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DWINDLABLE R-ALGEBRAS

MIROSLAV KUREŠ

Abstract. The concept of a dwindlable R-algebra is defined for an arbitrary topo-

logical R-algebra A. It is proved that if A is dwindlable, then its subalgebra of fixed
points is trivial. It is also demonstrated that for an algebra gradable by radical its

dwindlability depends on a dwindlability of its factor.

Introduction

In [5] we introduced the concept of so-called dwindlable Weil algebras. This con-
cept should be more precise and general and this is the aim of this paper. Further,
the property “to be dwindlable” implied the triviality of the fixed point subalge-
bra (with respect to all automorphisms) in the mentioned paper. The question is,
does it hold in general? Section 1 is devoted to the recalling of basic concepts,
exact definitions and the formulation of problems. We also present some original
examples for a clear understanding. The main results are in Section 2. We notice
that [2] studies how the dwindlability is related to the possessing of a non-trivial
torus of the identity component of AutRA, where A is a Weil algebra. In the
survey paper [3] a number of claims concerning the form of subalgebras of fixed
points of various Weil algebras are demonstrated.

1. Basic concepts

1.1. On rings and homomorphisms

1.1.1. Polynomial rings. Let R be a commutative ring. The polynomial (in
one indeterminate) over a ring R is defined as a map a : N0 → R whose support is
finite. Equivalently, polynomials can be defined as sequences (a0, a1, a2, . . . ) such
that all but a finite number of ai’s are zeros. A polynomial a : N0 → R, a(0) = r0,
a(1) = r1, a(2) = r2, . . . , will be denoted by r0X

0 + r1X
1 + r2X

2 + . . . (only
a finite number of ri’s are non-zeros) with well established simplifications (we do
not write terms 0RX

i, etc.); we also define the addition and the multiplication of
polynomials in the usual way. Then polynomials form a ring denoted by R[X],
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which is a classical result. Let R[X](k:S) = {a ∈ R[X]; an ∈ S if n ≤ k}; if S is

a subring of R, then R[X](k:S) is a subring of R[X]1.

1.1.2. R-algebras. Let R and A be commutative rings and A an R-algebra de-
termined by a ring homomorphism ϕ : R → A. (We always consider only homo-

morphisms which send 1R onto 1A.) We denote by R̂ ⊆ A the image of R by ϕ;

evidently, R̂ is also an R-algebra and R-subalgebra of A. The multiplication of
elements from A by elements from R is in fact defined by the multiplication of
elements from A by elements from R̂. If ϕ is a monomorphism, then R̂ is identified
with R, we say that A contains a copy of R. It comes automatically if R is a field.

If we have two R-algebras A1 and A2, we have two ring homomorphisms
ϕ1 : R → A1, ϕ2 : R → A2. A ring homomorphism ψ : A1 → A2 is called the
R-algebra homomorphism, if ψ ◦ ϕ1 = ϕ2.

1.1.3. Augmentation. We will also study a possibility that there exists an R-
algebra epimorphism κ : A→ R̂. If the R-algebra A is equipped with an R-algebra
epimorphism λ : A→ R, we say that A is an augmented R-algebra. Of course, for
every augmented R-algebra there exists an R-algebra epimorphism κ : A → R̂
because it is given by κ = ϕ ◦ λ.

1.1.4. Examples. Let us present the situation in examples.

Example 1.1. If R = Q and A = Z, then a ring homomorphism ϕ : R → A
does not exist (because ϕ(1) = 1, ϕ( 1

2 ) = x ∈ Z, x + x = ϕ
(
1
2

)
+ ϕ

(
1
2

)
=

ϕ
(
1
2 + 1

2

)
= ϕ(1) = 1 has no integer solution).

Example 1.2. If R = Z[X] and A = Z, then we can take the map sending
a polynomial to its constant term as a ring homomorphism. However, it is not
a monomorphism. So, Z is a Z[X]-algebra, but Z does not contain a copy of Z[X].

