gh/s

With these conditions, the total supply of coins is approximately 18 million of coins.
Treasury and super blocks are another differences from Bitcoin. Treasury is a monthly
budget reserved for community projects. Community projects are voted for by master
nodes. Community projects can be proposed by anyone and are publicly listed24. Super
block is a block created once a month. Super block can generate up to 10% of all block
rewards in given month. The amount of coins generated in super blocks depends on the
allocation of treasury budget.

Dash RPC API adheres to the specification of Bitcoin API discussed in 2.2.

2.5.1 Master nodes

Dash master node is a full-node running Dash wallet and providing additional services
to the network. These services are PrivateSend, InstantSend and voting for proposals.
Master nodes uses a reward system. Master nodes receive 45% of the block reward. This is
designed to motivate users to running master nodes as it places strain on users’ bandwidth
and storage. Improved decentralization is the result of more users run master nodes.

To run a master node, the user must deposit 1 000 DASH into the master node as
a collateral. The collateral is never forfeit. The collateral is used to prevent a potential
attacker to control more than 50% of all master nodes. The attacker would need 2 300 000
DASH (2400 master nodes running at this moment)25 to have at least 50% of the network.
He would need to purchase these coins from an open market. That would result in a spike
of the price and would be financially unfeasible.

2.5.2 PrivateSend

PrivateSend is designed to improve privacy of transactions. PrivateSend is an improved
version of CoinJoin. The weakness of CoinJoin is observer’s ability to determine the associ-
ation between senders and recipients by merging inputs of transaction until one combination
results in the exact value that was send to output addresses. Dash improves CoinJoin by
requiring at least three participants to join transactions with equal denominations of inputs
and outputs. By using the equal denominations, an observer cannot differentiate between
the senders. Users can anonymize amounts of denominations 0.1, 1, 10, 100 and 1 000
DASH. PrivateSend only hides the association between senders and recipients. It does not
mask the fact that the transaction occurred on a given address.

2.5.3 InstantSend

InstantSend is used to instantly transfer coins. A user does not have to wait for the
transaction being included in a block. This is achieved by master node network quorum. A
transaction sent using InstantSend is broadcast to the master nodes for validation. Valid
transaction is then locked within master nodes. Coins specified in this transaction cannot
be spent in any other transaction. Master nodes reject all blocks with a different transaction
spending the same coins.

24Dash community project proposals https://www.dash.org/network/#section-governance
25Dash master nodes, https://github.com/dashpay/dash/wiki/Whitepaper#23-trustless-quorums

17

https://www.dash.org/network/##section-governance
https://github.com/dashpay/dash/wiki/Whitepaper##23-trustless-quorums

2.6 Zcash
Zcash is another cryptocurrency based on Bitcoin. Zcash [13] aims to improve privacy
using different approach than previously described Dash. Zcash uses zero-knowledge proofs
to mask transaction amounts, senders and recipients. The process of masking transaction
details is called shielding.

Zero-knowledge proof [21] refers to a cryptographic algorithm that can be used by an
actor to prove possession of certain knowledge without disclosing information in question
without any interaction with the verifying actor. In Dash, zero-knowledge proofs are con-
structed using zk-SNARKs [6]. Zero-knowledge proofs allow for the transaction verification
even with shielded information and thus not violating trust-less property of the system.

There are two types of addresses used in Zcash:

∙ z-address

∙ t-address

Transactions between t-addresses (transparent addresses) are not shielded by zero-
knowledge proof. Anyone is can read transaction inputs, outputs and amounts. Transac-
tions between z-addresses are shielded and do not disclose sender, recipient or transaction
amount. Only certain information is shielded in cases transaction involves both types of
addresses. See table 2.1 for details.

Transaction Sender Recipient Amount
𝑡− 𝑎𝑑𝑑𝑟 → 𝑡− 𝑎𝑑𝑑𝑟 disclosed disclosed disclosed
𝑧 − 𝑎𝑑𝑑𝑟 → 𝑡− 𝑎𝑑𝑑𝑟 shielded disclosed disclosed
𝑡− 𝑎𝑑𝑑𝑟 → 𝑧 − 𝑎𝑑𝑑𝑟 disclosed shielded shielded
𝑧 − 𝑎𝑑𝑑𝑟 → 𝑧 − 𝑎𝑑𝑑𝑟 shielded shielded shielded

Table 2.1: Disclosed information in Zcash transactions

Zcash total supply of coins is approximately 21 million. Block rewards follow the model
of Bitcoin. Zcash also uses Founder’s reward. Zcash developers will receive 20% of all mined
ZEC in the first 4 years. 100% of mined coins will be rewarded to the miners after that.
Founder’s reward is not taken from transaction fees but only from blocks. For coinbase
transactions, block reward is always sent to z-address. Zcash aims to have block time of 2.5
minutes. Block size is set to 2 MB. Difficulty is calculated from difficulty of the previous
block by following formula:

𝑑𝑖𝑓𝑓𝑖𝑐𝑢𝑙𝑡𝑦𝑛 = 𝑑𝑖𝑓𝑓𝑖𝑐𝑢𝑙𝑡𝑦𝑛−1 ×
√︂

150

𝑙𝑎𝑠𝑡 𝑠𝑜𝑙𝑣𝑒 𝑡𝑖𝑚𝑒
(2.3)

The official client Zcash26 is the only implementation of Zcash node at the moment of
writing this thesis. Currently, there is a proposal for fully verifying client written in Rust27.
Zcash RPC API complies to Bitcoin RPC API. Description and examples can be found in
chapter Bitcoin 2.2. Results of RPC calls to obtain transaction information differ when
z-address is involved:

26Zcash, https://github.com/zcash/zcash
27Zcash rust node proposal, https://github.com/ZcashFoundation/GrantProposals-2017Q4/issues/32

18

https://github.com/zcash/zcash
https://github.com/ZcashFoundation/GrantProposals-2017Q4/issues/32

∙ Attribute vout does not contain addresses of type z-address

∙ Attribute vin does not contain any information if the source transaction was sent to
z-address

2.7 Monero
Monero is a cryptocurrency built on top of CryptoNote protocol [23]. CryptoNote intro-
duces several improvements over the Bitcoin protocol and is truly anonymous. CryptoNote
transactions are untraceable and unlinkable. This is achieved by combination of three
approaches: one-time ring signatures, stealth addresses and ring confidential transactions.

Stealth addresses are used to hide the recipient’s real address. Stealth address is a one-
time address generated from a recipient’s public address. By using stealth addresses, each
transaction sent to the same recipient will be sent to a unique address. Stealth addresses
cannot be linked back to the recipient’s original address. Only sender and recipient have
the knowledge of the real address.

Ring signatures are used to hide sender’s address. A ring signature is a type of signature
that can be created by any member of a particular group. When message is signed by ring
signature, it should be unfeasible to determine which person’s key was used to sign the
transaction as all members of the ring are equal and valid. To form a group, user’s key
is combined with a number of public keys (outputs) obtained from the blockchain using a
triangular distribution method. Past outputs can be used multiple times to participate in
different groups over the course of time. Ring confidential transactions (RingCT) [19] is an
improvement of ring signatures that allows to hide even transaction amounts.

User will obtain three keys when creating new Monero account:

∙ View key is used to view incoming transactions of the given account. View key can
be kept private or can be shared.

∙ Private spend key is used to spend coins for the given account.

∙ Public address is used to create stealth addresses for receiving payments.

Proving a payment is as simple as looking up a payment in blockchain explorers in
completely transparent cryptocurrencies. In Monero, user have to disclose the following
information to prove a payment:

∙ transaction ID

∙ recipients address

∙ transaction key

Transaction ID is the same as in other cryptocurrencies and can be found in blockchain
explorer. Transaction key is the key used to generate stealth address in combination with
recipient’s public key (address). User has to query his wallet to obtain a transaction key.
With this information, anyone is able to query a node and see transaction details in readable
manner.

Monero has an infinite supply of coins. Coin emission is defined by two emission curves.
With the first main curve, approximately 18 million coins will be emitted by the end of May

19

2022. The main curve uses smooth emission where the block reward is decreased gradually
over time until it reaches threshold of 0.6 XMR per block. Tail emission curve will be used
after that. Tail emission is designed to emit exactly 0.6 XMR per block. This translates to
< 1% inflation gradually decreasing over the time.

