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Abstract. The methods of computational neuroanatomy 
are widely used; the data on their individual strengths and 
limitations from direct comparisons are, however, scarce. 
The aim of the present study was direct comparison of 
deformation-based morphometry (DBM) based on high-
resolution spatial transforms with widely used voxel-based 
morphometry (VBM) analysis based on segmented high-
resolution images. We performed DBM and VBM analyses 
on simulated volume changes in a set of 20 3-D MR 
images, compared to 30 MR images, where only random 
spatial transforms were introduced. The ability of the two 
methods to detect regions with the simulated volume 
changes was determined using overlay index together with 
the ground truth regions of the simulations; the precision 
of the detection in space was determined using the distance 
measures between the centers of detected and simulated 
regions. DBM was able to detect all the regions with 
simulated local volume changes with high spatial preci-
sion. On the other hand, VBM detected only changes in 
vicinity of the largest simulated change, with a poor over-
lap of the detected changes and the ground truth. Taken 
together we suggest that the analysis of high-resolution 
deformation fields is more convenient, sensitive, and pre-
cise than voxel-wise analysis of tissue-segmented images.  
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1. Introduction 
Analysis of brain morphology using neuroimaging 

data is an important area of research in neuroscience. At 
first volumetric approaches based on manual delineation of 
regions of interest were used, later followed by several 
computational approaches. These were designed to over-
come limitations of volumetry that is labor intensive (limits 
the number of subjects in a study), requires a prior ana-
tomical hypothesis for region selection, is prone to errors 
that arise from subjectivity of boundaries detection (limits 

reliability and inter-center comparability of the results), etc. 
The methods of computational neuroanatomy are widely 
used now; the data on their individual strengths and limita-
tions from direct comparisons are, however, scarce.  

The first implementations of computational neuro-
anatomic approaches were methods for voxel- and defor-
mation-based morphometry [1], [2]. Voxel-based mor-
phometry (VBM) is based on the assumption that after the 
removal of general shape differences during image regis-
tration local misregistrations remain resulting in between-
subject differences in local brain tissue content (usually, 
the brain intensity image is dissected into different brain 
tissue compartments which are then analyzed separately). 
These local differences in tissue content are then explained 
by a disease effect. The VBM approach was validated 
several times – corresponding findings were obtained using 
both VBM and volume calculation [3]-[5], VBM was able 
to detect focal anatomical lesions [6]. However, the idea of 
VBM was criticized for its proneness to errors and false 
positive results due to imprecise and possibly erroneous 
image registrations [7]. For example group differences of 
cingulate gyrus observed with VBM were not detected 
using volumetry - false positive findings resulted from 
cingulate gyrus shape differences [8]. 

The magnitude of voxel size changes during the 
registration process is encoded in the relevant deformation 
field. Its analysis is the core principle of Deformation-
based morphometry (DBM). It is able to detect changes in 
brain shape and volume irrespective of the brain compart-
ment in which they occur, in contrast to VBM. The term 
“Deformation-based morphometry” (DBM) was used for 
the first time by Ashburner [1] to describe a method for 
detecting global shape changes among the brains of differ-
ent populations. Later, several other implementations 
emerged. In general, DBM approaches differ in the regis-
tration method used, mainly in terms of the spatial defor-
mation model. Initially, smooth parametric transforms with 
low-frequency sine basis functions were used [1], [2]. 
Therefore it was not possible to encode all anatomical 
variability, including subtle differences, into the spatial 
transforms (for convenience we will refer to these ap-
proaches as “low-resolution DBM”). A complex descrip-
tion of brain morphology has been possible since methods 
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for high-resolution deformable registration were introduced 
(“high-resolution DBM”). These methods include spatial 
deformation models based on high-dimensional parametric 
transforms [9] or models inspired by similarity to contin-
uum mechanics [10]. There are several ways of deforma-
tion field analysis, among them a univariate analysis ap-
plied to Jacobian determinants, which represent the factors 
by which the deformation expands or shrinks volumes near 
the respective voxels, allows for the detection of local 
volume changes in the brain. DBM approach was also 
compared to traditional volume measures and yielded cor-
responding results [11]. 

