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Abstract. Most of the existing box-counting methods for 
measuring fractal features are only applicable to square 
images or images with each dimension equal to the power 
of 2 and require that the box at the top of the box stack of 
each image block is of the same height as that of other 
boxes in the same stack, which gives rise to inaccurate 
estimation of fractal dimension. In this paper, we propose 
a more accurate box-counting method for images of arbi-
trary size, which allows the height of the box at the top of 
each grid block to be adaptable to the maximum and mini-
mum gray-scales of that block so as to circumvent the 
common limitations of existing box-counting methods. 
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1. Introduction 
A fractal is generally a rough or approximate geomet-

ric shape that can be broken down into smaller pieces; each 
is similar to the original. Mandelbrot suggested [1] that, 
given a bounded set I, in an Euclidean space, the set is self-
similar if I is the union of Nr different non-overlapping 
duplicates of I, each of which is similar to I scaled down by 
a ratio of r of I. In fractal geometry [1], the fractal dimen-
sion, D,  
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is a statistical quantity that indicates how completely 
a fractal fills the space when viewed at finer scales. It is 
an effective index to measure the feature of complex ob-
jects and surfaces, such as coastlines, mountain, clouds and 
texture. 

Pentland has proved that the image of a fractal object 
is also a fractal [2], which has popularized the research on 
the methods of estimating the fractal dimensions of images. 
Since the establishment of fractal geometry theory, many 
researchers have put great efforts into this field, and many 

methods for estimating fractal dimensions of certain ob-
jects have been proposed. Typical methods include spectral 
analysis and box-counting. Spectral analysis method gener-
ally implements FFT (Fast Fourier Transformation) to 
image and obtain the coefficients and mean spectral energy 
density. The fractal dimension can be estimated by analyz-
ing the power-law dependence of spectral energy density 
and the square size [3]. Box-counting is one of the most 
frequently used methods for determining fractal dimension, 
which considers, if the 3-D space containing a specific 
object is partitioned into boxes of a certain size, how many 
boxes could fill up the object. Using the ratio r in (1) to 
decide the box size, the task of box counting method is to 
count the total number of boxes (i.e., Nr of (1)) that are 
needed to form the object. Then counting Nr for different 
scaling ratio r, the fractal dimension of D of (1) can be 
estimated from the least square linear fit of log(Nr) versus 
log(1/r).  

Many traditional box-counting methods have been 
proposed for the calculation of the fractal dimensions of 
images, such as the reticular cell counting method [4], 
Keller’s approach [5], differential box-counting (DBC) 
method [6], Feng’s method [7], etc. Among these box-
counting methods, DBC has been proved to have better 
performance than the rest [8]. After the publication of [6], 
many analyses and improvements have been done to DBC 
methods [9-12]. Nevertheless, only the calculation of frac-
tal dimensions of images of M×M and 2m×2n pixels are 
considered in the above methods. How to calculate the 
fractal dimensions of images with arbitrary size of M×N 
pixels (i.e. M is not necessarily equal to N) is a challenge 
facing the existing methods. Moreover, these methods 
require that the box at the top of the box stack of each 
image block is of the same height as that of other boxes in 
the same stack, which gives rise to inaccurate estimation of 
fractal dimension. 

This paper aims to propose a more accurate box-
counting method, which is applicable to images with 
arbitrary sizes and improves the accuracy of fractal dimen-
sion estimation by allowing the height of the box at the top 
of each grid block to be locally adaptable to the maximum 
and minimum gray-scales of that block. The remainder of 
the paper is organized as follows. A traditional DBC 
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method and its improved versions are introduced in Section 
2. In Section 3, the proposed box-counting method is de-
scribed in detail. The bound of the box size of the proposed 
method is discussed in Section 4. Experimental results and 
the performance analysis of various methods are conducted 
in Section 5. Finally, conclusions are drawn in Section 6. 

2. Differential Box-Counting (DBC) 
Methods and Their Limitations 
Given a square image I of M×M pixels. We can su-

perpose on top of it a grid of blocks of s×s pixels and place 
a stack of boxes of size pss   on top of each block, 
where Msp / , and   is the total number of gray-
scales (e.g.,   =  256 if 8 bits are used to represent the 
intensity/gray-scale of each pixel). The boxes in each stack 
are indexed in the ascending order, starting from 1 at the 
bottom. Differential Box-Counting (DBC) methods [6], 
[9], with Msr / , count the number of boxes on top of 
the (i, j)th block by using 

 1),(  kljinr   (2) 

where l and k are the l-th and k-th boxes where the maxi-
mum and the minimum gray-scales of the (i, j)th square fall 
in, respectively, when the image is seen as a 3-D landscape 
with the vertical dimension representing the gray-scales. 