Example 1.3. If R = Z and A = Q, then a ring homomorphism ϕ : R → A
exists (Q is a Z-algebra), but a homomorphism κ : A→ R̂ does not exist.

Example 1.4. If R = Z[X] and A = Q[X](0:Z), then we can take the map
sending a polynomial with integer coefficients to the same polynomial as a ring
homomorphism. So, A = Q[X](0:Z) is a Z[X]-algebra by this homomorphism

and contains a copy of Z[X]. We also find a homomorphism κ : A → R̂: we take
a homomorphism sending a polynomial to its constant term (which is integer here),
but it is impossible to take an epimorphism here.

Proof. Let κ : Q[X](0:Z) → Z[X] be an epimorphism. Then κ(X) = y ∈ Z[X]:

let us denote by u the leading coefficient of y. Then 1
2uX ∈ Q(0:Z) and y =

κ

((
1

2u
+ · · ·+ 1

2u

)
︸ ︷︷ ︸

2u-times

X

)
= κ

(
1

2u
X

)
+ · · ·+ κ

(
1

2u
X

)
︸ ︷︷ ︸

2u-times

= z + · · ·+ z︸ ︷︷ ︸
2u-times

and the

leading coefficient of z cannot be an integer and this is a contradiction. �

1This concept can be generalized by numerous ways. For instance, a sequence S1 ⊂ . . . Sr ⊂ R
of subrings ofR can be taken andR[X](k1:S1,...,kr :Sr) can be considered (k1 < · · · < kr). Another

possibility of generealization is to extend this concepts to polynomials of n indeterminates.
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Example 1.5. If R = Z[X] and A = Q[X](0:Z), then we can take another
map sending a polynomial with integer coefficients to its constant term viewed as
a constant polynomial in Q(0:Z). It is also a ring homomorphism and A = Q(0:Z)
is a Z[X]-algebra by this homomorphism, too. A = Q[X](0:Z) does not contain

a copy of Z[X], but there exists a homomorphism κ : A → R̂. It was proved in
the previous example that an epimorphism λ : Q[X](0:Z) → Z[X] does not exist,
so A = Q[X](0:Z) is not an augmented Z[X]-algebra.

From now on, we assume that A is an augmented R-algebra containing a copy
of R. Then there exists an R-algebra epimorphism κ : A→ R̂.

1.2. Free R-algebras

1.2.1. Modules and generator sets. Of course, an R-algebra A is also an R-
module. Let G = {ai; i ∈ I} (I is an arbitrary index set) be a set of elements
of A. Then all elements of the form a =

∑
i riai, where ri ∈ R, i ∈ I, represent

a submodule of A. This submodule is denoted by span(G). Elements of G are
called generators of A if span(G) = A and then G is called a generator set of A.
An R-module A can have many generator sets, especially, A = span(A) always
holds.

For G = {ai; i ∈ I}, it is clear, that ai0 ∈ span(G) for all i0 ∈ I. However, if
ai0 /∈ span(G − {ai0}) is satisfied for all i0 ∈ I, we say that the generator set G
is minimal. In general, an R-module A need not have a minimal generator set.
Nevertheless, it can also have many minimal generator sets, cardinalities of them
can be different.

1.2.2. Basis. Elements {ai; i ∈ I} are linearly independent if, whenever
∑

i riai =
0 (ri ∈ R), all ri = 0. A basis of A is a linearly independent minimal set of genera-
tors of A. If an R-module A has a basis, then A is usually called a free R-module,
in our case, where A is an R-algebra, we use the name free R-algebra.

Remark 1.6. (IMP-rings and IBN-rings) A ring has the invariant minimality
property (IMP) and is called IMP-ring if, for each minimally generated R-module
A, the number of elements in each minimal generator set of A is invariant, see
[6]. Similarly, a ring is defined to be an invariant basis number ring or IBN-ring if
for every free module, the number of elements in a basis is invariant, see [1]. The
main result of [6] is that a ring R has IMP if and only if R is a local ring.

