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ABSTRACT
State-space models are immensely useful in various areas of science and engineering.
Their attractiveness results mainly from the fact that they provide a generic tool for
describing a wide range of real-world dynamical systems. However, owing to their gener-
ality, the associated state and parameter inference objectives are analytically intractable
in most practical cases. The present thesis considers two particularly important classes
of nonlinear and non-Gaussian state-space models: conditionally conjugate state-space
models and jump Markov nonlinear models. A key feature of these models lies in that—
despite their intractability—they comprise a tractable substructure. The intractable part
requires us to utilize approximate techniques. Monte Carlo computational methods con-
stitute a theoretically and practically well-established tool to address this problem. The
advantage of these models is that the tractable part can be exploited to increase the
efficiency of Monte Carlo methods by resorting to the Rao-Blackwellization. Specifically,
this thesis proposes two Rao-Blackwellized particle filters for identification of either static
or time-varying parameters in conditionally conjugate state-space models. Furthermore,
this work adopts recent particle Markov chain Monte Carlo methodology to design Rao-
Blackwellized particle Gibbs kernels for state smoothing in jump Markov nonlinear mod-
els. The kernels are then used to facilitate maximum likelihood parameter inference in the
considered models. The resulting experiments demonstrate that the proposed algorithms
outperform related techniques in terms of the estimation precision and computational
time.
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models, state and parameter inference, identification of static and time-varying param-
eters
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INTRODUCTION

A state-space model is a generic tool to embody our intuition about time-space de-
pendent and stochastic behaviour of a real-world dynamical system. The necessary
step towards drawing conclusions about such a system is to observe data on it. The
model and data are then used to carry out various statistical inference objectives,
including the estimation of latent states and parameters. However, dynamical sys-
tems are mostly nonlinear and non-Gaussian, which makes the associated inference
objectives analytically intractable and therefore poses a real challenge on the design
of high-fidelity approximation techniques.

Sequential Monte Carlo (SMC) methodology [19] is particularly well suited for
this aim. SMC methods provide approximate solutions based on generating a col-
lection of random samples. A range of convergence results [93] for these approaches
proves that as the number of samples increases, quantities of interest are approxi-
mated with increasingly high precision. This ability comes naturally with the ques-
tion of high computational complexity. Fortunately, the computational power is still
growing—albeit not as rapidly in the sense of the Moore’s law as before, but rather
in terms of parallel architectures [29]—which makes this question relative, but rel-
evant mainly when the problem is high-dimensional or the computational resources
are limited. However, there exist particularly useful and general classes of nonlinear
and non-Gaussian state-space models that contain analytically tractable substruc-
tures. This feature is commonly utilized in the design of SMC methods in order
to improve their computational efficiency through the Rao-Blackwellization [18]. In
such cases, an algorithm relying on this principle can have the same estimation
precision as an algorithm without this improvement but at a lower computational
cost. The requirement of providing highly reliable approximate solutions to var-
ious inference objectives in state-space models has recently recorded a significant
conceptual shift, namely the particle Markov chain Monte Carlo (MCMC) method-
ology [2]. Particle MCMC algorithms can be seen as exact approximations of the
ideal MCMC procedures. These methods run an SMC method at each iteration in
order to produce a single sample of a quantity of interest, making them highly com-
putationally demanding. Therefore, even a slight improvement in the estimation
accuracy of these methods can have a profound impact on the computational time.

This thesis is about algorithm design. The aim is to develop computationally
more efficient Monte Carlo techniques for two generic classes of nonlinear and non-
Gaussian state-space models. The first class is formed by the conditionally conjugate
state-space models. Their characteristic feature lies in that they contain an alge-
braically tractable substructure with respect to the parameters but an intractable
substructure with respect to the unobserved states. These models have been applied
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to a broad range of diverse practical problems, including computer code performance
tuning [40], flu epidemics tracking [28], vehicle navigation systems [74], target track-
ing [70], online recommendation services [97], estimation of the remaining useful life
of batteries [63], learning of cellular dynamics in system biology [68], web activity
modeling [66], optimization of portfolio returns [45], to mention a few. The second
class is given by the jump Markov nonlinear models. Their key aspect is that they
are formed by a finite number of nonlinear and non-Gaussian state-space configura-
tions that switch according to a discrete-valued Markov chain. These configurations
constitute the intractable part of the model, whereas the discrete chain forms the
tractable part. These models have also become substantially popular in various
practical applications, such as learning of consumption growth dynamics [46], traf-
fic behavior analysis through video surveillance [7], virus-cell fusion identification
[36], molecular bioimaging [83], detection of abrupt changes in financial markets
[64], sensor networks [92], simultaneous localization and tracking [54], terrain-based
navigation [11], estimation of drivers’ behavior [55], etc. The design of precise and
fast computational strategies can provide a substantial increase in efficiency in the
above applications, potentially decreasing the cost of associated hardware tools.

This document is a short version of the author’s doctoral thesis. The content is
formed by a number of separate chapters that summarize novel methods and solu-
tions. These chapters are substantially shortened versions of the author’s published
papers. For more details, see the full document.
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1 A PROJECTION-BASED PARTICLE FILTER
TO ESTIMATE STATIC PARAMETERS
IN CONDITIONALLY CONJUGATE
STATE-SPACE MODELS

Particle filters constitute today a well-established class of techniques for state fil-
tering in non-linear state-space models. However, online estimation of static pa-
rameters under the same framework represents a difficult problem. The solution
can be found to some extent within a category of state-space models allowing us to
perform parameter estimation in an analytically tractable manner, while still con-
sidering non-linearities in data evolution equations. Nevertheless, the well-known
particle path degeneracy problem complicates the computation of the statistics that
are required to estimate the parameters. The present chapter proposes a simple and
efficient method which is experimentally shown to suffer less from this issue.

1.1 Introduction

Context

A state-space model (SSM, [14]) embodies a popular statistical tool for describing
dynamical systems in diverse application areas such as signal processing, economet-
rics, and bioinformatics. This model is especially useful for defining the relation
between observed data, latent (unobserved) data, and unknown static parameters.
The estimation of the states and parameters based on the observations is the pri-
mary task in the aforementioned application areas. A rather general class of state-
space models is formed when they contain a tractable substructure characterizing
the parameters and an intractable substructure describing nonlinear, and possibly
non-Gaussian, data (observed and unobserved). Such models are herein referred
to as the conditionally conjugate SSMs (CCSSMs). Their key feature is that the
tractable substructure facilitates recursive updates of statistics related to the poste-
rior distribution of the parameters, but the intractable substructure requires us to
use approximate inference to make the parameter estimation feasible. This chapter
considers particle filters (PFs, [25]) to perform the approximate inference.

A number of PF-based methods for estimating static parameters in the consid-
ered class of models have been developed in the last years [84, 31, 16]. These algo-
rithms utilize the tractable substructure to compute a set of the posterior statistics
based on the observations and latent state trajectories simulated by a PF. However,
the trajectories are known to suffer from the particle path degeneracy [3], if they are
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constructed in a single forward pass of a PF. This issue also affects the computation
of the posterior statistics, and methods relying on such a principle therefore usually
deliver poor performance.

So far, we have only referred to methods that are most relevant to the algorithm
proposed in the present chapter. For a thorough overview of PF-based parameter
estimation, we refer the reader to a series of recent survey papers [47, 43, 33].
Importantly, there has recently been an increased interest in designing methods
based on particle smoothing [59] or particle Markov chain Monte Carlo [2], which are
efficient in dealing with the degeneracy issue. However, these procedures are offline,
processing repeatedly a fixed batch of data, and since this chapter is concerned with
the online estimation, such algorithms are not of a particular interest herein.

Contributions

The main contribution of the present chapter consists in designing an algorithm for
estimating parameters in the CCSSMs. The proposed approach shares the similari-
ties with the aforementioned methods in the sense that it also computes the posterior
statistics. The design of the method includes two ideas. First, we take advantage
of the tractable substructure to integrate out the parameters and thus utilize the
Rao-Blackwellization [18]. Second, based on the Kullback-Leibler divergence (KLD,
[53]) principle, we formulate an update-project-update cycle to compute the poste-
rior statistics. It is shown that the parameter estimation is then less degenerate.

1.2 Problem Formulation

Let us consider a discrete-time SSM in the form

𝑝𝜃(𝑦𝑡, 𝑥𝑡|𝑥𝑡−1) = 𝑔𝜃(𝑦𝑡|𝑥𝑡)𝑓𝜃(𝑥𝑡|𝑥𝑡−1), (1.1)

where 𝑥𝑡 ∈ X ⊆ R𝑛𝑥 and 𝑦𝑡 ∈ Y ⊆ R𝑛𝑦 label the state and observation variables,
respectively. The model is characterized by the probability densities 𝑔𝜃(·) and 𝑓𝜃(·),
with 𝜃 ∈ Θ ⊆ R𝑛𝜃 denoting some unknown static parameters. At the initial time
step, the state and parameter variables are distributed according to 𝑥1 ∼ 𝑝𝜃(𝑥1)
and 𝜃 ∼ 𝑝0(𝜃). We restrict ourselves to SSMs that allow us to express (1.1) by the
exponential family (EF, [6]) density

𝑝𝜃(𝑦𝑡, 𝑥𝑡|𝑥𝑡−1) = exp{⟨𝜂(𝜃), 𝑠𝑡(𝑥𝑡−1, 𝑥𝑡, 𝑦𝑡)⟩
− 𝜁(𝜃) + log ℎ(𝑥𝑡−1, 𝑥𝑡, 𝑦𝑡)}, (1.2)

where 𝜂 and 𝜁 are respectively the matrix and scalar-valued functions defined on
Θ, 𝑠𝑡 and ℎ constitute respectively the matrix and scalar-valued functions defined
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on X2 × Y, and ⟨·, ·⟩ represents the inner product. The SSM delineated by (1.2)
is herein referred to as the CCSSM. The name follows from the fact that (1.2) is
analytically tractable with respect to the parameters but intractable with respect
to the presumably nonlinear functions 𝑠𝑡 and ℎ. More specifically, the model (1.2)
facilitates analytical computation of the posterior density of the parameters, if we
choose the conjugate prior density according to

𝑝(𝜃|𝜈𝑡−1, 𝑉𝑡−1) = exp{⟨𝜂(𝜃), 𝑉𝑡−1⟩ − 𝜈𝑡−1𝜁(𝜃)
− log ℐ(𝜈𝑡−1, 𝑉𝑡−1)}, (1.3)

where 𝑉𝑡−1 denotes the extended information matrix, 𝜈𝑡−1 labels the number of
degrees of freedom, and ℐ defines the normalizing constant. The posterior density
𝑝(𝜃|𝜈𝑡, 𝑉𝑡) then reproduces the form of (1.3), and its statistics can be updated under
the closed-form formulae

𝑉𝑡 = 𝑉𝑡−1 + 𝑠𝑡(𝑥𝑡−1, 𝑥𝑡, 𝑦𝑡), (1.4a)
𝜈𝑡 = 𝜈𝑡−1 + 1. (1.4b)

The model (1.2) is also known as the conditionally conjugate latent process model
[90, 80]. The generic form (1.2) acknowledges standard probability densities such as
Poisson, Gaussian, exponential, etc.