Monero aims to have block time 2 minutes. This is achieved by calculating mining
difficulty every block. In order to calculate a new difficulty, block times from the last 720
blocks are taken into account while excluding 20% of outliers [24].

Monero Project28 is the only implementation of Monero node. With above mentioned
privacy features (one-time ring signature, stealth address, ring confidential transaction) it
is impossible to determine transaction senders and recipients without user’s compliance.
Transaction monitoring in Monero is not included in developed application for this reason.

2.8 Ethereum
Ethereum [9], rather than a cryptocurrency, is a blockchain application platform with
Turing-complete programming language. Ethereum is not built on top of Bitcoin pro-
tocol but uses own protocol. Besides standard features to transfer coins, Ethereum allows
users to publish smart contracts. Smart contract is a fully autonomous program stored on
blockchain. Smart contracts react on incoming transactions. Ethereum transactions have
just single sender and single recipient. Also, sender’s and recipient’s address are stored
directly in transactions.

Ethereum node provides an RPC API to obtain information about blocks and transac-
tions. The following RPC calls can be performed to acquire data required for transaction
monitoring:

∙ eth_getBlockByNumber is used to access information about block. Block data struc-
ture (as shown in listing B.3) is the result of this call. The important field is transac-
tions. It contains a hash of every transaction included in requested block. The latest
block can be obtained via this API call if string latest is passed as an argument.

∙ eth_getTransactionByHash is used to get information about transaction. Transaction
data structure (as shown in listing B.4) is the result of this call. Important attributes
from this object are:

– from - sender’s address
– to - recipient’s address

Ethereum specifies block time 12 seconds in its whitepaper [9]. However, the average
block time in the network oscillates around 15 seconds29. The reward for mined block is
constant, 3 Ether. Ethereum rewards miners whose blocks are valid but do not become
part of the blockchain — orphaned blocks, uncles in Ethereum terminology. Reward for
orphaned block is 7/8 of the block reward: 2.625 Ether30. The total supply of Ethereum
is unlimited. Ethereum mining difficulty is recalculated every block. In order to keep
maintain the block time constant, the difficulty is calculated from the last two blocks using
the following formula [8]:

28Monero, https://getmonero.org/
29Ethereum average block time, https://etherscan.io/chart/blocktime
30Ethereum rewards, https://github.com/ethereum/wiki/wiki/Mining

20

https://getmonero.org/
https://etherscan.io/chart/blocktime
https://github.com/ethereum/wiki/wiki/Mining

𝑎𝑑𝑗_𝑓𝑎𝑐𝑡𝑜𝑟 = 𝑚𝑎𝑥
(︁(︀

2 𝑖𝑓 𝑙𝑒𝑛(𝑢𝑛𝑐𝑙𝑒𝑠𝑛−1) 𝑒𝑙𝑠𝑒 1
)︀
− 𝑡𝑖𝑚𝑒𝑠𝑡𝑎𝑚𝑝𝑛 − 𝑡𝑖𝑚𝑒𝑠𝑡𝑎𝑚𝑝𝑛−1

9
,−99

)︁
(2.4)

𝑑𝑛 = 𝑚𝑎𝑥
(︁
𝑑𝑛−1 +

𝑑𝑛−1

2048
* 𝑎𝑑𝑗_𝑓𝑎𝑐𝑡𝑜𝑟,𝑚𝑖𝑛

(︀
𝑑𝑛−1,𝑀𝐼𝑁_𝐷𝐼𝐹𝐹

)︀)︁
(2.5)

Another difference between Ethereum and Bitcoin based cryptocurrencies is in transac-
tion processing. Each Ethereum transaction specifies:

∙ Gas limit

∙ Gas price

Gas the term used for transaction fee. Gas price is a price the miner receives for every
operation performed while executing transaction. Gas limit is a limit of how much Gas can
transaction consume. Total miners reward is then calculated as 𝑔𝑎𝑠 𝑝𝑟𝑖𝑐𝑒× 𝑔𝑎𝑠 𝑢𝑠𝑒𝑑. Gas
limit is specified for each transaction as it can take significant time to execute all opera-
tions specified in smart contracts. Every modification made by transaction is revoked and
transaction is not included in block if gas limit is reached before transaction is completed.
In case of failed transaction, all Gas is rewarded to a miner.

There are multiple implementations of Ethereum node: cpp-ethereum31, Go Ethereum32,
ethereumj33 and Nethereum34. All of these implementations adhere to the same RPC API
and can be used interchangeably.

2.8.1 Smart contracts

Smart contracts are accounts that are not controlled by private key but rather by contract’s
code. Once a smart contract is created, it behaves according to its specification. Smart
contracts can also store information as they have internal storage. Transaction (message)
has to be sent to smart contract to trigger its code. Smart contract can perform another
transaction or modify its internal storage as a reaction to incoming transaction.

Smart contracts have multiple use cases. A few of them are listed in following list:

∙ Token systems

∙ Financial derivatives and Stable-Value Currencies

∙ Identity and Reputation Systems

∙ Decentralized Autonomous Organizations
31cpp-ethereum, https://github.com/ethereum/cpp-ethereum/
32Go Ethereum, https://geth.ethereum.org/
33ethereumj, https://github.com/ethereum/ethereumj/
34Nethereum, http://www.nethereum.com/

21

https://github.com/ethereum/cpp-ethereum/
https://geth.ethereum.org/
https://github.com/ethereum/ethereumj/
http://www.nethereum.com/

ERC20

ERC20 [2] is a standardized smart contract for token systems. ERC20 specifies basic
functions for token transaction - sending and receiving tokens. Token system use internal
storage to store token balance of each address. To send tokens, user creates transaction
with recipient as token address. Address of token recipient and transferred amount is stored
inside transaction data.

ERC20 token implements following methods with given signatures:

∙ dd62ed3e allowance(address,address)

∙ 095ea7b3 approve(address,uint256)

∙ 70a08231 balanceOf(address)

∙ 313ce567 decimals()

∙ 06fdde03 name()

∙ 95d89b41 symbol()

∙ 18160ddd totalSupply()

∙ a9059cbb transfer(address,uint256)

∙ 23b872dd transferFrom(address,address,uint256)

∙ 54fd4d50 version()

Signature can be used to identify invoked method by inspecting the first 8 characters
of input field of transaction.

2.9 Summary
In previous sections, I have described several cryptocurrencies and discussed how to obtain
information from their underlying networks. In table 2.2, I have listed technical aspects of
each cryptocurrency. Table 2.3 shows information about transaction details that is possible
to acquire for each cryptocurrency.

Cryptocurrency Coin Total supply Block time [m] Protocol Features
Bitcoin BTC 21M 10 Bitcoin Lighting network
Bitcoin Cash BCH 21M 10 Bitcoin
Litecoin LTC 84M 2.5 Bitcoin Lighting network

Dash DASH 18-21M 2.5 Bitcoin PrivateSend
InstantSend

Zcash ZEC 21M 2.5 Bitcoin Shielding
Monero XMR infinite 2 CryptoNote Privacy
Ethereum ETH infinite 0.5 Ethereum Smart contracts

Table 2.2: Technical aspects of cryptocurrencies

22

Cryptocurrency Sender Receiver
Bitcoin X X
Bitcoin Cash X X
Litecoin X X
Dash X X

Zcash

X X 𝑡→ 𝑡
X × 𝑡→ 𝑧
× X 𝑧 → 𝑡
× × 𝑧 → 𝑧

Monero × ×
Ethereum X X

Table 2.3: Obtainable information

2.10 Identity pairing
Cryptocurrencies are by nature (pseudo)anonymous. One way how to pair address with
user’s identity is to request information from a cryptocurrency exchange with court order.
This approach can be used only for exchanges that require verification. On some exchanges,
user’s verification is not mandatory or is mandatory only when certain conditions are met.
Exceeding certain volume of trades is the most used condition to request verification of
user’s identity. Also, exchanges can be outside of state’s jurisdiction and do not need to
comply with court requests.