1.2.3. Algebra and module homomorphisms. For a clear understanding, the
roman font (Hom, End, Aut, . . . ) is used for algebra homomorphisms and the italic
font (Hom, End , Aut , . . . ) for module homomorphisms from now on.

If A is a free R-algebra with a finite basis a1, . . . , ad, every element of EndRA
can be expressed by a matrix


a1 a2 . . . ad

a1 α11 α12 . . . α1d

a2 α21 α22 . . . α2d

. . . . . . . . . . . . . . .
ad αd1 αd2 . . . αdd
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expressing that homomorphism maps a1 onto α11a1 + α12a2 + · · · + α1dad, etc.
Further, elements of EndRA can be expressed by a matrix in which some rows
are already determined by the ring multiplication, moreover α11 = 1, α12 = · · · =
α1d = 02. Matrices of module automorphisms (elements of AutRA) form the gen-
eral linear group GL(A). Finally, R-algebra automorphisms (elements of AutRA)
represent a subgroup of GL(A). To recognize the rows of an automorphism ma-
trix that determine automorphisms, it is useful to analyse the possibilities of an
algebra gradation.

Remark 1.7. (Lie groups and algebras) If GL(A) is a Lie group (it comes, e.g.
for A = R), then the group AutRA of R-algebra automorphisms of A is a closed
subgroup of GL(A) and, therefore, AutRA is a Lie group, too. The Lie algebra of
GL(A) is gl(A) = EndRA and the Lie algebra of AutRA is

autRA = {D ∈ EndRA ; exp(tD) ∈ AutRA ∀t ∈ R}.

The algebra of derivations of A is defined as

DerRA = {D ∈ EndRA ; D(ab) = D(a)b+ aD(b) ∀a, b ∈ A}.

In the classical Lie group theory, the identification DerRA = autRA is proved.

1.3. The first observation and the formulation of a problem

The existence of an R-algebra epimorphism κ : A → R̂ means that we have an
ideal k = kerκ and κ : A → A/k. The lemma below represents an elementary
observation.

Lemma 1.8. The following statements are equivalent:

(i) κ ∈ AutRA

(ii) A = R̂
(iii) kerκ = {0A}

Proof. “(i) ⇒ (ii)”: if κ ∈ AutRA, then κ(A) = A and in order to κ be an

epimorphism onto R̂ is necessary to be A = R̂. “(ii) ⇒ (iii)”: if κ : A → R̂
is an R-epimorphism, then κ = idA and only 0A maps onto 0A. “(iii) ⇒ (i)”:
if kerκ = {0A}, then κ is injective and simultaneously κ is an R-epimorphism
A→ A: thus, κ ∈ AutRA. �

In the paper, we discuss the problem whether there are automorphisms which
are “near” to κ and what can be implied by this. Hence, we need the notion of
a convergence.

1.4. The convergence

Definition 1.9. ([8, p. 77]) A topological ring is a ring A together with a metric
ρ on A such that ring operations are continuous with respect to the metric topology.

If A is a topological ring, we can consider the pointwise convergence on the set
EndRA of all R-algebra endomorphisms.

2When taking a1 = 1A.
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Definition 1.10. Let κ : A → R̂ be an R-algebra epimorphism. We say that
topological R-algebra A with a metric ρ is ρ-dwindlable if there exist a sequence
α : N → AutRA of R-algebra automorphisms3 such that {αn} converges to κ
pointwise with respect to ρ.

We say that a topological R-algebra A is dwindlable if there exists a metric ρ
in which A is ρ-dwindlable.

Remark 1.11. It is evident that there can exist two metrics ρ1, ρ2 such that
A is ρ1-dwindlable and A is not ρ2-dwindlable; in particular, if κ /∈ AutA, then
A is not dwindlable for the discrete metric, but it can be dwindlable, e.g. for the
euclidean metric4. On the other hand, for the case κ ∈ AutR(A), we can take the
discrete metric and see that A is dwindlable considering the constant sequence of
automorphisms formed only by κ.

