BRNO UNIVERSITY OF TECHNOLOGY

VYSOKE UCENIi TECHNICKE V BRNE

FACULTY OF INFORMATION TECHNOLOGY
FAKULTA INFORMACNICH TECHNOLOGII

DEPARTMENT OF INTELLIGENT SYSTEMS
USTAV INTELIGENTNICH SYSTEMU

APPROXIMATE TECHNIQUES FOR MARKOV MODELS

APROXIMATIVNI TECHNIKY PRO MARKOVOVY MODELY

BACHELOR'S THESIS
BAKALARSKA PRACE

AUTHOR ROMAN ANDRIUSHCHENKO
AUTOR PRACE

SUPERVISOR RNDr. MILAN CESKA, Ph.D.
VEDOUCIi PRACE

BRNO 2018

Zadani bakaléfskeé prace/20512/2017/xandri03
Vysoké uéeni technické v Brné - Fakulta informacénich technologii

Ustav inteligentnich systémd Akademicky rok 2017/2018
Zadani bakalarské prace

Resitel: Andriushchenko Roman

Obor: Informacni technologie

Téma: Aproximativni techniky pro Markovovy modely
Approximate Techniques for Markov Models

Kategorie: Formalni verifikace

Pokyny:

1. Seznamte se s existujicimi aproximacnimi technikami (zejména s fast adaptive uniformization a
s adaptivni agregaci stavového prostoru), které dovoluji analyzovat slozité Markovovy modely.

2. Navrhnéte vylep$eni existujicich agregacnich technik (tj. vhodnéjsi agregacni strategii ¢i redukci
aproximacni chyby).

3. Implementujte techniku fast adaptive uniformization a navrZzené vylepSeni agregacnich technik
v ramci nastroje PRISM

4. Experimentalné porovneijte jejich efektivitu a praktickou uZite¢nost na vhodné sadé modeld.

Literatura:

1. A, Abate, L. Brim, M. Ceska, and M. Kwiatkowska. Adaptive Aggregation of Markov Chains:
Quantitative Analysis of Chemical Reaction Networks. In CAV'15, LNCS, pages 195-213,
Springer, 2015.

2. M. Ceska, F. Dannenberg, N. Paoletti, M. Kwiatkowska and L. Brim. Precise Parameter
Synthesis for Stochastic Biochemical Systems. In Acta Informatica, pages 1-35, Springer, 2016.

3. M. Kwiatkowska, G. Norman and D. Parker. PRISM 4.0: Verification of Probabilistic Real-time
Systems. In CAV'11), LNCS, pages 585-591, Springer, 2011.

Pro udéleni zdpoctu za prvni semestr je pozadovano:
e Prvni dva body zadani a alespon zacatek prace na bodé tretim.

Podrobné zavazné pokyny pro vypracovani bakalaiské prace naleznete na adrese
http://www.fit.vutbr.cz/info/szz/

Technické zprava bakalaFské prace musi obsahovat formulaci cile, charakteristiku sou¢asného stavu, teoreticka a odborna
vychodiska FeSenych problémé a specifikaci etap (20 aZ 30% celkového rozsahu technické zpravy).

Student odevzdd v jednom vytisku technickou zprévu a v elektronické podobé zdrojovy text technické zpravy, uplnou
programovou dokumentaci a zdrojové texty programd. Informace v elektronické podobé& budou uloZeny na standardnim
nepiepisovatelném pamétovém médiu (CD-R, DVD-R, apod.), které bude vlozeno do pisemné zprévy tak, aby nemohlo dojit k
jeho ztraté pfi bézné manipulaci.

Vedouci: Ceska Milan, RNDr., Ph.D., UITS FIT VUT
Datum zadani: 1. listopadu 2017
Datum odevzdani: 16. kvétna 2018

.—‘-"'"JA‘-_-_"'

Petr Hanacek
vedouci Ustavu

Abstract

In this work we discuss approximative techniques for the analysis of Markov chains, namely,
state space aggregation and truncation. First, we focus on the application of the former
method for the analysis of discrete-time models: we redesign the clustering algorithm to
handle chains with an arbitrary structure of the state space and, most importantly, we
improve upon existing bounds on the approximation error. The developed approach is then
integrated with uniformisation techniques, in both standard and adaptive forms, to approx-
imate continuous-time models as well as provide estimates of the approximation error. This
theoretical framework along with existing truncation-based techniques were implemented
within PRISM model checker. Experiments confirm that newly derived bounds provide a
several orders of magnitude precision improvement without degrading performance. We
show that the resulting aggregating approach can provide a valid model approximation
supplied by adequate approximation error estimates, in both discrete and continuous time.
Then, we perform a comparative analysis of aggregating and truncating techniques, illus-
trate how different methods handle various types of models, and identify chains for which
aggregating, or truncating, analysis is preferred. Finally, we demonstrate a successful usage
of approximative techniques for model checking Markov chains.

Abstrakt

Predklddand prace je zaméfena na popis aproximativnich technik pro analyzu Markovskych
Fetézcl, konkrétné na metody zalozené na agregaci nebo orezavani stavového prostoru. Na
zacCatku je predstaven postup umoznujici aplikaci agregace pro modely diskrétniho casu s li-
bovolnou strukturou stavového prostoru a je odvozen lepsi odhad aproximacni chyby. Dany
postup je pak propojen s uniformizac¢nimi technikami, jak se standardni tak s adaptivni,
coz umoznuje provadét analyzu fetézci spojitého casu spolu s odhadem aproximacni chyby.
Navrzena technika spolu s existujicimi metodami zaloZenymi na orezavani byly implemen-
tovany v ramci nastroje PRISM. Provedené experimenty potvrzuji, ze nové odvozeny odhad
aproximacni chyby vylepsuje presnost o nékolik radt bez zhorseni celkové vykonnosti. Je
ukazano, ze vysledna agregacni metoda je schopna poskytnout validni aproximaci modelu
spolu s adekvatnimi odhady aproximacni chyby, a to jak v diskrétnim tak i ve spojitém case.
Nasledné je provedeno porovnéni s technikami zalozenymi na ofezavani stavového prostoru
a je diskutovano pro které tridy Markovskych fetézcu je ta ¢i ona metoda pouzitelnéjsi.
Nakonec je demonstrovano tspésne pouziti aproximativnich technik pro model checking
Markovovych modelt.

Keywords

Markov models, probabilistic model checking, approximation techniques, adaptive aggre-
gation

Klic¢ova slova

Markovovy modely, probabilisticky model checking, aproximativni techniky, adaptivni agre-
gace

Reference

ANDRIUSHCHENKO, Roman. Approximate Techniques for Markov Models. Brno, 2018.
Bachelor’s thesis. Brno University of Technology, Faculty of Information Technology. Su-
pervisor RNDr. Milan Ceska, Ph.D.

Approximate Techniques for Markov Models

Declaration

Hereby I declare that this bachelor’s thesis was prepared as an original author’s work under
the supervision of RNDr. Milan Ceska, Ph.D. All the relevant information sources, which
were used during preparation of this thesis, are properly cited and included in the list of
references.

Roman Andriushchenko
May 14, 2018

Acknowledgements

I would like to thank my supervisor RNDr. Milan Cegka, Ph.D. for his encouragement and
continuous support throughout the work on this project.

Contents

1 Introduction 2
2 Preliminaries 5
2.1 Discrete-Time Markov Chains 5
2.1.1 Model Checking 6

2.1.2 Adaptive State-Space Aggregation 8

2.1.3 Threshold Abstraction 12

2.2 Continuous-Time Markov Chains 13
2.2.1 Uniformisation 14

2.2.2 Model Checking and Aggregating CTMCs 20

3 Adaptive Aggregation for DTMCs 21
3.1 Adaptive aggregation algorithm L. 26
3.2 Experimental evaluation L L Lo L 28

4 Adaptive Aggregation for CTMCs 32
4.1 State-Space Aggregation for Standard Uniformisation 32
4.2 State-Space Aggregation for Adaptive Uniformisation. 34
4.3 Experimental evaluation L oo 36

5 Final Considerations 39
5.1 TImplementation 39
5.2 Further Research o 41
5.3 Conclusions 45
Bibliography 47

Chapter 1

Introduction

Probability plays a prominent role in the design and modelling of systems with unpre-
dictable or unreliable behaviour. Markov chains are a class of such probabilistic modelling
tools that have been extensively used in many areas of science and engineering, including
analysis of performance of computer networks, reliability of communication and security
protocols [2, 4], in the study of various quantitative attributes of biochemical reaction net-
works [19, 5] or genetics [14]. A Markov chain can be thought of as a collection of states
accompanied by function that describes a probabilistic nature of a transition between any
pair of states. Depending on the type of the model, these transitions can occur in discrete
or continuous time. An analysis of such chain is carried out through simulation-based ex-
ploration of its execution paths or using numerical schemes, usually by solving a system
of equations. For an analysis of continuous-time models, a typical method employed is
uniformisation, which is based on a time-discretisation of the chain of interest [23].

Unfortunately, an efficient analysis Markov models is difficult to achieve in practice
due to the state-space explosion problem. In order to enable the handling of larger state
spaces, several approximation techniques have been introduced. These techniques typically
solve a smaller chain — the one with the reduced state space — and then interpret results in
terms of the original model. State aggregation methods [!] construct this smaller chain by
clustering the state space. State-space truncation methods [7], on the other hand, work by
dynamically neglecting states with insignificant probability. In both cases an approximation
error has to be quantified. In practice, highly accurate probability estimates are crucial,
for example in reliability analysis of safety-critical systems or when checking satisfiability
of temporal logic formulae.

Key contributions

In this work we expand the existing framework for the analysis of Markov chains via state-
space aggregation and provide its first in-depth comparison with truncation-based tech-
niques. Inspired by the application of the adaptive approach developed for the analysis
of biochemical reaction networks in [1], we first focus on the design of an accurate and
efficient aggregation method applicable to chains with an arbitrary structure of the state
space. We start in the discrete setting and redefine a notion of the state-space abstraction
in order to arrive at precise bounds on the approximation error. These results are then used
to design a new aggregating scheme that preserves all properties of a Markov chain, and
we show that this preservation is necessary for integrating it with uniformisation method
to enable analysis of continuous-time models. This integration is then carried out, and

explicit bounds on the approximation error are derived. Finally, we introduce adaptivity
to our aggregating scheme that allows reducing the required number of computation steps.

A total of eight approximative methods for Markov chain analysis (5 existing and 3 new
ones) were implemented in probabilistic model checker PRISM [17] and were also integrated
with model checking algorithms. Experiments confirm that newly derived bounds provide
a several orders of magnitude precision improvement without degrading performance. We
show that the resulting aggregating approach can provide a valid model approximation
supplied by adequate approximation error estimates, in both discrete and continuous cases.
Then, we perform a comparative analysis of aggregating and truncating techniques, illus-
trate how different methods handle various types of models and identify chains for which
aggregating, or truncating, analysis is preferred. Finally, we demonstrate a successful usage
of approximative techniques for model checking Markov chains.

Related work.

Simulation methods are able to analyse a Markov chain — as well as any other stochastic
model — by simulating one-time trajectory of the process; collecting the statistics from mul-
tiple realisations then allows to estimate the transient probability distribution. A common
example of such technique is Gillespie’s Stochastic Simulation Algorithm (SSA) [12, 24].
The main disadvantage of SSA is its slow convergence. Moreover, although simulation-based
analysis allows to employ adaptivity (e.g. [9]), these methods in general give weak precision
guarantees in the form of confidence intervals. Nonetheless, this approach is suitable for
situations where highly accurate probability estimates are not required. SSA, along with
other simulation-based techniques, is implemented within a COPASI [15] tool developed
for the analysis of biochemical network models.

A widely studied numerical method to deal with large state spaces is truncation which
works by neglecting states with insignificant probability, computing an underapproximation
of the true probability distribution and then using probability loss as an error estimate.
In the context of continuous-time chains, a combination of truncation with adaptive uni-
formisation is a highly celebrated technique known as fast adaptive uniformisation (FAU)
[21, 7, 6]. Truncation techniques utilise the fact that usually a significant portion of the
probability mass is concentrated in a small subset of the state space and can result in poor
accuracy if this mass is spread over a large number of states.

A common representative of the state-space aggregation techniques is a clustering based
on (bi-)simulation equivalence [18]. This technique exploits symmetries of a concrete model
and performs exact numerical computation but, unfortunately, can only be applied to a
specific domain of Markov processes. The work of [3] presents an algorithm to approximate
probability distributions of a Markov model forward in time, which served as an inspiration
of the adaptive scheme proposed in [!], where a formal error analysis steers the adaptation.
This novel use of derived error bounds allows far greater accuracy and flexibility as it
accounts also for the past history of the probability mass within specific clusters.

Structure of this paper.

In Chapter 2 we give an overview of the necessary theory regarding both discrete- and
continuous-time Markov processes; we describe an aggregation approach presented in [1]
and revise uniformisation technique, as well as its fast adaptive version. In Chapter 3 we
redefine a notion of a state-space aggregation of a discrete-time Markov chain, introduce
techniques that will allow us to approximate chains with arbitrary structure of the state

space, explore various aggregation strategies and, most importantly, we derive a more pre-
cise approximation error bound. Lastly, we perform a thorough experimental evaluation of
all approximative techniques. In Chapter 4 we develop state-space aggregation for contin-
uous Markov processes by combining results from the previous chapter with both standard
and adaptive uniformisation, as well as derive explicit bounds on the approximation error,
and discuss experimental results. Finally, in Chapter 5, we give notes on the implemen-
tation and collect all the facts and issues that could serve as a departure point for the
follow-up research.

Chapter 2

Preliminaries

In this chapter we review the necessary theory and introduce notation that will be used
throughout the paper. First, we discuss discrete-time Markov chains along with existing
exact and approximate techniques for their analysis. Then we generalise the argument into
the continuous case and describe procedures for handling continuous-time models.

2.1 Discrete-Time Markov Chains

Definition 1. [17, 3] A discrete-time Markov chain (DTMC) is a pair D = (S, P), where
e S is the set of states and
e P:SxS—=[0,1;VreS > cqgP(r,s) =1is the transition probability function.