Taking contributions from all blocks, we can say that 
the volume of the image, a 3-D landscape, is equivalent to 
Nr boxes, where  

 
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Since the values of Nr are dependent on r, the fractal 
dimension of image I can be estimated from the least 
square linear fit of log(Nr) and log(1/r), and the slope of 
the fit line will be D. 

Paper [6] indicated that the bound of box size s is 
2/2 Ms  , while paper [9] found that the number of 

boxes may be over counted if p/  is greater than ss  
and suggested the bound of the box size s should be  

2/3 MsM  .  

Moreover, some improvements [10], [11], [12] have 
also been done to the DBC methods. In [10], unlike those 
proposed in [6] and [9], a common border is shared be-
tween adjacent boxes and the height of the box is 
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where maxI(i, j) and minI(i, j) are the highest and lowest 
gray-scale appearing in the (i, j)th grid block. 

The number of the boxes in the (i, j)th block is 
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By performing the ceiling function in (5), no matter 
how insignificant the remainder of 

),(/)),(min),((max jipjiIjiI   is, a box of the same 

height as others has to be placed at the top of the box stack 
of each image block to contain the remainder, which gives 
rise to inaccurate estimation of fractal dimension. 

An approach for estimating the fractal of corrosion 
images with sizes of 2m×2n is proposed in [11]. With 
an image seen as a 3-D space, the image can be partitioned 
into r×r×r boxes, with each side length determined by the 
image dimensions and the range of gray-scales, where 
r = 2, 4, 8,…,2k. The number of the boxes on top of the  
(i, j)th block is 

},2,1),()),((|),({),( rlIHjiIHjiIcardjin ll
r   (6) 

where ljiI ),(   represents the l-th box in the (i, j)-th block, 

)),(( ljiIH represents the average gray-scale of the pixels 

that fall in the ljiI ),( , and )(IH  represents the average 

gray-scale of the whole image, card{·} is the function 
which returns the cardinality (i.e., the size of a set). The 

condition, )),(( ljiIH < )(IH , decides whether or not to add 

a box of the same height as others at the top of the box 
stack of each image block without taking into account the 
real “volume” that is actually needed. Again this introduces 
inaccuracy into the estimation of fractal dimension.  

Another improved box-counting method for image 
fractal dimension estimation is proposed in paper [12]. 
This method is only applicable to square images of M×M 
pixels. Similar to [10], a common border is shared between 
adjacent boxes and the height of the box is 
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where s is the side lengths of the box,   (=3) is a parame-
ter of the method, and   is the standard deviation of the 
image. The number of the boxes in the (i, j)th square is 
calculated using (5) as well. 

Results reported in [10], [11], [12] indicate that, com-
pared to (2), equations (4), (5) and (7) provide more accu-
rate counts of the boxes, thus help to measure the self-
similarity of the images more accurately. However, in 
summary, they still have some inherent limitations. 

 The methods proposed in [6], [9], [10], [12] are only 
applicable to square images of MM  pixels, while 
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the method of [11] is only suitable for images of 
2m×2n pixels, which is shown in Fig. 1. 

 
Fig. 1. Illustration of image partition. 

 Using a box of the same height as that of other at the 
top the box stack introduces estimation error.  

 The methods of [10] and [12] allow adjacent blocks 
to share common borders. As a result, the pixels in 
the common borders contribute twice in the calcula-
tion of the number of boxes, which introduce more 
estimation errors.  

 As for the method in [11], the number of boxes is 
solely decided by a global threshold ),(IH  which ig-
nores the local characteristics within each grid block. 
This will inevitably inflict negative effect on the accu-
racy of the box counting. 

3. The Integer Ratio Based Box-
Counting Method 
To circumvent the afore-mentioned limitations, we 

propose an accurate box-counting method with adaptable 
box height for measuring the fractal dimension of Images. 
Given an image I of M×N pixels, for any ratio 
r, (r  2, r  Z+), we superpose a grid of blocks of m × n 
pixels, where m = M/r, n = N/r. There are four situations to 
deal with when superposing the grid, 

 M = mr and N = nr: The image plane is evenly parti-
tioned into r × r blocks of m × n pixels; 

 M = mr and N > nr: The image plane is partitioned 
into r × (r + 1) blocks. Among these blocks, there are 
r × r blocks of m × n pixels and r × 1 blocks of 
m × (N – nr) pixels; 

 M > mr, N = nr: The image plane is partitioned into 
(r + 1) × r blocks. Among these blocks, there are r × r 
blocks of m × n pixels and 1 × r blocks of  
(M – mr) × n pixels; 

 M > mr, N > nr: The image plane is partitioned into 
(r + 1) × (r + 1) blocks. Among these blocks, there 
are r × r blocks of m × n pixels, r × 1 blocks of 
m × (N – nr) pixels, 1 × r blocks of (M – mr) × n 
pixels and 1 block of (M – mr) × (N – nr). 

