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Abstract. In the paper, a novel stochastic Multi-Objective 
Self-Organizing Migrating Algorithm (MOSOMA) is intro-
duced. For the search of optima, MOSOMA employs 
a migration technique used in a single-objective Self Orga-
nizing Migrating Algorithm (SOMA). In order to obtain 
a uniform distribution of Pareto optimal solutions, a novel 
technique considering Euclidian distances among solutions 
is introduced. MOSOMA performance was tested on 
benchmark problems and selected electromagnetic struc-
tures. MOSOMA performance was compared with the per-
formance of the Non-dominated Sorting Genetic Algorithm 
II (NSGA-II) and the Strength Pareto Evolutionary 
Algorithm 2 (SPEA2). MOSOMA excels in the uniform 
distribution of solutions and their completeness. 

Keywords 
Multi-objective optimization, self-organizing 
migrating algorithm, Pareto front of optimal solutions. 

1. Introduction 
Optimization is a mathematical process which finds 

an extreme of an objective function by changing values of 
state variables of an optimized system. In case of an an-
tenna, a main-lobe gain at a given frequency can be 
an objective to be maximized. Dimensions of antenna 
elements can play the role of state variables which are 
changed to maximize the gain. 

In engineering, local optimization techniques are usu-
ally used to improve the quality of a conventional design. 
Local optimization techniques can find the closest opti-
mum, and therefore, the initial design has to be of a high 
quality. If the initial design is not in vicinity of a global 
optimum, local optimization methods fail. 

Today’s applications require the development of 
unconventional solutions more and more frequently. When 
synthesizing an unconventional structure, basic properties 
of the designed structure are defined. Then, a global sto-
chastic search is applied to go through the definition space 
of objective functions. The search is expected to reveal 
regions of the definition space, which obtain optima effi-
ciently. For example, such orientations and lengths of seg-

ments of an antenna wire can be computed to reach 
a maximum gain in a given volume occupied by the an-
tenna wire. 

Genetic algorithms (GA) [1], particle swarm optimi-
zation (PSO) [2] and self-organizing migrating algorithm 
(SOMA) [3, chapter 7]) belong to the most popular global 
stochastic optimization algorithms. 

Optimization problems can comprise several con-
flicting objectives with an equal importance. Then, a trade-
off between objectives has to be found. For example, 
an antenna cannot be required for minimum dimensions 
and maximum gain at the same time. A solution of a multi-
objective optimization leads to a set of state vectors 
(vectors of the dimensions of antenna elements, e. g.). 
Some antennas exhibit optimality from the viewpoint of 
gain, some are optimal from the viewpoint of dimensions. 

When mapping optimal state vectors into the space of 
objective functions, so called Pareto front of optimal solu-
tions is formed. In Fig. 1a, optimal state vectors {x1; 0} are 
depicted in red in the decision space. If the state vectors are 
mapped into the objective space (objective functions f1 and 
f2 are evaluated), the Pareto optimal solutions are obtained 
(the red curve in Fig. 1b). 

No objective of the Pareto optimal solution can be 
improved without worsening another objective (e.g. de-
creasing dimensions of the antenna decreases its gain). 

Conventional methods transform a multi-objective 
problem into a single-objective one: partial objectives are 
multiplied by weighting coefficients and summed. 
Although this approach is simple, the setting of weights of 
partial objectives is problematic. 

Multi-objective algorithms (MOEA) are based on the 
concept of the Pareto domination, which compares the 
mutual domination of two solutions in the objective space. 
The domination is defined in [4, Ch. 2, p. 28] as follows: 

A solution x(1) is said to dominate another solution x(2)  
if both conditions 1 and 2 are true: 

1. The solution x(1) is not worse than x(2)  in all objec-
tives. 

2. The solution x(1) is strictly better than x(2)  in one ob-
jective at least. 



RADIOENGINEERING, VOL. 20, NO. 4, DECEMBER 2011 805 

0 0.5 1
0

0.5

1
Objective space

f
1
 (−)

f 2 (
−

)

 

 
non−optimal solutions
feasible space borders
Pareto−optimal solutions

0 0.5 1

0

0.5

1

Decision space

x
1
 (−)

x 2 (
−

)

b)

a)

 
Fig. 1. Mapping from the decision space (a) into the objective 

space (b) of the min-min problem. 

Such a comparison can result in three cases: 

1. The solution x(1)  dominates the solution x(1), 

2. The solution x(1)  is dominated by the solution x(2), 

3.  The solutions x(1)  and x(2)  are non-dominated. 

The principle of the dominance is illustrated by Fig. 2. 
The solution 1 dominates the solutions 2 and 3 (both the 
objectives f1 and f2 are smaller for the solution 1 than for 
the solutions 2 and 3). The solution 5 is dominated by the 
solution 4 (both the objectives f1 and f2 are smaller for the 
solution 4 than for the solution 5). Finally, the solutions 1 
and 4 are members of the non-dominated set (the solution 1 
excels in f1 and the solution 4 excels in f2). 