The objective of this chapter is to design an online method for computing the
posterior density 𝑝(𝑥𝑡, 𝜃|𝑦1:𝑡) while assuming (1.2), where 𝑦1:𝑡 := (𝑦1, . . . , 𝑦𝑡). Never-
theless, the nonlinear functions 𝑠𝑡 and ℎ prevent us from computing the posterior
analytically. To resolve this problem, we need to resort to approximate techniques.
For the ability to deal with almost any nonlinear non-Gaussian SSM, we choose PFs
to handle the approximate inference.

1.3 The Proposed Algorithm

The proposed method is summarized in Algorithm 1, where we use the convention
𝑠1(𝑥0, 𝑥1, 𝑦1) := 𝑠1(𝑥1, 𝑦1) and consider that all 𝑖-dependent operations are performed
for 𝑖 = 1, . . . , 𝑁 . The derivation and more detailed description of Algorithm 1 can
be found in the full version of this thesis.

1.4 Experiments and Results

The present section demonstrates the performance of the PBRBPF proposed in
Algorithm 1 compared to the Rao-Blackwellized particle filter with linear compu-
tational complexity (RBPF𝑁) [84] and the Rao-Blackwellized particle filter with
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Algorithm 1 Projection-Based RBPF (PBRBPF)
A. Initial step: (𝑡 = 1)

1. Set ̂︀𝜈0 and ̂︀𝑉0.
2. Sample 𝑥𝑖

1 ∼ 𝑞1(·).
3. Compute 𝑤𝑖

1 ∝ 𝑊1(𝑥𝑖
1) with

𝑊1(𝑥𝑖
1) := 𝑝(𝑦1, 𝑥𝑖

1|̂︀𝜈0, ̂︀𝑉0)
𝑞1(𝑥𝑖

1) ,

where
𝑝(𝑦1, 𝑥𝑖

1|̂︀𝜈0, ̂︀𝑉0) =
∫︁

Θ
𝑝𝜃(𝑦1, 𝑥𝑖

1)𝑝(𝜃|̂︀𝜈0, ̂︀𝑉0)𝑑𝜃.

B. Recursive step: (𝑡 = 2, . . . , 𝑇 )
1. Sample 𝑎𝑖

𝑡 with P(𝑎𝑖
𝑡 = 𝑗) = 𝑤𝑗

𝑡−1.
2. Sample 𝑥𝑖

𝑡 ∼ 𝑞𝑡(·|𝑥𝑎𝑖
𝑡

1:𝑡−1).
3. Compute 𝑤𝑖

𝑡 ∝ 𝑊𝑡(𝑥𝑖
1:𝑡) with

𝑊𝑡(𝑥𝑖
1:𝑡) := 𝑝(𝑦𝑡, 𝑥𝑖

𝑡|̂︀𝜈𝑡−1, ̂︀𝑉𝑡−1)
𝑞𝑡(𝑥𝑖

𝑡|𝑥
𝑎𝑖

𝑡
1:𝑡−1)

,

where
𝑝(𝑦𝑡, 𝑥𝑖

𝑡|̂︀𝜈𝑡−1, ̂︀𝑉𝑡−1) =
∫︁

Θ
𝑝𝜃(𝑦𝑡, 𝑥𝑖

𝑡|𝑥
𝑎𝑖

𝑡
𝑡−1)𝑝(𝜃|̂︀𝜈𝑡−1, ̂︀𝑉𝑡−1)𝑑𝜃.

C. Common step: (𝑡 ≥ 1)
1. Compute 𝜈𝑖

𝑡 = ̂︀𝜈𝑡−1 + 1 and 𝑉 𝑖
𝑡 = ̂︀𝑉𝑡−1 + 𝑠𝑡(𝑥𝑎𝑖

𝑡
𝑡−1, 𝑥𝑖

𝑡, 𝑦𝑡).
2. Compute ̂︀𝜈𝑡 and ̂︀𝑉𝑡 as the solution of

E[𝜂(𝜃)|̂︀𝜈𝑡, ̂︀𝑉𝑡] =
𝑁∑︁

𝑖=1
𝑤𝑖

𝑡E[𝜂(𝜃)|𝜈𝑖
𝑡 , 𝑉 𝑖

𝑡 ],

E[𝜁(𝜃)|̂︀𝜈𝑡, ̂︀𝑉𝑡] =
𝑁∑︁

𝑖=1
𝑤𝑖

𝑡E[𝜁(𝜃)|𝜈𝑖
𝑡 , 𝑉 𝑖

𝑡 ].

quadratic computational complexity (RBPF𝑁2), also known as the Rao-Blackwellized
marginal particle filter [60]. We consider the standard benchmark SSM given by

𝑥𝑡 = 𝑥𝑡−1

2 + 25 𝑥𝑡−1

1 + 𝑥𝑡−1
+ 8 cos(1.2𝑡) + 𝑤𝑡,

𝑦𝑡 = 𝑥2
𝑡

20 + 𝑣𝑡,

where the variables 𝑤𝑡
𝐼𝐼𝐷∼ 𝒩 (·; 𝜇𝑤, 𝜎2

𝑤) and 𝑣𝑡
𝐼𝐼𝐷∼ 𝒩 (·; 𝜇𝑣, 𝜎2

𝑣) are assumed to be
mutually independent. Here, IID stands for independent and identically distributed.
The objective is to estimate 𝜇𝑤, 𝜎2

𝑤, 𝜇𝑣, and 𝜎2
𝑣 , whose true values are 1, 2, 1, and

2, respectively. The initial state variable is distributed according to 𝑥1 ∼ 𝒩 (·; 0, 1).
The amount of observations is 𝑇 = 2 · 104, and the number of particles is 𝑁 = 500.
The simulation is repeated 20 times with different observation sequences.

The time evolution of the parameter estimates over the independent simulation
runs is displayed in Fig. 1.1. The results indicate that the proposed PBRBPF al-
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Fig. 1.1: The parameter estimates versus the number of observations. Top: PBRBPF
( ) and RBPF𝑁 ( ) [84]. Bottom: PBRBPF ( ) and RBPF𝑁2 ( ) [60]. The
results are averaged over 20 independent simulation runs, with the solid line being the
median and the shaded area delineating the interquartile range. The true parameter
values are indicated with the dashed line ( ).

gorithm outperforms the RBPF𝑁 method due to its lower bias and variance of the
parameter estimates over the multiple simulation runs. From this observation, we
can state that the proposed approach is less affected by the particle path degen-
eracy problem. The average time required to process all the observations with the
PBRBPF and RBPF𝑁 algorithms was approximately 4.44 and 4.53 seconds, respec-
tively. The proposed PBRBPF approach delivers slightly higher variance than the
RBPF𝑁2 procedure. Nevertheless, the bias provided by the PBRBPF algorithm is
lower than the one of the RBPF𝑁2 technique. Given the fact that the RBPF𝑁2

approach is computationally highly demanding, we can expect that a small increase
in the number of particles of the PBRBPF method can easily compensate for this
slightly higher variance.
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2 A PARTICLE FILTER TO ESTIMATE
TIME-VARYING PARAMETERS IN
CONDITIONALLY CONJUGATE
STATE-SPACE MODELS

The identification of slowly-varying parameters in dynamical systems constitutes
a practically important task in a wide range of applications. The present chapter
addresses this problem based on the Bayesian learning and sequential Monte Carlo
(SMC) methodology. The proposed approach utilizes an algebraic structure of a
specific class of nonlinear and non-Gaussian state-space models in order to enable
Rao-Blackwellization of the parameters, thus involving a finite-dimensional sufficient
statistic for each particle trajectory into the resulting algorithm. However, relying
on basic SMC methods, such techniques are known to suffer from the particle path
degeneracy problem. We propose to use alternative stabilized forgetting, which not
only allows us to deal with the slowly-varying parameters but also to counteract the
degeneracy problem. An experimental study proves the efficiency of the introduced
Rao-Blackwellized particle filter compared to some related approaches.

2.1 Introduction

Context

The task of online SMC parameter estimation in non-linear state-space models has
attracted substantial attention in the last years. Considerable effort has been de-
voted to maximum likelihood methods, where the aim is to maximize the likeli-
hood 𝑝𝜃(𝑦1:𝑡) of observed data sequence 𝑦1:𝑡 := (𝑦1, . . . , 𝑦𝑡) with respect to some
fixed parameterization 𝜃. An algorithmic solution in such cases commonly relies
on the computation of expected values of smoothed additive functionals [14], which
requires the complete data likelihood 𝑝𝜃(𝑥1:𝑡, 𝑦1:𝑡) to belong to the exponential fam-
ily [6], where 𝑥1:𝑡 denotes an unobserved state sequence. The main stream of re-
search in this respect includes the gradient ascent [78] and expectation maximization
(EM) methods [13]. However, these SMC-based approaches suffer from the particle
path degeneracy problem [3, 44]. Recently, it was recognized in [20] that the for-
ward smoothing algorithm can overcome this issue at the cost of 𝒪(𝑁2) operations,
where 𝑁 stands for the number of particles. The results of [72] show that the for-
ward smoothing can actually be performed with 𝒪(𝑁) operations by adapting the
accept-reject backward sampling of [23].
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Bayesian methods interpret unknown parameters as random variables and pro-
vide their full description in terms of the posterior density 𝑝(𝜃|𝑦1:𝑡). From this
perspective, the earliest SMC approaches apply a particle filter to an augmented
state variable 𝑥̄𝑡 = (𝑥𝑡, 𝜃) while considering a constant model of parameter varia-
tions 𝜃𝑡 = 𝜃𝑡−1. Since the model of constant parameter variations lacks any forgetting
properties [14], the diversity of the particle population representing 𝜃 decreases with
successful resampling steps. The problem is commonly treated by introducing a
jittering noise into the model of parameter evolutions [38]. However, a straightfor-
ward application of jittering can make the posterior density 𝑝(𝜃|𝑦1:𝑡) unnecessarily
diffused. This was addressed in [51] by systematically decreasing the noise variance
and later improved by alleviating the artificial variance inflation in [61]. But the sim-
ple addition of a jittering noise with a decreasing variance is not always efficient, as
it may be difficult to guess a compromise between the number of particles being used
and the rate at which the variance should decrease. The advantage of state augmen-
tation techniques is that they can be applied to models without a specific structure.
Considering a model with parameters respecting some structure in such a manner
that the density 𝑝(𝜃|𝑥1:𝑡, 𝑦1:𝑡) is algebraically tractable, the paper [84] proposes to
integrate out the parameters and to run a particle filter only for the marginal den-
sity 𝑝(𝑥1:𝑡|𝑦1:𝑡). For each particle trajectory, sampled from this marginal, the density
𝑝(𝜃|𝑥1:𝑡, 𝑦1:𝑡) is evaluated in terms of updating the sufficient statistics, which then
serves for the parameter estimation. However, this online approach, too, suffers
from the particle path degeneracy problem, resulting in a poor approximation of the
posterior 𝑝(𝜃|𝑥1:𝑡, 𝑦1:𝑡). The related paper [74] imposes exponential forgetting [52]
into this algorithm in order to facilitate the estimation of time-varying parameters
and counteract the degenerate behavior.