For example, the size of the image plane in Fig. 2(a) is 
11×19 pixels. Let the ratio r = 3, then we can get m = 3, 

n = 6, which confirms to the fourth situation. So we can 
partition the image plane into 3×3 blocks of 3×6 pixels, 
3×1 blocks of 3×1 pixels, 1×3 blocks of 2×6 pixels and 1 
block of 1×2, as illustrated in Fig. 2 (a). 

 
(a) Illustration of partition of an image plane. 

 
(b) Illustration of a box        (c) Illustration of a grid 

Fig. 2.  Partition of an image and box counting. 

After partitioning the image plane, we treat the image 
as a 3-D landscape, with the vertical dimension represent-
ing the gray-scale and count the number of boxes in each 
stack based on each block. The height of the box is 
p = Λ / r, where Λ is the total number of gray-scales. In 
order to contain the image tightly and accurately, we allow 
the number of the boxes to be real, rather than integer, i.e., 
we allow the height of box at the top of each block to be 
a fraction of the height of the boxes below it, as seen in 
Fig. 2(b) and Fig. 2(c). 

The number of boxes in the (i, j)-th block is counted 
as 

 ,
),(

)1/)),(min),((max),(
mn

jiS
pjiIjiIjinr   (8) 

where ),( jiS  is the area of the (i, j)-th, which for most 
blocks is m × n, but for the blocks along the borders on the 
right-hand side and bottom of images whose plane dimen-
sions are not power of 2, ),( jiS is less than m × n, as can 
be seen in Fig. 2. Moreover, unlike (5), we do not perform 
the ceiling function in (8). This allows nr to take real values 
rather than just integer values. That is to say that the pro-
posed method is able to adaptively place box of arbitrary 
height at the top of the box stack according to the values of 

),(max jiI and ),(min jiI , thus improving the estimation 
accuracy. The total number of boxes of the entire image/ 
landscape with a ratio of r is: 

 
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Calculating various values of Nr for different values 
of r, the fractal dimension D can be calculated by finding 



RADIOENGINEERING, VOL. 22, NO. 1, APRIL 2013 211 

the slopes of a log-log curve at a series of points in the 
(log(1/r), log(Nr)) space. 

4. Bound of the Box Size 
According to the principle described in [9], the num-

ber of pixels covered by a particular grid block should be 
no less than the maximum number of the boxes on top of 
that block. This principle also applies to the proposed 
method, i.e., 

 rrNrMnm  // .  (10) 

Approximately, we get 3 MNr  . Meanwhile, m and n 
should be large enough to form blocks, thus 

 1/  rMnm  and 1/  rNn , (11) 

i.e., Mr  and Nr  . 

From (10) and (11), we can get the upper limit of the 
box size Q according to 

 },,min{3 NMMNQ  .  (12) 

Moreover, to avoid the situation where there is only 
one block in the entire image, r should be chosen such 
that 2r . Thus Qr 2   is the closed range of the box 
size when the proposed method is used. 

5. Experimental Results and Analyses 
In this section, experiments and analyses are done to 

evaluate the performance of the proposed method. The 
experiments are carried out on a system with a 1.8G CPU, 
a RAM of 1 GBytes and Matlab V7.0 (R14). Color images 
are converted to the gray-scale format before the box-
counting methods are applied. 

As indicated in [9], theoretically the smoother 
an image is, the closer its fractal dimension is to 2. On the 
contrary, the rougher an image is, the closer its fractal 
dimension is to 3. In our experiments, as can be seen in 
Fig. 3, Image (a) and Image (b) are two extreme cases. 
Image (a), with gray-scale of 0 for all pixels, has a per-
fectly smooth surface, while Image (b), with two alternat-
ing colors, black and white, represents a highly “rough” 
area. The difference between Image (a) and (c), and Image 
(b) and (d), is their sizes. The fractal dimensions, D, of the 
4 images estimated with different methods are shown in 
Tab. 1. From Tab. 1, we can see that the method proposed 
in [11] cannot estimate the fractal dimension of Image 1 
because equations (6) and (7) return 0. Because of the 
drawbacks described in Section 2, the DBC method and all 
of the ones in [10 - 12] cannot calculate the fractal dimen-
sions of Image 3 and Image 4 either because the images are 
not square or because their dimensions are not power of 2. 
On the contrary, our method can calculate the fractal di-
mensions of all images. The fractal dimensions of Image 1 

and Image 3 calculated with our method are very close to 
the ideal value of 2 and the fractal dimensions of Image 2 
and Image 4 calculated with our method are very close to 
the ideal value of 3. These indicate that our method can 
indeed more accurately reflect the roughness of the images 
than the DBC method and the methods of [10-12] and is 
applicable to images of any sizes. As for the fractal dimen-
sions estimated from spectral based method [3], it can be 
seen from Tab. 1 that the fractal dimensions are all out of 
the interval of [2, 3], which indicates the limitation of the 
spectral based method. 