The non-dominated set can be defined as follows 
[4, Ch. 2, p. 31]: 

The non-dominated set P consists of solutions from Q, 
which are not dominated by any member of the set Q. 

If the set Q covers the entire search space, then P be-
comes the Pareto optimal set of solutions P*. Other words, 
P has to create the Pareto front because all other solutions 
from Q are dominated. 
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Fig. 2. The principle of the dominance. 

In the open literature, the reader can find a large num-
ber of multi-objective algorithms based on single-objective 
optimization techniques, which exploit the principle of the 
domination to achieve the Pareto optimal front. The non-
dominated sorting genetic algorithm II (NSGA-II) [5] and 
the strength Pareto evolutionary algorithm (SPEA2) [6] 
belong to the most commonly used evolutionary algo-
rithms. A comprehensive review of various multi-objective 
particle swarm optimizers (MOPSO) can be found in [7]. 
A recent multi-objective PSO-based algorithm was 
published in [8], which presents a comparative study of 
MOPSO versus NSGA-II. 

In the paper, a novel multi-objective self-organizing 
migrating algorithm (MOSOMA) is introduced. The self-
organizing migrating algorithm (SOMA) was chosen for 
the multi-objective implementation due to the good robust-
ness and fast convergence demonstrated on many problems 
[3, Ch. 7, p. 189-190]. 

Next, a novel approach for achieving a uniform distri-
bution of the resulting non-dominated set is proposed. 
The approach is based on the Euclidian distance between 
the points defining the non-dominated set. 

In this paper, basic principles of multi-objective evo-
lutionary algorithms (MOEA) implemented in MOSOMA 
are summarized. Then, section 2 reviews the single-objec-
tive SOMA. The description of MOSOMA can be found in 
section 3. Section 4 summarizes the results obtained by 
MOSOMA when solving selected test problems. Section 5 
proves the functionality of MOSOMA when applied on 
solving electromagnetic problems. Section 6 concludes the 
paper, highlights the advantages and disadvantages of 
MOSOMA and outlines the future work.  

2. Single-Objective SOMA  
SOMA [9], [3, Ch. 7] exploits the population of indi-

viduals (agents). SOMA is based on the cooperation among  
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them. Although there are no new individuals created by the 
algorithm, SOMA can be classified as an evolutionary 
algorithm. The existing individuals move over an N-dimen-
sional hyper-plane of the input variables according to 
knowledge about the researched space shared by the entire 
group of individuals. The algorithm can be described by the 
following steps: 

1. Control parameters of the algorithm are defined. 

2. The initial population of individuals is generated. For 
each individual, objective functions are evaluated. 

3. According to values of the objective functions, indi-
viduals are migrated. For individuals in new positions, 
objective functions are newly evaluated. 

4. The termination condition is tested. If the termination 
condition is not met, the algorithm returns to step 3. 

5. Solutions are assigned. 

Each individual from the population of Q members is 
defined by the N-dimensional state vector xq. Individuals 
from an initial population are defined by the equation: 

  , min , max minq n n q n n nx x rnd x x    (1) 

where xq,n denotes the n-th variable of the q-th agent, 
〈xn,min; xnmaxۧ denotes the feasible interval for the n-th vari-
able and rndq,n is a random number from the interval 〈0; 1ۧ 
with the uniform distribution of probability. The values of 
objective functions fm, where m goes from 1 to M (the 
number of objectives) are evaluated for each individual. 
These values of objective functions are shared within the 
population. 

The iterative process of finding the global optimum 
consists of a given number of migration loops I. During 
a migration loop, individuals move as depicted in Fig. 3. 
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Fig. 3. Movement of individuals in the migration loop 

(AllToOne variant, ST = 3, PL = 1.3). 

There are several strategies to accomplish an efficient 
research of the decision space. In AllToOne variant, each 
individual migrates to the position of the leader from the 

previous migration loop or to the position of the randomly 
chosen individual. The term leader describes the position, 
where the best value of the objective function was 
achieved. The leader remains in the same position within 
a migration loop. 

In AllToAll variant, each individual moves towards all 
other agents. This approach seems to be more computa-
tionally demanding than the previous one, but the conver-
gence to the global optimum is faster. This is caused by 
more systematic research of the N-dimensional decision 
space and sharing the fitness values. 

Individuals can start the movement in each migration 
loop either from the initial positions defined by (1) or from 
the last best position found during previous migrations. 
Both approaches have their advantages and disadvantages. 
The first one usually reaches the global optimum but can 
have problems if the spread of the initial population does 
not cover all parts of the researched space satisfactorily. 
The second one exhibits faster convergence usually, but 
tends to the premature convergence if the algorithm 
remains in a local optimum (all individuals move to the 
same part of the decision space). 

