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Abstract. Simple current- and voltage-controlled memris-
tive circuit macro-models using SPICE are proposed to 
capture the nonlinear hysteresis loop behaviors in this 
paper. Different current-voltage characteristics are investi-
gated by applying sinusoidal-wave, triangular-wave and 
square-wave source, respectively. Furthermore, using 
finite-difference time-domain (FDTD) emulator incorpo-
rated with a SPICE circuit solver, the current- or voltage-
controlled memristive SPICE model is embedded into 
a planar microwave bandstop filter (BSF) and an ultra-
wideband (UWB) monopole antenna, which connects two 
ends of the half-wavelength open-loop resonator and two 
sides of the U-slot in the radiating patch, respectively. The 
reconfigurability of the BSF and antenna notched band can 
be achieved by switching the states of the memristor. 
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1. Introduction 
In 1971, the existence of the memristor as a new 

fourth electrical circuit element was predicted, and its for-
mal mathematical definition was also given to connect the 
missing relation between the magnetic flux ( ) and electri-

cal charge (q) [1]. After a new nanoscale device based on 
crossbar architecture showing memristive behavior was 
fabricated in 2008 [2] whose schematic illustration is 
shown in Fig. 1(a), the memristor possesses significant 
potential for such next-generation nonvolatile memories [3]. 
Over the past several years, memristors have been applied 
in many fields, such as analog circuits [4], digital infor-
mation progressing [5], neuromorphic [6], resistive random 
access memory (RRAM) [7], and microwave devices [8]. 
For all applications, a simple and straightforward theoreti-
cal model of the memristor is needed before physical reali-
zation. Till now, numerous memristive SPICE models have 
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Fig. 1. (a) Schematic illustration of the memristor fabricated 
by Hewlett-Packard lab; (b) coupled variable-
memristor model. 

been proposed in the literature [7–11] to mimic the hystere-
sis behaviors of the memristors, which are mostly based on 
the published mathematical equations in [2]. 

The relationship between voltage and current of the 
memristor in [2] was expressed by 

 
off on off( ) [ ( ) ( )] ( )v t R R R x t i t        (1) 

where the normalized state variable x̅(t) is the ratio be-
tween the doped region thickness w and the whole thick-
ness D of the TiO2 memristor sandwiched region as seen in 
Fig. 1(b), Ron and Roff are the minimum and maximum 
achievable resistances of the memristor, respectively. The 
change rate of the state variable x̅(t) depends on the current 
through the memristor, which satisfies the following state 
equation, 
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On the other hand, switches or other tuning devices 
are commonly used to obtain switching or time-varying 
behaviors in microwave circuits. There are many ways to 
achieve switching properties, such as using micro- or nano-
electrical mechanical (MEM/NEM), electrical, and thermal 
technique. In terms of the memristor, the static nonvolatile 
resistance is controlled by the time-varying current or volt-
age. In this paper, simple current- and voltage-controlled 
memristive SPICE macro-models are presented, both of 
which can generate nonlinear hysteresis loop behaviors. To 
explore the promising reconfigurable functions of the 
memristor, the proposed current- or voltage-controlled 
memristive model is applied in a microwave BSF and an 
UWB antenna using finite-difference time-domain emula-
tor incorporated with a nonlinear SPICE circuit solver. 

2. Proposed Memristive SPICE 
Macro-Models 
A symmetrical double hysteresis loop behavior can be 

produced with the following equation [12], 

 
0

1
( ) ( )( 1 ( )d )

t

y t x t x
T

       (3) 

where x(t) is the normalized current/voltage input signal, 
y(t) is the corresponding normalized voltage/current output 
signal, and T is an integration time constant. 

When x(t) is represented by a current and y(t) is 
represented by a voltage, a current-controlled memristive 
device model can be obtained. The equation can be 
changed as follows if we set x(t) = i(t)/Iref, and 
y(t) = v(t)/(Iref Rs), 

 s
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where Iref and Rs are an arbitrary reference current and 
an arbitrary resistance, respectively. Therefore, the memris-
tance Rm = v(t)/i(t) can be given by 

 s
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   .  (5) 

Rm has four different possibilities, (+, +), (+, −),  
(−, +), and (−, −), which represent incremental/decremental 
memristance and incremental/decremental negative mem-
ristance, respectively [12]. In SPICE, the positive or nega-
tive sign can be encoded by swapping nodes with each 
other. Figure 2 shows the proposed SPICE circuit macro-
model of the current-controlled memristor, which only 
consists of two resistors (Rs and R), a capacitor (C), a cur-
rent dependent current source (CDCS), a voltage depend-
ent voltage source (VDVS), an arbitrary behavioral voltage 
source (ABVS) and an arbitrary behavioral current source 
(ABCS). The integration time constant T of (5) can be 
obtained by the product of R and C of the model, namely, 
T = RC. 

