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Abstract. The velocity of various objects measured within a large number of disciplines and activities. This paper presents the process of designing 

an accurate method and equipment for the measurement of velocity in one-shot nonlinear processes, which occur only once and are thus characterized 

by zero repeatability. The measurement methods must therefore enable the recording, saving, and retroactive evaluation of the processes at a pre-defined 
accuracy; all these operations are performed to facilitate comparison of the recorded event and other similar processes. However, the electromagnetic 

method described in the paper does not include the disadvantages of known optical methods. We therefore present the design of an inductive sensor 

equipped with an electronic signal processing system. This design is based on numerical evaluation of the relativistic effect occurring during 
the application of the electromagnetic principle in sensing the position and velocity of an object J. Van Bladel. The final section of the paper contains 

a discussion of the measured results. The authors investigate the use of a coupled model of the magnetic field and analyze the motion of a conductive object 

in this field. The analysis shows that, for an exact evaluation of the influence of all effects, it is necessary to consider the phenomena related 
to the movement of a system relative to the other one. It is shown that related distinctive effects affect the resultant electromagnetic field distribution 

already at the relative velocity of v0= 1m∙s-1. 
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ZASTOSOWANIE ELEKTROMAGNETYCZNEGO MODELU NUMERYCZNEGO 

W DOKŁADNYCH POMIARACH DUŻYCH PRĘDKOŚCI 

Streszczenie. Pomiar prędkości różnych obiektów ma zastosowanie w wielu dziedzinach i działaniach. W artykule przedstawiono proces projektowania 

dokładnej metody i urządzenia do pomiaru prędkości w niepowtarzalnych procesach nieliniowych, które występują tylko raz. Metoda pomiaru musi zatem 
pozwalać na nagrywanie, zapisywanie i wsteczną ocenę procesów przy zadanej dokładności; wszystkie te operacje są wykonywane w celu ułatwienia 

porównania nagranego zdarzenia i innych podobnych procesów. Opisana w artykule metoda elektromagnetyczna nie zawiera wad znanych sposobów 

optycznych. Została opisana konstrukcja czujnika indukcyjnego wyposażonego w elektroniczny układ przetwarzania sygnału. Metoda ta jest oparta 
na numerycznej ocenie wystąpienia efektu relatywistycznego przy stosowania zasady indukcji elektromagnetycznej do wykrywania położenia i prędkości 

obiektu (J. Van Bladel). Ostatnia część artykułu zawiera omówienie wyników pomiarów. Autorzy badają użycie sprzężonego modelu pola magnetycznego 

i analizują ruch przewodzącego obiektu w tym polu. Analiza wykazuje, że dla dokładnej oceny wpływu wszystkich oddziaływań, należy wziąć pod uwagę 
zjawiska związane z ruchem jednego systemu w stosunku do drugiego. Wykazano, że związane z nimi efekty mają wpływ na wynikowy rozkład pola 

elektromagnetycznego już przy prędkości względnej równej 1m/s. 

Słowa kluczowe: model relatywistyczny, model numeryczny, PEM, elektrohydrodynamika, pocisk 

Introduction 

The velocity of fast-moving objects is determined by measur-

ing the position and time. Thus, in most measurement procedures, 

it is important to detect the position of the object at the start 

and end points of the measured path and to determine the length 

of the time during which the monitored body travels the given 

distance. The detection of the projectile is performed using two 

parallel structures (ports) placed at an exactly defined distance 

from each other; this distance is referred to as the basis. 

As the projectile must pass through both ports, the structures have 

to be positioned in a perfectly parallel manner. The block diagram 

of this type of measurement system is shown in Fig. 1. 

The individual ports record the passage of the projectile 

and generate the START – STOP pulses, whose function 

is to activate and deactivate the fast counter (a microcontroller 

unit) measuring the time at which the projectile passes through 

the ports. Based on the known dimension of the basis and the 

passage time of the projectile, we can easily acquire the value 

of the instantaneous speed of the projectile flight over the path 

given by the basis of the sensor. However, it is also necessary 

to consider possible measurement errors Boquan, Li [2]. 

1. Velocity measurement 

The ports measuring the velocity of a fast-moving object 

are based on either the optical or the electromagnetic principle, 

and each of these two approaches has been used to fabricate 

several types of PROTOTYPA [16] ports. 
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Fig. 1. A block diagram of the system for the measurement of fast-moving objects 
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 a) b) c) 

Fig. 2. The different port types: a) diode, b) laser, c) electromagnetic 

Magnetoelectric methods utilize mainly coils, whose proper-

ties are influenced by the passage of the projectile; alternatively, 

voltage can be induced in these coils. One of the variants 

of the magnetoelectric methods is a technique where magnetic 

flux density is used to generate a pulse during the passage 

of the projectile through the coil. The magnetized projectile 

is surrounded by a static magnetic field; during the passage 

of the projectile through the measuring coil, this field will 

be changing proportionally to the speed of the projectile 

and depending on the relative motion of the object and the port 

Fiala P., Szabo Z., Friedl M. [8]. With respect to the fact that 

the measurement of the instantaneous velocity v of moving objects 

is converted to the measurement of position, the design of the port 

was realized using the principle of eddy currents known from 

inductive position sensors with the effect of the theory of relativity 

Stratton [17], Haňka [9]. The principle of inductive sensors with 

a suppressed magnetic field consists in suppressing the magnetic 

field of the sensor by the magnetic field of the eddy currents. 