The movement of the individual xp towards the indi-
vidual xq during the i-th migration loop is calculated by: 

 
 
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where tmpp,s is the vector specifying the new position of 
the p-th individual resulting from the s-th step of the 
movement to the q-th individual. ST defines the number of 
steps for one migration (s = 1, 2, … , ST). The parameter 
PL defines the length of the trajectory. If PL is equal to 
one, then the migration ends in the position of the q-th 
individual exactly. So called perturbation vector has the 
same size as the vector defining the position of an indi-
vidual x and consists of zeros and ones. PRTV is defined 
for each migration by N randomly generated numbers: 

 

1 ( )
( )

0 ( )

if rnd n PR
n

if rnd n PR


  

PRTV
 (3) 

where PR defines the probability of perturbation. The per-
turbation has the same effect for SOMA as the mutation for 
GA. If any part of PRTV is zero, then the trajectory of the 
migration does not head to the position of the q-th individ-
ual as depicted in Fig. 4. The perturbation approach should 
avoid the deadlock of the algorithm in the local optimum. 

The algorithms ends if the maximum number of 
migration loops ITER is reached, if the difference between 
the fitness value of the leader and the worst fitness value of 
the actual population drops below the MinDiv value 
specified by user, or if the position of the best solution does 
not change during past migration loops. The solution with 
the best value of the objective function is assigned as the 
result of the considered optimization problem. 
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Fig. 4. Explanation of influencing migration by perturbation 

(AllToOne variant, ST = 3, PL = 1.3). 

Parameters controlling the run of the algorithm can be 
found in [3, Ch. 7, p. 173-174]. The length of the path PL 
should be chosen from the interval 〈1.1; 3ۧ. The number of 
steps ST during one migration loop should be from the 
interval 〈3; 20ۧ, the probability of perturbation PR should 
be in the interval 〈0.1; 1.0ۧ, the number of agents Q is ex-
pected to be from the interval 〈10; up to userۧ, and the 
number of migration loops ITER is assumed to be from the 
interval 〈10; up to userۧ. 

3. Description of MOSOMA 
MOSOMA chooses the non-dominated set of indi-

viduals from the current population in the N-dimensional 
decision space. The main idea of the MOSOMA is illus-
trated by Fig. 7. The run of the algorithm can be described 
by the following steps: 

1. Control parameters of the algorithm are defined. 

2. The initial population of individuals is generated. For 
each individual, objective functions are evaluated. 

3. From the current population, an external archive of 
non-dominated solutions is built. 

4. Individuals of the current generation are migrated. 
Objective functions of individuals in new positions 
are evaluated. The external archive is updated. 

5. The termination condition is tested. If the termination 
condition is not met, the algorithm returns to step 4. 

6. The final non-dominated set of optimal solutions is 
chosen from the current external archive. 

Since steps 1 and 2 were discussed in the previous 
chapter, the following subchapters will be focused on the 
description of steps 3 to 6. The pseudocode of the whole 
MOSOMA is depicted in Fig. 5. 

Start
Building initial population Q
Evaluation of objective functions
Determination of external archive EXT
If |EXT| < Nex

Evaluation of crowding distance
Fill in EXT with solutions from advancing fronts

End
While i < ITER | FFC < Nf,max | |EXT| < Nex,max

For q = 1 : |Q|
q-th agent migration to all members of  EXT
Evaluation of objective functions

End 
Determination of external archive EXT
If |EXT| < Nex

Evaluation of crowding distance
Fill in EXT with solutions from advancing fronts

End
i++

End
Final non-dominated set from current EXT determination

End

 
Fig. 5. Pseudocode of the MOSOMA. 

3.1 Choice of the Non-Dominated Set 

The MOSOMA exploits an external archive [10]. The 
external archive EXT stores all meanwhile found members 
of the non-dominated set P. The searching of the non-
dominated set P takes place in the objective space. The 
MOSOMA uses an approach introduced by Deb et al. in [4, 
Ch. 2, p. 36-38]. Each solution from the population of size 
|Q| is checked with the continuously updated P for the 
domination. 

Comparing of all solutions to find all non-dominated 
solutions from Q is ineffective. Therefore, MOSOMA 
employs a so called continuously updated approach for the 
non-dominated sorting of Q defined in [4, Ch. 2, p. 36 - 
38]. Each solution from Q is checked for the domination 
with each member of the current non-dominated set P. The 
working principle of this approach can be illustrated by 
a pseudo-code depicted in Fig. 6. Since the non-dominated 
set is searched in all iteration loops of MOEA, this accel-
eration is important for the minimization of time devoted 
for the whole optimization. 

Repeating the described procedure, the entire popula-
tion is sorted into the fronts. Within one front, all solutions 
are non-dominated. Members of the first front dominate the 
whole rest of the solutions. Members of the second front 
dominate all solutions except the members of the first two 
fronts, etc. 

The minimal size of EXT is defined by the parameter 
Nex. If the size of P (members of the first front) drops be-
low Nex, the remaining positions are filled with members of 
following fronts with best values of a so called crowding 
distance. This metrics estimates the density of solutions  
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surrounding a particular solution. The crowding distance is 
derived from the positions of the solutions in the objective 
space. 