Contributions

This chapter proposes a sequential Monte Carlo-based algorithm which exploits the
algebraically tractable substructure of a special class of nonlinear state-space models,
here referred to as conditionally conjugate state-space models. A characteristic fea-
ture of these models consists in that they facilitate the computation of 𝑝(𝜃|𝑥1:𝑡, 𝑦1:𝑡)
under a close-form solution. The algorithm is—in its basic structure—similar to the
one proposed in [84] but offers an ability to trace time-varying parameters. How-
ever, compared to the similar work [74], we accomplish this by utilizing a different
forgetting strategy which is known as the alternative stabilized forgetting [50]. We
demonstrate that the proposed algorithm outperforms this previous approach in
terms of estimation accuracy and computational time.
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2.2 Problem Formulation

In this chapter, we are concerned with discrete-time state-space models (SSMs) given
by the joint probability density

𝑝𝜃𝑡(𝑦𝑡, 𝑥𝑡|𝑥𝑡−1) = 𝑔𝜃𝑡(𝑦𝑡|𝑥𝑡)𝑓𝜃𝑡(𝑥𝑡|𝑥𝑡−1), (2.1)

where 𝑥𝑡 ∈ X ⊆ R𝑛𝑥 and 𝑦𝑡 ∈ Y ⊆ R𝑛𝑦 denote the state and observation variables,
respectively. Furthermore, 𝑔𝜃𝑡 and 𝑓𝜃𝑡 constitute observation and state-transition
models, with 𝜃𝑡 ∈ Θ ⊆ R𝑛𝜃 being some unknown time-varying parameters. The
initial step assumes that the state and parameter variables are distributed as 𝑥1 ∼
𝑝𝜃1(𝑥1) and 𝜃1 ∼ 𝑝(𝜃1). We are particularly interested in a specific class of SSMs
which allows us to express (2.1) by the exponential family [6] density

𝑝𝜃𝑡(𝑦𝑡, 𝑥𝑡|𝑥𝑡−1) = exp{⟨𝜂(𝜃𝑡), 𝑠𝑡(𝑥𝑡−1, 𝑥𝑡, 𝑦𝑡)⟩
− 𝜁(𝜃𝑡) + log ℎ(𝑥𝑡−1, 𝑥𝑡, 𝑦𝑡)}, (2.2)

where (𝜂, 𝜁) and (𝑠𝑡, ℎ) are functions of appropriate dimensions, defined on Θ and
X2 × Y, respectively, and ⟨·, ·⟩ is the inner product. Due to the fact that (2.2) is
analytically intractable with respect to the nonlinear functions (𝑠𝑡, ℎ) but tractable
with respect to the parameter functions (𝜂, 𝜁), we refer to (2.2) as the conditionally
conjugate state-space model (CCSSM), alternatively known as the conditionally
conjugate latent process model [90, 80]. The key characteristic of (2.2) consists in
that, if we choose the conjugate prior density

𝑝(𝜃𝑡|𝜈𝑡|𝑡−1, 𝑉𝑡|𝑡−1) = exp{⟨𝜂(𝜃𝑡), 𝑉𝑡|𝑡−1⟩ − 𝜈𝑡|𝑡−1𝜁(𝜃𝑡)
− log ℐ(𝜈𝑡|𝑡−1, 𝑉𝑡|𝑡−1)}; (2.3)

then, we can compute the posterior density, 𝑝(𝜃𝑡|𝑥1:𝑡, 𝑦1:𝑡) := 𝑝(𝜃𝑡|𝜈𝑡|𝑡, 𝑉𝑡|𝑡), analyt-
ically. In (2.3), 𝑉𝑡|𝑡−1 is the extended information matrix, 𝜈𝑡|𝑡−1 is the number of
degrees of freedom, and ℐ denotes the normalizing constant. Under this choice, the
posterior density 𝑝(𝜃𝑡|𝜈𝑡|𝑡, 𝑉𝑡|𝑡) reproduces the form of (2.3), with the statistics being
updated according to the closed-form formulae

𝑉𝑡|𝑡 = 𝑉𝑡|𝑡−1 + 𝑠𝑡(𝑥𝑡−1, 𝑥𝑡, 𝑦𝑡),
𝜈𝑡|𝑡 = 𝜈𝑡|𝑡−1 + 1.

Fundamental probability densities, including Poisson, Gaussian, and exponential,
fit into the generic form delineated by (2.2).

The objective of this chapter consists in designing an online algorithm for com-
puting the joint posterior density 𝑝(𝑥𝑡, 𝜃𝑡|𝑦1:𝑡) while assuming the model (2.2). There
are, however, two main obstacles in achieving this goal: (i) the nonlinear functions
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Algorithm 2 RBPF with Alternative Stabilized Forgetting (RBPFASF)
A. Initial step: (𝑡 = 1)

1. Set (̂︀𝜈𝑖
1|0, ̂︀𝑉 𝑖

1|0, 𝜈𝐴, 𝑉𝐴), and 𝜆.
2. Sample 𝑥𝑖

1 ∼ 𝑞1(·).
3. Compute 𝑤𝑖

1 ∝ 𝑊1(𝑥𝑖
1) with

𝑊1(𝑥𝑖
1) :=

𝑝(𝑦1, 𝑥𝑖
1|̂︀𝜈𝑖

1|0, ̂︀𝑉 𝑖
1|0)

𝑞𝑡(𝑥𝑖
1) ,

where
𝑝(𝑦1, 𝑥𝑖

1|̂︀𝜈𝑖
1|0, ̂︀𝑉 𝑖

1|0) =
∫︁

Θ
𝑝𝜃1(𝑦1, 𝑥𝑖

1)𝑝(𝜃1|̂︀𝜈𝑖
1|0, ̂︀𝑉 𝑖

1|0)𝑑𝜃1.

B. Recursive step: (𝑡 = 2, . . . , 𝑇 )
1. If 𝑁eff ≤ 𝑁th, sample 𝑎𝑖

𝑡 with P(𝑎𝑖
𝑡 = 𝑗) = 𝑤𝑗

𝑡−1 and set 𝑤̄𝑖
𝑡−1 = 1/𝑁 .

Else, set 𝑎𝑖
𝑡 = 𝑖 and 𝑤̄𝑖

𝑡−1 = 𝑤𝑖
𝑡−1.

2. Sample 𝑥𝑖
𝑡 ∼ 𝑞𝑡(·|𝑥𝑎𝑖

𝑡
1:𝑡−1).

3. Compute 𝑤𝑖
𝑡 ∝ 𝑊𝑡(𝑥𝑖

1:𝑡)𝑤̄𝑖
𝑡−1 using

𝑊𝑡(𝑥𝑖
1:𝑡) :=

𝑝(𝑦𝑡, 𝑥𝑖
𝑡|̂︀𝜈𝑎𝑖

𝑡

𝑡|𝑡−1, ̂︀𝑉 𝑎𝑖
𝑡

𝑡|𝑡−1)

𝑞𝑡(𝑥𝑖
𝑡|𝑥

𝑎𝑖
𝑡

1:𝑡−1)
,

where
𝑝(𝑦𝑡, 𝑥𝑖

𝑡|̂︀𝜈𝑎𝑖
𝑡

𝑡|𝑡−1, ̂︀𝑉 𝑎𝑖
𝑡

𝑡|𝑡−1) =
∫︁

Θ
𝑝𝜃𝑡

(𝑦𝑡, 𝑥𝑖
𝑡|𝑥

𝑎𝑖
𝑡

𝑡−1)𝑝(𝜃𝑡|̂︀𝜈𝑎𝑖
𝑡

𝑡|𝑡−1, ̂︀𝑉 𝑎𝑖
𝑡

𝑡|𝑡−1)𝑑𝜃𝑡.

C. Common step: (𝑡 ≥ 1)
1. Compute 𝜈𝑖

𝑡|𝑡 = ̂︀𝜈𝑎𝑖
𝑡

𝑡|𝑡−1 + 1 and 𝑉 𝑖
𝑡 = ̂︀𝑉 𝑎𝑖

𝑡

𝑡|𝑡−1 + 𝑠𝑡(𝑥𝑎𝑖
𝑡

𝑡−1, 𝑥𝑖
𝑡, 𝑦𝑡).

2. Compute ̂︀𝜈𝑖
𝑡+1|𝑡 and ̂︀𝑉 𝑖

𝑡+1|𝑡 as the solution of

E[𝜂(𝜃𝑡+1)|̂︀𝜈𝑖
𝑡+1|𝑡,

̂︀𝑉 𝑖
𝑡+1|𝑡] = 𝜆E[𝜂(𝜃𝑡+1)|𝜈𝑖

𝑡|𝑡, 𝑉 𝑖
𝑡|𝑡] + (1 − 𝜆)E[𝜂(𝜃𝑡+1)|𝜈𝐴, 𝑉𝐴],

E[𝜁(𝜃𝑡+1)|̂︀𝜈𝑖
𝑡+1|𝑡,

̂︀𝑉 𝑖
𝑡+1|𝑡] = 𝜆E[𝜁(𝜃𝑡+1)|𝜈𝑖

𝑡|𝑡, 𝑉 𝑖
𝑡|𝑡] + (1 − 𝜆)E[𝜁(𝜃𝑡+1)|𝜈𝐴, 𝑉𝐴].

(𝑠𝑡, ℎ) prevent us from computing the joint posterior density analytically, and (ii)
the parameter time-evolution model 𝑝(𝜃𝑡|𝜃𝑡−1) is unknown. To deal with the first
problem, we apply the particle filters, as they constitute a theoretically [93] and
practically [26] well-established tool for approximating highly nonlinear probability
densities. To resolve the second one, we incorporate—for the first time—the con-
cept of alternative stabilized forgetting [50] into the context of particle filter-based
estimation of slowly-varying parameters.

2.3 The Proposed Algorithm

The resulting method is summarized in Algorithm 2, where all 𝑖-dependent opera-
tions are performed for 𝑖 = 1, . . . , 𝑁 . We use the convention that 𝑠1(𝑥0, 𝑥1, 𝑦1) :=
𝑠1(𝑥1, 𝑦1). The derivation and more detailed description of Algorithm 2 can be found
in the full version of this thesis.
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Fig. 2.1: The parameter estimates against the number of observations. The compared
methods are PFEM ( ) [13], RBPF ( ) [84], RBPFEF ( ) [74], and RBPFASF
( ) Algorithm 2. The number of particles is 𝑁 = 512. The results are averaged over
50 independent simulation runs, with the solid line being the median and the shaded area
delineating the interquartile range. The true parameter values are indicated with the
dashed line ( ).