2. Results

2.1. Non-trivial fixed point subalgebra

Let A be an R-algebra. Its fixed point subalgebra is defined by

SA = {a ∈ A;α(a) = a ∀α ∈ AutRA} .

Remark 2.1. Indeed, fixed points form an R-subalgebra. In algebraic litera-
ture, the denotation AAutR A for SA is also used.

Definition 2.2. The fixed point subalgebra is called trivial, if SA ⊆ R̂.

Remark 2.3. In fact, from SA ⊆ R̂ follows that SA = R̂. Proof. Let ϕ : R→
A is the ring homomorphism giving to A the R-algebra structure, let a ∈ R̂,
α ∈ AutRA, α(a) = b. As α ◦ ϕ = ϕ, a = b. �

Theorem 2.4. Let A be an R-algebra containing a copy R̂ of R, A ⊃ R̂, and
let κ : A→ R̂ be an R-epimorphism. If A is dwindlable, then SA is trivial.

Proof. Let us assume that A is dwindlable and SA is not trivial. Then, there
exists an element x ∈ A − R̂ such that α(x) = x for all α ∈ AutRA. For such

an x, we denote by y its image through κ, i.e. κ(x) = y ∈ R̂. As κ(y) = y, we

consider z = x − y. The element z belongs to A − R̂ (it follows from x 6= y) and
κ(z) = κ(x)− κ(y) = y − y = 0A, so z belongs also to kerκ. If x is fixed and y is
fixed, then z must be fixed, too.

There is also an infinite sequence {αn} = {αn ∈ AutRA}∞n=1 of R-algebra
automorphisms such that {αn} converges to κ. It implies

0A = κ(z) = limαn(z) = lim z = z 6= 0A

and it is the contradiction. �

3We write, as usual, α(n) = αn and α(N) = {αn} = {αn}∞n=1.
4For instance, dual numbers over reals have a form a+ bε, a, b ∈ R, ε2 = 0; automorphisms of

them act by ϕ(a+ bε) = a+Cbε, C ∈ R−{0} and a sequence C → 0 provides the dwindlability.
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2.1.1. Non-dwindlable algebra with the trivial fixed point subalgebra.
A Weil algebra is a local commutative R-algebra A with identity, the nilradical
(nilpotent ideal) nA of which has finite dimension as a vector space and A/nA = R.
Weil algebras can be expressed as finite dimensional factors of the algebra of real
polynomials in several indeterminates as follows. Let R[X1, . . . , Xn] denote the
R-algebra of real polynomials and m = (X1, . . . , Xn) its maximal ideal. Let

Dr
n = R[X1, . . . , Xn]/mr+1.

We denote by n the nilradical of Dr
n and consider an ideal i such that i ⊆ n2. Then,

A = Dr
n/i.

Example 2.5. (Adopted from [5]) We present that an example of a non-
dwindlable Weil algebra with trivial SA. Let A = R[X,Y ]/(XY 2 + X5, X2Y +
Y 5) + m6. The elements of A have a form

k1 + k2X + k3Y + k4X
2 + k5XY + k6Y

2 + k7X
3

+ k8X
2Y + k9XY

2 + k10Y
3 + k11X

4 + k12Y
4

with the simultaneous vanishing of all monomials of the sixth or higher order in
common with X2Y 2, XY 3, X3Y , XY 2 + X5 and X2Y + Y 5. We shall describe
automorphisms of A. The starting point for their specification is a form

X̄ = AX +BY + CX2 +DXY + EY 2 + FX3 +GX2Y

+HXY 2 + IY 3 + JX4 +KY 4

Ȳ = Ls+Mt+NX2 +OXY + PY 2 +QX3 +RX2Y

+SXY 2 + TY 3 + UX4 + V Y 4.