To get at least user’s pseudonym, one can find information on web pages about cryp-
tocurrencies where users have public profiles. In some cases, they provide their cryptocur-
rency addresses in their profiles. From this information, the pseudonym can be paired
with his published addresses. And as users tend to use the same pseudonym across several
web pages, one can link those profiles together. This can reveal possible identity in case
another web page shows (most likely) real information. Facebook can be used as an ex-
ample. Some users have their pseudonym same as their custom URL of Facebook’s profile
(http://facebook.com/<username>). Other way to get more identity information is to
find the same pseudonym on website that operates inside a state’s jurisdiction and request
information with court order. This way, law enforcement personnel can get a user’s IP
address. Then, law enforcement can inspect network traffic of this IP address and scan for
cryptocurrencies transactions to verify the assumption of user’s identity.

2.11 Existing solutions
There are already two types of existing tools for analyzing the content of cryptocurrencies:
blockchain explorers and transaction notificators.

Blockchain explorers can be used to browse cryptocurrency blockchain in a web browser.
They allow users to search for the specific transaction or address by hash. They provide a
list of all transactions related to the given address. This can useful for user who wants to
know details about transactions of single address. It is not possible to search for multiple
addresses simultaneously and user must perform one search for each address. Also, there is
no possibility to send notifications when transaction (or any other event) occurs. Each cryp-

23

tocurrency has own blockchain explorer, which makes systematic transaction monitoring
fragmented. One of many Bitcoin’s blockchain explorers is Blockchain.info35.

Another set of existing tools is based on sending email notifications when specified
address is recipient of transaction. This can be useful for users who want to be notified
about incoming transactions but is far from ideal solution for tracking a large number of
addresses across multiple cryptocurrencies. User cannot specify the type of involvement
to be notified about (sender/receiver). Also, these services do not offer an API for push
notifications which would be better suited for effective processing. Another problem is
that these services support monitoring only on a small set of cryptocurrencies. Majority of
them supports only Bitcoin, thus there is no way for user to monitor transactions in other
cryptocurrencies. BitNotify36 is one of these services.

35https://blockchain.info/
36http://bitnotify.com

24

https://blockchain.info/
http://bitnotify.com

Chapter 3

Design

This chapter is describing design of a new application, Cryptoalarm. Cryptoalarm is an ap-
plication developed to satisfy needs for transaction monitoring in multiple cryptocurrencies.
It allows for multiple filters for monitored addresses and is able to send REST notifications.
REST notifications allow for integration with applications for post processing of transac-
tions that match watched addresses.

3.1 Requirements
Requirement for Cryptoalarm was to create an application that allows transactions monitor-
ing in multiple cryptocurrencies. Demand to split Cryptoalarm into two major components
(monitoring application and web user interface) was placed from project Tarzan. This is due
to integration of web user interface into ecosystem already developed for project Tarzan.

Following requirements were specified for an application designated to transaction mon-
itoring:

∙ Ability to monitor transactions in the wide spectrum of cryptocurrencies indepen-
dently

∙ Transaction processing in a real-time

∙ Offer scalability for further extension with new cryptocurrencies

∙ Process transactions in blocks of the main chain when chain split is detected

Following requirements were specified for a web application designated to watchlist
management:

∙ Multi-user watchlist management

∙ Address and cryptocurrency specification

∙ Input/Output involvement selection

∙ Notification type selection

∙ Notification destination

∙ Notification email customization

25

Besides watchlist management, web application should display a list of created notifi-
cations. Notification that occurred on address specified in any watchlist needs to be shown
in dashboard. The list of notifications that occurred in the specific watchlist needs to be
listed separately.

3.2 Database
The database of Cryptoalarm needs to store information about monitored address, detected
transactions and processed blocks. All database tables and its columns are described in
following sections. Database schema is shown in figure 3.1.

Users

The table users stores information about Cryptoalarm’s users. This table has the following
columns:

∙ id - primary key

∙ email_address - unique user identification and destination of email notifications

∙ password - hashed user password

∙ rest_url - URL address to which rest notification will be sent

Settings

The table settings represents a key-value pairs. This table is used to store configuration
settings such as default template for email notifications or email subject.

∙ key - setting identification

∙ value - setting value

Coins

The table coins represent cryptocurrencies supported by Cryptoalarm. It has the following
columns:

∙ id - primary key

∙ name - cryptocurrency name as a ticker

∙ explorer_url - URL of blockchain explorer

Blocks

The table blocks stores information about every block processed by Cryptoalarm. It has the
following columns:

∙ id - primary key

∙ coin_id - foreign key to table coins identifying cryptocurrency that block belongs to

26

∙ number - block’s number (height)

∙ hash - block’s hash

The relation between blocks and coins is necessary as blocks of each cryptocurrency can
have the same number. Block’s hash is stored for the purpose of detecting chain-split and
block in which it occurred. This is possible due to mismatch between block’s hash of given
number and hash returned from cryptocurrency node.

Addresses

The table addresses represents every address known to Cryptoalarm. It has the following
columns:

∙ id - primary key

∙ hash - address hash

∙ coin_id - foreign key to table coins identifying cryptocurrency that address belongs
to

The relation between addresses and coins is necessary as multiple cryptocurrencies can
have the same format of addresses. Bitcoin and Bitcoin Cash can be used as an example.

Watchlists

The table watchlists represents watchlists created by Cryptoalarm’s users. It has the fol-
lowing columns:

∙ id - primary key

∙ name - name of a watchlist

∙ type - address’ involvement type (in/out/inout)

∙ notify - notification type (none/email/rest/both)

∙ address_id - foreign key to table addresses identifying which watched address

∙ user_id - foreign key to table users identifying user that watchlist belongs to

∙ email_template - template for email notifications

Address is saved outside of watchlist to prevent information duplication as multiple
users can create watchlist for the same address.

Identities

The table identities represents every identity that is parsed by IdentityParser. It has the
following columns:

∙ id - primary key

∙ url - URL where identity was found

27

∙ label - pseudonym

∙ source - web page name

∙ address_id - foreign key to table addresses identifying address paired with identity

Address is referenced to the table addresses which allows to match identities, addresses
and existing watchlists.

Notifications

The table notifications represents notifications generated when any transaction involves a
watched address. It has the following columns:

∙ id - primary key

∙ watchlist_id - foreign key to table watchlists identifying watchlist that notification
belongs to

∙ block_id - foreign key to table blocks identifying block that transaction occurred in

∙ tx_hash - hash of transaction

∙ created_at - time of creation

Relation to the table blocks is necessary as notifications created for transaction in blocks
not included in main chain need to be deleted. Automatic deletion is achieved by constraint
ON DELETE CASCADE. The relation to the table watchlists is designed to identify watchlist
that generated given notification.

28

coins

id SERIAL

name CHARACTER VARYING(255)

explorer_url CHARACTER VARYING(255)

addresses

id SERIAL

hash CHARACTER VARYING(255)

coin_id INTEGER

blocks

id SERIAL

coin_id INTEGER

number INTEGER

hash CHARACTER VARYING(255)

identities

id SERIAL

url CHARACTER VARYING(255)

label CHARACTER VARYING(255)

source CHARACTER VARYING(255)

address_id INTEGER

notifications

id SERIAL

watchlist_id INTEGER

tx_hash CHARACTER VARYING(255)

created_at TIMESTAMP(0) WITHOUT TIME ZONE

updated_at TIMESTAMP(0) WITHOUT TIME ZONE

block_id INTEGER

watchlists

id SERIAL

name CHARACTER VARYING(255)

type CHARACTER VARYING(255)

notify CHARACTER VARYING(255)

address_id INTEGER

user_id INTEGER

email_template TEXT

settings

key CHARACTER VARYING(255)

value TEXT

users

id SERIAL

name CHARACTER VARYING(255)

email CHARACTER VARYING(255)

password CHARACTER VARYING(255)

remember_token CHARACTER VARYING(100)

created_at TIMESTAMP(0) WITHOUT TIME ZONE

updated_at TIMESTAMP(0) WITHOUT TIME ZONE

rest_url CHARACTER VARYING(255)

Figure 3.1: Database schema

3.3 Monitoring application
The purpose of monitoring application is to scan blockchains of cryptocurrencies in order
to detect new blocks, to process transactions and to send notifications when monitored
address is involved in any transaction. The scanning of each cryptocurrency’s blockchain
needs to be done in parallel. This is due to the different block times of each cryptocurrency.
Those intervals can overlap or new blocks can be generated in approximately at the same

29

time. Transaction processing of one cryptocurrency could become delayed as it would wait
until blocks of all other cryptocurrencies were processed in case of serial processing. Also,
transaction processing for each cryptocurrency can take significantly different amounts of
time. This is caused by each cryptocurrency storing distinct types of information about
inputs of transaction. Ethereum can used as an example. Only one RPC call is required
to obtain information about transaction inputs. On the other hand, transaction in Bitcoin
(and its derivates) requires 1 + 𝑙𝑒𝑛(𝑖𝑛𝑝𝑢𝑡𝑠) RPC calls. This is caused by the process of
identifying senders’ address. The relation between these classes can be seen on figure 3.2. I
have designed class Coin that defines methods interacting with blockchain and processing
results. From this class, there are two direct child classes implementing specific operations
for two cryptocurrencies, Bitcoin and Ethereum.