2.4 Experiments and Results

This section illustrates the behavior of the RBPF with alternative stabilized forget-
ting (RBPFASF), proposed in Algorithm 2, compared to the particle filter combined
with the expectation maximization algorithm (PFEM) [13], the Rao-Blackwellized
particle filter for static parameter estimation (RBPF) [84], and the RBPF with ex-
ponential forgetting (RBPFEF) [74]. We generate 𝑇 = 4000 observations from the
univariate non-stationary growth model

𝑥𝑡 = 𝑥𝑡−1

2 + 25𝑥𝑡−1

1 + 𝑥2
𝑡−1

+ 8 cos(1.2𝑡) + 𝑤𝑡,

𝑦𝑡 = 𝑥2
𝑡

20 + 𝑣𝑡,

where 𝑤𝑡
𝐼𝐼𝐷∼ 𝒩 (·; 𝜇𝑤, 𝜎2

𝑤) and 𝑣𝑡
𝐼𝐼𝐷∼ 𝒩 (·; 𝜇𝑣, 𝜎2

𝑣) are mutually independent Gaussian
noise variables. The initial value of the state variable is distributed as 𝑥1 ∼ 𝒩 (0, 1).
To be comparative, we follow the pattern of parameter changes outlined in [74];
thus, we have 𝜇𝑤,1 = 1, Σ𝑤,1 = 2, 𝜇𝑣,1 = 3, Σ𝑣,1 = 4, and 𝜇𝑤,4000 = 2, Σ𝑤,4000 = 4,
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𝜇𝑣,4000 = 1, Σ𝑣,4000 = 7 for the initial and final steps, respectively. The changes are
executed between the times 1500 and 2500, see Fig. 2.1.

The resulting parameter estimates versus the number of observations are depicted
in Fig. 2.1. The PFEM algorithm exhibits relatively good performance in terms of
learning the static parameters; unfortunately, after the parameters start to change,
we can observe that the adaptability of this methods is rather poor. A similar finding
holds also for the RBPF, albeit the parameter estimates are obviously more biased.
The RBPFEF offers better capability of tracking the changes. This is, however,
achieved at the cost of higher variance of the estimated values. In addition, the
estimates of 𝜎2

𝑣 are considerably more biased. The proposed RBPFASF performs
more favorably, mostly providing estimates with lower bias and variance compared
to the other algorithms.
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3 RAO-BLACKWELLIZED PARTICLE GIBBS
KERNELS FOR SMOOTHING IN JUMP
MARKOV NONLINEAR MODELS

Jump Markov nonlinear models (JMNMs) characterize a dynamical system by a
finite number of presumably nonlinear and possibly non-Gaussian state-space con-
figurations that switch according to a discrete-valued hidden Markov process. In this
context, the smoothing problem—the task of estimating fixed points or sequences
of hidden variables given all available data—is of key relevance to many objectives
of statistical inference, including the estimation of static parameters. The present
chapter proposes a particle Gibbs with ancestor sampling (PGAS)-based smoother
for JMNMs. The design methodology relies on integrating out the discrete process
in order to increase the efficiency through Rao-Blackwellization. The experimental
evaluation illustrates that the proposed method achieves higher estimation accuracy
in less computational time compared to the original PGAS procedure.

3.1 Introduction

Context

Particle Markov chain Monte Carlo (PMCMC) methods [2] have recently emerged as
an efficient tool to perform statistical inference in general state-space models (SSMs,
[14]). These algorithms apply sequential Monte Carlo (SMC, [25]) to tackle the
issue of constructing high-dimensional proposal kernels in MCMC [1]. This makes
them particularly well suited for addressing the smoothing problem in jump Markov
nonlinear models (JMNMs). The particle Gibbs with ancestor sampling (PGAS)
kernel [58], which can be seen as a PMCMC smoother, has proved to be a serious
competitor to the prominent SMC-based smoothing strategies such as the backward
simulator [37] and generalized SMC two-filter smoother [12]. For a thorough review
of existing SMC-based smoothers, see [59] and references therein.

The development in this chapter is motivated by the recent progress in construct-
ing PG kernels specifically tailored for jump Markov linear models (JMLMs) [94, 85].
The methods therein exploit the linear Gaussian substructure of the model to in-
crease their efficiency through Rao-Blackwellization. This is achieved by using the
Kalman filter (KF) to design the conditional variants of either the discrete particle
filter [32] or Rao-Blackwellized particle filter (RBPF, [24]). A common aspect of
these PG methods lies in that the backward information filter (BIF, [67]) is used
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to further increase the effect of Rao-Blackwellization and to improve the mixing
properties [1] via ancestor sampling or backward simulation.

Contributions

The problem with JMNMs is that their nonlinear character prevents us from ap-
plying Rao-Blackwellization in the same sense as with JMLMs; nevertheless, there
is still a tractable substructure to exploit. The present chapter is concerned with
the design of a Rao-Blackwellized PGAS (RBPGAS) kernel that takes advantage of
the hierarchical structure formed by the discrete latent process. The method builds
on the RBPF proposed in [73], which is similar to that introduced in [24] except
it replaces the above-discussed KF with a finite state-space filter; conversely, the
particle filter (PF) focuses on the remaining (continuous-valued) part of the latent
process. However, the design of a finite state-space BIF turns out to be more intri-
cate in this context as it requires us to introduce a sequence of artificial probability
distributions to change the scale of the associated backward recursion.

3.2 Problem Formulation

The generic form of the discrete-time JMNM considered in the present chapter is
defined by

𝑐𝑡|𝑐𝑡−1 ∼ 𝑝(𝑐𝑡|𝑐𝑡−1), (3.1a)
𝑧𝑡|𝑐𝑡, 𝑧𝑡−1 ∼ 𝑓(𝑧𝑡|𝑐𝑡, 𝑧𝑡−1), (3.1b)

𝑦𝑡|𝑐𝑡, 𝑧𝑡 ∼ 𝑔(𝑦𝑡|𝑐𝑡, 𝑧𝑡), (3.1c)

where the states and measurements are denoted by 𝑧𝑡 ∈ Z ⊆ R𝑛𝑧 and 𝑦𝑡 ∈ Y ⊆ R𝑛𝑦 ,
respectively. The activity of the current regime of the model is indicated by the
discrete mode variable 𝑐𝑡 ∈ C := {1, . . . , 𝐾}. We assume to have access only to the
measurements 𝑦𝑡, while the state 𝑧𝑡 and mode 𝑐𝑡 variables are considered hidden.
Furthermore, for all 𝑐𝑡 ∈ C, the model is characterized by its state transition and
observation probability densities 𝑓(·) and 𝑔(·), respectively. The switching between
the modes is governed by the conditional probability distribution 𝑝(·). At the initial
time step, the hidden variables are distributed according to 𝑧1 ∼ 𝜇(𝑧1|𝑐1) and 𝑐1 ∼
𝑝(𝑐1). For a graphical representation of a JMNM.

Let 𝑥1:𝑇 := (𝑥1, . . . , 𝑥𝑇 ) denote a generic sequence of variables defined on some
product space X𝑇 , for an integer 𝑇 > 0 denoting the final time point. The aim of
this study is to design an efficient PMCMC smoother targeting the joint smoothing
density given by

𝑝(𝑐1:𝑇 , 𝑧1:𝑇 |𝑦1:𝑇 ) = 𝑝(𝑐1:𝑇 , 𝑧1:𝑇 , 𝑦1:𝑇 )
𝑝(𝑦1:𝑇 ) . (3.2)
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Algorithm 3 Finite State-Space BIF
Inputs: 𝑧′

1:𝑇 and {𝜉𝑡(𝑐𝑡)}𝑇
𝑡=1.

Outputs: {𝑝(𝑐𝑡|𝑦𝑡:𝑇 , 𝑧′
𝑡:𝑇 )}𝑇

𝑡=1.
A. Initial step: (𝑡 = 𝑇 )

1. Compute 𝑝(𝑐𝑇 |𝑦𝑇 , 𝑧′
𝑇 ) ∝ 𝑝(𝑦𝑇 |𝑐𝑇 , 𝑧′

𝑇 )𝜉𝑇 (𝑐𝑇 ).
B. Recursive step: (𝑡 = 𝑇 − 1, . . . , 1)

1. Compute

𝑝(𝑐𝑡|𝑦𝑡+1:𝑇 , 𝑧𝑡:𝑇 ) ∝
∑︁

𝑐𝑡+1∈C
𝑝(𝑐𝑡+1|𝑦𝑡+1:𝑇 , 𝑧𝑡+1:𝑇 )𝑝(𝑧𝑡+1, 𝑐𝑡+1|𝑐𝑡, 𝑧𝑡)𝜉𝑡(𝑐𝑡)

𝜉𝑡+1(𝑐𝑡+1) ,

2. Compute
𝑝(𝑐𝑡|𝑦𝑡:𝑇 , 𝑧𝑡:𝑇 ) ∝ 𝑝(𝑦𝑡|𝑐𝑡, 𝑧𝑡)𝑝(𝑐𝑡|𝑦𝑡+1:𝑇 , 𝑧𝑡:𝑇 ).

However, the density (3.2) is intractable even in situations where (3.1b) and (3.1c)
are linear and Gaussian. The reason consists in that the marginal likelihood 𝑝(𝑦1:𝑇 )
contains summation over 𝐾𝑇 values, which is always impossible to compute exactly,
except for small data sets. Despite this, we consider (3.1b) and (3.1c) nonlinear and
non-Gaussian, making the situation even more difficult as the integral over Z𝑇 in
the marginal likelihood 𝑝(𝑦1:𝑇 ) cannot be evaluated either.

3.3 The Proposed Algorithm

The proposed RBPGAS kernel is summarized by Algorithms 3 and 4. The derivation
and more detailed description of Algorithms 3 and 4 can be found in the full version
of this thesis.

3.4 Experiments and Results

This section demonstrates the performance of the proposed RBPGAS kernel (Algo-
rithm 6) in comparison to the PG [2], PGAS [58], RBPG (Algorithm 6 with setting
𝑎𝑁

𝑡 := 𝑁 in step B4), and RBPGASnr (Algorithm 6 with the non-rescaled recursion)
kernels. Let us consider the nonlinear benchmark model given by

𝑧𝑡 = 𝑧𝑡−1

2 + 25 𝑧𝑡−1

1 + 𝑧2
𝑡−1

+ 8 cos(1.2𝑡) + 𝑣𝑡,

𝑦𝑡 = 𝑧2
𝑡

20 + 𝑤𝑡,

where, for 𝑐𝑡 ∈ C := {1, 2}, 𝑤𝑡 ∼ 𝒩 (𝜇𝑐𝑡 , 𝜎2
𝑐𝑡

) denotes a mode-dependent Gaussian
noise variable with the mean 𝜇𝑐𝑡 and variance 𝜎2

𝑐𝑡
. Furthermore, 𝑣𝑡 ∼ 𝒩 (0, 1) is

an independent and identically distributed Gaussian noise variable with zero mean
and unit variance. The kernel (3.1a) is parameterized by the transition probability
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Fig. 3.1: Left: the root-mean-square error (RMSE) between the exact and estimated state
trajectories versus the computational time (in seconds). Right: the number of non-zero
elements (NNZE) in the error sequence between the exact and estimated mode trajectories
versus the computational time. The solid line shows the median, and the shaded area is
the interquartile range; both are computed over forty independent runs. The compared
methods are PG ( ), PGAS ( ), RBPG ( ), RBPGAS ( ), and RBPGASnr
( ).

matrix Π according to 𝑝(𝑐𝑡 = 𝑗|𝑐𝑡−1 = 𝑖) := Π𝑖𝑗 with 𝑖, 𝑗 ∈ C. The diagonal entries
of this matrix are set as Π11 = 0.6 and Π22 = 0.8. The mode-dependent means
and variances are defined by 𝜇1 = 0, 𝜇2 = 7 and 𝜎2

1 = 4, 𝜎2
2 = 1. The state prior

density is mode-independent and Gaussian, 𝜇(𝑧1|𝑐1) := 𝒩 (𝑧1; 0, 1). Further, the
prior distribution of the mode variable 𝑝(𝑐1) is parameterized by the vector 𝜆 with
the relation 𝑝(𝑐1 = 𝑖) := 𝜆𝑖, where the first entry is 𝜆1 = 0.5. Forty independent runs
of the considered model were performed, each producing the measurement sequence
of the length 𝑇 = 100. The algorithms subjected to comparison were tested with
𝑅 = 500 iterations. To evaluate resulting estimates, the proposed RBPGAS method
with 𝑁 = 1024 particles was used to compute ‘exact’ state and mode trajectories
for each of the measurement sequences.