The matrix ( A B
L M ) must be regular and we settle the conditions X̄2Ȳ 2 = 0, X̄Ȳ 3 =

0, X̄3Ȳ = 0, X̄Ȳ 2+X̄5 = 0 and X̄2Ȳ +Ȳ 5 = 0 now. The condition X̄2Ȳ 2 = 0 gives
A = M = 0 (Variant I) or B = L = 0 (Variant II). The condition X̄Ȳ 3 = 0 gives
C = 0 in the Variant I and E = 0 in the Variant II. The condition X̄3Ȳ = 0 gives
P = 0 in the Variant I and N = 0 in the Variant II. The condition X̄Ȳ 2 + X̄5 = 0
gives L2 = B4, F = 0 in the Variant I and M2 = A4, I = 0 in the Variant II. The
condition X̄2Ȳ +Ȳ 5 = 0 gives B2 = L4, T = 0 in the Variant I and A2 = E2+M4,
Q = 0 in the Variant II. Finally, we obtain A = C = F = M = P = T = 0, B and
L equal 1 or −1 in the Variant I or B = E = I = L = N = Q = 0, A and M equal
1 or −1 in the Variant II. Hence the automorphisms have the following form

X̄ = ε1Y +DXY + EY 2 +GX2Y +HXY 2 + IY 3 + JX4 +KY 4

Ȳ = ε2X +NX2 +OXY +QX3 +RX2Y + SXY 2 + UX4 + V Y 4

or

X̄ = ε1X + CX2 +DXY + FX3 +GX2Y +HXY 2 + JX4 +KY 4

Ȳ = ε2Y +OXY + PY 2 +RX2Y + SXY 2 + TY 3 + UX4 + V Y 4,

where ε1, ε2 ∈ {−1, 1}. Evidently, A is not dwindlable.
Finally, we solve the equation

k1 +k2X̄ +k3Ȳ +k4X̄
2 +k5X̄Ȳ +k6Ȳ

2 +k7X̄
3 +k8X̄

2Ȳ
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+k9X̄Ȳ
2 +k10Ȳ

3 +k11X̄
4 +k12Ȳ

4 = k1 +k2X +k3Y +k4X
2

+k5XY +k6Y
2 +k7X

3 +k8X
2Y +k9XY

2 +k10Y
3 +k11X

4 +k12Y
4

for ki, i = 1, . . . , 12, by use the described automorphisms. By comparing of
coefficients standing at powers of s and t, we find that k2 = k3 = k4 = k5 = k6 =
k7 = k8 = k9 = k10 = k11 = k12 = 0 and k1 is an arbitrary real coefficient. Thus
SA = R.

2.2. Graded local algebras

Let A be a local algebra with the maximal ideal mA and let kA = kerκ = mA.
A gradation on A is a family (Ai)i∈Z of submodules of A such that A =

⊕
iAi

and AiAj ⊆ Ai+j , for all i, j ∈ Z. The gradation is called by the radical5 when A
is isomorphic to G(A), where G(A) is so-called the associated graded algebra of A

defined by G(A)i = mi
A/m

i+1
A (or equivalently, Ai = 0 for i < 0 and mj

A =
⊕

i≥j Ai

for each j ≥ 0), see [7].
Let us suppose that A is gradable by the radical. We will demonstrate that

a dwindlability of A depends on A/m2
A in a certain sense.

Theorem 2.6. Let A be a local R-algebra gradable by the radical and let B =
A/m2

A. Let {αn} be a sequence of restrictions of R-algebra automorphisms of A

converging to κ : B → R̂. Then, A is dwindlable.

Proof. Let x, y ∈ mA/m
2
A. If limαn(x) = 0, limαn(y) = 0, then

limαn(xy) = lim (αn(x)αn(y)) = limαn(x) limαn(y) = 0

together with xy = z ∈ m2
A/m

3
A. The same reasoning works for higher submodules

of the gradation. �

3. Connected A-jet groups

Let A be a Weil algebra and let us consider the group of its automorphisms AutRA.

Definition 3.1. The group AutRA is called the A-jet group. If AutRA is
connected in the usual Euclidean topology we call it the connected A-jet group.