Cryptoalarm is designed to be easily extensible to perform transaction monitoring in
new cryptocurrencies with minimum effort. It is an important aspect of Cryptoalarm as new
cryptocurrencies are created almost on daily basis. By default, Cryptoalarm supports six
cryptocurrencies described in chapter Analysis 2 with the exception of Monero. Monero does
not allow for transaction monitoring as its addresses are obfuscated (see 2.7). Functionality
of monitoring application is split into several classes. Description of each class is in the
following paragraphs.

Class Monitor monitors cryptocurrencies blockchains and detects new blocks. Beside
monitoring, it processes blocks and transactions. Also, it handles the lifetime of classes No-
tifier and Database. For each cryptocurrency, a new thread is started and method worker
invoked. The worker is awakened in intervals corresponding to block time of each cryptocur-
rency. When a new block is detected, the list of transactions is obtained. Subsequently, each
transaction is processed and inserted into the queue synchronized with Notifier. Method
test_connection is used to test connectivity of Notifier and each cryptocurrency’s RPC
node. A handler of SIGINT is attached to function shutdown to perform graceful shut-
down. The block processing is stopped after all remaining blocks are processed when the
signal SIGINT is received. Block processing is terminated immediately in case of a net-
work error. This behaviour is designed to prevent infinite repetition of failed requests which
would prevent the application from shutting down.

Class Coin is designed to interact with cryptocurrency’s network node by using its
RPC API. Classes for each cryptocurrency are inherited from Coin. Major classes are
BTC for Bitcoin and ETH for Ethereum. These classes specify names and arguments of
RPC calls and handle block and transaction processing. Classes for other cryptocurrencies
are inherited from BTC, specifically BCH (Bitcoin Cash), LTC (Litecoin), DASH (Dash)
and ZEC (Zcash). Those classes only specify block time as it is their only difference from
Bitcoin in terms of transaction processing. In case a network error is encountered during
RPC API call to cryptocurrency’s full node, this call is repeated in doubling intervals until
it reaches maximum threshold. After that, a static interval between repetitions is used.
Each class representing a cryptocurrency stores the detail of every transaction requested
by processing a new transaction. Multiple inputs of a single transaction can originate from
the same transaction. Input transactions are stored to prevent repeated requests for the
same data which improves processing times. Class ETH also parses transactions in smart
contracts based on ERC20 specification. It is possible to monitor every interaction with
smart contract by specifying its address into a watchlist. In case an address is recipient of
token transfer, this address is neither sender nor receiver of transaction. Sender is the user,
who initiates token transfer, and recipients is the smart contract of given token. Receiver’s
address is specified inside transaction data. This data is parsed and if method signature

30

matches transfer function of ERC20 contract, its recipient is also added as receiver of
transaction.

To extend Cryptoalarm with a new cryptocurrency, a new class must be derived from
Coin. If this cryptocurrency is based on Bitcoin then block time change is needed. All
of the following methods have to be implemented in case of cryptocurrency using different
protocol than Bitcoin:

∙ get_last_block_number - obtain the number of last block

∙ get_block_hash - obtain the hash of given block

∙ get_block_creation_time - obtain the time of block creation

∙ get_block - obtain block data structure for the given block

∙ get_block_transactions - obtain the list of transaction hashes from the given block

∙ get_transaction - obtain data structure of the given transaction

∙ get_transaction_io - return sets of inputs and outputs for the given transaction

I designed the class Notifier to create notifications. After all transactions are processed,
its inputs, outputs and hash are inserted in the queue synchronized with Monitor. When
a new transaction is detected, its inputs and outputs are compared to watched addresses.
Transaction is attached to its watchlist in case any of its inputs or outputs match watchlist’s
address. Watchlist data structure (as shown in listing 3.1) is used to store relevant data
and metadata. This structure also stores block number and block id. Block id is identifier
of the block record stored in database.

{
"coin ticker": {

"explorer_url": "url",
"data": {

"address1": {
"txs": {

"in": [
[block_id, block_number, "tx hash"],
...

],
"out": [

[block_id, block_number, "tx hash"],
...

],
},
"users": {

"in": [user1, user2, ..., userN],
"out": [user1, user2, ..., userN],
"inout": [user1, user2, ..., userN],

}
},

}

31

},
}

Listing 3.1: Watchlist data structure

This structure stores each address and its related watchlists independently because
multiple watchlists may be attached to the same address. All incoming transactions are
saved in the attribute in. All outgoing transactions are saved in the attribute out. Users
who created watchlist for given address are stored in attributes users→in, users→out and
users→inout. This separation is intended to limit notifications for a particular address
involvement previously chosen by a user. The reason for having users attached in the
attribute inout instead of both in and out is that this would create two notifications for each
user. The first notification would contain input transactions. The second would contain
output transactions. User data structure (as shown in listing 3.2) stores all information
about notification types, its destination and eventually email template.

{
"type": string,
"watchlist_name": string,
"notify": string,
"watchlist_id": number,
"email_template": string,
"user_id": number,
"email": string,
"rest_url": string

}

Listing 3.2: User data structure

All matched transactions are sent as notifications as specified in watchlist. Notifications
are sent in customizable interval, which can be altered in configuration. Also, Notifier is
designed to refresh watchlist data in specific interval. I decided to use data refresh instead
of interacting directly with the database, thus experiencing a better performance in case
of large number of watchlists. Fetching watchlist information from database for every
transaction would lead to more queries and could become the bottleneck of the application.

Class Sender defines the interface for notification senders. It consists of methods:

∙ add - insert transaction which needs to be send as notification

∙ send - to send notifications

∙ test_connection - to test network connectivity

Classes Mailer and Rest are derived from Sender. Each of these classes implements
functionality to send notifications to user’s defined destination. Both classes can recover
from network errors. All to-be-sent notifications are stored inside each class. Every item in
this queue is processed and sent as notification when method send is invoked. Items that
are not sent due to network errors are appended to the end of this queue again. This is
due to possibility of temporary unreachable REST server. This way, user receives every
notification even if his server is offline in time the notification is created. To create different
types of notification, a new class must be derived from the class Sender.

Class diagram of the monitoring application is shown in figure 3.2.

32

3.4 Web application
The main purpose of web application is watchlist management. Additionally, it includes
component AddressMatcher to match addresses with cryptocurrencies they belong. Identi-
tyParser is a component used for parsing user’s identities and their addresses.

Web application is split into several entities to achieve these goals. There is a User,
Coin, Address, Watchlist and Notification.

∙ User represents user and user’s settings such as email address, email template and
REST URL

∙ Coin represents cryptocurrency. It contains name (a ticker) and URL to blockchain
explorer.

∙ Address represents address and cryptocurrency it belongs to.

∙ Watchlist is a combination of a user and an address. Additionally, it contains monitor
type (incoming, outgoing, both) and notification settings (rest/email).

∙ Notification represent a notification created when an address is involved in a transac-
tion.

Web application is designed to have multiple screens. The first screen is Dashboard,
which is designed to be a user’s entry point into the application. It contains a list of no-
tifications about any addresses that user specified watchlist on. This list shows watchlist
name, transaction hash (linking to the blockchain explorer) and notification timestamp.
Another screen is a Watchlist. The Watchlist shows all notifications created in according
to rules specified in given watchlist. Also, there is a list of identities that match watchlist’s
address. Subsequently, there is an overview of rules defined for the given watchlist as cryp-
tocurrency, involvement type and notification type. Also, there is a preview of a template
used to create email notifications.