Set S describes all possible states of the model and expression P(D(k) = s),s € S,k € Ny
denotes the probability that DTMC D resides at state s at time k. The function P estab-
lishes probabilities of transitions between the states, namely:

P(D(k+1)=s|D(k)=r,D(k—1)=rg_1,...,D(0) =ry) =
= B(D(k+1) = s | D(k) = r) = P(r,s),

i.e. transition probability from state r to s applies whenever state r is visited, regardless of
what has happened in the past: the next state of the process depends only on its present
state. This assumption is known as the Markov property. Unless stated otherwise, we
will assume that the state space S is finite. A state s for which P(s,s) = 1 will be called
absorbing. Sometimes it is helpful to lay out the model in the so-called transition probability
graph, whose nodes are the states and whose arcs are non-zero transitions, see Figure 2.1.

The model is initialised via the distribution pg(s) = P(D(0) = s) and its transient
probability distribution pg(s) := P(D(k) = s) at time step k > 0 is

Pr(s) =Y pre1(r)P(r, 5). (2.1)

res
We denote px = [pr(s)]ses to be the row vector of transient probabilities at time k and
P = [P(r,s)]rses to be the transition probability matrix. Recursion (2.1) can be then

equivalently expressed as a vector-matrix multiplication:

Figure 2.1: A simple DTMC.

Pk = Pk-1 - P. (2.2)

An act of performing one such multiplication will be called an iteration, a probability prop-
agation, a discrete time-step or simply a step. A problem of finding transient distribution
Px is often referred to as the transient analysis of the chain. Computing this vector directly
using (2.2) typically suffers from the state space explosion problem and we are therefore
interested in providing an efficient and accurate approximation.

Example 1. Let D = (S, P) be DTMC as in Figure 2.1 that starts at state sg, i.e. po = [1, 0,0, 0]
and the corresponding transition probability matrix is

0.8 02 0 0
04 02 04 O

P=1"0 0 04 06
1 0 0 0
Let us compute pg4:
P1 = Po- P= [08,02, 0, 0],
p2 =p1-P =[0.72,0.2,0.08,0];
ps = p2 - P =[0.656,0.184,0.112,0.048];
psa = p3 - P =[0.6464,0.168,0.1184,0.0672].

The final distribution describes probabilities of residing in each of the states at time 4,
e.g. there is less than 0.7 % probability that DTMC will end up at state ss.

2.1.1 Model Checking

In general, a stochastic model checking [17] is a method for verifying whether a system
exhibits a certain property by calculating the likelihood of occurrence of various events
during its execution. Model checking algorithms input a description of a model along with
specification expressed in probabilistic temporal logic, and return a probability for a given
model to satisfy this property. In the context of DTMCs, as a specification language we
use Probabilistic Computation Tree Logic (PCTL), an extension of Computation Tree Logic

(CTL). Although expressive capabilities of PCTL are quite rich, the primary goal of this
paper is to show that approximation techniques can be efficiently integrated with model
checking algorithms. Therefore, we will restrict ourselves only to specific types of formulae,
the resulting framework can then be easily generalised to handle any kind of specification.
An exhaustive description of PCTL syntax and of model checking procedures is presented
in [17]. Here we will define properties of interest and algorithms for their evaluation in a
straightforward way.

Let D = (S, P) be DTMC with initial distribution pg. Let A be a predicate over states
in S and let Sat(A) denote the set of states that satisfy A. An expression [0=FA] asserts
a property of the model of eventually reaching any of the states in Sat(A) within first
k time-steps, assuming initial distribution pg. Similarly, a formula [O<*A] represents an
event of never leaving subset of states Sat(A) within first k£ time-steps, assuming initial
distribution py. Here we assume that the time horizon k is finite and consider only time-
bounded specifications. Operator ¢ is called ’eventually’, future’ or ’"diamond’; operator [J
is called ’always’, "globally’ or 'box’. By P(O=FA) or P(00<*A) we will denote the likelihood
of the corresponding event happening. The following definition will help us compute these
probabilities.

Definition 2. Let D = (S, P) be DTMC and let Sat(A) C S. A PCTL driven transfor-
mation of D given A is a DTMC D|[A] = (S, P[A]) where

1, if r € Sat(A) and r = s
P[A](r,s) =< 0, if r € Sat(A) and r # s
P(r,s), otherwise.

In other words, the resulting chain is this same chain with the states in Sat(A) made
absorbing, see Figure 2.2.

Figure 2.2: A PCTL driven transformation of DTMC from Figure 2.1 given A = s € {s3}.

Proposition 1. Let D = (S,P) be DTMC with initial distribution py. Let D[A] be
[A]

its PCTL driven transformation given A having the same initial distribution pOD = po
and denote ka[A] to be its transient probability distribution at time k. Then P(Q=FA) =

D[A
ZaESat(A) pk[](a).

Justification of this proposition goes as follows. By making each of the states a € Sat(A)
absorbing, we ensure that any probability mass that reaches a never leaves this state. After
k discrete steps, the total probability mass accumulated in a gives a probability of reaching
it withing k steps; the sum over all states in A then produces the desired result.

Notice that P(OSFA) = 1 — P(O=F-A), i.e. the event of never leaving subset Sat(A)
complements the event of eventually reaching a state in Sat(—A) = S\ Sat(A). Using
Proposition 1, we arrive at the result:

POy =1- Y @) =Y o).

a’eS\Sat(A) acA

2.1.2 Adaptive State-Space Aggregation

A high-level description of an aggregation of a Markov model would be a clustering of its
state space and then treating resulting clusters as states of a new Markov chain. Defining a
suitable transition probability function on this new clustered state space and working within
this abstract framework allows us to approximate transient probabilities of a concrete,
unaggregated model, as well as provide bounds on the approximation error. A performance
increase is achieved since now we are dealing with a smaller model. Our starting point will
be the aggregation scheme presented in [1], application of which to discrete-time chains is
described in this subsection.

Let D = (S, P) be DTMC. Let @ = {1,,0n}, Uiy i = S, i # j = @i Npj =0 form
a partition on S and be called the abstract (aggregated) state space. Elements ¢ € ® will be
called abstract states or clusters. By expression |p| we will denote the size of the cluster,
i.e. the number of concrete states comprising it. Clusters of size 1 will be called trivial. Let
IT: ® x & — R>(defined as

M(p, o) = |;| SN P, 5) (2.3)

rep seo

be the abstract transition probability function. The intuition behind this equation is that it
encompasses the average incoming probability to cluster o from cluster p. A pair A = (&, 1I)
describes the abstract (aggregated) DTMC. The model is initialised using probability distri-
bution mp : ® = R>(defined as

mo(0) = 3 pols),

se€o

that is, the probability of being in cluster ¢ at time 0 is the sum of the probabilities of
being in either of its concrete states. Transient probability distribution at time step k& > 0
is then defined recursively:

m0(0) = 3 me1 ()T,). (2.4)

ped

Similarly as before, we denote m = [(0)]sca to be the row vector of transient probabilities
at time £ > 0, IT = [II(p,0)],0ed to be the abstract transition probability matrix and
express recursion (2.4) as

T = Tk—1 - IL.

Having mj, we define py : S — R>o to be an approximation of the concrete transition
probabilities pi(-) and compute it as follows:

Pr(s) = WT(E_T),

s € o, (2.5)

that is, the probability of a cluster is distributed uniformly between its states. If we pick
partition ® such that |®| < |S|, working with the abstraction (®,II) will allow us to
approximate pyx using m much more easily than performing propagations (2.1) directly.
An error associated with this approximation can be derived from the structure of (®,II).
Introduce the quantity

€(p,0) = max (ll(p,0) — — Z P(r,s) (2.6)

and denote €(p) ==Y g €(p,0). Let ex(s) = pr(s) — pr(s) be the approximation error for
state s at time k and let ey = [ex(s)]ses denote the corresponding row vector; the overall
error is captured by its Li-norm that is quantified recursilvely:

lexllt < llex—1lli + Y mr_1(p)e(p), (2.7)
ped

where

leolls = Ipo(s) — po(s)|-

seS

The term ||eg||1 is called aggregation error and it describes the inaccuracy introduced when
we replaced exact pg with pg. Additionally, during each discrete step, a propagation error,
associated with the usage of abstraction II instead of P, is produced and is captured by
€(+,+): this quantity accounts for the maximum difference, for a given pair of clusters,
between the abstract transition probability and (rescaled) pointwise incoming probability.
The product of m,_1(p)e(p) hereby gives the (upper bound of) error generated from p, the
sum over all abstract states in (2.7) then yields the overall error. The reason for computing
the Li-norm of ey and not ey itself is that, again, we want to reduce the computation
complexity of the error estimation: equation (2.7) suggests that one step of this estimation
is equivalent to performing a scalar product of vectors in the abstract (i.e. with reduced
state space) setting.

The transformation described above will be referred to as a state space aggregation based
on incoming transition probabilities. We have not yet discussed how a partition ® of S is
obtained: update equations above can give suggestions on what such partitions should be.
First, aggregation error captures point-wise difference pg(s) — po(s) = po(s) — mo(o)/|o| =
Po(8) =X gy Po(s') /||, so we can minimise this error by aggregating together states with
similar probability. In Markov chains it is often the case that at any given time instance a
majority of the probability mass is concentrated in a particular subset of states and that
adjacent states (i.e. those connected by a possible transition) tend to have similar transient
probabilities.

Second, a propagation error that depends on both (approximate) transient probability
distribution and error factor e suggest that we should minimise €(-) for clusters that cur-
rently have significant transient probability and therefore use clusters of small size for such
states. The intuition behind this conclusion is that, when propagating probability from p to

o, we are effectively forwarding probability mass (in one step) to those states in o that were
previously unreachable (in one step) from any of the states in p, see Figure 2.3; conversely,
we are pushing probability to cluster o from those states in p that do not have any of the
states in o as their direct successor. We are effectively accelerating the system and this
probability mass forwarding is the source of the propagation error. Hence, we arrive at a
conclusion that the size of the cluster should be inversely proportional to its (approximate)
transient probability: a state with significant probability will form a cluster of size 1, and
therefore its neighbours, that are more likely to have significant probability as well, are also
likely to form a trivial cluster'. On the other hand, a group of states with small probability
mass can be clustered together: an insignificant 7 () will cancel large €(). Finally, states
with moderate transient probability will be aggregated to clusters of medium size.

00@0

Figure 2.3: In (a) we consider a simple DTMC that deterministically starts in the left-most
state (numbers inside nodes denote current transient probabilities); in (b) we construct its
aggregation, notice how the first (second) state has effectively lost (gained) some probability
mass - this is aggregation error; in (c) we perform one iteration in the abstract setting,
observe that the right-most state has effectively gained, due to propagation error, some
probability mass: in the unaggregated setting this state is unreachable until after the third
iteration.

These two rules gives us a hint, not a recipe, about how a partition is constructed.
In [1], a state-space aggregation method was used to analyse biochemical systems and the
clustering was created based on the a priori known structure of the model as well as on
the knowledge of underlying physical phenomena. Later, in Chapter 3, we will develop a
different approach that will help us analyse chains with an arbitrary structure of their state
space. Until then, assume that a specific clustering is given.

Having the partition, we can compute 7g, estimate aggregation error |legl|, establish ab-
stract transition probability matrix IT and construct a vector of error factors € := [¢(0)]rco.
We then proceed by propagating probability mass using abstract structures and quantify
error using update equation (2.7). The final result Py is then constructed by deaggregating
the state space and the probability distribution my, as in (2.5).

Also, as we perform discrete steps, a probability distribution changes and at some time
a cluster with large €(-) may accumulate a lot of probability mass and start to produce a
significant error. Hence, we need to adapt our state space partition to the new (approxi-

Note that for |p| = |o| = 1, e(p, o) = 0.

10

mate) probability distribution. An adaptive state space aggregation is a method of using
different clusterings sequentially in time, where the quality of each clustering is quantified
analogously, with the use of (2.7). One has to explicitly define when a partition is no longer
to be considered inappropriate and a concrete realisation of this check will be discussed in
the next chapter. Finally, since usually a system starts deterministically in a concrete state
(po(s) = 1 for some s), we want to run the model for some time without aggregating it
(i.e. using partitions consisting of trivial clusters). The overall procedure is presented in
Algorithm 1.

Algorithm 1: Adaptive state space aggregation of DTMC
Input : DTMC (S, P), initial distribution py, time horizon k, parameter noAgg < k
Output: py, upper bound on ||ek|;

11=0;
2 while i < noAgg do
3 Pi+1 = pi - P;
4 1 =14+ 1;
5 end while
6 (P, m;, I, errAgg, €) = aggregate(S, P, p;);
7 |lefli = errAgg;
8 while 1 < £k do
o el = llefl +m €’
10 Ti+1 = 7 - 11,
11 1 =14+ 1;
12 if checkPartition(m;) = false then
13 pi = deaggregate(®, m;);
14 (@, m, IL, errAgg, €) = aggregate(S, P, p;);
15 lelly = lle[ls + errAgg;
16 end if
17 end while
18 Py = deaggregate(®, my);

Juy
©

return Py, ||e||1;

Keep in mind that since a problem of model checking time-bounded specifications of
a DTMC is reduced to the problem of its transient analysis, adaptive aggregation can be
utilised while working with the corresponding PCTL driven transformation. On a final note,
observe that we do not require a normalisation condition Vp € ® »°__41I(p,0) = 1 to be
true, i.e. matrix IT might not be ’transition’ in a strict mathematical sense. In this case,
elements of vectors m might not sum to one and therefore such vectors cannot be called
‘probability vectors’. Therefore, given II, abstraction (®,II) might or might not be viewed
as a DTMC according to the Definition 1. However, we still want to associate elements
of IT with transition probabilities and elements of m, with transient probabilities in the
abstract setting. To avoid any confusion, we will reserve the term ’stochastic’ for matrices
and vectors that satisfy the corresponding normalisation property. Violation of stochasticity
should not discourage us from using such abstractions: functions II (respectively,) simply
serve as higher-level representatives of functions P (respectively, px) on a new state space
and provide us with approximations of their concrete counterparts.