 
Fig. 2. Proposed current-controlled memristive model. 

 

Fig. 3. Proposed voltage-controlled memristive model. 

Similarly, when y(t) is represented by a current and 
x(t) is represented by a voltage, a voltage-controlled mem-
ristive device model is obtained. If we set x(t) = v(t)/Vref, 
and y(t) = i(t)/(Vref Gs), Equation (3) can be expressed by 

 s
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where Vref and Gs are an arbitrary reference voltage and 
an arbitrary conductance, respectively. The conductance of 
the memristor is 

 s
m s

ref

( )
G

G G t
TV

   .  (7) 

Therefore, the SPICE circuit macro-model of the voltage-
controlled memristor is proposed as shown in Fig. 3, which 
has the same components as those of the current-controlled 
memristive model. The integration time constant T of (7) is 
still equal to the product of R and C of the model. 

The hysteresis loop behavior can be obtained by 
either of the above two SPICE circuit models. Taking the 
current-controlled memristive SPICE model for instance, 
when RC = 1, Rs = Iref = 1, i(t) = cos(ωt) and ω = 1, two 
cases (+, +) and (−, −) of (4) are plotted in Fig. 4(a), where 
they result in a positively inclined loop and a negatively 
inclined loop, respectively. This result is the same as that 
of [12].  For the  (+, +)  and  (−, −)  cases,  the  V-t  and  I-t 
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Fig. 4. (a) Double hysteresis loop behavior for RC = 1 and 
i(t) = cos(t); V-t and I-t curves (b) for the (+, +) case 
and (c) for the (−, −) case when i(t) = cos(t). 
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Fig. 5. V-t and I-t curves for the (+, +) case driven by  
(a) triangular wave and (b) square wave currents. 

 

Fig. 6. i-v characteristics of this memristive model driven by 
sinusoidal voltages at different frequencies with 
Iref = 1 A, T = 1 s, and Rs = 10 kΩ. 

curves are plotted as shown in Fig. 4(b) and (c), respec-
tively. Furthermore, when the triangular wave and square 
wave currents are as the inputs, the V-t and I-t curves for 
the (+, +) case are illustrated in Fig. 5. 

In addition, more behaviors with different current-
voltage characteristics of the proposed memristive SPICE 
model are investigated by applying sinusoidal source as 
shown in Fig. 6, where the simulated transient i–v curves 
all have zero crossing properties at different frequencies. 

3. Applications in Microwave BSF and 
Antenna 

3.1 Reconfigurable Microstrip BSF 

 
(a) 

 
(b) 

Fig. 7. (a) Layout of the microstrip BSF incorporated with 
a memristive SPICE model, where all dimensions are 
in mm; (b) the scattering parameters of the BSF 
without memristor. 
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Utilizing the above proposed memristive element 
model, a switchable microstrip BSF is designed as shown 
in Fig. 7(a). Without applying the memristor, this BSF de-
signed on a substrate (with a relative dielectric constant of 
3.5 and a thickness of 0.508 mm) consists of a half-wave-
length open-loop resonator and a transmission line con-
nected to the input and output ports. Its scattering parame-
ters can be seen in Fig. 7(b), where the insertion loss is 
16.3 dB at 2.37 GHz. 

The proposed memristive SPICE model is incorpo-
rated into this BSF connecting two ends of the open-loop 
resonator, and a reconfigurable BSF can be achieved by 
switching the states of the memristor. The whole model 
shown in Fig. 7(a) is simulated in a FDTD commercial 
simulation  tool [13]  integrated  with the proposed memris- 
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Fig. 8. (a) Transient incident electric field at the input port,  
(b) time-varying memristance, and (c) transient electric 
field at the output port. 

tive SPICE model. The applied voltage in series with the 
memristor is an effective electrical short circuit in micro-
wave frequency range, resulting in no impact on the steady 
state performance of the filter. Figure 8(a) illustrates the 
transient incident electric field of 2.37-GHz microwave 
signal. The inset in Fig. 8(a) shows the sinusoidal wave on 
a smaller time scale. The time-varying memristance con-
trolled by the applied voltage is provided in Fig. 8(b), and 
meanwhile the instantaneous electric field at the output 
port can be obtained as shown in Fig. 8(c). At OFF-state 
(Rm = 10 kΩ) of the memristor, the BSF keeps the original 
suppressed function at 2.37 GHz to the incident field. Once 
the state is switched to ON (Rm = 50 Ω), the electric field 
will not be attenuated and almost keep the same as that of 
the input signal. 