      

(a) Image 1(256×256)        (b) Image 2 (256×256) 

   

(c) Image 3(200×100)       (d) Image 4(200×100) 

Fig. 3.  Images used in our experiments. 
 

Methods 

Images DBC Method 
[3] 

Method 
[10] 

Method 
[11] 

Method 
[12] 

Our 
Method 

Image 1 1.8022 0 2.2591 — 2.1192 2.0602 
Image 2 2.7035 0.2656 3.2585 2.0000 3.1188 2.9927 
Image 3 — 0 — — — 2.0800 
Image 4 — 0.3033 — — — 2.9812 

Tab. 1.  Fractal dimensions of images calculated with different 
methods (“ — “ denotes that the fractal dimension of 
the corresponding image cannot be measured by the 
corresponding method). 
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Fig. 4.  Illustration of fractal dimension estimation using least 

square linear fit. 

Since the fractal dimension of an image is estimated 
from the least square fit, fitting errors are therefore a good 
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performance indicator of box-counting methods. As shown 
in Fig. 4, the fractal dimension, D, is the slope of the least 
square linear fit of log(Nr)and log(1/r). The straight line, 
with a slope-intercept form of log(Nr) = D × log(1/r) + b), 
represents the real relationship between log(Nr) and 
log(1/r). The actual deviation of (log(1/rx), log(

xrN )) from 

the straight line is brDNd xrr x
 )/1log()log( , thus the 

square deviation from the straight line is 

 22 ))/1log()(log( brDNd xrr x
 .  (13) 

The mean square deviation δ can therefore be formu-
lated as 
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where X is the number of different values of ratio r. 
Experiments have been carried out on 100 images of 
256×256 pixels to compare the performance of different 
methods. Fig. 5 shows some examples of the 100 test 
images. Note the reason we choose images of 256×256 
pixels is because all the methods, except ours, are only 
applicable to either square images or images whose dimen-
sions are power of 2. The distribution of the mean square 
deviation, δ, is illustrated in Fig. 6.  

    
(a)                        (b)                          (c)                          (d) 

    
(e)                       (f)                         (g)                           (h) 

Fig. 5.  Samples of the 100 test images. 
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Fig. 6.  The mean square deviation of 100 images of different 

methods. 

From Fig. 6 we can see that, for any given image, the 
values of δ calculated with our method is lower than the 
other methods. The average of the mean square deviation 
  of the 100 images can be calculated using 

 



100

1100

1

y
y   (15) 

where δy represents the mean square deviation of the y-th 
image of the 100 images. The list of the fractal dimension 
of some sample images is in Tab. 2, and the   of the 100 
images calculated with different methods are listed in 
Tab. 3, which indicates that our method performs signifi-
cantly better than other methods. 
 

 DBC Method 
[3] 

Method 
[10] 

Method 
[11] 

Method 
[12] 

Proposed 
method 

a 2.1814 2.2848 2.2680 2.0536 2.2848 2.2418 
b 2.2807 2.5993 2.3780 2.1460 2.5993 2.3126 
c 2.2158 2.6089 2.3310 2.0505 2.6089 2.2734 
d 2.4220 2.5022 2.5506 2.1276 2.5022 2.5129 
e 2.4491 2.2917 2.6484 2.1311 2.2917 2.5536 
f 2.1175 2.5807 2.3212 1.9724 2.5807 2.2104 
g 2.3866 2.3458 2.6149 2.1369 2.3458 2.5617 
h 2.2245 2.8994 2.2482 2.0785 2.8994 2.2372 

Tab. 2.  The fractal dimensions of sample images in Fig. 4. 
 

Parameter DBC 
Paper 
[10] 

Paper 
[11] 

Paper 
[12] 

Our 
method 

  37 54 549 59 9 

Tab. 3.  The average of the mean square deviation of 100 

images of different methods（×10-4）. 

6. Conclusion 
A new accurate box-counting method for measuring 

images’ fractal dimensions is proposed in this paper. 
Higher accuracy of fractal dimension estimation is 
achieved by allowing the height of the box at the top of 
each grid block to be adaptable to the maximum and mini-
mum gray-scales of that block and the method is applicable 
to images with arbitrary sizes. Experimental results have 
shown that the fractal dimensions calculated with the pro-
posed method can better reflect the roughness of images 
and the calculated fractal dimension is significantly more 
accurate than other methods in terms of mean square devia-
tion from the fit line.  
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