Start
Insert x(1) from Q to P
For i = 2 : |Q|

insert_flag = 1
For j = 1 : |P|

If x(i) dominates x(j) 

Remove x(i) from P
End
If x(j) dominates x(i) 

insert_flag = 0
Break incr. j

End
End
If insert_flag == 1

Insert x(i) to P
End

End
End

 
Fig. 6. The pseudo-code of the continuously updated ap-

proach for finding the non-dominated set P from set of 
solutions Q. 
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Fig. 7. Crowding distance measurement [4, Ch. 4, p. 248]. 

First of all, the members of one front are sorted ac-
cording to all the objectives fm. The vectors of sorted indi-
ces Im are found. The crowding distance c for each member 
of the front can be computed using the following equations 
[4, Ch. 4, p. 248]: 

 
   m m

1

( ) ( )
M

m
m

c I i c I i


  (4) 

where 

 
     m m

m
,max ,min

( 1) ( 1)
( ) m m

m
m m

f I i f I i
c I i

f f

  



 (5) 

where Im(i) is the i-th index from the m-th vector of indices, 
fm,max and fm,min are the maximal and minimal values of the 
m-th objective in the current front, respectively. The value 

cm for these two extreme solutions is set to infinity. The 
crowding distance is the average side length of the cuboid 
defined by solutions surrounding a particular solution (see 
Fig. 6). The less crowded solutions (with a higher value of 
c) are preferred in the rest of the algorithm. 

3.2 Migration of Individuals 

Individuals migrate through the N-dimensional hyper-
plane of input variables and try to find better solutions. 
MOSOMA uses the strategy called AllToMany. Each indi-
vidual migrates towards all members of the external ar-
chive (see Fig. 8). We assume that using equation (3) with 
the path length parameter PL slightly larger than one 
should provide new solutions, which are placed closer to 
the true Pareto front. 

Since the size of the external archive grows with each 
migration loop, the time devoted for consecutive migration 
loops also increases. Ensuring a more accurate research of 
the region of current non-dominated set P is an advantage 
of this strategy. 
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Fig. 8. Migration of individuals to members of the external 

archive in MOSOMA. 

3.3 Stopping Conditions 

The setting of appropriate stopping conditions is very 
important from the CPU time viewpoint, especially. Using 
the above described AllToMany strategy, the increase in the 
size of the external archive brings more computations of 
objective functions, which is usually very CPU time con-
suming. In MOSOMA, the ratio of CPU-time devoted for 
two consecutive migration loops typically reaches high 
values. 

Taking the previously described behavior of the algo-
rithm into account, the following three stopping conditions 
have been formulated: 

 The total number of migration loops ITER is reached. 

 The maximal number of solutions in the external 
archive Nex,max (usually a multiple of the desired 
number of Pareto solutions Nexf) is achieved. 
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 The maximum number of objective functions 
computations is performed. 

Combination of these three stopping conditions 
should ensure that the optimization process stops in 
an estimable time and the sufficient number of members of 
the Pareto front is found. 

3.4 Uniformly Spread Non-Dominated Set 

Multi-objective optimizers are requested to find the 
non-dominated set as close to the true Pareto front as pos-
sible. Moreover, optimizers are demanded to maintain the 
uniform spread of the non-dominated set along the true 
Pareto front. The difference between uniformly and non-
uniformly spread non-dominated sets is shown in Fig. 9. 

The crowding strategy provides the second require-
ment on MOEA. In order to improve its efficiency, we 
propose another additional approach based on measuring 
Euclidian distances among the non-dominated solutions. 

This strategy works with all members of the discov-
ered non-dominated set P. The strategy assumes that P 
contains a higher number of non-dominated solutions than 
Nexf. First of all, the non-dominated set is sorted according 
to the first objective in the ascending order. Then, the 
length of the Pareto front e is computed by: 

 
 2

2 1

( ) ( 1)
P M

m m
p m

e f p f p
 

     (6) 

where fm(p) is the m-th objective function of the p-th 
solution, P and M denote the number of non-dominated 
solutions and the number of objectives, respectively. 
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Fig. 9. The difference between well (red) and badly (blue) 

distributed non-dominated sets. 

After this procedure, the ideal distance between two 
uniformly spread solutions eu is computed: 

 
1u

exf

e
e

N



 (7) 

where Nexf is the desired number of Pareto solutions. Solu-
tions with minimal and maximal values of objective func-

tions are automatically assigned as the first member and the 
last member of the final non-dominated set Pf (considering 
the case with two objective functions). The j-th member of 
the P is that one with the minimal value dlt: 

 

( ) ( 1) ,

2,3,..., 1

j u

exf

dlt j e j e

j N

   

 
 (8) 

where ej is computed using (6) while  j replaces p. 

This approach has to be extended for problems with 
more objective functions. If the Pareto front consists of 
more parts, all the detected discontinuous parts have to be 
treated separately. 

4. Test Problems 
The proposed MOSOMA algorithm was tested on 

several multi-objective test problems. Results of solving six 
test problems with various types of Pareto fronts are 
described in this chapter. Four classifiers were chosen to 
measure the efficiency and accuracy of the algorithm. 
These results are compared with results provided by 
commonly used multi-objective algorithms NSGA-II and 
SPEA2. Both the algorithms were set to provide 50 Pareto 
optimal solutions and to compute the objective functions 
25000-times.  