The screen for creating and editing watchlist offers a form to fill all required information.
Additionally, the cryptocurrency is automatically identified with the use of the Address-
Matcher when user specifies an address. Also, there is a field to specify email template.
User can utilize placeholders which will be replaced with corresponding information when
email notification is created:

∙ 𝑛𝑎𝑚𝑒 - watchlist name

∙ 𝑐𝑜𝑖𝑛 - coin name

∙ 𝑎𝑑𝑑𝑟𝑒𝑠𝑠 - address hash

∙ 𝑡𝑥𝑠 - list of transactions

In user’s profile, it is possible to specify an URL that all REST notifications will be sent
to. REST notifications have the following format:

{
"address": hash,
"coin": ticker,
"watchlist": name,

33

"transactions": [
[block_number, hash],
...

]
}

Listing 3.3: REST notification format

Web application defines one API method api/identify. This method is designed to
be called asynchronously to identify the related cryptocurrencies. The address is the only
argument accepted by this method. The following data structure is returned by this method:

{
"status": bool,
"coins": [

"coin1",
...

]
}

Listing 3.4: The result data structure of api/identify

The attribute status is set to true in case that the address matches at least one cryp-
tocurrency. The attribute coins contains all cryptocurrencies that use the same format of
an address.

3.4.1 AddressMatcher

AddressMatcher is a component of web application to identify cryptocurrency that address
belongs to. AddressMatcher has two major usages in the web application. First one is to
enhance user experience when creating or editing watchlist. When user specifies address, an
asynchronous requested is sent to AddressMatcher (api/identify) which identifies appropri-
ate cryptocurrencies. After that, the select box for cryptocurrency is preselected with the
identified cryptocurrencies. Address format can correspond to multiple cryptocurrencies
(i.e. Bitcoin and Bitcoin Cash). If multiple results are returned, user is allowed to selected
only from those cryptocurrencies. Another usage of AddressMatcher is for IdentityParser.
When web page is retrieved by IdentityParser, its source is then passed to AddressMatcher.
AddressMatcher recognizes all supported addresses and returns all the list of identified
cryptocurrencies. AddressMatcher has the following methods:

∙ identify_address - identify the given address

∙ match_addresses - match all possible addresses and identify them

3.4.2 IdentityParser

IdentityParser is designed to obtain all published addresses from user’s profiles on Bit-
cointalk1 forum. User profiles are selected for the probability of address occurrence. An-
other option would be to parse every thread across the whole forum but the probability of
a reply containing address is lower than in a profile.

1Bitcointalk, http://bitcointalk.org

34

http://bitcointalk.org

IdentityParser is designed to process every profile by incrementing id in the URL up
to an identifier of the last registered user. The last processed profile is then saved in
database table settings(key=bitcointalk_last_id). When run multiple times, IdentityParser
is designed to start from the last processed profile and continue upwards to the latest
currently registered user. This way, it can be run on regular basis to process new profiles.
Also, it could be run even for existing profiles as users can specify new addresses. This way,
the most complete database of users’ identities can be created.

After the source code of the page is obtained, it is then passed to AddressMatcher.
AddressMatcher recognizes all possible supported addresses on given page and identifies
cryptocurrencies that those addresses belong to. Then, a new identity is created for every
recognized address and every corresponding cryptocurrency. Identities are stored in table
identities with corresponding address linked to the table addresses.

35

Coin

+ block: dict
+ block_time: timedelta
+ url: string

+ Coin(dict, threading.Event)
+ get_block(int): dict
+ get_block_time(): timedelta
+ get_block_hash(int): string
+ get_block_creation_time(int): datetime
+ get_block_transactions(int): list
+ get_last_block_number(): int
+ get_transaction(string): dict
+ get_transaction_io(string): dict
+ rpc(string): dict
+ test_connection()

BTC

+ block: dict
+ block_time: timedelta

+ get_block(int): dict
+ get_block_hash(int): string
+ get_block_creation_time(int): datetime
+ get_block_transactions(int): list
+ get_last_block_number(): int
+ get_transaction(string): dict
+ get_transaction_io(string): dict
+ process_inputs(dict): list

ETH

+ block: dict
+ block_time: timedelta

+ get_block(int): dict
+ get_block_hash(int): string
+ get_block_creation_time(int): datetime
+ get_block_transactions(int): list
+ get_last_block_number(): int
+ get_transaction(string): dict
+ get_transaction_io(string): dict

BCH

+ block_time: timedelta

LTC

+ block_time: timedelta

DASH

+ block_time: timedelta

ZEC

+ block_time: timedelta

Monitor

+ coins: list
+ database: Database
+ notifier: Notifier
+ stop: Event
+ threads: list

+ Cryptoalarm(dict)
+ last_processed_block(Database, Coin): int
+ process_block(Database, Coin, int): int
+ set_last_block()
+ shutdown()
+ start()
+ test_connection()
+ worker(Coin)

Database

+ conn: psycopg2
+ cursor: psycopg2.cursor

+ Database(string)
+ get_address_users(int, string): list
+ get_addresses(): list
+ get_block_hash(Coin, int): string
+ get_coin(string): dict
+ get_coins(): list
+ get_last_block_number(Coin): int
+ get_value(string): string
+ set_block_number(Coin, int, string): int
+ delete_block(Coin, int)
+ commit()
+ insert_notifications(int, list)

Notifier

+ data: dict
+ database: Database
+ last_run: datetime
+ queue: Queue
+ senders: list

+ Notifier(dict, Database)
+ add(Coin, string, dict, string, list)
+ add_transaction(Coin, int, int, string, list)
+ process_transaction(Coin, int, int, string, list)
+ process_remaining()
+ load()
+ notify()
+ test_connection()
+ worker(threading.Event)

Mailer

+ email: string
+ server: SMTP
+ subject: string
+ template: string
+ types: list

+ Mailer(dict, string, string, string)
+ build_body(Coin, string, dict, string, list): string
+ build_message(Coin, string, dict, string, list): string
+ connect()
+ send()
+ test_connection()

Rest

+ types: list

+ Rest()
+ add(Coin, string, dict, string, list)
+ build_message(Coin, dict, string, list): dict
+ send()

Sender

+ types: list
+ queue: list

+ add(Coin, string, dict, string, list)
+ send()
+ test_connection()

Figure 3.2: Monitoring application class diagram

36

Chapter 4

Implementation

Cryptoalarm consists of two components, the monitoring application and the web applica-
tion. The monitoring application is responsible for interactions with blockchains of cryp-
tocurrencies and generating notifications. The web application is responsible for watchlist
management.

4.1 Monitoring application
The monitoring application of Cryptoalarm is implemented in Python. I choose Python
because of its ability for fast prototyping, readable code and multiplatformity. Monitoring
application can be run on any existing operating system with Python. Also, Python scripts
do not require compilation, which makes development easier. Another reason is Python’s
built-in support for data structures such as JSON, lists and sets.

I decided to implement classes of each cryptocurrency on my own even though there are
already several existing Python packages1,2,3. My reasons to create custom implementation
is that those packages do not adhere to the same interface. I would need to implement
an adapter for every cryptocurrency to be able to work with those packages in a unified
manner. Limited support of all RPC API calls needed for Cryptoalarm’s functionality is
another reason. With custom implementation, Cryptoalarm is now easily extensible to
support new cryptocurrencies. That would not be possible with third-party packages. To
extend Cryptoalarm with a new cryptocurrency, the developer is only required to create a
new class inherited from the class Coin and specify methods described in chapter 3. In case
of cryptocurrency based on Bitcoin, it is possible to inherit from the class BTC instead of
Coin and only specify block time (if it differs).

Package Cryptoalarm consists of four modules: Coin, Monitor, Database and Notifier.
Module Coin implements all operations for interaction with blockchains of cryptocurrencies
and processing of obtained data. A class is defined for every supported cryptocurrency.
Module Notifier implements classes for notification processing.

Also, I have developed a cryptoshell. This utility can be used to call methods of each
cryptocurrency independently on the Cryptoalarm. Cryptoshell takes the following argu-
ments:

∙ Coin - the name of cryptocurrency as defined in module Coin
1python-bitcoinrpc, https://github.com/jgarzik/python-bitcoinrpc
2ethjsonrpc, https://github.com/ConsenSys/ethjsonrpc
3python-darkcoinrpc, https://github.com/vertoe/python-darkcoinrpc

37

https://github.com/jgarzik/python-bitcoinrpc
https://github.com/ConsenSys/ethjsonrpc
https://github.com/vertoe/python-darkcoinrpc

∙ method - method that will be called in given cryptocurrency

Any additional arguments are passed to selected method. The documentation of moni-
toring application can be found in the attached CD in folder /src/cryptoalarm/doc/.