Fig. 3.1 provides a closer look at the situation where the compared algorithms
are applied with 𝑁 = 2 particles. We can see that the RMSE of the PGAS and
RBPGAS methods is competitive for approximately the first 10−1 seconds, with
the RBPGAS algorithm starting to be computationally more efficient after this
time. This is obvious from the median and interquartile range, which decrease
more quickly for the RBPGAS procedure. The right part of Fig. 3.1 reveals that
the RBPGAS method achieves lower values of the NNZE in a shorter computational
time. For example, we can see that the value 10 is there reached after approximately
2 · 10−1 seconds with the PGAS method, while the same value is attained after
approximately 7 · 10−2 seconds with the RBPGAS algorithm. It is therefore obvious
that the RBPGAS procedure is markedly quicker in approaching the ergodic regime.
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Algorithm 4 RBPGAS Kernel for JMNMs (version A)
Inputs: 𝑧′

1:𝑇 = 𝑧1:𝑇 [𝑘 − 1].
Outputs: 𝑧1:𝑇 [𝑘] and {𝑧𝑖

1:𝑇 , {𝑝(𝑐𝑡|𝑧𝑖
1:𝑡, 𝑦1:𝑡)}𝑇

𝑡=1, 𝑤𝑖
𝑇 }𝑁

𝑖=1.
A. Initial step: (𝑡 = 1)

1. Compute the sequence {𝜉𝑡(𝑐𝑡)}𝑇
𝑡=1.

2. Use 𝑧′
1:𝑇 and {𝜉𝑡(𝑐𝑡)}𝑇

𝑡=1 as the input for Algorithm 3 to produce {𝑝(𝑐𝑡|𝑦𝑡:𝑇 , 𝑧′
𝑡:𝑇 )}𝑇

𝑡=1.
3. Sample 𝑧𝑖

1 ∼ 𝑞1(·) for 𝑖 = 1, . . . , 𝑁 − 1 and set 𝑧𝑁
1 := 𝑧′

1.
4. Compute 𝑝(𝑐1|𝑧𝑖

1, 𝑦1) ∝ 𝑝(𝑦1, 𝑧𝑖
1|𝑐1)𝑝(𝑐1), for 𝑖 = 1, . . . , 𝑁 .

5. Compute 𝑤𝑖
1 ∝ 𝑊1(𝑧𝑖

1) according to

𝑊1(𝑧𝑖
1) = 𝑝(𝑦1, 𝑧𝑖

1)
𝑞1(𝑧𝑖

1) , where 𝑝(𝑦1, 𝑧𝑖
1) =

∑︁
𝑐1∈C

𝑝(𝑦1, 𝑧𝑖
1|𝑐1)𝑝(𝑐1),

for 𝑖 = 1, . . . , 𝑁 .
B. Recursive step: (𝑡 = 2, . . . , 𝑇 )

1. Sample 𝑎𝑖
𝑡 with P(𝑎𝑖

𝑡 = 𝑗) = 𝑤𝑗
𝑡−1 for 𝑖 = 1, . . . , 𝑁 − 1.

2. Sample 𝑧𝑖
𝑡 ∼ 𝑞𝑡(·|𝑧𝑎𝑖

𝑡
1:𝑡−1) for 𝑖 = 1, . . . , 𝑁 − 1.

3. Compute 𝑤𝑖
𝑡−1|𝑇 ∝ 𝑤𝑖

𝑡−1𝑝(𝑦𝑡:𝑇 , 𝑧′
𝑡:𝑇 |𝑧𝑖

1:𝑡−1, 𝑦1:𝑡−1) with

𝑝(𝑦𝑡:𝑇 , 𝑧′
𝑡:𝑇 |𝑧𝑖

1:𝑡−1, 𝑦1:𝑡−1) =
∑︁

𝑐𝑡−1∈C
𝑝(𝑦𝑡:𝑇 , 𝑧′

𝑡:𝑇 |𝑧𝑖
𝑡−1, 𝑐𝑡−1)𝑝(𝑐𝑡−1|𝑧𝑖

1:𝑡−1, 𝑦1:𝑡−1)

and
𝑝(𝑦𝑡:𝑇 , 𝑧′

𝑡:𝑇 |𝑧𝑖
𝑡−1, 𝑐𝑡−1) ∝

∑︁
𝑐𝑡∈C

𝑝(𝑐𝑡|𝑦𝑡:𝑇 , 𝑧′
𝑡:𝑇 )

𝜉𝑡(𝑐𝑡)
𝑝(𝑧′

𝑡, 𝑐𝑡|𝑐𝑡−1, 𝑧𝑖
𝑡−1),

for 𝑖 = 1, . . . , 𝑁 .
4. Sample 𝑎𝑁

𝑡 with P(𝑎𝑁
𝑡 = 𝑖) = 𝑤𝑖

𝑡−1|𝑇 and set 𝑧𝑁
𝑡 := 𝑧′

𝑡.

5. Set 𝑧𝑖
1:𝑡 := {𝑧𝑖

𝑡, 𝑧
𝑎𝑖

𝑡
1:𝑡−1} for 𝑖 = 1, . . . , 𝑁 .

6. Compute 𝑝(𝑐𝑡|𝑧𝑖
1:𝑡, 𝑦1:𝑡) ∝ 𝑝(𝑦𝑡, 𝑧𝑖

𝑡|𝑐𝑡, 𝑧
𝑎𝑖

𝑡
𝑡−1)𝑝(𝑐𝑡|𝑧𝑎𝑖

𝑡
1:𝑡−1, 𝑦1:𝑡−1) where

𝑝(𝑐𝑡|𝑧𝑎𝑖
𝑡

1:𝑡−1, 𝑦1:𝑡−1) =
∑︁

𝑐𝑡−1∈C
𝑝(𝑐𝑡|𝑐𝑡−1)𝑝(𝑐𝑡−1|𝑧𝑎𝑖

𝑡
1:𝑡−1, 𝑦1:𝑡−1),

for 𝑖 = 1, . . . , 𝑁 .
7. Compute 𝑤𝑖

𝑡 ∝ 𝑊𝑡(𝑧𝑖
1:𝑡) according to

𝑊𝑡(𝑧𝑖
1:𝑡) =

𝑝(𝑦𝑡, 𝑧𝑖
𝑡|𝑧

𝑎𝑖
𝑡

1:𝑡−1, 𝑦1:𝑡−1)

𝑞𝑡(𝑧𝑖
𝑡|𝑧

𝑎𝑖
𝑡

1:𝑡−1)
,

where
𝑝(𝑦𝑡, 𝑧𝑖

𝑡|𝑧
𝑎𝑖

𝑡
1:𝑡−1, 𝑦1:𝑡−1) =

∑︁
𝑐𝑡∈C

𝑝(𝑦𝑡, 𝑧𝑖
𝑡|𝑐𝑡, 𝑧

𝑎𝑖
𝑡

𝑡−1)𝑝(𝑐𝑡|𝑧𝑎𝑖
𝑡

1:𝑡−1, 𝑦1:𝑡−1),

for 𝑖 = 1, . . . , 𝑁 .
C. Final step:

1. Sample 𝑘 with P(𝑘 = 𝑖) = 𝑤𝑖
𝑇 and set 𝑧1:𝑇 [𝑘] := 𝑧𝑘

1:𝑇 .
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4 A PARTICLE SAEM ALGORITHM
TO IDENTIFY JUMP MARKOV
NONLINEAR MODELS

The identification of static parameters in jump Markov nonlinear models (JMNMs)
poses a key challenge in explaining nonlinear and abruptly changing behavior of dy-
namical systems. This chapter introduces a stochastic approximation expectation
maximization algorithm to facilitate offline maximum likelihood parameter estima-
tion in JMNMs. The method relies on the construction of a particle Gibbs kernel
that takes advantage of the inherent structure of the model to increase the efficiency
through Rao-Blackwellization. Numerical examples illustrate that the proposed so-
lution outperforms related approaches.

4.1 Introduction

Context

Jump Markov nonlinear models (JMNMs) can be seen as a particular class of nonlin-
ear and non-Gaussian state-space models (SSMs, [14]) where the observation variable
is related to the latent state variable that contains a continuous and discrete-valued
part. While the continuous part describes the dynamics of a system, the discrete
one indicates the switching of different dynamical modes.

The expectation maximization (EM) algorithm by [22] has become a standard
tool to address the maximum likelihood (ML) parameter estimation in SSMs. The
method is favored especially for its inherent feature of splitting the ML problem into
two more conveniently tractable steps known as expectation and maximization. In
the model class considered here, the expectation step is intractable and requires us
to solve the nonlinear smoothing problem [59]. The particle Markov chain Monte
Carlo (PMCMC) methods [2], which rely on sequential Monte Carlo (SMC, [25]) to
facilitate the construction of high-dimensional proposal kernels in (MCMC, [1]), em-
body an efficient tool to address the issue. The paper [58] recently elaborated on the
PMCMC idea and suggested to combine their particle Gibbs with ancestor sampling
(PGAS) kernel and the stochastic approximation EM (SAEM) algorithm of [21] to
obtain the particle SAEM (PSAEM) procedure. The related paper [85] then ex-
tended this design to propose a Rao-Blackwellized PSAEM (RBPSAEM) algorithm
for jump Markov linear models by utilizing their linear Gaussian substructure.

A recent EM approach specifically tailored for JMNMs was proposed by [5] who
extended the particle smoothing EM (PSEM) framework of [82]. The method pro-
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posed herein differs from this approach mainly in using stochastic approximation,
Rao-Blackwellization, and PMCMC-based smoothing. Another EM solution was de-
veloped by [73] who introduced a Rao-Blackwellized forward smoother, which differs
from the present method also in the smoothing methodology but shares similarities
with the specific type of Rao-Blackwellization.

Contributions

The contribution of this chapter consists in developing an RBPSAEM method
for JMNMs which exploits the substructure related to the discrete state. This is
achieved by formulating a conditional version of the RBPF proposed by [73]. To
facilitate the ancestor sampling, a finite state-space variant of the backward informa-
tion filter (BIF, [67]) is proposed, requiring us to change the scale of the associated
backward recursion. The experimental evidence indicates that the proposed method
offers a higher estimation accuracy compared to competing approaches.