The total number of computation of objective func-
tions FFC was the first monitored parameter (this number 
is not predictable when using MOSOMA). Even starting 
the algorithm with two identical initial populations can lead 
to different values of FFC due to the partially random run 
of the algorithm (e.g. influence of the perturbation). 

As the second metric, the hit-rate HR was used [8, 
p. 371]: 

 
100%

P
HR

FFC
   (9) 

where |P| is the total number of members of the non-domi-
nated set, and FFC is the total number of evaluations of 
objective functions. Certainly, the higher values of HR 
indicate the better efficiency of the algorithm since only the 
region containing Pareto front members is researched. 

The third metric, the generational distance GD was 
proposed by Veldhuizen in [11, Ch. 6, p. 6-15]. GD follows 
the line of the first demand on MOEAs, the minimal differ-
ence between the members of the searched non-dominated 
set P and the true Pareto front P*. This metric is computed 
using the equation: 

 

2

1

P

i
i

d

GD
P



 (10) 

where di is the minimal Euclidian distance in the objective 
space between the i-th solution from the P and any member 
of the true Pareto set P*: 



810 P. KADLEC, Z. RAIDA, A NOVEL MULTI-OBJECTIVE SELF-ORGANIZING MIGRATING ALGORITHM 

 
 

*

2*

1
1

min ( ) ( )
P M

i m mk
m

d f i f k




   (11) 

where * ( )mf k is the m-th objective function value of the k-th 
member of P*. Usually, 500 uniformly spread members 
build P*. Intuitively, an algorithm with a lower value of GD 
is better. 

The fourth metric, the spread Δ introduced by Deb in 
[5, p. 188] takes care of the extent of the spread among the 
obtained set of the non-dominated set of solutions P: 
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where di can be any distance measured between neighbor-
ing solutions f(i) and f(i+1) – usually the Euclidian 
distance, davg denotes the mean value of these distances. 
Finally, e

md is the distance between the extreme solutions of 
P and P* corresponding to the m-th objective function. 
Again, an algorithm with lower value of Δ is better. 

The results produced by MOSOMA and quantified by 
all these four metrics for six various test problems are pre-
sented in the following sub-chapters. We have chosen rep-
resentatives of test problems with convex, non-convex and 
discontinuous Pareto front. All problems minimize two 
objective functions only due to the simple depiction of the 
results. The controlling parameters for MOSOMA were set 
to the following values: 

 Size of the initial population Q = 50. 

 Minimal size of the external archive Nex = 20. 

 Size of the final non-dominated set Nexf = 50. 

 Maximal number of migration loops I = 10. 

 Maximal number of computations FFC = 25 000. 

 Maximal size of the external archive 5× Nexf. 

 Path length PL = 1.3. 

 The number of steps during a migration loop ST = 3. 

 Perturbation probability PRT = 0.1. 

4.1 Simple Convex Problem 

MOSOMA was tuned on a simple convex continuous 
test problem defined in [4, Ch. 5, p. 176] by equations: 
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 (13) 

The members of true Pareto front P* can be easily 
found using the equation: 

 

*
2 *
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1
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f
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Fig. 10 shows the objective space after a random run 
of the algorithm MOSOMA. The values of the measured 
metrics and their variances after 100 repetitions of the 
MOSOMA compared with results of NSGA-II and SPEA2 
are given in Tab. 1. MOSOMA achieved better spread 
using less number of FFC and comparable value of GD. 
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Fig. 10. Solutions obtained by MOSOMA in the objective 

space of the simple convex problem (HR = 44.34 %, 
FFC = 5 981, GD = 2.79·10-5, Δ = 3.28·10-3). 

 
 

Algorithm Metric HR (%) FFC (-) GD (-) Δ (-) 

Average value 28.30 21317 5.32·10-3 2.08·10-2

MOSOMA
Variance 151.55 8.25·108 3.15·10-6 5.74·10-2

Average value - 25000 7.20·10-3 6.53·10-1

NSGA-II 
Variance - - 1.10·10-5 4.30·10-3

Average value - 25000 4.50·10-3 2.77·10-1

SPEA2 
Variance - - 5.90·10-7 2.01·10-4

Tab. 1.  Average values of measuring metrics and their 
variances on simple convex problem for algorithms 
MOSOMA, NSGA-II and SPEA2. 

4.2 Schaffer´s Test Problem 

Schaffer´s test problem is probably the most studied 
single-variable two-objective problem. Schaffer´s test 
problem minimizes following objective functions: 
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The convex true Pareto optimal set can be found 
directly using the equation: 
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Fig. 11 shows two-dimensional objective space after 
a random run of the whole algorithm MOSOMA. In Tab. 2, 
the average values of the measured metrics and their 
variances after 100 repetitions for all three algorithms are 
given. Again, MOSOMA achieved comparable results in 
GD and was significantly better in Δ using less FFC in 
average. 
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Fig. 11. Solutions obtained by MOSOMA in the objective 

space of Schaffer´s test problem (HR = 52.91 %, 
FFC = 671, GD = 1.46·10-5, Δ = 1.028·10-1). 