4.1.1 Dependencies

The monitoring application has the following dependencies:

∙ Python 3

∙ postgresql

4.2 Web application
I have used PHP framework Laravel4 5.5 for the web application implementation. This
was one of the requirements as the rest of the applications developed for project Tarzan is
written in Laravel. This allows for integration inside Tarzan project.

4.2.1 AddressMatcher

AddressMatcher uses the following regular expressions to identify cryptocurrency from the
address format:

∙ Bitcoin:
([13][a-km-zA-HJ-NP-Z1-9]{25,33}|bc1([A-Za-z0-9]{39}|[A-Za-z0-9]{59}))

∙ Bitcoin Cash: [13][a-km-zA-HJ-NP-Z1-9]{25,33}

∙ Litecoin: [LM3][a-km-zA-HJ-NP-Z1-9]{25,33}

∙ Dash: X[1-9A-HJ-NP-Za-km-z]{25,33}

∙ Zcash: t|[a-zA-Z0-9]{34}

∙ Ethereum: 0x[a-fA-F0-9]{40}

4.2.2 IdentityParser

IdentityParser is implemented as a part of the web application. Bitcointalk forum uses
Cloudflare DDOS protection5. To bypass this protection, a browser that with Javascript
has to be used. I have decided to use Selenium framework which allows the connection to
headless browser.

4Laravel, https://laravel.com/
5Cloudflare DDOS protection, https://www.cloudflare.com/ddos/

38

https://laravel.com/
https://www.cloudflare.com/ddos/

4.2.3 Dependencies

The web application has the following dependencies:

∙ postgresql

∙ composer

∙ npm

∙ Java

∙ Selenium standalone server6

∙ PHP >= 7.0.0, extensions: OpenSSL, PDO, Mbstring, Tokenizer, XML, pgsql

6Selenium standalone server, https://www.seleniumhq.org/download

39

https://www.seleniumhq.org/download

Chapter 5

Testing

In this chapter, I describe how monitoring application of Cryptoalarm is verified and vali-
dated. Then, I describe how I measured the performance of Cryptoalarm with large amounts
of watchlists. Performance evaluation is the most important aspect because Cryptoalarm
was designed to be able to monitor on large number of addresses.

5.1 Verification
Verification is performed in two steps:

1. Blockchain interactions & transaction processing

2. Notification generation

I have developed a test suit to test blockchain interactions and transaction processing us-
ing unittest1 Python framework. Blockchain interactions are calls to underlying cryptocur-
rency node. Developed test cases (cryptoalarm/tests/test_coins.py) include interaction
with Bitcoin (TestBTC) and Ethereum (TestETH) nodes. The rest of the cryptocurrencies
are not subjects of testing because all of them inherit functionality from class Bitcoin and
behave exactly the same. Both test cases consist of four tests:

∙ test_get_block_hash

∙ test_get_block_creation_time

∙ test_get_block_transactions

∙ test_get_transaction_io

All test cases combined cover the complete functionality of each cryptocurrency. Other
methods are tested indirectly as they are invoked by methods covered by those test cases.
To test interactions with cryptocurrency nodes, I used cryptocurrency nodes run within
the project Tarzan. This was possible for every cryptocurrency except Ethereum. To test
interactions with Ethereum node, I have created a local Ethereum blockchain with the use
of Truffle framework2 and its tool Ganache3. Ganache is an implementation of Ethereum

1Unittest, https://docs.python.org/3/library/unittest.html
2Truffle framework, http://truffleframework.com/
3Ganache, http://truffleframework.com/ganache/

40

https://docs.python.org/3/library/unittest.html
http://truffleframework.com/
http://truffleframework.com/ganache/

node with graphical interface. Ganache comes with a number of predefined addresses with
test balances This allows for transactions testing even without mining new blocks to get a
reward first. I have used Mist4 to create transactions inside this blockchain. To create a
smart contract, I have used a custom ERC20 token derived from OpenZeppelin 5 Standard
Token.

Test case TestNotifier (cryptoalarm/tests/test_notifier.py) covers the functionality of
notification generation. A mock object (DatabaseMock) of Database was created to remove
the dependency on the database for this test. To set up a test environment, an instance of
Notifier is created and then artificial transaction is processed. The following methods were
created to verify functionality of Notifier :

∙ test_watchlist

∙ test_process_transaction

∙ test_unique_notification_inout

5.2 Integration testing
For integration testing, I have selected few of the most used addresses in each cryptocur-
rency. Then, I have created a watchlist for each address with combination of possible types
of involvement (in/out/inout) and notifications types (rest/email/both). After 100 blocks
were processed by Cryptoalarm, I have compared results of notifications shown in the web
application to blockchain explorers. Notifications created for Ethereum were compared with
the output of Ganache. Selected addresses were:

∙ Bitcoin: 1dice8EMZmqKvrGE4Qc9bUFf9PX3xaYDp - SatoshiDice6

∙ Bitcoin Cash: 1KFHE7w8BhaENAswwryaoccDb6qcT6DbYY - F2Pool7

∙ Litecoin: LhyLNfBkoKshT7R8Pce6vkB9T2cP2o84hx

∙ Dash: XpESxaUmonkq8RaLLp46Brx2K39ggQe226

∙ Zcash: t1KLGj3izuKveu1eFZUiwp3BEKHQAiYv2Z7

To test the processing of a smart contract transaction, I’ve created a watchlists for:

∙ Address of ERC20 token smart contract

∙ Address used as destination of token transfer

Then, I have observed if notifications for both addresses were created.
4Mist, https://github.com/ethereum/mist
5OpenZeppelin, https://github.com/OpenZeppelin/openzeppelin-solidity
6SatoshiDice, a gambling site, https://satoshidice.com/
7F2Pool, a mining cluster, https://www.f2pool.com/

41

https://github.com/ethereum/mist
https://github.com/OpenZeppelin/openzeppelin-solidity
https://satoshidice.com/
https://www.f2pool.com/

5.3 Performance testing
To test the performance of Cryptoalarm, I have focused on the speed of transaction pro-
cessing in the Notifier. I did not measure the performance of interactions with blockchains
of cryptocurrencies as it is affected by the connection speed between the application and
the node. Interactions with Zcash node running on the same device as Cryptoalarm were
almost 4× faster compared to node located on the network with average response time of
15ms. Also, the number of cryptocurrencies supported does not have a significant effect on
the performance because Cryptoalarm instance for every cryptocurrency is run in separated
thread.

To test the performance of Cryptoalarm, I have measured the average number of trans-
actions in Bitcoin blocks and average number of their inputs and outputs. I have chosen
Bitcoin because it is currently the most used cryptocurrency. There are 20 730 000 transac-
tions in the last 10 000 Bitcoin blocks. The average number of transactions per block equals
to 2073. Those transactions have on average 2.577 inputs and 2.398 outputs. For the testing
purposes, I have adjusted these numbers to 2.5 inputs and 2.5 outputs per transaction.

To the measure performance, I have created scenarios with:

∙ 10 watchlists

∙ 100 watchlists

∙ 1 000 watchlists

∙ 5 000 watchlists

∙ 10 000 watchlists

Then, for every scenario, I have created 2073 transactions with the average of 2.5 inputs
and 2.5 outputs. Those transactions were generated artificially to have the occurrence of
watched address of:

∙ 10%

∙ 25%

∙ 50%

∙ 75%

I have measure the performance in two separated phases. First phase covers processing
transactions and storing this information inside Cryptoalarm. The results are shown on
figure 5.1. As you can see the number of watchlists has major impact on performance.
Percentage of watched address occurrence has only minor impact.

42

10 100 1000 5000 10000
Watchlists

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Ti
m

e
[s

]

10%
25%
50%
75%

Figure 5.1: Processing times

Second phase consists of generating notifications for transactions matching watchlists.
The results are shown on figure 5.2. The number of occurrences of watched addresses had
more impact on notification times in comparison to processing time. This is due to the
number of notifications that needs to be generated and saved in the database.