4.2 Problem Formulation

Consider the discrete-time JMNM given by

𝑐𝑡 ∼ 𝑝(𝑐𝑡|𝑐𝑡−1), (4.1a)
𝑧𝑡 ∼ 𝑓(𝑧𝑡|𝑐𝑡, 𝑧𝑡−1; 𝜃𝑐𝑡), (4.1b)
𝑦𝑡 ∼ 𝑔(𝑦𝑡|𝑐𝑡, 𝑧𝑡; 𝜃𝑐𝑡), (4.1c)

where the continuous states and observations are denoted by 𝑧𝑡 ∈ Z ⊆ R𝑛𝑧 and
𝑦𝑡 ∈ Y ⊆ R𝑛𝑦 , respectively. The discrete state 𝑐𝑡 ∈ C := {1, . . . , 𝐾} indicates the
currently active mode, with 𝐾 being the total number of the modes. We assume that
each mode is described by the probability densities 𝑓(·; 𝜃𝑐𝑡) and 𝑔(·; 𝜃𝑐𝑡), where 𝜃𝑐𝑡 is
the associated parameter set. The probability distribution 𝑝(·) governs the switching
between the modes and is parameterized by the 𝐾 ×𝐾 transition probability matrix
Π with the entries

Π𝑚𝑛 := P(𝑐𝑡 = 𝑛|𝑐𝑡−1 = 𝑚) = 𝑝(𝑛|𝑚). (4.2)

The set of all unknown parameters, 𝜃 ∈ Θ ⊆ R𝑛𝜃 , is defined by 𝜃 := {Π, {𝜃𝑛}𝐾
𝑛=1}. At

the initial time instance, the latent states are distributed according to 𝑧1 ∼ 𝜇(𝑧1|𝑐1)
and 𝑐1 ∼ 𝜈(𝑐1); both 𝜇 and 𝜈 are assumed to be known.

We search for the parameter estimate maximizing the likelihood of the observed
data sequence 𝑦1:𝑇 := (𝑦1, . . . , 𝑦𝑇 ), with 𝑇 denoting its length, that is,

̂︀𝜃ML = argmax
𝜃∈Θ

𝑝𝜃(𝑦1:𝑇 ). (4.3)
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Algorithm 5 Rao-Blackwellized Stochastic Approximation Expectation Maximiza-
tion (SAEM) for JMNMs
A. Initial step: (𝑘 = 0)

1. Set 𝑧1:𝑇 [0] ∈ Z𝑇 , 𝜃[0] ∈ Θ, and ̂︀𝒬0(𝜃) := 0.
B. Recursive step: (𝑘 = 1, . . . , 𝑅)

1. Sample 𝑧1:𝑇 [𝑘] ∼ 𝒦𝜃[𝑘−1](·|𝑧1:𝑇 [𝑘 − 1]).
2. Compute ̂︀𝒬𝑘(𝜃) according to

̂︀𝒬𝑘(𝜃) = (1 − 𝛼𝑘) ̂︀𝒬𝑘−1(𝜃) + 𝛼𝑘E𝜃[𝑘−1]
[︀

log 𝑝𝜃(𝑐1:𝑇 , 𝑧1:𝑇 [𝑘], 𝑦1:𝑇 )
⃒⃒
𝑧1:𝑇 [𝑘], 𝑦1:𝑇

]︀
.

3. Compute 𝜃[𝑘] = argmax𝜃∈Θ
̂︀𝒬𝑘(𝜃).

In the present class of models, the computation of 𝑝𝜃(𝑦1:𝑇 ) cannot be conducted
exactly, as it contains the summation over 𝐾𝑇 possible values, which is infeasible to
perform even for a moderate 𝑇 . Additionally, the integration over Z𝑇 required for
evaluating 𝑝𝜃(𝑦1:𝑇 ) cannot be performed either, as the model is supposed to contain
nonlinearities.

4.3 The Proposed Algorithm

The proposed RBPGAS kernel and the SAEM algorithm are summarized in Al-
gorithms 5 and 6, respectively. The derivation and more detailed description of
Algorithms 5 and 6 can be found in the full version of this thesis.

4.4 Experiments and Results

This section illustrates the performance of the proposed RBPSAEM algorithm com-
pared to the PSAEM [57] and PSEM [82] procedures. We perform the experiment
on the standard benchmark state-space model

𝑥𝑡 = 𝑥𝑡−1

2 + 25𝑥𝑡−1

1 + 𝑥2
𝑡−1

+ 8 cos(1.2𝑡) + 𝑣𝑡,

𝑦𝑡 = 𝑥2
𝑡

20 + 𝑤𝑡,

where 𝑣𝑡 ∼ 𝒩 (0, 1) is a mode-independent, independent and identically distributed,
Gaussian noise variable with zero mean and unit variance, and 𝑤𝑡 ∼ 𝒩 (𝜇𝑐𝑡 , 𝜎2

𝑐𝑡
) is

a mode-dependent Gaussian noise variable with the mean 𝜇𝑐𝑡 and variance 𝜎2
𝑐𝑡

. We
consider that the total number of modes is 𝐾 = 2, i.e., 𝑐𝑡 ∈ C := {1, 2}. The task is
to estimate the parameters 𝜇1, 𝜇2, 𝜎2

1, 𝜎2
2, Π11, and Π22, with their true values given

by 0, 8, 5, 1, 0.98, and 0.8, respectively. We repeat the experiment on 20 different
observation sequences of the length 𝑇 = 1000.
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Fig. 4.1: The resulting parameter estimates versus the number of iterations for PSEM
( ), PSAEM ( ), and RBPSAEM ( ). The results are averaged over twenty in-
dependent simulation runs, with the solid line being the median and the shaded area
delineating the interquartile range. The true parameter values are indicated with the
dashed line ( ).

Fig. 4.1 shows that the proposed method surpasses PSAEM because of the lower
(or very similar) bias and variance of the estimated parameters. Although PSEM is
better in estimating the transition probabilities, the remaining estimates converge to
incorrect values. The main reason then consists in that PSEM does not rely on the
stochastic approximation and thus requires a higher number of particles to perform
similarly to the remaining procedures. Moreover, as the probability Π11 is close to
its upper bound, the method suffers from the degeneracy around the mode changes
[27]. Nevertheless, both PSAEM and RBPSAEM seem to be more robust in this
respect.
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Algorithm 6 RBPGAS Kernel for JMNMs (version B)
Inputs: 𝑧′

1:𝑇 = 𝑧1:𝑇 [𝑘 − 1].
Outputs: 𝑧1:𝑇 [𝑘] and {𝑧𝑖

1:𝑇 , {𝑝(𝑐𝑡|𝑧𝑖
1:𝑡, 𝑦1:𝑡)}𝑇

𝑡=1, 𝑤𝑖
𝑇 }𝑁

𝑖=1.
A. Initial step: (𝑡 = 1)

1. Compute 𝛼𝑙(𝑐𝑙|𝑧𝑙:𝑇 ) ∝ 𝑝(𝑦𝑙|𝑐𝑙, 𝑧𝑙)𝛼𝑙+1(𝑐𝑙|𝑧𝑙:𝑇 ) where

𝛼𝑙+1(𝑐𝑙|𝑧𝑙:𝑇 ) ∝
∑︁

𝑐𝑙+1∈C
𝛼𝑙+1(𝑐𝑙+1|𝑧𝑙+1:𝑇 )𝑝(𝑧𝑙+1, 𝑐𝑙+1|𝑐𝑙, 𝑧𝑙),

for 𝑙 = 1, . . . , 𝑇 .
2. Sample 𝑧𝑖

1 ∼ 𝑞1(·) for 𝑖 = 1, . . . , 𝑁 − 1 and set 𝑧𝑁
1 := 𝑧′

1.
3. Compute 𝑝(𝑐1|𝑧𝑖

1, 𝑦1) ∝ 𝑝(𝑦1, 𝑧𝑖
1|𝑐1)𝑝(𝑐1), for 𝑖 = 1, . . . , 𝑁 .

4. Compute 𝑤𝑖
1 ∝ 𝑊1(𝑧𝑖

1) according to

𝑊1(𝑧𝑖
1) = 𝑝(𝑦1, 𝑧𝑖

1)
𝑞1(𝑧𝑖

1) , where 𝑝(𝑦1, 𝑧𝑖
1) =

∑︁
𝑐1∈C

𝑝(𝑦1, 𝑧𝑖
1|𝑐1)𝑝(𝑐1),

for 𝑖 = 1, . . . , 𝑁 .
B. Recursive step: (𝑡 = 2, . . . , 𝑇 )

1. Sample 𝑎𝑖
𝑡 with P(𝑎𝑖

𝑡 = 𝑗) = 𝑤𝑗
𝑡−1 for 𝑖 = 1, . . . , 𝑁 − 1.

2. Sample 𝑧𝑖
𝑡 ∼ 𝑞𝑡(·|𝑧𝑎𝑖

𝑡
1:𝑡−1) for 𝑖 = 1, . . . , 𝑁 − 1.

3. Compute 𝑤𝑖
𝑡−1|𝑇 ∝ 𝑤𝑖

𝑡−1𝑝(𝑦𝑡:𝑇 , 𝑧′
𝑡:𝑇 |𝑧𝑖

1:𝑡−1, 𝑦1:𝑡−1) with

𝑝(𝑦𝑡:𝑇 , 𝑧′
𝑡:𝑇 |𝑧𝑖

1:𝑡−1, 𝑦1:𝑡−1) =
∑︁

𝑐𝑡−1∈C
𝑝(𝑦𝑡:𝑇 , 𝑧′

𝑡:𝑇 |𝑧𝑖
𝑡−1, 𝑐𝑡−1)𝑝(𝑐𝑡−1|𝑧𝑖

1:𝑡−1, 𝑦1:𝑡−1),

and
𝑝(𝑦𝑡:𝑇 , 𝑧′

𝑡:𝑇 |𝑧𝑖
𝑡−1, 𝑐𝑡−1) ∝

∑︁
𝑐𝑡∈C

𝛼𝑡(𝑐𝑡|𝑧′
𝑡:𝑇 )𝑝(𝑧′

𝑡, 𝑐𝑡|𝑐𝑡−1, 𝑧𝑖
𝑡−1),

for 𝑖 = 1, . . . , 𝑁 .
4. Sample 𝑎𝑁

𝑡 with P(𝑎𝑁
𝑡 = 𝑖) = 𝑤𝑖

𝑡−1|𝑇 and set 𝑧𝑁
𝑡 := 𝑧′

𝑡.

5. Set 𝑧𝑖
1:𝑡 := {𝑧𝑖

𝑡, 𝑧
𝑎𝑖

𝑡
1:𝑡−1} for 𝑖 = 1, . . . , 𝑁 .