3.2 Reconfigurable UWB Monopole Antenna 

A planar UWB monopole antenna with U-shaped slot 
for band-notched operation is proposed as seen in Fig. 9 
before the memristor is incorporated into this antenna, 
which consists of a microstrip-fed staircase-like tapered-
patch monopole and a rectangular ground plane. The sub-
strate RT/Duroid 5880 with a relative dielectric constant of 
2.2 and a thickness of 1.575 mm is chosen for the design of 
this UWB antenna. The parameters Wt, Lt, G1, G2, LS1, LS2, 
L1, L2, Lg, W1, W2, and WS are optimized to ensure good 
performance, and the width of the 50 Ω microstrip feed line 
W equals to 4.9 mm. The simulated voltage standing wave 
ratio (VSWR) results of the proposed UWB antenna 
with/without U-shaped slot including optimal parameters 
are shown in Fig. 10, where we can obtain that the U-
shaped slot inserted in the radiating patch is to realize the 
frequency band-notched characteristics. The impedance 
bandwidth ranges from 2.7 GHz to 11.2 GHz (VSWR < 2) 
before the slot is inserted. When the U-shaped slot is incor-
porated into this UWB antenna, the sharp notched fre-
quency band of 3.8–4.1 GHz is obtained. The slot only 
slightly interferes with the VSWR of the antenna except 
within the notched band. Actually, the total electrical length 

 
Fig. 9.   Layout of the proposed antenna. 
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Fig. 10. The simulated VSWR results of the proposed UWB 

antenna with/without U-slot (Wt = 36 mm, Lt = 57 mm, 
G1= 1

 mm, G2= 2.8 mm, LS1= LS2= 11.6 mm, L1= 15 mm, 
L2= 5 mm, Lg= 32 mm, W1= 26 mm, W2= 4.5 mm, 
WS= 0.2 mm). 
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Fig. 11. (a) Simulated S11 of the antenna when the state of the 
memristor is ON or OFF. (b) Transient E-field of the 
antenna when the memristor state is ON→OFF→ON. 

of the slot is about half guided wavelength at the center 
frequency of the notched band. Therefore, the notched 
frequency band can be moved by changing the values of 
LS1 + 2LS2. 

As illustrated in Fig. 9, the memristor using the pro-
posed memristive SPICE model is embedded across the 
center of the U-shaped slot to achieve the reconfigurable 
notched band at 3.8–4.1 GHz. The nonvolatile memristor is 
used to activate and deactivate the slotting resonance by 
retaining either a high- or low-resistance state (see 
Fig. 11(a)). Due to the nonvolatile property of the memris-
tor, when the applied voltage across the memristor is 
switched off, i.e., v = 0 and i = 0, at t = t0, the high- or low-
resistance state keeps unchanged for all t > t0. We can keep 
the notched band of the antenna work or out of work all the 
time without a bias voltage. When the work state of the 
notched band needs to be changed, a relatively low bias 
voltage is only needed to switch the memristor from its 
high-resistance state to the low-resistance state as its coun-
terpart. For instance, the transient electric field is observed 
by a receiver above the proposed antenna using an FDTD 
model. A 3.9-GHz sinusoidal wave signal whose frequency 
point is located in the notched band as a source signal 
could radiate from antenna when the memristor keeps ON 
state (100–140 ns or 160–200 ns) as shown in Fig. 11(b), 
nevertheless, it would be largely suppressed when the 
memristor switches from ON to OFF state (140–160 ns). 
Indeed, the memristor does not dissipate any power except 
during the only switching time intervals. 

4. Conclusion 
In this paper, using SPICE to emulate mathematical 

equations of the memristor, simple current- and voltage-
controlled memristive circuit macro-models are proposed. 
Different current-voltage characteristics are explored by 
applying sinusoidal-wave, triangular-wave and square-
wave source across the memristor, respectively. Using 
FDTD technique, the memristive SPICE models embedded 
into a planar BSF and a monopole UWB antenna are con-
ceived and simulated to achieve their reconfigurability. 
Having significant potential in the applications of RF/mi-
crowaves, the memristor is greatly promising to be used in 
reconfigurable systems with low power dissipation and 
nanoscale size when it becomes a commercial product in 
the near future. 
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