11

Example 2. Consider DTMC from Example 1 and let us compute approximation py.
Denote og = {so}, 01 := {s1}, 023 = {s2,s3} and let the state space partition be ® =
{00,01,023}. Then m = [1,0,0], i.e. po = [1,0,0,0] and therefore |leg|[1 = 0 — none
of the states has effectively changed its transient probability due to aggregation. The
corresponding abstract transition matrix is

0.8 02 0
IT=| 04 02 0.2
1 0 05

Error factors associated with this partition are:

() (0’1,0’23) = 0.6;
() (0'23, O'Q) + 6(0’23,0’23) =0.5+0.1 =0.6.

Cluster oy produces no error since it and all of its successors are trivial. Error in oq orig-
inates from probability forwarding into cluster o93. Finally, error in cluster o3 comes
from 1) probability forwarding from se to previously inaccessible sy and 2) propagat-
ing probability to itself much differently as compared to unaggregated case. Let ¢ =
[€(00), €(01), €(023)]. Now we can perform iterations using vectors and matrices of size 3:

leill1 = leoll1 + 7o - €L = 0; m = mo - II =[0.8,0.2, 0];

He2|]1 = He1||1—|—7r1 -€T:O.12; g = 71 - H [0 72,02,004],

les|l1 = |leall1 + 72 - €l = 0.264; 73 = 72 - IT = [0.696, 0.184, 0.06];
lealls = |les||1 + 73 - €f = 0.4104; 74 = 73 - I = [0.6904, 0.176, 0.0668];

from where p4 = [0.6904,0.176,0.0334, 0.0334]. For any state s the point-wise uncertainty
is bound by ||e4]|1, that is, [p(s) —p(s)| < ||eal||1; exact calculations from Example 1 confirm
this result. Note that we managed to obtain meaningful approximation, despite the fact
that neither of I, w4 or p4 are stochastic.

2.1.3 Threshold Abstraction

Threshold abstraction [7] is yet another approximation technique that can be used for any
class of Markov chains and its main idea for DTMCs can be described as follows. Let
be the truncation threshold. We start with a probability distribution py and replace it with
the distribution pg by dropping the states that have negligible probability:

Po(s) :{ po(s), if po(s) =6 (2.8)

0, otherwise.

We then propagate probability mass we are left with, obtaining p;, and then repeat trunca-
tions before successive iterations. The resulting distribution pg is an underapproximation
of the true distribution since the probability mass that was truncated could have remained
in a given state or might have been transported to other ones. The total probability loss

12

1 — > .cgPr(s) then serves as an (exact) upper bound on the approximation error. Note
that this technique can even be used for chains with an infinite state space because during
each iteration we deal only with the sets of active/discovered states.

Example 3. Consider again DTMC from Example 1 with initial distribution pg = [1,0, 0, 0].
Let 6 = 0.1 be the truncation threshold. Then

[]- anao]a 131 - f)O [0 8,02,0,0}7
=1[0.8,0.2,0,0]; P2 =p1-P =0.72,0.2,0.08,0];

p2 =[0.72,0.2,0,0]; P3 = P2 - P = [0.656,0.184, 0.08, 0];
[[

Ps = [0.656,0.184,0,0]; pa = ps-P = [0.5984,0.168,0.0736, 0];

and |leq|t = 1 — ||palli = 0.16. State space reduction was achieved since during each
iteration we have been working with at most three states at a time.

The example above also illustrates one important property of threshold abstraction
worth mentioning. Notice how s; is constantly sending small portions of probability mass
to s that are being immediately truncated. If so was absorbing (for instance, after a PCTL
driven transformation during model checking), in the long run, it could have accumulated
a significant probability mass, yet constantly truncating these small accruals would lead to
an enormous error. In general, this does not happen with state space aggregation: working
with clusters allows us to guess where the probability is approximately located. On the
other hand, e-terms give us a rather conservative error bound compared to probability loss.

2.2 Continuous-Time Markov Chains

Now we will generalise ideas from the previous section and introduce Markov chains that
act in continuous time.

Definition 3. [17] A continuous-time Markov chain (CTMC) is a pair C = (S, R), where
e S is the set of states and

o R:5x 8 — Ry is the transition rate function.

Similarly as with DTMCs, we will implicitly assume that the set S is finite. R is
a function that for each pair of different states assigns a rate used as a parameter of
an exponential distribution. Formally, a transition from state r to state s can occur if
R(r,s) > 0 and the probability that this transition is triggered within ¢ time units is
1 — e B(ms)t A probabilistic choice arises through race condition when for current state r
there exist several states s such that R(r,s) > 0, the first transition triggered then defines
the next state of a CTMC. The time spent in state r, before any such transition occurs, is
exponentially distributed with parameter E(r) := > ¢ R(r, s), which is called the exit rate
of state r. States for which E(r) = 0 are called absorbing. A CTMC is initialised via the
distribution pg(s) = P(C(0) = s). Similar to DTMCs, it is sometimes helpful to visualise
CTMCs as a graph structure where edges represent non-zero transition rates, as Figure 2.4
suggests.

Definition 4. Let C = (S, R) be CTMC. An infinitesimal generator function @ : Sx.S — R
of C' is defined as

Q(r,s) :{ —E(r), ifr=s

R(r,s), otherwise.

13

Figure 2.4: A simple CTMC.

Definition 5. Let C' = (S, R) be CTMC and @ be its infinitesimal generator function. Let
q > maxges E(s) be uniformisation rate. A uniformised DTMC of C' given uniformisation
rate ¢ is a DTMC (S, uniff,) having transition probability function uniff, defined as

Q(r,s)
1
unif%(r, s) = { Q?;,s) q

q)

ifr=s

otherwise.

A uniformised DTMC (S, unif%,) serves as a time-discretisation of the CTMC C = (S, R)
with respect to the fastest event with rate ¢ that can occur. Usually, we pick ¢ to be the
maximum exit rate in S, which corresponds to the shortest mean residence time in the
system, although any value larger or equal tso this rate will be sufficient. If r is the current
state and r # s, then unif}(r,s) := Q%’S) = @ yields the probability of triggering the
transition from r to s given that any discrete transition (i.e. including the one from r to r)
occurs. Therefore, the complement 1 — 37 ¢, @ =1- @ =1 % =: unif%,(r,)
gives the self-loop transition probability from r to r. Similarly as in the previous section,
we will use symbols R, Q or uniff{ to denote matrices associated with the corresponding
functions. We are interested in computing the transient probability distribution pi(s) =

P(C(t) = s) for any ¢t > 0, which is the interest of the uniformisation procedure.

2.2.1 Uniformisation

Any Markov chain can be viewed [7] as a stochastic process X = {X(t),t € T'} defined on
a (discrete) state space S, acting in time domain 7" and satisfying the Markov property.
Probability P(X (¢) = s),s € S,t € T denotes the probability of residing in state s at time
t. The choice of a domain 1" determines the type of the chain we are dealing with: Ny for
DTMCs, R>q for CTMCs.

The main idea of a uniformisation method is to split CTMC C = {C(t),t € R>0} = (S, R)
into two independent stochastic processes: {D¢(k), k € No}, Do(k) € Sand {Bc(t),t € R>o},
B¢ (t) € Ng such that

pi(s) = B(C(t) = s) = B(Dc(Be () = s).

Notice that D¢ is a DTMC defined on the same state space as C' and B¢ is a CTMC with
an infinite state space. We will refer to B¢ as a birth process associated with C. In the case
where S is finite and all R(-,-) are bounded, the existence of such processes is guaranteed.
From the independence of De and B¢, we obtain:

14

P(Dc(Be(t) ZP Dc(k) = s) - P(Bc(t) = k). (2.9)

Intuition behind this expression is as follows. Expression P(D¢ (k) = s) represents a prob-
ability that C resides at state s after k ’discrete’ jumps. Since we cannot know in advance
how many steps will be performed, we invoke the total probability theorem [3], where
P(Bc(t) = k) captures a probability of performing k such steps within ¢ continuous time
units. Intuitively, D¢ keeps track of the current state of C' and B¢ keeps track of an
elapsed time (in probabilistic sense). Let us introduce shortcuts ug(s) == P(D¢c(k) = s)
and Sy = P(Bc(t) = k) A concrete choice of Do and B¢ is of interest of the concrete
uniformisation procedure.

Definition 6. Let C = (S,R) be CTMC. Standard uniformisation (SU) is a splitting
(D¢, Be) according to the following rules:

e ¢ > maxges F(s) is a uniformisation rate.
e Bc = (No,Rp.) is a CTMC s.t. P(B¢(0) =0) =1 and Rp,, is defined as:

ifj=i+1

N D
Rp, (4,7) = { 0, otherwise.

e Do = (S, uniqu) is a uniformised DTMC given rate ¢ that has the same initial prob-
ability distribution as C.

()51 (2)
Figure 2.5: Poisson process with rate q.

We recognise Be to be a pure birth process with constant rate g (i.e. Poisson with rate
q), see Figure 2.5, for which analytical solution is known to be:

Hk
By = e 4t (qk:') = Ygi(k), k € No.
Therefore, (2.9) becomes
jijtu; gk (2.10)
Finally, for a given precision €44, an iterative scheme of Fox and Glynn [10] can provide
bounds L, R such that
R
L—erg < (k). (2.11)
k=L

15

We can then truncate the infinite sum in (2.10) to obtain an underapproximation of the
true probability distribution:

Zuk) - bar(k) < pi(s) (2.12)

Combining (2.11) and (2.12), we arrive at the conclusion

el = Zﬁt(s) = Z Z ug(8) gt (k Z Zuk $)¥qu(k

seS s€S k=L k=L seS
R R
= (k) D ur(s) = Y var(k)
k=L ses k=L
2 1- 6f97

and therefore

lecllr = [Pt — Delln = [IPellr — 1Pelln = 1 — IDells < ey,

that is, we have a guarantee that the total probability loss that comes from truncation will
not exceed 4. Notice that this proposition holds since transient probabilities uy(s) sum
to one.

Example 4. Consider CTMC from Figure 2.4 having initial distribution pg = [1, 0,0, 0].
Its transition rate matrix is

o O N O
o O O
S O N O
o w o o

We are interested in finding the transient probability distribution for this chain at time
t = 0.4. The maximum exit rate is the one of s3, so ¢ = 5°. Let efg = 0.1. For this
accuracy and the product ¢ -t = 2, Fox-Glynn procedure would return L = 0, R = 4 and
gt ~ [0.1353,0.2706,0.2706, 0.1804, 0.0902], where displayed values are truncated to four
decimal places. R being equal to 4 means that we will need to find distributions ug, ..., us
for the uniformised DTMC. L being equal to zero means that we start to weigh these
distributions starting from the initial one. Finally, the vector 1q.t contains all five Poisson
probabilities needed to perform this weighing from 0 to 4. Let s; = ZZ:O uy - g (k)
denote the partial sum. The uniformisation of R with rate ¢ = 5 is the discrete chain from

2 Any number larger or equal to maxses{E(s)} will do. In practice, we often choose maximum exit rate
multiplied by 1.02, for numerical reasons.

16

Example 1 where we have already computed its probability distributions. Therefore:

So = o - g (0) ~ [0.1353,0,0,0];

s1 =80+ uy - Yu(l [0.3518,0.0541, 0, 0J;

S2 = s1 + U2 - Yy (2 [0.5467,0.1082,0.0216, 0];

s3 = Sz + s - g (3) & [0.6651, 0.1414, 0.0418, 0.0086];
S4 =83 +ug-YPu(4 [0.7234,0.1566,0.0525,0.0147].

~~ ~ —~

) =
) =
) =
) =

Finally, py = s4 and |le¢||1 = 1 — ||p¢]|1 = 0.0526; we confirm that |[eg||; < ey4.

The main drawback of SU is that for large uniformisation rates q the mean of the Poisson
distribution 1g(-) is large and so is the upper truncation point R. This means that to find
the solution of C'(t) one must perform plenty of iterations for the process D¢ (k). Adaptive
uniformisation solves this issue by allowing the rates of the birth process to change in each
step.

Definition 7. Let C' = (S, R) be CTMC. Adaptive uniformisation (AU) [7] is a splitting
(D¢, Be) accoring to the following rules:

e Let qo, q1,... be an infinite sequence of uniformisation rates satisfying
¢i > max{E(s) | s € S,ui(s) > 0}. (2.13)

e Bc = (No, Rp,,) is a CTMC s.t. P(Bc(0) =0) =1 and Rp,, is defined as:

[=it
Rpc(i7) = { 0, otherwise.
e Do = (S, unif‘ﬁ) is a DTMC whose transition probability matrix during time step ¢
is a uniformisation of R with rate g;.

We start at discrete time 0 with a subset of states in S that have non-zero initial
probability ug(-), such states will be called active or significant. The largest exit rate g
from the states within this subset is to be the (local) uniformisation rate. We then compute
unif‘ﬁ to be the transition probability matrix for process D¢ at time 0, perform probability
propagation and obtain u(-). We then repeat the procedure of defining the subset of active
states, finding (local) uniformisation rate g, uniformising the rate matrix according to this
rate and propagating probability. This way we obtain a sequence qg, 1, ... and can construct
a birth process, see Figure 2.6. In order to solve this CTMC, we apply SU. Notice that
Vi € Ny ¢; < ¢ where ¢ > maxscsFE(s) — we can use ¢ as a (global) uniformisation rate for
Be and its solution is

ZP (Do (1) = k) - ge(D), (2.14)

where Dp,, is a uniformised DTMC associated with B¢, see Figure 2.6. Observe that for
k=0:

P(Dp, (1) = 0) = P(Dp, (I — 1) = 0) - (1 - ‘20) . (2.15)

17

Figure 2.6: A general birth process (a) and its uniformised DTMC (b).

and for £ > 0:

P(Dp, (1) = k) = P(Dp (I —1) =k — 1) - ‘J’“Tl +P(Dp.(l—1)=k) - (1 — qq’“) . (2.16)

Hence, to compute [, only rates qo, ..., g must be known: the computation of ux(-) and
Br can be interleaved. Combining (2.9) and (2.14), we are able to compute transient
probabilities for CTMC C"

= Zuk(s) B = Zuk ZP (Dpe(l) = k) - g (l). (2.17)
k=0 k=0 1=0

The inner infinite sum can be truncated using the Fox-Glynn scllleme for a given precision
€fg- The outer summing can be stopped after step R’ when ZkR:O Br > 1 — &, for a given
precision ey, < €4, and so (2.17) becomes

R R
=Y ur(s)- D P(Dpo(l) = k) - Yar(l). (2.18)
k=0 =L

Both truncations lead to an underapproximation of the true probability distribution and
the total error is given by the probability loss 1 — ||p¢||1 with an a priori specified bound
Evp-

Example 5. Consider again CTMC (S, R) and time bound ¢ from Example 4 and let
€rg = €pp = 0.1; global uniformisation rate ¢, truncation bounds L, R and a Poisson distri-
bution g (-) for the inner birth process remain the same. Let s; := ZZ:O uy - B denote
the partial sum. Let vy := [P(Dp.(0) = k), ...,P(Dp,(R) = k)] be the solution of the birth
process for the ’outer’ discrete time horizon k:, note that vy is not a probability distribution
and its entries are not supposed to sum to one.