6. Compute 𝑝(𝑐𝑡|𝑧𝑖
1:𝑡, 𝑦1:𝑡) ∝ 𝑝(𝑦𝑡, 𝑧𝑖

𝑡|𝑐𝑡, 𝑧
𝑎𝑖

𝑡
𝑡−1)𝑝(𝑐𝑡|𝑧𝑎𝑖

𝑡
1:𝑡−1, 𝑦1:𝑡−1) where

𝑝(𝑐𝑡|𝑧𝑎𝑖
𝑡

1:𝑡−1, 𝑦1:𝑡−1) =
∑︁

𝑐𝑡−1∈C
𝑝(𝑐𝑡|𝑐𝑡−1)𝑝(𝑐𝑡−1|𝑧𝑎𝑖

𝑡
1:𝑡−1, 𝑦1:𝑡−1),

for 𝑖 = 1, . . . , 𝑁 .
7. Compute 𝑤𝑖

𝑡 ∝ 𝑊𝑡(𝑧𝑖
1:𝑡) according to

𝑊𝑡(𝑧𝑖
1:𝑡) =

𝑝(𝑦𝑡, 𝑧𝑖
𝑡|𝑧

𝑎𝑖
𝑡

1:𝑡−1, 𝑦1:𝑡−1)

𝑞𝑡(𝑧𝑖
𝑡|𝑧

𝑎𝑖
𝑡

1:𝑡−1)
,

where
𝑝(𝑦𝑡, 𝑧𝑖

𝑡|𝑧
𝑎𝑖

𝑡
1:𝑡−1, 𝑦1:𝑡−1) =

∑︁
𝑐𝑡∈C

𝑝(𝑦𝑡, 𝑧𝑖
𝑡|𝑐𝑡, 𝑧

𝑎𝑖
𝑡

𝑡−1)𝑝(𝑐𝑡|𝑧𝑎𝑖
𝑡

1:𝑡−1, 𝑦1:𝑡−1),

for 𝑖 = 1, . . . , 𝑁 .
C. Final step:

1. Sample 𝑘 with P(𝑘 = 𝑖) = 𝑤𝑖
𝑇 and set 𝑧1:𝑇 [𝑘] := 𝑧𝑘

1:𝑇 .
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5 DYNAMIC BAYESIAN KNOWLEDGE
TRANSFER BETWEEN A PAIR
OF KALMAN FILTERS

Transfer learning is a framework that includes—among other topics—the design of
knowledge transfer mechanisms between Bayesian filters. Transfer learning strate-
gies in this context typically rely on a complete stochastic dependence structure
being specified between the participating learning procedures (filters). This chapter
proposes a method that does not require such a restrictive assumption. The solu-
tion in this incomplete modelling case is based on the fully probabilistic design of
an unknown probability distribution which conditions on knowledge in the form of
an externally supplied distribution. We are specifically interested in the situation
where the external distribution accumulates knowledge dynamically via Kalman fil-
tering. Simulations illustrate that the proposed algorithm outperforms alternative
methods for transferring this dynamic knowledge from the external Kalman filter.

5.1 Introduction

Context

Transfer learning [75] has become a key research direction in statistical machine
learning [69]. The basic principle of transfer learning is to utilize the experience
of an external learning agent (source task) to improve the learning of a primary
agent (target task). Transfer learning has recently witnessed substantial attention
in a multitude of theoretically and practically oriented scientific fields, such as rein-
forcement learning [87], deep learning [8], autonomous driving [42], computer vision
[76], sensor networks [89], etc. This chapter focuses on a specific transfer learning
context referred to as Bayesian transfer learning and its deployment in statistical
signal processing. We are specifically interested in developing a procedure for prob-
abilistic knowledge transfer in sensor networks where each knowledge-bearing node
constitutes a Bayesian filter acting on its associated state-space model.

The conventional approach to Bayesian transfer learning involves replacing the
prior distribution of standard Bayesian learning with a distribution conditioned on
the transferred knowledge [88]. The methods based on this principle differ in the way
the knowledge-conditioned prior is elicited [9]. An alternative principle is to define
the joint posterior distribution of both source and target quantities of interest given
source and target data, and then to compute the posterior distribution of the target
quantity by marginalization [48]. Hierarchical Bayesian learning provides another
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formalization of Bayesian transfer learning [96], where the knowledge is transferred
by means of a hyper-prior. However, it seems that a widely accepted consensus on
Bayesian transfer learning is missing. This chapter seeks to fill this gap.

Contributions

The common aspect of the above approaches is that they assume existence of an
explicit model of all unknown quantities of interest, enabling Bayes’ rule to accom-
modate transfer learning, which we call here the complete modelling case. In the
present chapter, we are concerned with a scenario where there is not enough knowl-
edge to construct such a model explicitly. We refer to this particular situation as
the incomplete modelling case. The previous work in this respect [34] involved a
static Bayesian knowledge transfer for a pair of Kalman filters, where the external
knowledge is transferred in the form of a marginal distribution defined at a single
time-step. The present chapter extends this work by designing a mechanism for
transferring distributions defined over multiple time-steps, thus achieving dynamic
and on-line Bayesian knowledge transfer.

5.2 Problem Formulation

Let us consider a state-space model given by

𝑓(𝑥𝑖|𝑥𝑖−1) ≡ 𝒩𝑥𝑖
(𝐴𝑥𝑖−1, 𝑄), (5.1a)

𝑓(𝑧𝑖|𝑥𝑖) ≡ 𝒩𝑧𝑖
(𝐶𝑥𝑖, 𝑅), (5.1b)

where 𝑥𝑖 ∈ X ⊆ R𝑛𝑥 and 𝑧𝑖 ∈ Z ⊆ R𝑛𝑧 are respectively the state and observation
variables defined at the discrete-time instants 𝑖 = 1, . . . , 𝑛. The state-space model
(5.1) is fully determined by the state transition (5.1a) and observation (5.1b) prob-
ability densities, with all their parameters being known. Here, 𝒩𝑣(𝜇, Σ) denotes the
Gaussian density of a (vector) random variable, 𝑣, with the mean, 𝜇, and covariance
matrix, Σ; and 𝐴 and 𝐶 are matrices of appropriate dimensions. At the initial time
step (𝑖 = 1), the state variable is distributed according to 𝑓(𝑥1) ≡ 𝒩𝑥1(𝜇1, Σ1). The
time-evolution of the state-space model (5.1) is characterized by the joint augmented
model

𝑓(x𝑛, z𝑛)=𝑓(z𝑛|x𝑛)𝑓(x𝑛)≡
𝑛∏︁

𝑖=1
𝑓(𝑧𝑖|𝑥𝑖)𝑓(𝑥𝑖|𝑥𝑖−1), (5.2)

where 𝑓(z𝑛|x𝑛) and 𝑓(x𝑛) define the joint observation model and joint state pre-prior
model, respectively. In (5.2), we respect the convention 𝑥0 ≡ ∅ and use the boldface
notation v𝑛 ≡ (𝑣1, . . . , 𝑣𝑛) to denote a sequence of variables 𝑣𝑖 ∈ V, for 𝑖 = 1, . . . , 𝑛.
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Moreover, we use the symbols 𝑚 and 𝑓 to denote unspecified (variational form) and
specified (fixed form) densities, respectively.

We are concerned with the problem of optimally transferring knowledge from an
external Bayesian filter (source task) to a primary one (target task). The filters op-
erate on their respective models, processing their local observations, and estimating
their local states. The conditional independence structure between the variables in
each model is as specified in (5.2). However, an explicit conditioning mechanism
describing dependence between quantities of the primary filter, (x𝑛, z𝑛), and exter-
nal filter, (x𝑛,𝑒, z𝑛,𝑒), is assumed missing. The common modelling approach based
on a joint density of the external and primary variables is therefore unavailable.
This incomplete modelling scenario is addressed here as a problem of optimal design
of an unknown probability density, processing the external (distributional) knowl-
edge as a constraint. Specifically, we design a dynamic Bayesian knowledge transfer
method, where knowledge is transferred in the form of a joint probability density,
𝑓𝑒, describing a sequence of external quantities, z𝑛,𝑒.

5.3 The Proposed Algorithm

The resulting filter with FPD-optimal dynamic transfer is summarized in Algorithm
7. The derivation and more detailed description of Algorithm 7 can be found in the
full version of this thesis.

5.4 Experiments and Results

The purpose of this section is to compare the proposed method against alternative
approaches. We evaluate the performance of the primary filter when keeping its
observation variance 𝑅 fixed but changing the observation variance of the external
filter 𝑅𝑒, which quantifies the confidence of the external knowledge. To assess the re-
sulting state estimates, we use the mean norm squared-error, MNSE = 1

𝑛

∑︀𝑛
𝑖=1 ||𝑥𝑖−

𝜇𝑖|𝑖||2, with || · || denoting the Euclidean norm. We are concerned with a simple
position-velocity state-space model [30] specified by

𝐴 =
⎡⎣1 1
0 1

⎤⎦ , 𝐶 =
[︁
1 0

]︁
, 𝑄 = 10−5𝐼2, 𝑅 = 10−3.

The number of time steps is 𝑛 = 50. The results of the compared algorithms are
illustrated in Fig. 5.1.

The MNSE of the NT filter defines a reference level against which the remaining
filters are compared. This level is obviously constant as the external observation
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Fig. 5.1: The mean norm squared-error (MNSE) of the primary filter versus the obser-
vation variance 𝑅𝑒 of the external Kalman filter. The results are averaged over 1000
independent simulation runs, with the solid line being the median and the shaded area
delineating the interquartile range. The procedures that are compared are (i) the Kalman
filter with No Transfer (NT), (ii) Static Bayesian knowledge Transfer (ST) [34], (iii)
Dynamic Bayesian knowledge Transfer (DT) given by Algorithm 7, (iv) an informally
adapted version of DT (DTi); and (v) Measurement Vector Fusion (MVF) [95].

variance does not enter the standard Kalman filter. The error in the remaining filters
varies according to the ratio of the primary and external observation variances. We
can observe that the proposed DT filter achieves positive knowledge transfer for 𝑅𝑒 <

3 × 10−3, which is evidenced by the fact that the error of the DT filter is lower than
that of the NT filter in this range. Moreover, the DT filter outperforms the MVF
filter in the same interval, and it also outperforms the ST filter for 𝑅𝑒 < 2×10−2. The
important observation is that the ST and MVF filters meet the performance of the
NT filter close to the intersection where 𝑅𝑒 = 𝑅, but the proposed DT filter passes
this point with a markedly lower error and meets the NT filter later (i.e. for higher
external observation variance). This increased robustness of the DT filter, which
now benefits even from external observations that are of a lower quality than the
primary ones, is achieved because of its ability to accumulate the external knowledge
over multiple time steps via the dynamic transfer which is the focus of this chapter.
The ST and MVF filters do not have this property, as is evidenced by the fact that
their error is, respectively, worse and very similar to the NT filter, above 𝑅𝑒 = 𝑅.
However, accumulating external knowledge of increasingly poor quality does lead to
a more quickly decreasing performance of the DT filter for 𝑅𝑒 > 2 × 10−2.
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Algorithm 7 FPD-optimal processing for dynamic transfer between Kalman filters
A. Backward sweep:

1. For 𝑖 = 𝑛,
* Compute

𝑟𝑛|𝑛 = 𝐶⊤𝑅−1𝑧𝑛|𝑛−1,𝑒,

𝑆𝑛|𝑛 = 𝐶⊤𝑅−1𝐶.