In short, DBM analyzes how much the volume of 
voxels changed during subject image registration to the 
template image, in contrast to VBM which focuses on the 
residual image variability after its transformation. The finer 
the image transformation, the higher resolution of the 
deformation field, the more anatomical information is 
encoded in the deformation field, and the smaller the 
residual differences in tissue content. The high-resolution 
DBM could, therefore, encode local anatomical changes; 
moreover, it focuses on changes in spatial arrangement of 
images, not on the residual misregistrations, and, therefore, 
high-resolution DBM could overcome VBM limitations. 

We have developed an application of high-resolution 
deformation-based morphometry with an underlying regis-
tration method based on a spatial deformation model which 
allows for large deformations while preserving the topol-
ogy of the images. It was able to register brain images with 
submillimeter precision in a simulation based on synthetic 
deformation [12]. Such precision could provide high spa-
tial resolution to detect local changes of brain morphology, 
not only overall changes of brain shape. Indeed, indirect 
comparison of results obtained using VBM and our DBM 
method showed that DBM was able to detect changes in 
first-episode schizophrenia [12] that were analogous to 
those detected with VBM [13]. That is, high-resolution 
DBM can detect changes on the similar spatial scale that 
VBM can.  

The aim of the present study was direct comparison of 
high-resolution DBM with widely used VBM analysis. We 
expected DBM to find local changes similar to that 
obtained using VBM.  

2. Methods 

2.1 Simulated Image Data 

We generated two sets of spatial deformations: 
1) simulations of normal anatomical variability and 
2) simulations of local volume changes at particular 
stereotactic coordinates. The nonlinear spatial transforma-
tions, which represented normal anatomical variability, 
were computed in our model by natural neighbor scattered 
data interpolation from random forces pointed in 294 loca-
tions in the volume delimitated by a binary head mask. 

Randomness of the simulator consisted in directions of the 
forces, magnitudes of the forces, locations of the forces and 
in leaving out a portion of the forces. We then generated 50 
3-D MR brain images by warping a single subject MRI 
anatomical template from Simulated Brain Database using 
those deformations. In addition, 20 images contained three 
volume expansions of different extent in three exactly 
defined locations, together with the simulated normal ana-
tomical variability. The extent and shape of the volume 
expansions in each image were randomized to simulate the 
variability of volume changes in pathological processes. 
Quantitative parameters of simulated expansions are given 
in Tab. 1. The other 30 images were generated with the use 
of deformations which contained only the simulated nor-
mal anatomical variability. Displacement vectors in all 50 
deformations reached maximum absolute values of 
about 5 mm. 
 

T < -4.8263  
(FDR 1%) 

T < -4.2414  
(FDR 5%) 

T < -3.5051 
(p<0.1%) 

 
[mm3] 

det(J): 
mean; 
max 

[mm3] 
det(J): 
mean; 
max 

[mm3] 
det(J): 
mean; 
max 

Exp1 3656 
1.7202; 
8.3393 

4339 
1.6663; 
8.3393 

5538 
1.5282; 
8.3393 

Exp2 883 
1.5767; 
8.0928 

1028 
1.5239; 
8.0928 

1284 
1.4557; 
8.0928 

Exp3 620 
1.4227; 
7.6176 

801 
1.3672; 
7.6176 

1192 
1.2939; 
7.6176 

Tab. 1. Quantitative parameters of simulated expansions. 
Volume of the simulated expansions was computed 
from the results of the statistical analysis performed on 
simulated deformations that contained only the 20 
images with three exactly localized volume expansions 
of different extent. Since there was variability intro-
duced into these deformations, different statistical 
thresholds provide different volume sizes (based on the 
power to detect certain effect size given the variability 
of the data). Exp1-3: Expansion 1-3; det(J): mean; max 
are the mean and maximal relative volume enlargement 
in significant voxels. 