Iteration i = 0:

1. initial distribution for uniformised DTMC is ug = [1, 0,0, 0];
2. s¢ is the only active state, therefore, gg = E(sg) = 1;

3. using (2.15), we obtain vg = [1,0.8,0.64,0.512,0.4096];

18

4. Bo=vo-Pgt’ = 0.6544;
5. So = Uup - ﬁo = [06544, 0, 0, O],

6. 22:0 Br = 0.6544 < &pp, so we need to push probability and move on to the next
iteration;

7. uy = ug - unifg® = [0,1,0,0].
Tteration i = 1:
1. s is the only active state, so ¢1 = E(s1) = 4;
using (2.16), we obtain vq = [0,0.2,0.2,0.168, 0.136];
B1 = v1-thq! = 0.1508;
s1 = so +uy - 51 = [0.6544,0.1508, 0, 0];

AN R S

2,16:0 Br = 0.8052 < &y, more iterations needed;
6. uz = uy - unifg' = [0.5,0,0.5,0].
Iteration i = 2:
1. sp and sy are active, so ga = max{E(so), E(s2)} = max{l,3} = 3;
2. using (2.16), we obtain v = [0,0,0.16, 0.224, 0.224];
3. B = va-thq! = 0.1039;
4. s3=s1 +up - B2 = [0.7064,0.1508, 0.0519, 0];
5. Zi:o Br = 0.9092 > &,,, we can now stop iterations.

Finally, Py = s2 and |leg|l1 = 1 — |[P¢][1 = 0.0907. We confirm that [|e¢||; < ep,. Notice
that, instead of four vector-matrix multiplications performed in 4, we needed only two.

The main advantage of AU lies in the fact that uniformisation rates ¢; are ’discovered’
with probability propagation and there is a chance that at a given time ¢, ¢; < ¢, which
allows a birth process to jump at lower rates and therefore it is possible that R’ will be
substantially lower than R. Numerically, this allows to perform much less vector-matrix
multiplications to solve for D¢ and at the same time arrive at the same result with the same
accuracy as SU?. Furthermore, threshold abstraction can be used with both SU or AU to
solve for D¢, although it is particularly favourable with AU since truncating the state space
using threshold § > 0 leads to smaller subsets of active states and a birth process can jump
at even slower rates ¢;. In the sequel, we will refer to the combination of SU with threshold
abstraction as fast SU (FSU), and to the combination of AU with threshold abstraction as
fast AU (FAU)*. Also note that in this case probability loss is the only way to estimate the
approximation error since an a priori specified error bound cannot be guaranteed.

30ne could argue that the complexity of (2.12), which is R, is substantially lower than that of (2.18),
which is R’ - R, since during each step we must solve for a birth process. However, due to its extremely
simple structure, this computation is trivial compared to a vector-matrix multiplication needed to compute
uk(-). However, as will be shown later, in some cases solving for B¢ can become more noticeable. The
bottom line here is that AU will always demonstrate better performance than SU, although this increase
may not correlate with the reduction ratio R/R’, see experiments at the end of Section 4.2.

“In this case FSU can be used while solving a birth process to further decrease complexity of the com-
putation.

19

2.2.2 Model Checking and Aggregating CTMCs

All the model checking procedures defined for DTMCs in Subsection 2.1.1 automatically
translate into the continuous case and can be applied in combination with uniformisation
techniques. In the case of CTMCs, the specification language is Continuous Stochastic
Logic (CSL) that is also based on CTL. For the same reasons mentioned earlier, we will
restrict ourselves to its subset and consider only operators ’eventually’, <! A, and ’always’,
O0<tA. Their semantics is defined analogously as in the discrete case, except that bound
t (again, strictly finite) is now considered on a continuous time-domain. A CSL driven
transformation is, again, constructed by forcing states in Sat(A) to be absorbing. The
desired probability P(O<tA) (respectively, P((0<!A)) for a given CTMC can be found using
uniformisation to compute transient probabilities at time ¢ of its CSL driven transformation
and summing the resulting state probabilities over the set Sat(A). The resulting value is
an underapproximation of the true probability and the upper error bound is again given by
1-— Hf),ij [A] (s)||1, since this value encompasses a total probability loss for each of the states
in S. A comprehensive description of CSL model checking can be found in [17].

As to the state space aggregation, one could suspect that it can be integrated with
e.g. standard uniformisation while solving for uniformised DTMC. This idea was outlined
in [1] and will be reviewed in Chapter 4, where we will formalise this approach and rigorously
derive bounds on the approximation error.

20

Chapter 3

Adaptive Aggregation for DTMCs

The goal of this chapter is to develop ideas presented in [I] and introduce a notion of
a general state-space aggregation for discrete-time Markov models. This will allow us to
explore various aggregation schemes as well as obtain a better approximation error estimate.

Definition 8. Let D = (S, P) be DTMC with initial distribution py. Let P : S x § — R
be any real function relating each pair of states, let pg : S — R be a function that to each
state assigns any real number and let functions py : S — R, k > 0 be recursively defined as

r(s) =Y Br-1(r)P(r,s) (3.1)
res

or, using matrix notation:

Px = Px-1 - P. (3.2)
Function P will be referred to as an approzimation of P, functions py as approzimations of
pr. and a structure (S, P) will be referred to as an approzimation of DTMC D.

We are also interested in computing an approximation error eg(s) = pr(s) — px(s).
First, note that eg(s) = po(s) — po(s) captures an error associated with using pg instead of
po. For k > 0, we argue as follows:

Pr(s) =D Pro1(r)P(r,s)

res
=
pr(s) + ex(s) = (o1 (r) + ex 1 () (P(r,5) = P(r,5) + P(r,5))
res
= Zpk_l(r)P(r, s)+ Z ex—1(r)P(r,s)+
res res
+ 3" 1)+ ex1(0) (P,) = P(r,s))
res
—pi(s) + Y er 1 (NP(rs) + Y pra(r) (Plrs) = P(r,s)).

res res

21

from where

=Y e 1 ()P s) + 3 e () (Plrys) = P(rs)) (33)

res res

This recursive formula gives us an insight into how an error is generated when we approx-
imate a DTMC. The first summand represents a casual propagation of existing error as if
we were using exact transitions P(r, s) for probability propagation. On the other hand, the

term py_1(r) (]5(7“, s) — P(r,s)) captures an error that is generated in each step between

states r and s while using an approximation P(r,s) instead of P(r,s); the sum over all
states then yields the total error generated into state s. If ey is a row vector associated
with function ey, then for its Li-norm we obtain:

lexlls =Y lex(s)

seS

= Z Z ex—1(r)P(r,s) + Zﬁk,l(r) <15(r, s) — P(r, s))'
seS |res res

< Z Z ex—1(r)P(r,s)| + Z Zﬁk,l(r) (]5(7", s) — P(r, s)) ‘ .
seS [reS seS |reS

Let us inspect the first term:

ZZekl P(r,s) <ZZ]ek1)| P(r,s) = ZZ|ek1)| P(r,s)

seS |res seSresS res sesS
= lee1(M D _P(r,s) = lex—1(r)| = lew—1lh,
resS ses res

and therefore update equation for the Li-norm of the error vector at time k becomes

Zﬁk,l(r) (]5(7", s) — P(r, s))

res

lewllt < llex-all +

SES

) (3.4)

where

lleolli =) fo(s) = po(s)]

seS

Let us now introduce a special class of approximate DTMCs.

Definition 9. Let D = (S, P) be DTMC and let ® be a clustering of S. Let IT: ®x® — R
be any real function relating each pair of clusters and define mo(o) = > ., po(s). Then an

approximation (S, P) of DTMC D where P(r,s) = H(|p’| 9) e p,s € o and po(s) = ”?(ST),

s € o will be referred to as a state-space aggregation of D given abstract state space .

22

Notice that

Similarly,

(r,r €p),(s,s € o) = P(r,s) = P(r',s') =

and therefore update equation (3.1) yields

5,8 €= Pr(s) =D pra(r)P(r,s) = pe_1(r)P(r,s') = pi(s).

res res

Three equalities above illustrate an important property of aggregation: any two states
from two given clusters have the same approximate transition probability P(-,-) and any
two states in a given cluster at any time step k& > 0 share the same value of approximate
transient probability pg(-). Hence, instead of computing transient probabilities for each of
the states, we can compute them for a single state within each cluster or, equivalently, for a

cluster as a whole. Let m(0) :== Y . pr(s), k > 0; conversely, pi(s) = \UI ,s€0,k>0,
due to Definition 9 and the argument above. Then for £ > 0:
=2 0() = 3> e () P(r,s)
s€o s€o res
_ ™ k 1 ,0)
=22 Zpk 1 =222 |
se€o ped rep s€o ped rep
R TR s B TR Sy
=222 = !
ped seo rep ’ ped ’P| s€o rep
= Zﬂkfl /0 (pv U)a
ped
or in the matrix notation:
Tk = Tk_1 - IL. (3.5)

Hence, we can operate with vectors m instead of px. As to an error associated with this
aggregation, the second term in (3.4) becomes

23

2

seS

> Bie(r) (Plrs) = P(rys)) ‘

res

=SS) (ﬁ(r, s) — P(r, 5))

oced s€o |ped rEp

=SS S e (FE - i)
(

oed sco |ped rep

II(p,0)

-y |y

ol

)

oed s€o |ped

= Z Z Z m-1(p) (HH(;}, o) — ZP(T’, s))

oced s€o |ped ‘p’

33wl (|0’|") _1ZP(T,S)>
I

o€d s€o |pcd |'O| rep
(po) 1
W ILNEIE LRI
ced s€o ped rep
11 1
DI IIMIVIL LR ST
peEP oced sco P rep
(p,o) 1
- ma XY HED - LS P
ped cED s€o rEP

If we denote 7(p,0) == >, Hﬁg] \pl > e, P, s)‘ and 7(p) = Y, cq T(p, o), then for
the Li-norm of the error vector we obtain

lexllr < llex—1llr + Zﬂ'k—l(P)T(p)- (3.6)
ped

Equations (3.5) and (3.6) allow us to compute approximation of the transient probability
distribution as well as an upper bound on the Li-norm of the error vector. Note that neither
II(-,-) nor 7(-) change as time progresses: these values can be computed only once before
the first propagation and in the case where |®| < |S|, using (3.5) and (3.6) instead of
(3.2) and (3.4) will be more efficient. We have arrived at the same framework for DTMC
approximate analysis as the one described in Section 2.1.2. What differs, however, is that
newly derived procedures apply to any aggregation scheme II, not only to (2.3). This allows
us to experiment with different strategies and find the most suitable one. Furthermore,
observe that

24

II(p,o) 1
T(p,0) = E E P(r,s)| < |o| max - — E P(r,s)
poe !0| |P| = seo | o] ol &=
_ ol
= max |II(p, o P(r,s)| = €(p,0)
s€o ol Ze:p

and therefore (3.6) gives us a better error estimate than existing bound in (2.7). To con-
clude, we are now able to apply arbitrary aggregation scheme II and compute approximation
error with a better error bound. Let us introduce several aggregation schemas that will be
of great interest later on, once we establish the principal aggregation algorithm:

e state-space aggregation based on incoming transition probabilities [1]:

I (p,0) = |ZZP7'3 (3.7)

acp sco

e state-space aggregation based on outgoing transition probabilities:

ot (p,0) = ‘ZZP r,s) (3.8)

acp sco

o median-based state-space aggregation:
o
eq(p, o) = +— med {Z P(r, s)} . (3.9)

It is necessary to explain where each of this schemas comes from. The first one originates
from [1] and was in detail described in 2.1.2. Inspired by this approach, the second scheme
was designed with one specific goal in mind, namely, observe that for each cluster p:

Zﬂout(p,a)zz ZZPTS ZZZPTS

ol

oed oeb rép s€o r€p oced s€o
‘ | E g P(r,s) ‘ E 1=
p rep s€S rep

i.e. matrix Il,,; is stochastic, so vectors 7k (and therefore py) are stochastic as well and
the abstract chain (®,11,,;) is the DTMC in view of Definition 1. This subtle difference
has two large benefits. First, from the technical standpoint, this leads to a slightly better
approximation compared to (3.7), as will be shown later. Second, preserving stochasticity
of px will be the key to safely use uniformisation method and Fox-Glynn algorithm when
dealing with CTMCs.

The median-based scheme was derived using the following argument. Assume a specific
state space clustering is given. We can arbitrarily define our abstract transition probabilities
II(-,-) and the approximation error accrual in each iteration will be captured by (3.6). In
order to minimize this accrual, it is sufficient to minimize each of the

25

T(p,0) = Z

se€o

by picking a suitable II(p, o). We can safely pull |o| in denominators out of the absolute
value and instead minimize

D

seo

II(p,0) — ZP(T, s)| .

We recognize this as a problem of minimizing the sum of the absolute deviations, for which
solution is known [22] to be

So, in theory, this approach should give us the most accurate error bound. Notice that in
this case 11,04 is not stochastic.