Remark 3.2. For the trivial ideal i = {0}, the group AutRA = AutR Dr
n = Gr

n

is the known jet group (or differential group) which one can express by

Gr
n = inv Jr

0 (Rn,Rn)0

(invertible r-jets from Rn onto Rn with the source and the target in zero).
It [4] was proved that Gr

n is not connected but has two connected components.
The idea of the proof is analogous as for the well known case G1

n = GL(1,R).

The following result was also firstly mentioned in [4].

Proposition 3.3. There exist connected A-jet groups.

5I.e., by the Jacobson radical which identifies with mA as A is local.
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Proof. Let us consider

A = D6
2/(X

3 + Y 4, X4 + Y 5).

The basis is

B(A) = {1, X, Y,X2, XY, Y 2, X3, X2Y,XY 2, Y 3, X3Y,X2Y 2, XY 3, X2Y 3}.

AutA is connected (in usual Euclidean topology):

singleton component

X 7→ X +
1

3
(−3C1,4 + 4(C2,4 + C2,5))X2 + C1,4XY + C1,6X

3 + C1,7X
2Y

+C1,8XY
2 − 4C2,3

3
Y 3 + C1,10X

3Y + C1,11X
2Y 2 + C1,12XY

3

+C1,13X
2Y 3,

Y 7→ Y + C2,3X
2 + C2,4XY + C2,5Y

2 + C2,6X
3 + C2,7X

2Y + C2,8XY
2

+C2,9Y
3 + C2,10X

3Y + C2,11X
2Y 2 + C2,12XY

3 + C2,13X
2Y 3.

�

3.1. Application: orientability of Weil contact elements

Let G be a linear algebraic group consisting of qG ∈ N connected components.
Every set of p components of G (1 ≤ p ≤ qG) forming a subgroup of G will be
called a p-component subgroup of G.

Let us consider a smooth manifold M , dimM = m. Let n < m. The n-di-
mensional submanifold N in M can be expressed (without any use of a paramet-
rization) as

xk k = 1, . . . , n,

xj = gj(xk) j = n+ 1, . . . ,m,

g : N → M being a local immersion. For a fixed x = (xk), i.e. x = P (a point),
we have obtained local coordinates of elements of the jet space Jr

P (N,M) as

P k

U j = gj(P )

Y j
k =

∂gj

∂xk
(P )

. . .

Y j
k1...kr

=
1

r!

∂rgj

∂xk1 . . . ∂xkr
(P ).

The elements of this jet space are called n-dimensional contact elements of the
order r determined by N in its point (P, g(P )). If we unfix the point P and its
value, we write xk instead P k and xj instead U j . Clearly, (xk, xj) is nothing but
(xi), i = 1, . . . ,m; contact elements have fiber bundle structure written locally as

(xi, Y j
k , . . . , Y

j
k1...kr

)

↓
(xi)
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The bundle of n-dimensional contact elements of the order r on the manifold M
is denoted usually by Kr

nM . We have

Kr
nM = reg T r

nM/Gr
n,

Kr
nM being the principal fiber bundle over reg T r

nM with the structure group Gr
n

(regular velocities: the matrix (yik) has maximal rank n,

Gr
n = inv Jr

0 (Rn,Rn)0

(reparametrizations)). K1
nM is also known as the bundle of Grassmannians.

Let A be a Weil algebra and let G be a p-component subgroup of its group
of automorphisms AutRA. The universal contact element of the type A[G] on M
determined by V ∈ reg TAM is defined as the equivalence class [V]G. The set of
all such universal contact elements on a manifold M is denoted by KA[G]M .
We write shortly

KAM instead of KA[AutA]M ,

KA+M instead of KA[(AutA)+]M ,

KA
⊕
M instead of KA[(AutA)0]M .

Universal contact elements belonging to these sets are called non-oriented, oriented
and fully oriented, respectively.

Hence, the proof of Proposition 1 shows that we have included non-oriented
contact elements in our approach.
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