 

Algorithm Metric HR (%) FFC (-) GD (-) Δ (-) 

Average value 53.46 916 7.68·10-3 5.83·10-2

MOSOMA 
Variance 73.39 1.16·106 2.34·10-4 3.40·10-3

Average value - 25000 3.10·10-3 5.34·10-1

NSGA-II 
Variance - - 1.06·10-7 1.09·10-2

Average value - 25000 3.20·10-3 1.82·10-1

SPEA2 
Variance - - 5.23·10-8 4.02·10-4

Tab. 2. Average values of measuring metrics and their 
variances on Schaffer´s problem for algorithms 
MOSOMA, NSGA-II and SPEA2. 

4.3 Fonseca´s Test Problem  

Fonseca´s two-objective test problem is defined by: 
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This test problem has a non-convex Pareto front given 
by: 
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We have used the simplest version with two variables only 
(n = 2). 
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Fig. 12. Solutions obtained by MOSOMA in the objective 

space of Fonseca´s test problem (HR = 11.15 %, 
FFC = 1961, GD = 5.31·10-6, Δ = 1.016·10-1). 

The results obtained by 100 runs of MOSOMA are 
listed in Tab. 3. One randomly chosen Pareto front ob-
tained by MOSOMA is depicted in Fig. 12. MOSOMA 
outperformed NSGA-II and SPEA2 in all observed metrics. 
 
 

Algorithm Metric HR (%) FFC (-) GD (-) Δ (-) 

Average value 12.39 22048 1.29·10-3 9.17·10-2

MOSOMA 
Variance 11.56 7.89·108 1.69·10-6 6.48·10-3

Average value - 25000 2.07·10-3 5.19·10-1

NSGA-II 
Variance - - 2.62·10-7 1.30·10-2

Average value - 25000 1.95·10-3 1.59·10-1

SPEA2 
Variance - - 1.08·10-7 3.25·10-4

Tab. 3. Average values of measuring metrics and its variances 
on Fonseca´s problem for algorithms MOSOMA, 
NSGA-II and SPEA2. 

4.4 Poloni´s Test Problem 

The difficulty of this problem consists in the fact, that 
the resulting Pareto front is convex and discontinuous. 
Pareto front is divided into two parts of various lengths. 
Unfortunately, there is no equation which could be used to 
define the true Pareto front. The solutions P* necessary for 
the computation of the metric generational distance (equa-
tions (11) and (12)) were obtained thanks to a very dense 
sampling of regions, where the true Pareto front is located. 
Poloni´s test problem is defined as follows: 
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Algorithm Metric HR (%) FFC (-) GD (-) Δ (-) 

Average value 23.86 16484 1.49·10-2 2.18·10-1

MOSOMA 
Variance 62.04 8.84·107 4.00·10-4 8.02·10-2

Average value - 25000 3.33·10-2 5.07·10-1

NSGA-II 
Variance - - 1.10·10-3 1.11·10-2

Average value - 25000 1.51·10-2 2.43·10-1

SPEA2 
Variance - - 1.65·10-4 2.12·10-3

Tab. 4. Average values of measuring metrics and their vari-
ances on Poloni´s problem for algorithms MOSOMA, 
NSGA-II and SPEA2. 
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Fig. 13. Solutions obtained by MOSOMA in the objective 

space of Poloni´s test problem (HR = 10.23 %,  
FFC = 2105, GD = 2.60·10-3, Δ = 2.30·10-1). 

Fig. 13 depicts the objective space of one randomly 
chosen run of the MOSOMA working on Poloni´s test 
problem. A nice spread of solutions in both the parts of the 
Pareto front can be seen here. Statistic results of 100 
MOSOMA runs are given in Tab. 4. MOSOMA was only 
slightly better in all watched metrics than SPEA2. 

Solving Poloni´s test problem, an additional metric 
was evaluated: the number of successful identifications of 
a part of the Pareto front. Solving Poloni´s test problem 
100 times, MOSOMA failed once only to find both parts of 
the Pareto front. 

4.5 ZDT1 Test Problem 

Zitzler et al. proposed in their paper [12] a set of six 
two-objective problems which can be used for the bench-
mark tests and comparisons of new algorithms. The first 
ZDT function having 30 input variables (n = 30) is defined 
by: 
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The input variables 0 ≤ x1 ≤ 1 and all other xn = 0 
define the Pareto optimal region. Fig. 14 and Tab. 5 show 
that MOSOMA had problems with this MOOP and 
achieved worse results in all metrics than both algorithms 
used for the comparison. 
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Fig. 14. Solutions obtained by MOSOMA in the objective 

space of ZDT1 test problem (HR = 9.87 %,  
FFC = 25000, GD = 1.60·10-2, Δ = 7.27·10-1). 