3.1 Adaptive aggregation algorithm

For now we have been assuming that a specific state-space aggregation ® of S was given.
Let us now describe how to construct such partition for a DTMC having arbitrary structure
of its state space. Also, in order to use adaptive aggregation as described in Algorithm 1, we
need to specify a procedure for determining whether a partition is suitable for the current
probability distribution.

First, we define adjacency of two states to be measured based on (mutual) transition
probabilities: a pair of states that are connected by a significant transition probability are
‘coupled’ (in a probabilistic sense) and are good candidates to form a cluster. One would
intuitively suggest this approach when treating a Markov chain as a directed weighted
graph. Second, a requirement of cluster size to be inversely proportional to its transient
probability will be fulfilled by performing the clustering in a bottom-up fashion, where we
try to merge clusters together unless their resulting probability exceeds a given threshold 4.
This way, states with significant probability mass (i.e. above threshold §) will automatically
form trivial clusters; conversely, states having negligible probability will be aggregated to
large clusters. Combined with the definition of adjacency mentioned earlier, it will allow us
to adequately partition any state space, regardless of its structure. The overall partitioning
Algorithm 2 is presented below.

On line 1, we sort all transitions in descending order; this way we establish levels of
adjacency between the states and then we favour those pairs of states connected by the
most significant transitions by trying to aggregate them first. On lines 2 to 4 we construct
a partition consisting of trivial clusters. We then proceed from the bottom to up and try
to merge clusters together. First, we pick states src and dst that represent the source and
the destination of a significant transition from T'; then we find clusters p and o containing
the corresponding states and then merge them if their resulting probability sum will not
exceed a specified threshold 0.

26

Algorithm 2: State space partitioning of a general DTMC

Input : DTMC (S, P), initial distribution pg, probability threshold &
Output: Partition ¢ of S.

T = sort(P); ® = (J;
for s € S do
&= & {{s});
end for
for (src,dst) € T do
p = clusterOf(src); o = clusterOf(dst);
if p # o and w(p) + 7(c) < 0 then
= ((@\ {p)\ {oh) U {pUah
7(pU) = m(p) + (o)
end if
end for
return O;

© ® N O A W -

[
N = O

Similarly as in Section 2.1.2, we will use several partitions that will adapt to the cur-
rent probability distribution. The moment when a given partition is no longer consid-
ered to be appropriate is detected when any non-trivial cluster has accumulated a non-
negligible amount of probability and hence starts to generate a significant error, i.e. proce-
dure checkPartition() from Algorithm 1 asserts condition Vo € ® |o| > 1= mi(0) < § -,
where ¢’ is some parameter. The choice of the parameters § and &' naturally allows us
to adjust aggregation behaviour. For the choice of §, big values will allow the clustering
procedure to merge more states together, so larger values of § usually mean larger state
space reduction (and larger error). On the other hand, ¢’ is a parameter that controls how
frequently reaggregations are performed: if 8’ = 1, partition is no longer appropriate as
soon as some cluster p accumulates probability 7(p) larger than §, and this can happen
even after one iteration; if &’ > 1, it gives a partition checker some sort of inertia in the sense
that now a cluster can accumulate more probability without being considered inappropri-
ate. So, larger values of §' will result in less frequent reaggregations (and larger error).
In both cases there is no guarantee on the maximum number of clusters or the minimum
number of reaggregations. Notice that the choice of parameters gives rise to the conflict of
efficiency versus precision: large ¢ allows to aggregate more and reduce complexity of the
vector-matrix multiplications, for the price of increased error; similarly, large ¢’ allows us
to recluster less frequently, again, for the price of increased error.

On a final note, let us agree that a more straightforward way of establishing a partition
would be to minimize error in (3.6) while satisfying some additional constraints (e.g. a
desired state space reduction). Although we studied general techniques for identifying
clusters in directed graphs [20], none of them provided an elegant and efficient solution to
the problem. Therefore, several heuristics described above were taken into account that
gave rise to Algorithm 2. Also, note that in this algorithm we require 7(p) to satisfy a
certain condition, not the product of 7(p) - 7(p) (which will ultimately generate an error).
The reason for this is that constructing 7-terms on the fly is computationally demanding,
so they are computed only after a partition is established. Analogously, during partition
check, we assert whether 7(p) (not the corresponding product) satisfies a certain condition,
because we have a guarantee that for 6’ > 1 our partition is valid before the first probability

27

propagation. However, in practice, asserting whether 7(p) or 7(p) - 7(p) satisfies a certain
threshold does not lead to inherently different behaviour of the partition checker.

3.2 Experimental evaluation

Having now a broad arsenal of aggregation schemes and a complete algorithm they can
be integrated into, it is time for experimental evaluation. Adaptive aggregation procedure
accompanied by all three schemes (3.7)-(3.9), as well as DTMC analysis based on threshold
abstraction, were implemented in PRISM, explicit engine; this engine does not use symbolic
data structures for model construction and was proved to provide the best performance for
general models of a moderate size (up to ~ 107 states). All of the experiments (including
those in the next chapter) are run on a CentOS 6.5 server with 12x Intel Xeon E5-2640 (6
cores at 2.5 GHz) and 64 GB RAM with all the algorithms being executed sequentially (1
thread).

In our first set of experiments, we try to apply individual aggregation schemes in various
scenarios on analysing a simple DTMC and compare the achieved accuracy, both empirical
(comparing to exact result) and theoretical (upper error bound on the L;i-norm). We
perform these experiments on two different models of different sizes exhibiting distinctive
behaviour to eliminate any bias regarding the choice of the model under investigation.
Overall, we perform three different experiments having various goals in mind:

e Experiment 1 (Ele, E1t): We evolve the model for 100 (exact) steps, then perform
our first partitioning and compute abstract transition matrices using three differ-
ent approaches: median-based (Med), based on average outgoing (Out) or incoming
(In) transition probabilities. Then we perform a single step in this abstract setting.
In all cases we will be using the same value of aggregation threshold and therefore
each scheme will be working with exactly the same state space partition. We report
empirical error (Ele) and theoretical error bound on the propagation error (Elt),
i.e. |lero1|l1 without aggregation error |le1go||1, which would be same in all cases since
each technique uses the same state space partition'. The differences in the obtained
values will arise only from of using different abstract transition matrices. The goal
of this experiment is to compare one-step behaviour of the various abstract transi-
tion functions. For the case of average incoming probabilities, we will also compute
theoretical bound using (2.7) (In’) to check whether the new bound (3.6) (In) gives a
better approximation.

e Experiment 2 (E2e, E2t): Same as Ele & Elt, but after aggregation we perform 100
consecutive steps without reclusterings. The goal of this experiment is to demon-
strate the long-term behaviour of different aggregation approaches. Again, the value
reported in E2t is ||ez2po|l1 — ||€100]1, i-e. bound on the propagation error during each
of the 100 steps after first aggregation.

e Experiment 3 (E3e, E3t): Same as E2e & E2t, but during 100 steps after the first
aggregation we will perform 10 additional reclusterings at fixed times (105, 115, 125
etc.). Since for each of the schemas the probability distributions during the corre-
sponding times will be approximately the same and the aggregation error is negligible

'We could also filter out aggregation error in Ele, although it will hardly make us any good: in this case
errors are 'sign-sensitive’ and can cancel each other out during the 101th step.

28

compared to propagation one, in E3t, again, we report only the bound on the prop-
agation error. The goal of this experiment is to investigate behaviour of various
approximations under regular reaggregations.

Ele Elt E2e E2t E3e E3t
Med 1.93E-23 9.77E-24 3.59E-4 3.71E-4 3.50E-4 3.50E-4
In’ 1.31E-20 1.33E-1 717E-14
In 2.07E-23 1.28E-23 3.58k-4 3.86E-4 2.01E-17 2.81E-17

Out 2.51E-23 1.65E-23 6.40E-4 8.95E-4 2.85E-20 2.04E-19

Table 3.1: Accuracy of various aggregation schemas. Model: Lotka-Volterra [13], N = 400
(160k states), § =1E-25 .

Ele Elt E2e E2t E3e E3t
Med 1.24E-9 8.09E-11 1.25E-7 1.40E-7 1.27E-7 1.27E-7
In’ 4.39E-6 1.06E-2 2.10E-4
In 1.26E-9 1.07E-10 1.21E-7 1.52E-7 1LO2E-7 1.11E-7

Out 1.29E-9 1.27E-10 1.94E-7 2.80E-7 1.68E-8 3.17E-8

Table 3.2: Accuracy of various aggregation schemas. Model: Prokaryotic Gene Expression
[16], maxPop = 9 (700k states), 6 =1E-10 .

The results for two different models of two different sizes are showed in tables 3.1 and 3.2,
where the displayed values were truncated to two decimal places. First, from all experiments
we unequivocally confirm that the new error bound (3.6) indeed gives several orders of
magnitude better estimate than the one based on e-terms (2.7). Second, experiment 1
shows us that median-based aggregation exhibits the best one-step behaviour, followed by
incoming, followed by outgoing. Third, in experiment 2 we see a severe accuracy decrease in
all of the methods: probability distribution has changed and in the absence of reclusterings
we obtain a significant error. Fourth, although median-based aggregation performs slightly
worse than incoming averaging, its theoretical bound of the actual error is still the best
one. Finally, in experiment 3 we see that reclusterings can drastically improve the situation
for incoming and outgoing approaches, with the latter having an edge of a couple of orders
of magnitude.

The difference in the obtained values arises from how an individual scheme handles the
problem of probability forwarding into big clusters. Median-based aggregation is very likely

to pick meed {ZTEp P(r, s)} equal to zero, because a majority of states in a big target cluster
sSco

would be inaccessible in one step. Hence, no probability forwarding occurs at all, and the
error is generated by the opposite effect: states that are accessible in one step will not get
any probability at all. In the long run, it seems to be ineffective because abstract transitions
equal to zero now decelerate the system and reaggregations cannot improve the situation;
median-based aggregation, as expected, produces the best error bound of its actual error,
yet this error is intrinsically poor and the scheme is of no great use to us. On the other
hand, strategies based on averaging always propagate at least some probability mass, and
the incoming version seems to be advantageous because a large size of a successor can

29

alleviate abstract transition probability and probability forwarding would be less apparent
as compared to outgoing. The latter, however, seem to be much more susceptible to regular
reclusterings.

In the next set of experiments, we put all the approximation techniques to the real test.
We pick a concrete model, namely, Lotka-Volterra of 0.5M states and compute approxi-
mation of its transient probability distribution at time 10000. For a given precision (Acc),
ranging from le-1 to le-5, each method is required to compute the result as fast as possible
guaranteeing this precision; an accuracy of the method is computed using (3.6) for outgo-
ing (Out) and incoming (In) averaging, using (2.7) for incoming (In’) averaging and using
probability loss for threshold abstraction (Tru). To ensure a fair comparison, parameters
for each of the methods are tuned individually in each of the experiments in order to obtain
the best computation time. Concrete values of parameters that yield the presented results
as well as other statistics (total number of aggregations, state space reduction, etc.) can be
found in experiments.txt file on the accompanying storage device. Results of this exper-
iment are presented in Table 3.3 where we report acceleration with respect to the reference
computation (10000 usual multiplications of matrices of size 0.5M). In this table we did not
include data for median-based aggregation since for such large time horizon this approach
failed to produce reasonable results. The choice of the model was completely arbitrary, and
none of the methods could be more advantageous than other while analysing it, at least to
our knowledge.

Acc 1E-1 1E-2 1E-3 1E-4 1E-5
Out 6.029 5.712 5.206 4.789 4.715
Tru 5.142 4.944 4.720 4.541 4.541
In 4.059 4.059 3.201 3.201 3.181
In’ 3.380 2.935 2.785 2.785 2.650

Table 3.3: Maximum performance of various aggregation techniques. Model: Lotka-
Volterra, N = 700 (.5M states), 10000 steps .

It is clear that Out > In > In’ Second inequality comes from the usage of better
theoretical bounds, which means that incoming averaging that utilised 7 instead of € can
make use of larger empirical error (by clustering more or reclustering less) to guarantee a
certain precision. The first inequality is explained by the fact that outgoing averaging is
more susceptible to reaggregations, and therefore fewer of those are required to guarantee a
certain precision. We basically confirm our results from the first set of experiments. What
is new here, however, is the illustration of behaviour of the state space truncation, which
seems to be slightly inferior to outgoing averaging. Let us repeat this experiment with a
different model, namely, a uniformised version of the two-component signalling pathway
[25]; also, instead of transient analysis, both techniques will perform model checking.

State-space aggregation is a clear winner here. Let us also evaluate the precision of
both methods similarly as in Table 3.1. We pick the same Lotka-Volterra model of size
160k from the first group of experiments and evaluate it using outgoing averaging (Out)
and threshold abstraction (Tru). The strategy here is the following. First, we perform 100
exact steps, then we start approximating using the same aggregation/truncation threshold:
with aggregation, states with probability below this threshold will be aggregated; with
threshold abstraction, such states will be truncated. This way we perform 1, 100, 300,
500, 700 or 900 discrete steps more (in the case of aggregation, we also perform regular

30

Acc 1E-1 1E-2 1E-3 1E-4 1E-5
Out 9.191 8.373 7.308 5.149 4.179
Tru 7.389 5.596 4.819 4.014 3.109

Table 3.4: Maximum performance comparison. Model: two-component signalling pathway,
population bounds [18,42]; property of interest is P((0<10YCpopRp < 27); number of states
after PCTL driven transformation: 0.5M.

reclusterings, again at fixed times after 10 steps) and in each case we report empirical (e)
and theoretical (t) error for both methods (for threshold abstraction both errors are defined
as probability loss). The results are presented in Table 3.5. Keep in mind that, contrary
to experiments from Tables 3.3 and 3.4, both aggregation and truncation use the same
aggregation/truncation threshold.

Steps 101 200 400 600 800 1000
Tru 1.0E-8 5.2E-7 2.0E-6 4.1E-6 6.2E-6 7.9E-6
Out(e) 1.2E-8 2.1E-7 2.6E-7 3.1E-7 3.2E-7 2.1E-7
Out(t) 1.4E-8 23E-6 7.7E-6 1.5E-5 2.0E-5 24E-5

Table 3.5: Adaptive aggregation versus state space truncation accuracy comparison. Model:
Lotka-Volterra, N = 400 (160k states), 6 =1E-25.