2.2 Deformation-Based Morphometry 

The images were corrected for intensity nonuni-
formity artifacts using an automatic method [14] and then 
brought into the stereotaxic Talairach space using nine-
parameter affine transforms, which were found with the 
use of an optimal linear registration algorithm [15]. Cor-
rected images were resampled using a trilinear interpola-
tion to contain 1mm × 1mm × 1mm voxels (the 3-D array 
dimension was 181 × 217 × 181 voxels). The intensity 
values were linearly rescaled to unsigned 8-bit integers. 
After these preprocessing steps, all images were visually 
inspected for large misregistration errors and intensity 
artifacts. Then our high-dimensional deformable registra-
tion method was used to perform DBM. We briefly sum-
marize this algorithm next. Details can be found in [12].  

The registration method operates directly on image 
intensity values with no data reduction by segmentation or 
classification. The 3-D displacement field which maxi-
mizes global mutual information between a reference 
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image and a floating image is searched in an iterative proc-
ess that involves computation of local forces as a gradient 
of point similarity measures and their regularization using 
the spatial deformation model. The regularization involves 
two Gaussian spatial filters which form the combined elas-
tic-incremental model introduced in Rogelj et al. [16]. The 
first spatial filter regularizes displacement improvements 
which are proportional to applied forces. These displace-
ments are integrated into the final deformation, which is 
done iteratively by summation. The second part of the 
model represents the property of elastic materials in which 
displacements wane after forces are retracted. This is 
ensured by a second Gaussian smoother. The resulting 
deformations preserve the topology of the images, i.e. only 
one-to-one mappings, termed diffeomorphic, are obtained. 
This requirement is satisfied by controlling the standard 
deviations of the Gaussian filters which affect the behavior 
of the spatial deformation model. The standard deviations 
are incremented each time the minimum Jacobian determi-
nant drops below a predefined threshold. The deformation 
should capture subtle anatomical variations among studied 
images; therefore the standard deviations of the Gaussians 
are decremented as well, whenever the minimum Jacobian 
determinant starts growing during the registration process. 

2.3 Voxel-Based Morphometry 

Images were processed according to standard voxel-
based morphometry protocol [2] to obtain gray, white 
matter, and cerebrospinal fluid volume images. We used 
VBM 5 toolbox (http://dbm.neuro.uni-jena.de/vbm/) im-
plemented in SPM 5 framework (http://www.fil.ion.ucl.ac. 
uk/spm/). Individual processing steps involved image 
registration to the standard SPM5 T1 template, tissue seg-
mentation [17] with application of spatial constrains using 
Hidden Markov Random Field model [18] to minimize the 
noise level in segmented images, modulation with the 
determinant of Jacobian to account for changes of local 
volumes during the registration step, and to obtain images 
of local tissue volumes, and finally smoothing out of the 
modulated images with 6 and 12 mm FWHM Gaussian 
kernel to enable inter-subject comparisons and to render 
the distribution of the data more normal. Total volume of 
gray matter, white matter and cerebrospinal fluid were 
obtained to compute total intracranial volume that was used 
in subsequent statistical analysis to control for individual 
differences in brain size. 

2.4 Statistical Analysis 

Simulated datasets were analyzed using voxel-wise 
two-sample t-tests in the case of DBM and voxel-wise 
ANCOVA design with parameters Group as fixed factor 
and Total intracranial volume as covariate. It is not neces-
sary to correct for individual differences in the brain size in 
the case of DBM since they are already encoded in the 
deformation fields.  

To compare the results, we computed the overlap 
between the regions of simulated expansions and the re-
gions detected by DBM and by VBM. We also computed 
distances between centers of mass of the regions as another 
way of precision estimation. The regions were delineated 
by significance thresholding in the t-statistic maps. 