 
 

Algorithm Metric HR (%) FFC (-) GD (-) Δ (-) 

Average value 11.46 25000 8.52·10-2 8.12·10-1

MOSOMA 
Variance 15.07 - 3.79·10-3 6.37·10-3

Average value - 25000 3.35·10-2 4.72·10-1

NSGA-II 
Variance - - 4.75·10-3 4.26·10-2

Average value - 25000 1.43·10-2 2.08·10-1

SPEA2 
Variance - - 1.48·10-6 1.22·10-3

Tab. 5. Average values of measuring metrics and their vari-
ances on ZDT1 problem for algorithms MOSOMA, 
NSGA-II and SPEA2. 
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4.6 ZDT2 Test Problem 

This test problem results in non-convex Pareto front. 
The ZDT2 has again 30 variables and its objective 
functions can be computed using equations: 

 

1 1 2

2

2

1
1

, ,

9
( ) 1 ,

1

( , ) 1 ,

0 1, 1,2,..., .

N

n
n

n

f x f g h

g x
n

f
h f g

g

x n N



  

 


 
   

 
  

x
 (21) 

The Pareto optimal region corresponds to 0 ≤ x1 ≤ 1 and all 
other xn = 0.  
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Fig. 15. Solutions obtained by MOSOMA in the objective 

space of ZDT2 test problem (HR = 19.23 %,  
FFC = 25000, GD = 4.31·10-3, Δ = 2.17·10-1). 

 

Algorithm Metric HR (%) FFC (-) GD (-) Δ (-) 

Average value 29.08 25000 2.87·10-3 1.61·10-1

MOSOMA 
Variance 74.17 - 4.05·10-6 9.57·10-3

Average value - 25000 7.2410-2 4.31·10-1

NSGA-II 
Variance - - 3.17·10-3 4.72·10-3

Average value - 25000 1.95·10-3 2.08·10-1

SPEA2 
Variance - - 1.48·10-6 1.24·10-3

Tab. 6. Average values of measuring metrics and its variances 
on ZDT2 problem for algorithms MOSOMA, NSGA-
II and SPEA2. 

MOSOMA achieved very good values of spread and 
generational distance in the same range as SPEA2 and 
better than NSGA-II as can be seen from the results 
presented in Fig. 15 and Tab. 6. 

5. Electromagnetic Problems 
In this section, MOSOMA is applied to solve two 

real-live problems from electromagnetics: the order reduc-

tion of Debye model for dispersive media and the multi-
objective design of a waveguide partially filled with a di-
electric material. Both the problems can be solved without 
stochastic global algorithms. The problems were selected to 
show the validity of a novel algorithm because the objec-
tive functions can be evaluated very fast. 

5.1 Debye Model Order Reduction 

Dispersive materials play an important role in wide 
range of models. Some problems appear when time domain 
techniques are used. The dispersive behavior of dielectric 
materials can be described by the Debye model [13]. Using 
it, dielectric properties of the modeled material can be 
described by: 
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where r is relative permittivity of the material, j is imagi-
nary unit, ω is angular frequency, N is order of the Debye 
model,  is relative permittivity for infinite frequency and 
n  and n are the static permittivity and the relaxation time 
of the n-th pole respectively. 

If a numerical solver considered for the analysis of the 
dispersive material does not allow the use of the Debye 
model of higher orders, the order of the model described by 
(22) has to be reduced. In this paper, the third order Debye 
model of the dispersive material Eccosorbe LS22 defined 
by the manufacturer is reduced to the first order model in 
the frequency range from 0.3 GHz up to 6.0 GHz by 
exploiting MOSOMA. 

Input variables for the optimization are {, 1, 1}. 
The parameters vary in the following intervals: ∈	〈1; 15ۧ,	
1 ∈	 〈1·10-10;	 10·10-10ۧ	 s	 and	 1 ∈	 〈1; 30ۧ Two objective 
functions are defined so that the real and imaginary part of 
the optimized relative permittivity r,first fit the relative 
permittivity r,third defined by the third order model:	
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where P is the number of frequency steps. Settings of 
MOSOMA remain the same as in section 4. The achieved 
results are again compared with commonly used algorithms 
NSGA-II and SPEA2. All algorithms can compute objec-
tive functions at most 25000-times.  

The Pareto front of the considered problem is de-
picted in Fig. 16. Unfortunately, no metrics as in section 4 
can be evaluated because the exact Pareto front is not 
known. In Fig. 16, the best results are achieved by 
MOSOMA because the major part of the solutions revealed 
by NSGA-II and SPEA2 are dominated by solutions re-
vealed by MOSOMA. Also, MOSOMA covered the 
longest part of the Pareto front. 
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The relative permittivity of the first order displace-
ment {3.49, 2.72·10-10, 22.74} of the Debye model chosen 
from the middle of the resulting Pareto front is depicted in 
Fig. 17. Both real and imaginary parts of the relative per-
mittivity are in a very good agreement with dependencies 
provided by the LS22 manufacturer.   
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Fig. 16. Pareto fronts for the Debye model order reduction 

problem obtained by algorithms SPEA2, NSGA-II and 
MOSOMA. 
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Fig. 17. Relative permittivity for the first order Debye model 

displacement { = 3.49, 1 = 2.72·10-10, 1 = 22.74}. 