It is clear that aggregation gives a better empirical error, which confirms our intuition
that aggregating the state space and having at least an approximate idea where the residual
probability is located is better than truncating it completely. On the other hand, thresh-
old abstraction can provide an excellent theoretical bound on the error which ultimately
beats approximation bound based on 7-terms. However, as Tables 3.3 and 3.4 suggest, this
does not give threshold abstraction the necessary advantage: when allowed to tune param-
eters individually, outgoing averaging is capable of striking the perfect balance between
state space reduction and a number of reclusterings in order to provide a more efficient
approximation.

31

Chapter 4

Adaptive Aggregation for CTMCs

4.1 State-Space Aggregation for Standard Uniformisation

Having now an efficient aggregating method for the DTMCs, let us now combine it with
uniformisation technique in order to analyse continuous-time chains. In AU, transition
probability matrix for the internal discrete process changes each iteration with varying
uniformisation rate; in SU, however, this rate is fixed and the transition probability matrix
is computed only once, so there seems to exist a way we could aggregate it and perform
computation in the abstract setting. Such approach was already presented in [1], although
a rigorous error bound is yet to be derived, which is the main interest of this section.

Recall that SU works by constructing a uniformised DTMC from the rate matrix us-
ing a single uniformisation rate; it proceeds by computing transient probabilities for this
DTMC and then weighs them using a Poisson distribution 1 (-). The Fox-Glynn algo-
rithm provides us bounds L, R that allow us to truncate the infinite sum and compute the
overall result as in (2.12). The error associated with this truncation is the probability loss
IPells = IBells = DoegPe(s) = ses Pr(s) = 1= 3 cqDils)-

Now let us approximate p; with p; by replacing u; with approximations @y in (2.12).
Each @, has an uncertainty e, associated with it and each 1y, is being weighted with ¢4 (k),
so the overall error contributed is Z?: 1 llexl1 - g (k). We also lose some probability mass
during the sum truncation and to estimate this loss we use the following lemma.

Lemma 2. Let {vk}ren, be an infinite sequence of vectors of the same dimension and let
V=Y 72, Vk - Wi, where wy, are non-negative scalars for which "2 jwy = 1. If norms of
vk are bounded by some v*, i.e. Jv* Vk € Ny ||vi|[1 < v*, then v < v*.

Proof.

vl =

00
§ Vk - Wk
k=0

o0 o o
= Zwk vkl < Zwk-v* = U*Zwk =%,
k=0 k=0 k=0

O]

Corollary 2.1. Let v = ZkR:L Vi - Wi be a truncation of v for arbitrary bounds L, R,
where {vy} is consistent with Lemma 2. Then for the total mass lost after this truncation
it holds:

vl =¥l < v* = (1% (4.1)

32

If we treat symbols above in the context of CTMCs, vy of course refers to uy (or Gig),
v refers to p¢ (or pg), v refers to py (or f)t) and wy, is analogous to ¥4 (k) (or B(k)). For
SU, AU, FSU or FAU, each of the ||vk]|; is bounded by 1 and so (4.1) takes its usual form
1 — ||¥]]1. For the state-space aggregation, there is in general no guarantee on the form of
approximations vy, see the following example.

Figure 4.1: Aggregation strategy based on average incoming probabilities may lead to
diverging transient probabilities.

Example 6. Consider a DTMC in Figure 4.1 and assume that it starts at s;. We are free to
use different partitions as time progresses, so let us assume that we will use trivial partition
(i.e. unaggregated model) during even iterations and a partition ®,qq = {{so}, {s1,---,Sn}}
during odd ones. Therefore, during the first iteration, a probability 1 will get transported
using abstract transition probability n, resulting in pi(sg) = mi(sp) = n. During the
next step, this n is transported back to s;. Again, apply ®,4q before propagating to obtain
P3(s0) = m3(s0) = n?. Tt is clear that in this scenario the total probability mass in the system
will be increasing exponentially. Although this example is somewhat artificial, it conveys a
message that for arbitrary aggregation approaches there is no theoretical guarantee on the
form of resulting approximations.

The conclusion is: in order to use aggregation techniques in combination with the Fox-
Glynn scheme, it is crucial to appeal to those abstractions for which {vy} is consistent
with Lemma 2. A perfect candidate here is the outgoing averaging approach that preserves
stochasticity, ||vik|[1 = 1, and so probability loss can be computed analogously to SU/AU.
As a bonus, this technique proved to be the most efficient one for the analysis of discrete-
time chains. Henceforth, under the term ’state-space aggregation’ we will implicitly assume
the technique based on average outgoing probabilities.

The rest of the algorithm remains conceptually the same: we work with the abstraction
of the uniformised DTMC, where notions of state adjacency, aggregation checking, etc. are
analogous to those developed in the previous chapter. We are interested in computing ap-
proximate transient probability distributions of this DTMC that are then being weighed by
Poisson probabilities. The overall error is the sum of the probability loss and approximation
error for uniformised DTMC:

R

leelli < 1= 1Bell + D llexll - g (k). (4.2)

k=L
A combination of the state-space aggregation with SU will be denoted as SU+.

33

4.2 State-Space Aggregation for Adaptive Uniformisation

We have seen previously how adaptive uniformisation can drastically shorten the required
number of iterations without any precision penalty. The goal of this section is to adopt this
approach to the state space aggregation. We cannot apply adaptive uniformisation directly
since we have developed our aggregation scheme for (uniformised) DTMCs: we would have
to continuously recompute its transition probability matrix each time a uniformisation rate
¢; changes, which is completely impractical. Instead, we could define this matrix as a
function of the uniformisation rate.

Let (S, R) be CTMC and @ be the infinitesimal generator associated with R. Assume
a specific state space aggregation ® of S is given. Using outgoing averaging (3.8), we have

M(p, o) = |;1)| SO unifh(r, s), (4.3)

rep seo

where ¢ is the uniformisation rate. In the case where p # o, we have Vr € pVs € 0 1 # s,

so that unifh(r,s) = % and therefore equation (4.3) becomes
1 Q(r,s) 1 1
.= S) L LS g,
p rEp sc€o q q p rep sc€o

On the other hand, if p = o, we have to keep in mind self-loops:

1 T T, 1
= 3 e 20y 3 Qo)) Ly

1 +Z Q(ZS)]

rep q SEP,TFS q rep sep
1 Q(r,s 1 1
ST — s LSS)
P rep rEP SEP q q P rep sep

We arrive at the following definitions:

Definition 10. Let (S, R) be CTMC with infinitesimal generator () and let ® be the
partition of S. An abstract infinitesimal generator © : ® — ® is the function defined as

Op.7) = 153 > Qlrs).

rEP SEP

Definition 11. Let (S, R) be CTMC with partition ® of S. The exit rate of the abstract
state o is the maximum exit rate of states within this cluster:

E(o) == max E(s).

seo

Proposition 3. Let (S, R) be CTMC, ® be the partition of S, © be the corresponding
abstract infinitesimal generator and ¢ > max,cq E(0) be the uniformisation rate. Then

O(p,0) : —
1 4+ —== f/) =0
11 t(ﬂ 0) — O(p,o v 1
ou) %’ otherwise.

Its proof was demonstrated in the derivation above.

34

Corollary 3.1. For the error factors 7(-) associated with partition ® and abstract transition
function II(+, -) based on average outgoing probabilities, it holds:

1
T(”"’)ZQZ |a| |,o|ZQ

s€o rep
Proof.
Case p # o:
1 6(p,o) 1 Q1,5
T(p,0) = uni f(r, s) — - —
; IUI Ip\é; il o] g \p!% q
- Q(r,s)
RS
Case p = o
T(p,a):z ’U|] |Zumer s
seo P rep
]. @) 1) b
B S) RN PG N PO e
s€o g 1 P q SE€oT,r#s q
1 1 ©(p,o 1
=2 MJFM([))—‘—,ZQ
— q p = q
T PR e
sEU rep

O]

Algebraic manipulations above allowed us to express II(-,-) and 7(-) in terms of the
uniformisation rate g. In the case when this rate varies during each iteration, we are now
able to construct II(-,-) for probability propagation, as well as 7(-) for error estimation, on
the fly. We will no longer work with P and its abstraction II, but with) and its abstraction
O: structure (S, ©) will be therefore referred to as an abstract CTMC. Using the definition
of the uniformisation rate (2.13) along with the Definition 11 of the exit rate of a cluster,
we can compute current uniformisation rate ¢; as

¢ = max{E(s) | 4(s) > 0} = max{E(c) | mi(o) > 0}.

The resulting method combines both state space aggregation and adaptive uniformisa-
tion and its procedure can be outlined as follows. First, we construct a state space partition
® of S using initial probability distribution and aggregation threshold 444, where adjacency
of two states is now defined in terms of the rate matrix R. The resulting partition would
be exactly the same if we uniformised R first: uniformisation rate ¢ does not affect relative
magnitudes of between-state transitions. Having @, we can construct abstract infinitesimal
generator O, along with the value of

35

O(p, o 1
SY P - e

ocEed s€o |p| rep

for each p € ®, which, according to Proposition 3 and Corollary 3.1, will allow us propagate
probability of the uniformised DTMC and estimate the propagation error, regardless of the
current uniformisation rate ¢;. This rate is given by the largest exit rate within the set of
active states, which, according to Definition 11, is equivalent to the largest exit rate within
the set of active clusters. The error associated with this approximation can be estimated
using (4.2). Finally, we can combine the method above with the threshold abstraction
where in each iteration we truncate insignificant clusters, i.e. those with probability smaller
than 4, in order to obtain even smaller uniformisation rates. The resulting technique,
denoted FAU+, is a hybrid between the state-space aggregation and FAU. Aggregation
threshold 0,44 that defines how much of the probability mass can constitute a cluster, along
with the truncation threshold d;.,, defining which clusters are to be considered insignificant,
will drive the overall behaviour of the method, where in the limiting cases we can even
simulate other approximation techniques, see Table 4.1, where AU+ denotes a combination
of AU with the state-space aggregation. Adaptivity of FAU+ will allow us to perform fewer
iterations as compared to SU+.

0agg Otrw Simulated method

0 0 AU

0 >0 FAU
>0 0 AU+
>0 >0 FAU-+

Table 4.1: FAU4 parameters influence the overall behaviour of the method.

4.3 Experimental evaluation

We wish to compare both uniformisation techniques utilising threshold abstraction (FSU
& FAU) and combinations of SU & FAU with the state-space aggregation (SU+ & FAU+).
Accuracy comparison for aggregation versus truncation from Table 3.5 automatically trans-
lates to SU+ versus FSU since now we compute the same transient probabilities and only
weigh them with Poisson probabilities afterwards. Accuracy comparison involving FAU or
FAU+ is tricky because of varying uniformisation rates that lead to the non-linear progres-
sion of time. However, AU differs from SU only in the total number of iterations and not
in the overall precision, so general conclusions from Table 3.5 can also be applied when
comparing SU+/FAU+ with FAU.

Therefore, we proceed by reconstructing experiments regarding the overall performance
of individual techniques from Tables 3.3 and 3.4 in the continuous setting. For the first
experiment we choose to model check the signalling pathway model of exactly the same
size as in 3.4. In table 4.2, for each of the techniques we report the time acceleration (with
respect to SU) to guarantee a certain accuracy (Acc). Concrete values of parameters that
yield the presented results as well as other statistics (total number of aggregations, state
space reduction, etc.) can be found in experiments.txt file on the accompanying storage
device.

36

Acc le-1 le-2 le-3 le-4 le-5

SU+ 3.4013 2.7783 2.3618 2.0365 1.6762
FAU+ 4.9886 3.6509 3.0145 2.4026 2.1696
FSU 3.8363 2.7357 2.1929 1.9260 1.6473
FAU 5.3504 3.9517 3.1911 2.6817 2.3142

Table 4.2: Performance of various approximation techniques. Model: two-component sig-
nalling pathway, population bounds [18,42]; property of interest is P(O0<3popRp < 27);
number of states after CSL driven transformation is 0.5M, upper FG bound is 6131.

First, we observe that SU+ and FSU exhibit approximately the same behaviour. Con-
trary to what one could have deduced from Table 3.4, now both techniques are dealing
with a CTMC that is being uniformised with a much lower rate and therefore the inner
DTMC progresses much faster. State space truncation, because of the nature of its algo-
rithm, cannot notice this difference, but aggregation now has to perform more reclusterings.
Second, we see that adaptive approach employed in both FAU and FAU+ leads to a con-
siderable performance improvement: in this case FAU/FAU+ perform roughly twice as less
iterations as FSU/SU+ and are significantly faster than their non-adaptive counterparts.
Notice that FAU+ performs better than SU+ since it is able to simulate aggregation/trun-
cation strategy close to that of FAU, and therefore both FAU4 and FAU exhibit a similar
behaviour.

In the second experiment we choose the Lotka-Volterra model of exactly the same size
and a continuous time horizon ¢ for which the Fox-Glynn scheme would give us an upper
bound R to be approximately 10000, as in 3.3. Results are illustrated in Table 4.3.

Acc le-1 le-2 le-3 le-4 le-5

SU+ 7.2664 6.8700 6.1350 6.2728 5.9660
FAU+ 5.9984 5.9984 5.9984 5.6275 5.1405
FSU 4.2299 4.2235 4.1854 4.1069 4.0239
FAU 4.8737 4.6581 4.5796 4.5824 4.3070

Table 4.3: Performance of various approximation techniques. Model: Lotka-Volterra, N =
700, 0.5M states; t = 0.5, upper FG bound is 10594.

First, observe that, although FAU performs fewer iterations (again, approximately twice
as less) than its non-adaptive counterpart, it does not seem to get such a drastic advantage
over FSU. The difference from the previous experiment is that now truncation techniques
FSU/FAU can achieve a much greater state space reduction (200x over 20x in 4.2); probabil-
ity propagation is now computationally less demanding, and therefore reducing the overall
number of iterations for the price of solving a birth process during each step cannot help
FAU much, although it still slightly outperforms FSU.