10 100 1000 5000 10000
Watchlists

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Ti
m

e
[s

]

10%
25%
50%
75%

Figure 5.2: Notification times

Cryptoalarm allows to specify an interval for sending notifications and reloading watch-
lists. Interval for reloading watchlist should be set to reflect the needs of an operator of
Cryptoalarm. I would recommend setting reload interval around one hour for Cryptoalarm
run as publicly available service. I would not recommend setting reload interval in seconds
as it can take few seconds to transfer all watchlist data. Reload times in relation to the
number of watchlists is shown in table 5.1.

43

Watchlists Time [s]
10 0.0158
100 0.0953

1 000 0.9779
5 000 4.7848
10 000 6.5604

Table 5.1: Reload times

All measurements were performed on Intel(R) Core(TM) i5-3427U CPU @ 1.80GHz.
Presented data are the averages of 1 000 iterations.

44

Chapter 6

Conclusion

The goal of this thesis was to monitor activities in cryptocurrency blockchains in order to
raise alarms when specified activity has been detected. Monitoring address involvement in
transactions was the main focus of this thesis as transactions are the core activities that
occur in cryptocurrency blockchains. This type of monitoring can be used by governments,
banking institutions or law enforcement agencies to track movements of funds on problem-
atic addresses. Ransomware or malware crypto miner can be used as the examples of these
addresses.

In this thesis, I have discussed seven of the most used cryptocurrencies and the possibil-
ities to monitor involvement of specific address in transactions. I have created a new appli-
cation Cryptoalarm based on analysis of cryptocurrencies and existing tools. Cryptoalarm
specializes in systematic transaction monitoring with the focus on extensibility with new
cryptocurrencies as described in chapter 3. Currently, Cryptoalarm supports Bitcoin, Bit-
coin Cash, Litecoin, Dash, Zcash and Ethereum. Also, it supports transfers inside ERC20
token systems built on top of Ethereum smart contracts. Monero uses several features
to obfuscate address’ details as described in chapter 2.7, which makes it hard to monitor
Monero and yields why this cryptocurrency is not supported by Cryptoalarm. Another
specific situation is for cryptocurrency Zcash. Zcash allows only monitoring of transac-
tion with transparent addresses (t-addresses). Z-addresses are protected by zero-knowledge
proofs, specifically zk-SNARKs. Besides console application for address monitoring, I have
developed the web application for watchlist management. All these components form the
Cryptoalarm, which allows users to set up custom watchlists with a filter for the specific
involvement of addresses inside transactions. Cryptoalarm can raise alarms in case of a
watched address detection in a transaction. To let users know about such events, alarms
can be sent as notifications. Currently, the supported notification types are emails and
REST calls.

To test the performance of created application, I have measured processing times with
multiple scenarios (10 - 10 000 watchlists) and multiple transaction datasets. Cryptoalarm
can process 2073 (average number of transactions in Bitcoin) with 10 000 watchlists in
seconds. The exact results are described in chapter 5.3.

Cryptoalarm was developed as a part of project Tarzan [4], which aims on development
of a set of tools for forensic analysis of cryptocurrencies.

I have extended thesis beyond the assignment with cryptocurrencies Dash, Litecoin
and Bitcoin Cash. Another extension is a component AddressMatcher used to identify
cryptocurrencies related to an address. Also, I have developed component IdentityParser
used to obtain metadata related to Bitcointalk forum users and their addresses.

45

I have presented Cryptoalarm in student’s conference Excel@FIT with a poster. Cryp-
toalarm is published as an open source in GitHub repository vokracko/cryptoalarm1.

As the future work, it is possible to extend Cryptoalarm to support additional cryptocur-
rencies. This can be done easily due to the modular design of the application. Another
possibility for the continuation is a creation of more identity parsers, which could parse
user’s identities from other publicly available sources. Also, the web application can be
extended with importer of past transactions. This extension would provide user with a
complete list of address’ transactions accessible within the web application.

1Cryptoalarm repository, https://github.com/vokracko/cryptoalarm

46

https://github.com/vokracko/cryptoalarm

Bibliography

[1] Bitcoin Energy Consumption Index. [Online; visited 14.3.2018].
Retrieved from: https://digiconomist.net/bitcoin-energy-consumption

[2] ERC20 Token Standard. [Online; visited 16.3.2018].
Retrieved from:
https://github.com/ethereum/EIPs/blob/master/EIPS/eip-20.md

[3] Find My Coins - Bitcoin forks. [Online; visited 16.3.2018].
Retrieved from: http://www.findmycoins.ninja/

[4] Integrated platform for analysis of digital data from security incidents. [Online;
visited 20.4.2018].
Retrieved from: http://www.fit.vutbr.cz/units/UIFS/grants/index.php?id=1063

[5] View the Bitcoin cryptocurrency specifications in detail. [Online; visited 16.3.2018].
Retrieved from: http://mapofcoins.com/bitcoin

[6] Ben-Sasson, E.; Bentov, I.; Horesh, Y.; et al.: Scalable, transparent, and
post-quantum secure computational integrity. Cryptology ePrint Archive, Report
2018/046. 2018. https://eprint.iacr.org/2018/046.

[7] Bentov, I.; Gabizon, A.; Mizrahi, A.: Cryptocurrencies Without Proof of Work. In
Financial Cryptography and Data Security, edited by J. Clark; S. Meiklejohn; P. Y.
Ryan; D. Wallach; M. Brenner; K. Rohloff. Berlin, Heidelberg: Springer Berlin
Heidelberg. 2016. ISBN 978-3-662-53357-4. pp. 142–157.

[8] Buterin, V.: Change difficulty adjustment to target mean block time including uncles.
[Online; visited 20.4.2018].
Retrieved from:
https://github.com/ethereum/EIPs/blob/master/EIPS/eip-100.md

[9] Buterin, V.; et al.: A Next-Generation Smart Contract and Decentralized Application
Platform. [Online; visited 10.12.2017].
Retrieved from: https://github.com/ethereum/wiki/wiki/White-Paper

[10] Central Intelligence Agency: The World Factbook 2018. [Online; visited 14.3.2018].
Retrieved from: https://www.cia.gov/library/publications/the-world-
factbook/rankorder/2233rank.html

[11] Duffield, E.; Diaz, D.: Dash: A Privacy-Centric Crypto-Currency. [Online; visited
11.12.2017].
Retrieved from: https://github.com/dashpay/dash/wiki/Whitepaper

47

https://digiconomist.net/bitcoin-energy-consumption
https://github.com/ethereum/EIPs/blob/master/EIPS/eip-20.md
http://www.findmycoins.ninja/
http://www.fit.vutbr.cz/units/UIFS/grants/index.php?id=1063
http://mapofcoins.com/bitcoin
https://eprint.iacr.org/2018/046
https://github.com/ethereum/EIPs/blob/master/EIPS/eip-100.md
https://github.com/ethereum/wiki/wiki/White-Paper
https://www.cia.gov/library/publications/the-world-factbook/rankorder/2233rank.html
https://www.cia.gov/library/publications/the-world-factbook/rankorder/2233rank.html
https://github.com/dashpay/dash/wiki/Whitepaper

[12] gmaxwell: CoinJoin: Bitcoin privacy for the real world. [Online; visited 14.3.2018].
Retrieved from: https://bitcointalk.org/index.php?topic=279249

[13] Hopwood, D.; Bowe, S.; Hornby†, T.; et al.: Zcash Protocol Specification.
Retrieved from:
https://github.com/zcash/zips/blob/master/protocol/protocol.pdf

[14] Lee, T. B.: Bitcoin fees are skyrocketing. [Online; visited 10.3.2018].
Retrieved from: https:
//arstechnica.com/tech-policy/2017/12/bitcoin-fees-are-skyrocketing/

[15] Lerner, S. D.: DagCoin Draft. [Online; visited 20.4.2018].
Retrieved from: https://bitslog.files.wordpress.com/2015/09/dagcoin-
v41.pdfcryptonote.org/cns/cns010.txt

[16] Lombrozo, E.; Lau, J.; Wuille, P.: Segregated Witness (Consensus layer). [Online;
visited 20.4.2018].
Retrieved from:
https://github.com/bitcoin/bips/blob/master/bip-0141.mediawiki

[17] Mengerian: Dgenr8’s Difficulty Adjustment Algorithm Explained. [Online; visited
20.4.2018].
Retrieved from: https://medium.com/@Mengerian/dgenr8s-difficulty-
adjustment-algorithm-explained-e77aa47eb281

[18] Nakamoto, S.: Bitcoin: A Peer-to-Peer Electronic Cash System. [Online; visited
10.12.2017].
Retrieved from: https://bitcoin.org/bitcoin.pdf

[19] Noether, S.: Ring Signature Confidential Transactions for Monero. Cryptology ePrint
Archive, Report 2015/1098. 2015. https://eprint.iacr.org/2015/1098.