5.2 Partially Filled Waveguide Design 

The rectangular waveguide can be partially filled with 
a dielectric material (see Fig. 18) to decrease the cut-off 
frequency of the dominant mode [14]. Only the modes 
TEn,0 to z-axis can be determined: 
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where ky1, ky2 are wave-numbers in y-dimension for the 
dielectric-filled region (relative permittivity ε1 and perme-
ability μ1) and air filled region, respectively. Next, f de-
notes the given free-space frequency. The relation between 
the wave-numbers in both homogeneous parts of the wave-
guide is expressed by the following equation: 
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where d1 denotes the height of the dielectric material 
loaded into the waveguide and d2 is the height of the air-
filled part. The cut-off frequency fc can be obtained from 
the system of equations (24) and (25), setting the propaga-
tion constant kz = 0. The final equation with unknown f is 
transcendent and can be solved numerically using e.g. well 
known bisection method. 
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Fig. 18. Description of the partially filled waveguide. 

Since the dielectric materials are rather expensive, we 
should know the price of cut-off frequency decrease when 
designing the partially filled waveguide. Therefore, two 
objective functions were formulated - f1 minimizes the cut-
off frequency of the R100 waveguide (a = 22.86 mm, 
d1 + d2 = 10.16 mm) loaded with a dielectric material 
(solved from equations (24) and (25)) and f2 minimizes the 
cost of the dielectric material, assuming that dielectric 
material can be manufactured with continuous height d1 
and relative permittivity 1: 
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Only two parameters are optimized: the relative per-
mittivity of the dielectric material 1 ∈ 〈1; 10ۧ and the 
height of the material d1 ∈ 〈0; 10.16ۧ mm. Settings of all 
used algorithms MOSOMA, NSGA-II and SPEA2 remain 
the same as in the previous section. The resulting Pareto 
front is depicted in Fig. 19 and Pareto-optimal solutions 
highlighted in the decision space are depicted in Fig. 20. 
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Fig. 19 shows that some results found by NSGA-II 
are dominated by results achieved with the other algo-
rithms. MOSOMA found solutions with the best spread on 
the Pareto front and succeeded to achieve the extreme so-
lutions on the Pareto front ({f1,min; f2,max} and {f1,max; f2,min}). 
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Fig. 19. The trade-off between cost of the dielectric material 

(f2) and decrease of R100 waveguides cut-off 
frequency (f1). 
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Fig. 20. The decision space with highlighted Pareto-optimal 

solutions obtained by MOSOMA.  

Obviously, extreme solutions of the Pareto front cor-
respond to input vectors {1 = 10; d1 = 10.16 mm} and 
{1 = 1; d1 = 0 mm} (R100 waveguide with no dielectric 
material), respectively. The centre part of the Pareto front 
corresponds to the input vector {1 = 2.36; d1 = 9.47 mm}. 

6. Conclusions 
The novel MOSOMA algorithm applies the migration 

strategy used in a single-objective SOMA for the scanning 
of the N-dimensional solution space, and the principle of 
dominance. MOSOMA uses an external archive to store 
meanwhile found non-dominated solutions, which size  

changes continuously with the run of the algorithm. The 
non-dominated solutions are sorted using the crowding 
method, where less crowded solutions are preferred. 
A novel technique based on the comparison of Euclidian 
distances among the solutions constituting the non-domi-
nated set is proposed to maintain the uniform spread of 
solutions on the Pareto front. 

The change of the external archive size ensures that 
the regions containing the non-dominated solution are 
researched more precisely. Another advantage of the adap-
tively changing size of the external archive can be seen in 
the fact that results obtained by the algorithm seem to be 
less sensitive on the controlling parameters (e.g. size of the 
initial population, minimal size of the external archive 
etc.). On the other hand, this behavior disallows us to know 
the exact number of computations of objective functions 
before the run of the algorithm. 

MOSOMA was tested on six test problems with vari-
ous types of Pareto fronts: convex (simple convex, Schaf-
fer´s and ZDT1 test problems), non-convex (Fonseca´s and 
ZDT2 test problems) and discontinuous (Poloni´s test 
problem). We can state that the algorithm converges in all 
cases to the true Pareto front. Generally, MOSOMA 
achieved significantly better results of spread than SPEA2 
and NSGA-II especially on test problems with lower num-
ber of variables. The values of GD metric were comparable 
to the numbers achieved with SPEA2 and NSGA – II. 

Functionality of our novel algorithm was successfully 
shown also on two problems from electromagnetics: Debye 
model order reduction and the design of the partially filled 
dielectric waveguide. In both cases MOSOMA achieved 
better or comparable results as algorithms NSGA-II and 
SPEA2.  

In the future work, we would like to improve the 
efficiency of the proposed algorithm. Partially employed 
migration of members of the external archive to each other 
seems to be very promising. Also adaptive change of 
parameters controlling the migration of individuals (path 
length PL and number of steps ST) could speed up the 
algorithm. Identification of the optimal distribution of the 
initial population should also improve the efficiency of the 
algorithm. Thus, a sensitivity study of MOSOMA with 
respect to its controlling parameters should be performed. 
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