* Compute
𝑟𝑛−1|𝑛 = 𝐴⊤(𝐼𝑛𝑥

− 𝐿)𝑟𝑛|𝑛,

𝑆𝑛−1|𝑛 = 𝐴⊤(𝐼𝑛𝑥
− 𝐿)𝑆𝑛|𝑛𝐴,

where 𝐿 ≡ 𝑆𝑛|𝑛𝑄
1
2 (𝑄 ⊤

2 𝑆𝑛|𝑛𝑄
1
2 + 𝐼𝑛𝑥)−1𝑄

⊤
2 , 𝐼𝑛𝑥 is the 𝑛𝑥 × 𝑛𝑥 identity matrix, 𝑄

1
2 is the

Cholesky factor of 𝑄, and ⊤ denotes matrix transposition.
2. For 𝑖 = 𝑛 − 1, . . . , 2;

* Compute
𝑟𝑖|𝑖 = 𝑟𝑖|𝑖+1 + 𝐶⊤𝑅−1𝑧𝑖|𝑖−1,𝑒,

𝑆𝑖|𝑖 = 𝑆𝑖|𝑖+1 + 𝐶⊤𝑅−1𝐶.

* Compute
𝑟𝑖−1|𝑖 = 𝐴⊤(𝐼𝑛𝑥

− 𝐿)𝑟𝑖|𝑖,

𝑆𝑖−1|𝑖 = 𝐴⊤(𝐼𝑛𝑥
− 𝐿)𝑆𝑖|𝑖𝐴,

where where 𝐿 ≡ 𝑆𝑖|𝑖𝑄
1
2 (𝑄 ⊤

2 𝑆𝑖|𝑖𝑄
1
2 + 𝐼𝑛𝑥

)−1𝑄
⊤
2 .

B. Forward sweep:
1. For 𝑖 = 1, set 𝜇1|0, Σ1|0 and compute

𝑧1|0 = 𝐶𝜇1|0,

𝑅1|0 = 𝐶Σ1|0𝐶⊤ + 𝑅,

𝜇1|1 = 𝜇1|0 + 𝐾(𝑧1 − 𝑧1|0),
Σ1|1 = Σ1|0 − 𝐾𝑅1|0𝐾⊤,

where 𝐾 ≡ Σ1|0𝐶⊤𝑅−1
1|0.

2. For 𝑖 = 2, . . . , 𝑛;
* Compute

𝜇𝑖|𝑖−1 = (𝐼𝑛𝑥
− Σ𝑜

𝑖 𝑆𝑖|𝑖)𝐴𝜇𝑖−1|𝑖−1 + Σ𝑜
𝑖 𝑟𝑖|𝑖,

Σ𝑖|𝑖−1 = (𝐼𝑛𝑥
− Σ𝑜

𝑖 𝑆𝑖|𝑖)𝐴Σ𝑖−1|𝑖−1𝐴⊤(𝐼𝑛𝑥
− Σ𝑜

𝑖 𝑆𝑖|𝑖)⊤ + Σ𝑜
𝑖 ,

where Σ𝑜
𝑖 = 𝑄

1
2 (𝑄 ⊤

2 𝑆𝑖|𝑖𝑄
1
2 + 𝐼𝑛𝑥

)−1𝑄
⊤
2 .

* Compute

𝑧𝑖|𝑖−1 = 𝐶𝜇𝑖|𝑖−1,

𝑅𝑖|𝑖−1 = 𝐶Σ𝑖|𝑖−1𝐶⊤ + 𝑅,

𝜇𝑖|𝑖 = 𝜇𝑖|𝑖−1 + 𝐾(𝑧𝑖 − 𝑧𝑖|𝑖−1),
Σ𝑖|𝑖 = Σ𝑖|𝑖−1 − 𝐾𝑅𝑖|𝑖−1𝐾⊤,

where 𝐾 ≡ Σ𝑖|𝑖−1𝐶⊤𝑅−1
𝑖|𝑖−1.
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CONCLUSION

Chapter 1 is concerned with the design of the projection-based Rao-Blackwellized
particle filter for estimating static parameters in the conditionally conjugate state-
space models. The primary objective was to devise an SMC-based approach which
counteracts the particle path degeneracy problem. This was accomplished by for-
mulating the projection-based updates for computing the statistics representing the
posterior density of the parameters in order to avoid their resampling and thus make
them less affected by the degenerate particle trajectories. The results reveal that
the proposed solution indeed decreases the variance of the parameter estimates over
multiple simulation runs compared to the plain Rao-Blackwellized particle filter,
and it therefore suffers less from the degeneracy problem. Moreover, the proposed
approach outperforms a number of alternative techniques for parameter estimation
in nonlinear and non-Gaussian state-space models. In the presented experiment, the
resulting solution has approximately the same computational complexity as the ba-
sic Rao-Blackwellized particle filter but provides an improved estimation precision.
Therefore, for the same precision level of both these methods, we obtain a consid-
erable decrease in the computational time in favor of the proposed method. When
changing the signal-to-noise ratio in the considered experimental setup, the proposed
projection-based Rao-Blackwellized particle filter starts to be more sensitive to the
initial setting of the posterior statistics. This increased sensitivity is mainly caused
by the adoption of the bootstrap proposal density. Therefore, designing a suitable
approximation of the optimal proposal may provide more robustness in this sense.

The proposed algorithm can be applied to, e.g., Bayesian optimization [39], sea-
sonal epidemics detection [56], charge estimation of batteries [62], etc.

The idea of computing the projections seems to provide an interesting opportu-
nity for counteracting the particle path degeneracy problem. Therefore, the primary
aim of future work should be focused on different strategies for the evolution of the
statistics and investigating dependence of the algorithm on the forgetting properties
of the state-space model. A possible generalization of the proposed approach is to
use an MCMC procedure [35] at each iteration in order to facilitate application to
nonlinear and non-Gaussian state-space models without the tractable substructure
with respect to the parameters. An increase in the computational complexity of
such an algorithm should be expected. Another possibility is to extend the method
to allow for the parameter inference in the conditionally conjugate jump Markov
models. Such a method could then be applied to, e.g., traffic flow monitoring [77]
and evaluation of the stock return sensitivity to macroeconomic news announcement
[41]. Alternatively, to enable tracking of time-varying parameters, it is also tempting
to extend the estimation procedure by a suitable forgetting strategy [52, 49].
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Chapter 2 investigates the possibility of using alternative stabilized forgetting
in the context of SMC-based estimation of slowly-varying parameters in condi-
tionally conjugate state-space models. It is demonstrated that the proposed Rao-
Blackwellized particle filter outperforms the one introduced in [74]; more concretely,
the estimates of the measurement noise variance are less biased, and the approach
also reduces the variance of the estimated parameters. This is achieved in a compu-
tationally more efficient way. Specifically, in the present experiment, the proposed
method reduces the computational time by an order of magnitude. The algorithm
offers a fair degree of adaptability by allowing us to tune the forgetting of the past
information by the hyper-parameters of the alternative density. This makes the
method slightly more difficult to tune (setting the statistic 𝜇𝐴 of the alternative
density to zero always substantially simplifies the initial tuning).

There is a multitude of practical problems for which the proposed technique can
be utilized, such as estimating parameters of automotive-grade sensors [10], tire radii
estimation [65], etc.

The proposed algorithm—similarly to the one from Chapter 1—can also be ex-
tended to incorporate the MCMC steps, thus broadening the range of admissible
models to completely nonlinear and non-Gaussian state-space models. However, to
simplify the applicability of the proposed method, the main direction of future work
will consist in facilitating an autonomous adaptation of the hyper-parameters of the
alternative density. A possible approach how to solve this requirement lies in the
hierarchical Bayesian modeling [9].

Chapter 3 designs Rao-Blackwellized particle Gibbs kernels for smoothing in
jump Markov nonlinear models. The experimental evidence shows that the pro-
posed algorithms are computationally more efficient than the competing approaches.
An additional investigation of the proposed (ancestor-sampling-based) procedure re-
vealed that the introduction of the artificial prior is redundant. However, changing
the scale of the backward information filtering recursion—provided by the associated
design step—is necessary. Practically, this means that we can set the artificial prior
to one, while leaving the related derivations intact. The necessary change of scale
is then still preserved in the algorithm design. A formally more suitable derivation
of this part of the algorithm is provided in Chapter 4. In various experiments, the
algorithm without the change of scale provided poor estimation precision compared
to the one with this change. In fact, the former version numerically failed several
times during the experiments, whereas the latter one always prevailed.

A possible application scenario for the developed smoothing algorithm consists
in offline processing of experimental data in indoor localization [71], target classifi-
cation [4], fault detection [86], etc. In such cases, the proposed method can serve
as a generator of reference trajectories for the development and validation of online
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algorithms.
Chapter 4 proposes the Rao-Blackwellized particle stochastic approximation ex-

pectation algorithm for jump Markov nonlinear models, offering a computationally
more efficient alternative to the basic formulation which jointly samples both the la-
tent variables. The efficiency depends on the distance between the individual regimes
of the jump Markov nonlinear model. On the one hand, if the regime parameters
are substantially different, it is easy to detect the changes in the observations and
the algorithm provides best efficiency. On the other hand, if the regime parameters
are very similar, it is harder to capture the changes in the observations and the
method is less efficient. However, in the latter case, it is no more reasonable to use
an algorithm which assumes both continuous state and discrete regime variables, it
would suffice to use an algorithm which considers only the continuous state variable.
The rationale behind this statement is that the changes in the observations become
so small that they will be hidden in the noise, and there is thus no need to consider
a jump Markov nonlinear model but rather a plain nonlinear non-Gaussian state-
space model. Therefore, the best performance can be expected when the changes are
clearly distinguishable from the noise. This behavior is common for all algorithms
dealing with switching models.

The method is applicable to parameter identification in diverse application areas
such as option pricing in financial markets [17], engine performance diagnosis [91],
land vehicle positioning [15], etc.

The proposed Rao-Blackwellized particle stochastic approximation expectation
algorithm can be seen as an instance of where the Rao-Blackwellized particle Gibbs
kernel from Chapter 3 can be utilized. This building block opens up for the design of
various identification strategies in jump Markov nonlinear models, including particle
Gibbs with ancestor sampling for Bayesian parameter inference [58].

Chapter 5 devises an FPD-based optimal dynamic Bayesian transfer learning
approach and shows its application to probabilistic knowledge transfer between a
pair of Kalman filters. The resulting experiments demonstrate that FPD offers a
potential for building a versatile framework for Bayesian transfer learning. However,
there is still the question of dealing with the aforementioned insensitivity to the
second moment transfer. A possible answer to this problem may lie in the recently
proposed hierarchical FPD-based Bayesian transfer learning [79], which will be the
primary aim of future work.

We have focused thusfar on the basic scenario of one-directional knowledge trans-
fer between two nodes. The natural extension of the proposed approach therefore
consists of (i) facilitating the knowledge transfer among a greater number of nodes
and (ii) making the transfer bi-directional. Specifically, the former point will require
us to introduce an optimal weighting mechanism to assess knowledge in a network
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of nodes. Another possible extension is to replace the Kalman filters with different
forms of Gaussian filters [81]. The application of sequential Monte Carlo methods
[25] may also be feasible. Finally, one can change the transferred knowledge and
conditional independence assumptions of the adopted model in order to propose
other FPD-based transfer learning options, such as transfer of the external joint
state predictor.
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