Second, SU+ cleary surpasses both FSU and FAU. The difference from the previous ex-
periment again arises from the state space reduction improvement and is explained from the
algorithmic standpoint as follows. Both aggregating and truncating techniques gain perfor-
mance increase when dealing with smaller state spaces, however, in this concrete example,
FSU/FAU gained much less because of the way the probability propagation phase was im-
plemented. The issue here is that the implementation of truncation techniques (Tru, FSU,

37

FAU, FAU+) we are currently evaluating propagate probability blindly to a preallocated
array, without remembering concrete states that were ’discovered’ during this propagation;
such states are identified before the next iteration when constructing a set of active states,
which is achieved by scanning over the whole state space. The second approach, proba-
bly more intuitive one, would be to remember discovered states during propagation phase,
i.e. to collect target states to e.g. a tree set or a hash set, and then only scan through this
set and remove insignificant ones before successive propagation. It might seem that the
second approach would be superior since we are not dealing with the whole state space. In
practice, however, it turns out that the opposite is true. When the state space is large and,
in particular, the set of active states is large, maintaining a collection of discovered states
during the propagation phase is much more computationally demanding than propagating
the probability blindly and then scanning over the whole state space once before the next
iteration. In other words, both implementations will lead to performance improvement
when dealing with smaller state spaces, but the second approach can gain more from larger
reductions. Hence, if we implemented the second variant, FSU/FAU would unquestionably
perform much better in 4.3, but, analogously, truncation would perform much worse in 4.2
and SU+ would become superior. Both implementations were tested, but the first variant
is preferred because it can handle larger state spaces. This example was specifically de-
signed to illustrate this property and to pinpoint that, regardless of the implementation,
state-space aggregation is capable of outperforming existing truncation-based techniques.
The subtlety of implementation plays a great role when comparing efficiency of individual
techniques and it will be marginally revisited in the next chapter. As to the FAU+, we see
that now it performs worse than SU+, which is explained using the exact same argument
above. Overall, FAU+ could not provide a balance between aggregation and truncation
and could not outperform the best of SU4/FAU alone. However, when faced with a model
of the unknown nature, where applicability of SU+ versus FAU is under question, a diverse
behaviour of FAU+ can considerably boost the analysis.

From the experiments above we arrive at several conclusions. First and foremost, we
have succeeded to establish a state space aggregation technique that can provide an ade-
quate and efficient approximation of the CTMC analysis, both transient and model check-
ing. Second, for some classes of models and regardless of the implementation of techniques
of interest, state space aggregation even outperforms existing methods, including FAU. Fi-
nally, we managed to integrate aggregation with adaptivity to reduce the required number
of iterations, which may also turn out to be advantageous.

38

Chapter 5

Final Considerations

The first part of this chapter describes the implementation of all techniques discussed earlier
within the PRISM framework. The second part is a collection of ideas, conjectures or just
informal thoughts that do not directly contribute to any of the previous chapters, yet might
be helpful to those willing to continue the research of approximative techniques. The closing
part is the conclusion.

5.1 Implementation

As was previously mentioned, all of the methods and aggregation schemes were implemented
for PRISM [17], explicit engine, in Java language. Although PRISM has general procedures
like SU or FAU already implemented, we had to rewrite them into a single package in order
to ensure a completely fair comparison and to simplify the setting up of the experiments and
the collection of statistics. The resulting package aggregation contains all the procedures
and can be found at src/explicit/. Some other files outside the package were slightly
modified, sometimes to fix minor bugs, but mostly to redirect the computation flow into
aggregation.AggregationModelChecker. This module serves as a playground where one
can set up the experiments, evaluate them and construct reports; it also provides explicit
procedures for constructing infinitesimal generators, uniformised DTMCs or PCTL/CSL
driven transformations.
Let us cover other modules in this package from the bottom to up.

e Propagable is a wrapper over CSR (row start, column, data) representation of sparse
transition probability /rate matrices; it allows collecting pairs of states connected by
a significant transition, computing exit rates, probability propagation and state space
truncation. PropagableAbstract is its abstract! extension that quantifies error dur-
ing the probability propagation and provides procedures for vector (de-)aggregation.

e Outgoing, Incoming and Median are concrete realisations of PropagableAbstract
that construct the abstract matrices using the corresponding scheme; the code of
these modules could be refactored, but, since most of the time we were interested
in the outgoing averaging, we found it unnecessary to overload it with flags and
conditions. Also, Incoming module contains a flag that switches between € and 7 as
error factors.

Lin both senses: it operates in aggregated setting and it cannot be instantiated

39

e Cluster and Partition provide abstractions that allow to work will collections of
states (clusters) and collections of clusters (partitions). Of particular interest might
be the reconfigure() procedure that implements the bottom-up partitioning algo-
rithm with the constant-time cluster merging (via linked lists) and almost constant-
time cluster search (via dynamic tree-like structure), resembling the disjoint-set data
structure [11].

e BirthProcess is a birth process solver; its instance can be sequentially supplied with
rates qo, q1, ... to obtain the corresponding (g, 51, . - ..

e Solver is an interface, namely, a template (algorithm) for Markov chain transient
analysers that do not perform aggregation; SolverAbstract is its aggregating coun-
terpart. Both interfaces provide a default run() method that controls the behaviour
of analysis and the collection of statistics in a uniform way.

e Finally, there are a total of eight distinct modules that implement those interfaces.
For non-aggregating one, there are:

— Propagation — DTMC classic analysis;
— Truncation — threshold abstraction for DTMCs;

StandardUniformisation — SU;

— FastStandardUniformisation — FSU;

AdaptiveUniformisation — FAU.
Aggregating ones include:

— PropagationAbtract — DTMC aggregating analysis;
— StandardUniformisationAbstract — SU+;
— AdaptiveUniformisationAbstract — FAU+.

The parameters to each of those methods are supplied during the experiment setup
in aggregation.AggregationModelChecker module. Note that one could introduce an
inheritance and derive each of the techniques as an extension (or, conversely, a general-
isation) of another; this approach was actually implemented and tested, but turned out
to be inefficient due to repetitive calls of polymorphic functions, plus it was not trivial to
introduce a new technique. The resulting architecture presented here can be easily modified
and provides a fair method comparison due to the shared run() environment in Solver or
SolverAbstract interfaces.

Additionally, three major MATLAB scripts were written:

e plot_evolution.m allows to visualise projections of probability distributions to con-
crete values of variables, over a range of discrete steps. Refer to the script and to
the aggregation.AggregationModelChecker: :dtmcExport procedure for usage de-
scription.

e plot_partition.m allows to visualise state space partitions. Refer to the script and
to the aggregation.AggregationModelChecker: :partitionExport procedure for
usage description.

40

e fau.m is a MATLAB implementation of FAU; the Fox-Glynn scheme is not used,
instead, distribution starts at L = 0 and Poisson probabilities are generated until a
given precision is satisfied.

The source code along with further details regarding installation, experiment setup and
measured data can be found on the accompanying storage device.

5.2 Further Research

At the end of Chapter 4 we mentioned an impact of the implementation on the overall
performance of the method. First, we have seen that distinct implementations of FAU
perform differently under various models: one might consider designing FAU capable of
switching between these implementations on the fly in order to achieve better performance.
Similarly, for a given model, FAU+ is capable of demonstrating a broad behaviour range
under various parameter values: learning how to adaptively tune these parameters will
definitely lead to the overall performance improvement. Finally, there are numerous pro-
cedures in the state-of-the-art aggregation algorithm that should be studied. In particular,
reclustering (or, rather, clustering) of a chain is an extremely expensive operation that can
add up to 50% of the overall computation time, so the efficient design of this algorithm can
significantly increase performance of the method. Furthermore, the clustering procedure
covers the partitioning of the state space (see aggregation.Partition) and constructing
the abstract transition matrix, as well as error factors (see aggregation.Outgoing) and
there might be a way to interleave both operations. Constructing error factors along with
clustering can drive the clustering algorithm and one can arrive at more suitable partitions:
even slight changes in the resulting clustering can have an enormous impact on the overall
precision of the method. For instance, we found out that sorting the transitions (see Al-
gorithm 2, line 1) and favour pairs of states connected by a larger transition can lead to
precision improvement of up to two orders of magnitude, as compared to the case where
we take any two states connected by a non-zero transition. At the same time, sorting is a
rather cheap operation that is performed only once before the first aggregation.

Moreover, we studied general approaches for the clustering of directed weighted graphs,
but as was mentioned earlier, we have had no success. The ideal procedure must be kept
simple since frequent reaggregations are the key to acceptable precision. We also analysed
various clustering techniques experimentally and examined their effect on the empirical
and theoretical error; one particular approach exhibited a peculiar behaviour and is worth
discussing here.

Consider a simple Lotka-Volterra model; its state space is encoded using two variables
— number of predators vs. number of prey — and can be visualised in a two-dimensional
plane. Suppose we have progressed the model for some time and now we want to perform its
first aggregation. We look for a partition that would minimise generated error, say, for the
next 50 iterations, after which we will reaggregate the chain. A state-of-the-art algorithm
produces clustering depicted in Figure 5.1 on the left. We can see that a majority of the
probability mass is concentrated around (15,40), where active states form trivial clusters;
far from this point we effectively have zero probability and therefore we use a single big
orange cluster, this cluster will be referred to as slave; in between, we use clusters of the
medium size’. Let us compute error factors 7(-) for each of the cluster; their magnitude is

2A strange bar-shape of clusters of medium size reflects the underlying structure of the state space.
Transitions from any state can occur up (a prey is born), to the left (a predator dies) and to the lower

41

illustrated in Figure 5.2 on the left, where warm colors correspond to higher values of error
factor (concrete colormap is not depicted). We can identify four groups of states:

1. Trivial clusters inside the set of active states. A cluster in this group has all of its
successors trivial and generates no error at all.

2. Trivial clusters on the border of the set of active states. This cluster has some suc-
cessors of medium size and produces some small error.

3. Clusters of medium size. A cluster in this group has a gigantic successor (slave) and
produces significant error.

4. Slave cluster. Has successors of medium size and one large successor (itself); moderate
value of 7(-) multiplied by insignificant transient probability yield a negligible error.

Figure 5.1: A state space partition using Algorithm 2 (left) and by simulating a truncation
(right).

Figure 5.2: A relative magnitude of error factors for the corresponding partition.

right (a predator is born and a prey dies). In the upper-left side of the state space, where we have a lot of
prey and not so few of predators, a prey is more likely to be born, and so transitions up are favored during
partitioning.

42

The obtained distribution illustrates the following fact: 7(p, o) is large when successor
o is large (notice that 7(p,0) = 0 when |o| = 1) and this error factor captures probability
forwarding into the cluster. At the same time, slave cluster has a big successor (itself),
yet its 7(-) is not as large as for medium clusters. The reason for this is that slave cluster
has a high intra-cluster density [20]: a majority of states that constitute the slave would
propagate probability to this same cluster; hence, no error is introduced when we replace
these concrete transitions by a high abstract self-loop (II(slave, slave) ~ 1). Multiplied by
the small value of 7(slave), this big cluster would generate little to no error. We arrive at
the conclusion that big clusters are ’bad’ not because they produce significant error, but
because this error is generated because of them.

Equipped with this knowledge, let us find an ’'ideal’ clustering. It turns out that the best
candidate that minimises the distribution of error factor is the one illustrated in Figure 5.1
on the right. This clustering consists of trivial clusters as a set of active states (those with
probability above the aggregation threshold) and a single slave cluster. The right side of
Figure 5.2 depicts a distribution of 7(-), where colors are consistent with those on left.
We see that, again, clusters inside the set of active states produce no error; clusters on
its border produce a slightly larger error (their successor is now large); the slave cluster
now has a smaller value of 7(-) since now it is even more dense and its other successors
are all trivial. Most importantly, we eliminated a pass of medium-size clusters that were
completely inappropriate before.

Is this the clustering we are looking for? No. Although it indeed minimises the error
factor and produces a small amount of error during the next 10-20 iterations, this partition
is impractical in the long run, when a shift of probability distribution occurs and states
on the boundary of the set of active states start to forward significant probability mass
into the slave. It would help to recluster the state space frequently; ideally, we could
refine the set of active states after each iteration and reconstruct slave cluster consisting of
inactive states. This aggregating approach obviously resembles behaviour of the state space
truncation, except for the fact that threshold abstraction propagates only into concrete
(maybe undiscovered) states and never forwards a probability.

So, ideal aggregation strategy would be the one that simulates threshold abstraction,
yet this conclusion is inconsistent with results we obtained in experiments 3.3 and 3.4,
where we proved that 'normal’ clustering is the superior one. The paradox here is that
we have been answering the wrong question: we attempted to minimise theoretical error
associated with our aggregation strategy. Although theoretical error is crucial, it is the
only measurement of the precision of the method and a good bound can preserve several
orders of magnitude of accuracy, it does not seem to help us with finding the best aggre-
gation strategy. We fell into the same trap when we derived median-based aggregation
scheme: although it indeed produces the best theoretical bound of its empirical error, this
approach is intrinsically inaccurate and impractical. The exact same argument applies to
the truncation-like aggregation. On the other hand, when we had attempted to improve
empirical accuracy by employing the aggregation scheme that preserves stochasticity, or by
sorting significant transitions before the first aggregation, we had always been successful.

In the previous text we tried to quantify the error vector associated with our aggrega-
tions. In theory, this error can be tracked precisely in order to obtain exact results, but
we want to reduce the overall complexity of this estimation. Therefore, we never worked
with the vector directly, but with its Li-norm, a 1-step update of which was proved to be
computationally equivalent to performing a scalar product of two vectors over the abstract
state space, as in (3.6). However, L; is not the only metric that can be imposed on a vector,

43

others include Loo-norm (maximum deviation) or even point-wise error estimates eg(s) of
ex(s) for concrete states®. Unfortunately, despite numerous attempts, we never succeeded
to derive meaningful and practical bounds on anything beside Li, where we managed to
capture a magnitude (i.e. sign-insensitive value) of the error generated in each cluster dur-
ing each step. Any estimate of the error vector that allows to quantify a point-wise error
will be extremely beneficial for model checking algorithms where the quantity of interest
is often computed based on a transient probability of a single state. Truncation methods
rely solely on the probability loss that serves as an estimate of Lij-norm and its doubtful
that it can be improved. On the other hand, aggregation methods are potentially capable
of estimating any type of error since, as comparison of the empirical error suggests, aggre-
gating the state space preserves information about the probability distribution to a higher
degree. Deriving a bound on anything better than Li-norm will allow to overcome the
theoretical accuracy gap between aggregation and truncation methods. Furthermore, in-
troducing a sign-sensitive error tracking might be advantageous since positive and negative
error accruals can cancel each other out.