[20] Poon, J.; Dryja, T.: The Bitcoin Lightning Network: Scalable Off-Chain Instant
Payments. [Online; visited 16.12.2017].
Retrieved from: https://lightning.network/lightning-network-paper.pdf

[21] Quisquater, J.-J.; Guillou, L.; Annick, M.; et al.: How to Explain Zero-knowledge
Protocols to Your Children. In Proceedings on Advances in Cryptology. CRYPTO ’89.
New York, NY, USA: Springer-Verlag New York, Inc.. 1989. ISBN 0-387-97317-6. pp.
628–631.
Retrieved from: http://dl.acm.org/citation.cfm?id=118209.118269

[22] Rizun, P.: BUIP065: Gigablock Testnet Initiative. [Online; visited 16.3.2018].
Retrieved from:
https://github.com/BitcoinUnlimited/BUIP/blob/master/065.mediawiki

[23] van Saberhagen, N.: CryptoNote v 2.0. [Online; visited 10.12.2017].
Retrieved from: https://cryptonote.org/whitepaper.pdf

[24] Werner, A.; Pliskov, M.: CryptoNote Difficulty Adjustment. [Online; visited
20.4.2018].
Retrieved from: https://cryptonote.org/cns/cns010.txt

48

https://bitcointalk.org/index.php?topic=279249
https://github.com/zcash/zips/blob/master/protocol/protocol.pdf
https://arstechnica.com/tech-policy/2017/12/bitcoin-fees-are-skyrocketing/
https://arstechnica.com/tech-policy/2017/12/bitcoin-fees-are-skyrocketing/
https://bitslog.files.wordpress.com/2015/09/dagcoin-v41.pdfcryptonote.org/cns/cns010.txt
https://bitslog.files.wordpress.com/2015/09/dagcoin-v41.pdfcryptonote.org/cns/cns010.txt
https://github.com/bitcoin/bips/blob/master/bip-0141.mediawiki
https://medium.com/@Mengerian/dgenr8s-difficulty-adjustment-algorithm-explained-e77aa47eb281
https://medium.com/@Mengerian/dgenr8s-difficulty-adjustment-algorithm-explained-e77aa47eb281
https://bitcoin.org/bitcoin.pdf
https://eprint.iacr.org/2015/1098
https://lightning.network/lightning-network-paper.pdf
http://dl.acm.org/citation.cfm?id=118209.118269
https://github.com/BitcoinUnlimited/BUIP/blob/master/065.mediawiki
https://cryptonote.org/whitepaper.pdf
https://cryptonote.org/cns/cns010.txt

Appendix A

The content of CD

∙ /doc/ - this thesis

– src/ - source files for this thesis
– doc.pdf - this thesis in pdf

∙ /src/ - source files for Cryptoalarm

– README.md - installation instructions
– cryptoalarm/ - source files for monitoring application

* Makefile
* Dockerfile - specification for docker container
* config.json - configuration file
* cryptoshell.py - cryptoshell application
* requirements.txt - package dependencies
* run.py - launcher
* tests/ - test scripts
* doc/ - documentation
* cryptoalarm/ - modules of monitoring application

– webapp/ - source files for web application

∙ poster.pdf - conference poster

49

Appendix B

RPC API responses

B.1 Bitcoin RPC API: block data structure

{
"hash" : "hash",
"confirmations" : n,
"size" : n,
"strippedsize" : n,
"weight" : n,
"height" : n,
"version" : n,
"versionHex" : "00000000",
"merkleroot" : "xxxx",
"tx" : [

"transactionid",
...

],
"time" : ttt,
"mediantime" : ttt,
"nonce" : n,
"bits" : "1d00ffff",
"difficulty" : x.xxx,
"chainwork" : "xxxx",
"previousblockhash" : "hash",
"nextblockhash" : "hash"

}

Listing B.1: Bitcoin block

50

B.2 Bitcoin RPC API: transaction data structure

{
"hex" : "data",
"txid" : "id",
"hash" : "id",
"size" : n,
"vsize" : n,
"version" : n,
"locktime" : ttt,
"vin" : [

{
"txid": "id",
"vout": n,
"scriptSig": {

"asm": "asm",
"hex": "hex"

},
"sequence": n
"txinwitness": ["hex", ...]

},
...

],
"vout" : [

{
"value" : x.xxx,
"n" : n,
"scriptPubKey" : {

"asm" : "asm",
"hex" : "hex",
"reqSigs" : n,
"type" : "pubkeyhash",
"addresses" : [

"address",
...

]
}

},
...

],
"blockhash" : "hash",
"confirmations" : n,
"time" : ttt,
"blocktime" : ttt

}

Listing B.2: Bitcoin transaction

51

B.3 Ethereum RPC API: block data structure

{
"jsonrpc":"2.0",
"id":83,
"result":{

"difficulty":"0xN",
"extraData":"0xN",
"gasLimit":"0xN",
"gasUsed":"0xN",
"hash":"hash",
"logsBloom":"",
"miner":"hash",
"mixHash":"hash",
"nonce":"0xN",
"number":"0xN",
"parentHash":"hash",
"receiptsRoot":"hash",
"sha3Uncles":"hash",
"size":"0xN",
"stateRoot":"0xN",
"timestamp":"0xN",
"totalDifficulty":"0xN",
"transactions":[

"hash",
...

],
"transactionsRoot":"hash",
"uncles":[

"hash",
..

]
}

}

Listing B.3: Ethereum block

52

B.4 Ethereum RPC API: transaction data structure

{
"jsonrpc":"2.0",
"id":83,
"result":{

"blockHash":"hash",
"blockNumber":"0x33266",
"from":"hash",
"gas":"0x15f90",
"gasPrice":"0xba43b7400",
"hash":"hash",
"input":"0x",
"nonce":"0x30d",
"to":"address",
"transactionIndex":"0xN",
"value":"0xN",
"v":"0x1c",
"r":"hash",
"s":"hash"

}
}

Listing B.4: Ethereum transaction

53

Appendix C

Poster

Lukáš Vokráčko Vedoucí: Ing. Vladimír Veselý, Ph.D.

- Monitorování transakcí

- Notifikace v reálném čase (REST, email)

 - příchozí transakce

 - odchozí transakce

- Několik kryptoměn

 - Bitcoin, Bitcoin Cash, Litecoin,

Zcash, Dash, Ethereum

- Párování uživatelských identit

 - bitcointalk.org

- Identifikace kryptoměny z adresy

- Snadno rozšiřitelné

 - 227 kryptoměn vycházejících z Bitcoinu

= 3 řádky/kryptoměna

Coin

BTC ETH

LTC DASH ZECBCH

42
Alarm na aktivity
v blockchainech kryptoměn

Figure C.1: Poster for conference Excel@FIT

54

	Introduction
	Analysis
	Cryptocurrency
	Blockchain
	Terminology

	Bitcoin
	Segregated witness
	Lighting network
	CoinJoin, Coinmixing
	Bitcoin clients

	Bitcoin Cash
	Litecoin
	Dash
	Master nodes
	PrivateSend
	InstantSend

	Zcash
	Monero
	Ethereum
	Smart contracts

	Summary
	Identity pairing
	Existing solutions

	Design
	Requirements
	Database
	Monitoring application
	Web application
	AddressMatcher
	IdentityParser

	Implementation
	Monitoring application
	Dependencies

	Web application
	AddressMatcher
	IdentityParser
	Dependencies

	Testing
	Verification
	Integration testing
	Performance testing

	Conclusion
	Bibliography
	The content of CD
	RPC API responses
	Bitcoin RPC API: block data structure
	Bitcoin RPC API: transaction data structure
	Ethereum RPC API: block data structure
	Ethereum RPC API: transaction data structure

	Poster