3. Results 
DBM analysis of the simulated data detected all three 

regions of local volume expansion. Clusters of significant 
voxels overlaid the regions of the simulated expansions 
from 49.4% (smallest expansion and the most stringent 
statistical threshold applied – p < 0.01 FDR corrected) to 
92.9% (the medium size expansion, p < 0.01 FDR cor-
rected) – for detailed results see Tab. 2. The frequency of 
false positive voxels ranged from 53.4% (the medium size 
expansion, p < 0.05 FDR corrected) to 17.3% (the smallest 
expansion, p < 0.01 FDR corrected) – see Tab. 2. The 
distance between the centers of mass of simulated and 
detected expansions was between 1.42 mm and 3.14 mm – 
see Tab. 2. 
 

T< (FDR 1%) T< (FDR 5%) 
 

VBM-6 VBM-12 DBM VBM-6 VBM-12 DBM 
   Overlay inx 

Exp1 0 % 0 % 87.7% 0.05 % 0 % 86.8 % 
Exp2 0 % 0 % 92.9% 0 % 0 % 92.8% 
Exp3 0 % 0 % 49.4% 0 % 0 % 61.8% 

   EFP 
Exp1 100 % 100 % 44.9 % 60 % 100 % 41.7 % 
Exp2 100 % 100 % 49.3 % 100 % 100 % 53.4 % 
Exp3 100 % 100 % 17.3 % 100 % 100 % 25.3 % 

   |COM-COMref| [mm] 
Exp1 - 11.41 2.93 7.0 12.18 2.85 
Exp2 - - 2.66 12.0 - 3.14 
Exp3 - - 1.42 12.9 - 1.54 

Tab. 2. Results of the analyses of the simulated data. VBM-6: 
VBM with 6 mm FWHM Gaussian smoothing. 
VBM-12: VBM with 12 mm FWHM smoothing. 
Overlay Inx: Overlay index is a ratio of voxels in the 
region with simulated expansion overlaid by signifi-
cant voxels from VBM or DBM analysis at different 
statistical thresholds. EFP: False positive errors, a ratio 
of significant voxels outside of the simulated expan-
sion. |COM-COMref| [mm]: distance between centers of 
mass of simulated and detected expansions – expressed 
by Euclidean distance in mm. 

On the other hand, VBM analysis was able to detect 
only one significant change in tissue density that lay in 
near vicinity to the largest simulated expansion region. The 
detected region, however, did not overlap with the simu-
lated one at the default statistical threshold (p < 0.05 FDR 
corrected). Losing the significance threshold did the 
detected region and the ground truth partially overlap – see 
the results in detail in Tab. 2. The spatial relationship 
between the largest simulated expansion and two detected 
regions with DBM and VBM can be inspected in Fig. 1. 
The results were similar for both 6 mm and 12 mm 
smoothing performed in VBM. Using gray matter volume 
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images without smoothing resulted in the failure to detect 
any changes at any significance threshold used. 

 
Fig. 1. Spatial relationship between the region of the largest 

simulated local volume expansion and the regions 
detected by VBM and DBM. Simulated expansion 
region (orange) and the regions detected using DBM 
(red) and VBM (blue).  

4. Discussion 
We performed a comparison of the performance of 

newly developed high-resolution deformation-based mor-
phometry with the standard voxel-based morphometry. The 
analysis of simulated data showed superior performance of 
DBM that was able to detect all simulated local tissue ex-
pansions with very high precision – with the smallest 
simulated volume expansion at the scale of 600 mm3. VBM 
was not able to detect any of the three expansions - it was 
able to uncover tissue density change in near vicinity of the 
largest expansion – at the scale of 4000 mm3.  

This displacement, see Fig. 1, was not affected by the 
amount of smoothing – similar displacement was found for 
both 6 and 12 mm FWHM kernels. Moreover, we would 
rather expect large clusters that cover the simulated abnor-
mality, together with many false positive voxels in the 
neighborhood, but not displacement of the results away 
from the simulation, if this shift is due to the smoothing of 
images. On the other hand, the smoothing is essential for 
VBM method, both conceptually and practically: it is 
necessary for intersubject comparisons; zero smoothing 
prevented detection of changes even at non-significant 
thresholds. 