Let us present a final observation concerning the estimate of the error vector. Let s € o.
Applying equation (3.3) in the aggregated setting, we obtain

er(s) = Z ex—1(r)P(r,s) + Zﬁk_l(r) (P(r, s) — P(r, S))

res res
T II(p, o
= Z ex—1(r)P(r,s) + Z Z k| 1‘(p) ((|77\) _ P(r, 8))
res ped rEP P
II(p, o 1
= Z ex—1(r)P(r,s) + Z Th—1 Z ((’Z|) _ Tl ZP(r, s)) .
res peD rep P rep
Let
M(p,o) 1
1) =3 (LD - 23 pirs)
o\ lel el
be a ’signed’ version of 7(p). If ex and 7 are row vectors and vy == [y(p)],es is a column

vector, than equation above can be expressed as:

ex=ex 1 -P+me1-7.

Let us now expand this recursion:

3Note that ex(s) < ex(s) < |lex]|oo < |l€xl1-

44

e1=eo P +mo-7,
ez2=e; - P+m-v=(eg-P+mp-7) P+ (mo-II) -y
—eo-P 4wy -(v-P+II-7),
63262'P+7Tz-’}’:(eO'P2+7T0~(")/-P+H-’y))~P—|—(7T0-H2)-")/
zeo-P3—|—7r0-(w-PQ—i—H-fy-P—i—HQ-y)
2
:eo-P3+ﬂ0.ZHi.7.PQ*i,
i=0

k—1
ex = €g ~Pk—|—7T0 . ZHZ -’y-Pk_l_i.
=0

We obtained a compact expression for calculating an (exact) error vector at step k based
on initial approximate probability distribution mg. The first term represents a presence of
the aggregation error that is being transported using unaggregated transition matrix. The
second term decomposes the overall propagation error: a probability distribution mq is first
being propagated via aggregated transition matrix for ¢ steps and then it produces an error,
which is then being transported using the concrete transition matrix. This formula cannot
be applied directly with the state-space aggregation since we do not want to compute
v - P¥717% terms, but perhaps it can be simplified or approximated using some sort of
decomposition. We currently lack the knowledge in this area, so we will leave as it is.

5.3 Conclusions

In this work we provided a comparative analysis of approximative techniques for Markov
chain analysis, namely, methods based on aggregation or truncation. We first focused on the
design of an accurate and efficient aggregation method applicable to chains with an arbitrary
structure of the state space. We started in discrete setting and redefined a notion of the
state-space abstraction in order to arrive at precise bounds on the approximation error. We
then used these results to design a new aggregating scheme that preserves all properties of
a Markov chain and we showed that this preservation is necessary for integrating it with
uniformisation method to enable analysis of continuous-time models. This integration was
then carried out, and explicit bounds on the approximation error were derived. Finally, we
introduced adaptivity to our aggregating scheme that allowed reducing the required number
of computation steps.

A total of eight approximative methods for Markov chain analysis (5 existing and 3 new
ones) were implemented in the probabilistic model checker PRISM and were also integrated
with the model checking algorithms. Experiments confirm that newly derived bounds pro-
vide a several orders of magnitude precision improvement without degrading performance.
We show that the resulting aggregating approach can provide a valid model approximation
supplied by adequate approximation error estimates, in both discrete and continuous cases.
Then, we perform a comparative analysis of aggregating and truncating techniques, illus-
trate how different methods handle various types of models and identify chains for which
aggregating, or truncating, analysis is preferred. In particular, we prove that the designed

45

aggregation scheme is capable of outperforming existing methods, including FAU. Finally,
we demonstrate a successful usage of approximative techniques for model checking Markov
chains. Future work will include a further development of the error estimates, performance
profiling and improvement upon existing algorithms, as well as effective combination of the
approximative techniques with parameter synthesis or verification procedures.

46

Bibliography

[1] Abate, A.; Brim, L.; Ceska, M.; et al.: Adaptive Aggregation of Markov Chains:
Quantitative Analysis of Chemical Reaction Networks. In Computer Aided
Verification. Cham: Springer International Publishing. 2015. ISBN
978-3-319-21690-4. pp. 195-213.

[2] Baier, C.; Hanh, E. M.; Haverkort, B. R.; et al.: Model checking for performability.
Mathematical Structures in Computer Science. vol. 23, no. 4. 2013: page 751-795.
doi:10.1017/50960129512000254.

[3] Bertsekas, D.; Tsitsiklis, J.: Introduction to Probability. Athena Scientific books.
Athena Scientific. 2002. ISBN 9781886529403.
Retrieved from: https://books.google.cz/books?id=bcHaAAAAMAAJ

[4] Bolch, G.; Greiner, S.; de Meer, H.; et al.: Queueing Networks and Markov Chains:
Modeling and Performance Evaluation with Computer Science Applications. New
York, NY, USA: Wiley-Interscience. 1998. ISBN 0-471-19366-6.

[5] Cardelli, L.; Kwiatkowska, M.; Whitby, M.: Chemical Reaction Network Designs for
Asynchronous Logic Circuits. Cham: Springer International Publishing. 2016. ISBN
978-3-319-43994-5. pp. 67-81. doi:10.1007/978-3-319-43994-5_ 5.

Retrieved from: http://dx.doi.org/10.1007/978-3-319-43994-5_5

[6] Dannenberg, F.; Hahn, E. M.; Kwiatkowska, M.: Computing Cumulative Rewards
Using Fast Adaptive Uniformization. ACM Trans. Model. Comput. Simul.. vol. 25,
no. 2. February 2015: pp. 9:1-9:23. ISSN 1049-3301. doi:10.1145/2688907.
Retrieved from: http://doi.acm.org/10.1145/2688907

[7] Didier, F.; Henzinger, T. A.; Mateescu, M.; et al.: Fast Adaptive Uniformization of
the Chemical Master Equation. In 2009 International Workshop on High Performance
Computational Systems Biology. Oct 2009. pp. 118-127. doi:10.1109/HiBi.2009.23.

[8] Esmaeil Zadeh Soudjani, S.; Abate, A.: Precise Approximations of the Probability
Distribution of a Markov Process in Time: An Application to Probabilistic
Invariance. In Tools and Algorithms for the Construction and Analysis of Systems.
Berlin, Heidelberg: Springer Berlin Heidelberg. 2014. ISBN 978-3-642-54862-8. pp.
547-561.

[9] Ferm, L.; Lotstedt, P.: Adaptive solution of the master equation in low dimensions.
Applied Numerical Mathematics. vol. 59, no. 1. 2009: pp. 187 — 204. ISSN 0168-9274.
doi:https://doi.org/10.1016/j.apnum.2008.01.004.

Retrieved from:
http://www.sciencedirect.com/science/article/pii/S0168927408000263

47

https://books.google.cz/books?id=bcHaAAAAMAAJ
http://dx.doi.org/10.1007/978-3-319-43994-5_5
http://doi.acm.org/10.1145/2688907
http://www.sciencedirect.com/science/article/pii/S0168927408000263

[10] Fox, B. L.; Glynn, P. W.: Computing Poisson Probabilities. Commun. ACM. vol. 31,
no. 4. April 1988: pp. 440-445. ISSN 0001-0782. doi:10.1145/42404.424009.
Retrieved from: http://doi.acm.org/10.1145/42404.42409

[11] Galil, Z.; Italiano, G. F.: Data Structures and Algorithms for Disjoint Set Union
Problems. ACM Comput. Surv.. vol. 23, no. 3. September 1991: pp. 319-344. ISSN
0360-0300. doi:10.1145/116873.116878.

Retrieved from: http://doi.acm.org/10.1145/116873.116878

[12] Gillespie, D. T.: A general method for numerically simulating the stochastic time
evolution of coupled chemical reactions. Journal of Computational Physics. vol. 22,
no. 4. 1976: pp. 403 — 434. ISSN 0021-9991.
doi:https://doi.org/10.1016/0021-9991(76)90041-3.
Retrieved from:
http://www.sciencedirect.com/science/article/pii/0021999176900413

[13] Gillespie, D. T.: Exact stochastic simulation of coupled chemical reactions. The
Journal of Physical Chemistry. vol. 81, no. 25. 1977: pp. 2340-2361.
do0i:10.1021/j100540a008.

Retrieved from: https://doi.org/10.1021/j100540a008

[14] Hey, J.; Nielsen, R.: Integration within the Felsenstein equation for improved Markov
chain Monte Carlo methods in population genetics. Proceedings of the National
Academy of Sciences. vol. 104, no. 8. 2007: pp. 2785-2790. ISSN 0027-8424.
d0i:10.1073 /pnas.0611164104.

Retrieved from: http://www.pnas.org/content/104/8/2785

[15] Hoops, S.; Sahle, S.; Gauges, R.; et al.: COPASI—a COmplex PAthway SImulator.
Bioinformatics. vol. 22, no. 24. 2006: pp. 3067-3074.
do0i:10.1093 /bioinformatics/bt1485.
Retrieved from: http://dx.doi.org/10.1093/bioinformatics/bt1485

[16] Kierzek, A. M.; Zaim, J.; Zielenkiewicz, P.: The effect of transcription and
translation initiation frequencies on the stochastic fluctuations in prokaryotic gene
expression. The Journal of biological chemistry. vol. 276 11. 2001: pp. 8165-72.

[17] Kwiatkowska, M.; Norman, G.; Parker, D.: PRISM 4.0: Verification of Probabilistic
Real-time Systems. In Computer Aided Verification, LNCS, vol. 6806. Springer. 2011.
pp- 585-5H91.

[18] Larsen, K. G.; Skou, A.: Bisimulation through probabilistic testing. Information and
Computation. vol. 94, no. 1. 1991: pp. 1 — 28. ISSN 0890-5401.
doi:http://dx.doi.org/10.1016,/0890-5401(91)90030-6.

Retrieved from:
http://www.sciencedirect.com/science/article/pii/0890540191900306

[19] Madsen, C.; Myers, C. J.; Roehner, N.; et al.: Utilizing stochastic model checking to
analyze genetic circuits. In 2012 IEEE Symposium on Computational Intelligence in
Bioinformatics and Computational Biology (CIBCB). May 2012. pp. 379-386.
doi:10.1109/CIBCB.2012.6217255.

48

http://doi.acm.org/10.1145/42404.42409
http://doi.acm.org/10.1145/116873.116878
http://www.sciencedirect.com/science/article/pii/0021999176900413
https://doi.org/10.1021/j100540a008
http://www.pnas.org/content/104/8/2785
http://dx.doi.org/10.1093/bioinformatics/btl485
http://www.sciencedirect.com/science/article/pii/0890540191900306

[20]

[21]

[22]

[24]

[25]

Malliaros, F. D.; Vazirgiannis, M.: Clustering and Community Detection in Directed
Networks: A Survey. CoRR. vol. abs/1308.0971. 2013.

van Moorsel, A. P. A.; Sanders, W. H.: Adaptive uniformization. Communications in
Statistics. Stochastic Models. vol. 10, no. 3. 1994: pp. 619-647.
doi:10.1080/15326349408807313.

Retrieved from: https://doi.org/10.1080/15326349408807313

Schwertman, N. C.; Gilks, A. J.; Cameron, J.: A Simple Noncalculus Proof That the
Median Minimizes the Sum of the Absolute Deviations. The American Statistician.
vol. 44, no. 1. 1990: pp. 38-39. doi:10.1080/00031305.1990.10475690.

Retrieved from:
https://amstat.tandfonline.com/doi/abs/10.1080/00031305.1990.10475690

Stewart, W.: Introduction to the numerical solution of Markov chains. Princeton, NJ:
Princeton Univ. Press. 1994. ISBN 0691036993.

Retrieved from: http://gso.gbv.de/DB=2.1/CMD7ACT=SRCHA&SRT=YOP&IKT=
1016&TRM=ppn+152880593&sourceid=fbw_bibsonomy

T Gillespie, D.: Stochastic Simulation of Chemical Kinetics. vol. 58. 02 2007: pp.
35-55.

Ceska, M.; Safranek, D.; Drazan, S.; et al.: Robustness Analysis of Stochastic
Biochemical Systems. PLOS ONE. vol. 9, no. 4. 04 2014: pp. 1-23.
doi:10.1371 /journal.pone.0094553.

Retrieved from: https://doi.org/10.1371/journal.pone.0094553

49

https://doi.org/10.1080/15326349408807313
https://amstat.tandfonline.com/doi/abs/10.1080/00031305.1990.10475690
http://gso.gbv.de/DB=2.1/CMD?ACT=SRCHA&SRT=YOP&IKT=1016&TRM=ppn+152880593&sourceid=fbw_bibsonomy
http://gso.gbv.de/DB=2.1/CMD?ACT=SRCHA&SRT=YOP&IKT=1016&TRM=ppn+152880593&sourceid=fbw_bibsonomy
https://doi.org/10.1371/journal.pone.0094553

	Introduction
	Preliminaries
	Discrete-Time Markov Chains
	Model Checking
	Adaptive State-Space Aggregation
	Threshold Abstraction

	Continuous-Time Markov Chains
	Uniformisation
	Model Checking and Aggregating CTMCs

	Adaptive Aggregation for DTMCs
	Adaptive aggregation algorithm
	Experimental evaluation

	Adaptive Aggregation for CTMCs
	State-Space Aggregation for Standard Uniformisation
	State-Space Aggregation for Adaptive Uniformisation
	Experimental evaluation

	Final Considerations
	Implementation
	Further Research
	Conclusions

	Bibliography