This displacement of the results obtained using VBM 
is of critical importance for the validity of evidence for 
neuroanatomical changes in neuropsychiatric disorders. 

For example, in schizophrenia research there is high vari-
ability of the spatial localization of gray matter changes 
reported in individual VBM studies [19], with relatively 
small overlap of the spatial maps [20]. Usually, this is 
interpreted in the light of neurobiological heterogeneity of 
the disorder. Based on our results it seems likely that at 
least a part of this variability is due to the VBM impreci-
sion. The power of VBM is another issue – even a study 
with large sample size (400 subjects) failed to find any 
changes in local gray matter volume in schizophrenia – due 
to large variability of the data [21]. 

There are several methodological features that affect 
the performance of DBM. Of critical concern is to ensure 
that the deformation does not destroy the brain anatomy, 
i.e. create non-existing structures, concatenate separate 
structures etc. Such problems require careful management, 
especially with regard to registration algorithms based on 
nonlinear spatial transforms such as those based on viscous 
fluid dynamics. Therefore various constraints based on 
topology preservation [22], volume preservation [23] and 
tissue mass preservation [24] have been used. The ability 
of DBM to detect local changes of brain anatomy is linked 
with the dimensionality of the registration method. Our 
DBM method is based on an original high-dimensional, 
diffeomorphicity preserving registration technique [12]. 

The simulated volume changes were not uniform in 
every subject. They differed in size and shape, which we 
think is more similar to real volume changes, where the 
pathological process affects every individual differently. 
Although DBM results overlapped very well with the 
simulated tissue changes, they tended to cover larger an 
area of brain outside the simulation. This might be due to 
the smoothing effect during the registration step that was 
necessary in some cases to assure diffeomorphicity. 

We believe that the poor performance of VBM, espe-
cially in the case of detection of subtle local changes, is 
caused by the preprocessing steps: a substantial portion of 
variability is removed with nonlinear registration of the 
images to the template as well as with Gaussian smoothing 
of the binary tissue segments. In contrast, when using 
DBM, one tries to make all variability encoded in the de-
formation fields. Thus, no trade-off between removing 
variability with registration and detecting variability itself 
is necessary. 

We think that DBM has several advantages: 1) the 
analyzed parameter (change of local volume) has a clear 
biological meaning. On the other hand, in VBM the mean-
ing of tissue density multiplied by local volume change 
(determinant of Jacobian modulated tissue images), usually 
interpreted as “tissue volume” is much less evident; 2) the 
changes are always detected in the context of whole brain 
morphology described by high-resolution deformation 
fields; 3) the localization of the changes is evident from 
their position within the brain. There is no risk of mirror 
changes or the question of what tissue is affected. Today, 
most VBM studies analyze only one tissue - usually gray 
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matter. However, when no information is provided about 
the corresponding changes in WM and CSF, it is not possi-
ble to draw clear conclusions; 4) as suggested by our 
simulation, it seems that DBM could have higher spatial 
precision and higher sensitivity to detect subtle local vol-
ume changes. 

5. Conclusion 
We have demonstrated that high-resolution deforma-

tion based morphometry is 1) able to detect local changes 
of brain morphology, 2) with high spatial precision, and 3) 
with sufficient power in a sample, which size resembles 
usual clinical samples. In contrast to these features of 
DBM, VBM was not powerful enough to detect any simu-
lated changes, and the changes found by VBM at a non-
significant threshold were shifted away. These findings 
suggest that the heterogeneity of results found by VBM in 
many neuropsychiatric disorders including schizophrenia 
may be caused by methodological faults in part, not only 
by the possible neurobiological heterogeneity. Taken 
together we suggest that the analysis of high-resolution 
deformation fields is more convenient and precise than 
voxel-wise analysis of tissue-segmented images.  
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