In wide-basis sensors (1.000 m), Fig. 2, it is possible to use known 

compensation methods to eliminate the effect of the change 

of the shape of the induced voltage in the sensor; such a change 

is caused by the velocity of the object entering and leaving 

the magnetic field. By contrast, short-basis measurement 

(0.1000 m) is rather more complicated due to the emphasis placed 

on observing the parameters of the applied method to secure high 

measurement accuracy and thermal stability. In this type of meas-

urement, the induced voltage of the sensor strongly influences 

the relative motion of the projectile with respect to the magnetic 

field of the sensor, as analytically described by J. Van Bladel 

[19, 20]. The authors of this paper have therefore pursued in detail 

the effect of the relative motion of the moving object with respect 

to the sensor (coil) and modelled the sensor system that captures 

the motion of the projectile. The results of the analysis were used 

in the process of setting and testing the short-basis sensor 

for the measurement of the velocity of a moving object (Fig. 3). 

 

Fig. 3. A prototype of the EMG-1 measurement/detection system by PROTOTYPA 

a.s., PROTOTYPA [16] 

2. Motivation of the model 

From the first moments of its application Maxwell [15], 

Dědek, Dědková [3], Stratton [17], Haňka [9], electromagnetic 

theory has included (in addition to electrodynamics and relativis-

tics) also the static, quasi-static, and non-stationary parts 

of the description of the electromagnetic field. Sources describing 

the theoretical part of applied electrodynamics and relativistics 

include, for example, Haňka [9], Stratton [17], and Kikuchi [13]. 

At present, the modelling and simulation of technical systems 

constitutes a substantial part of the total of modelled problems. 

Among the currently modelled tasks there are various problems 

related to provinces characterized by the fastest development 

and application of modelling, namely energetics, mechanical 

engineering, metallurgy, electrical engineering, space and nuclear 

technologies Kuneš, Vavroch [14], Ansys [1]. This paper exam-

ines the problem of utilizing the coupled hybrid magnetic field 

model and analyzes the issue of the motion of a conductive object 

in a magnetic field. Let us consider the example of conductor 

movement in a stationary or non-stationary magnetic field. This 

appears to be a trivial problem with a straightforward solution; 

however, for an exact evaluation of the influence of all effects, 

the phenomena related to the movement of a system relative 

to the other one must not be neglected. As shown in Haňka [9], 

this distinctive effect begins to influence the resultant electro-

magnetic field distribution already at the relative velocity 

of v0 = 1 m∙s-1. 

3. Description of the Model  

The physical model is based on the solution of the reduced 

Maxwell equations in Heaviside’s notation Stratton [17]. 

The stationary magnetic/electric field can be described as 

 J=Hrot , 0=Erot , 0=Bdiv , 0=Jdiv , 0=Ddiv , (1) 

where H, J, E, D, B are the vectors of the magnetic field 

intensity, current density, electric field intensity, electric flux 

density, and magnetic flux density, respectively. The material 

relations are represented by the formula 

 
0 r

=B H  , 
v
=J E , 

0 r
=D E  , (2) 

where , ,  are the permittivity, permeability, and conductivity 

of the environment. Vector functions of the electric and magnetic 

fields E, B are expressed by means of the scalar electric potential 

e and the vector magnetic potential A. For the stationary, 

quasi-static, quasi-stationary, and non-stationary task, Fig. 4, 

in the relation for the electric field intensity, the time derivation 

of the vector magnetic potential is zero: 

 
t

grad





A
 =E e , Α=B rot . (3) 
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Fig. 4. A basic model of the A system in the Cartesian coordinate system; motion 

of the area portion at velocity v 

The resulting current density J from formula (2) is formed 

by the exciting current density Js =v with the specific density 

of the electric charge  and the current density caused by eddy 

currents: 

 = dJ l
v

t




, (4) 

where dl is the element of length of the trajectory on which 

the eddy currents close. The motion effect for the instantaneous 

velocity vector v is respected in the model by the current density 

  m
=J v B  . (5) 

Then, respecting eddy currents (4), we have 

v s m
=J J J J  . The electromagnetic field distribution 

is formulated using expressions (1) to (5) in the entire region 

of the model ,  

 
t

rot





B
=E . (6) 
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For individual parts of the model  there holds vs, 

where v is the area with dominant eddy currents which behave 

according to formula (2), and s is the area with known distribu-

tion of the current density Js. In the assumed model, we have 

sv. These basic relations were complemented with boundary 

and initial conditions; using the finite element method, the physi-

cal model was then transferred to the mathematical one. The finite 

element method (FEM) Ansys [1] program system enabled 

us to perform a complete analysis; the FEM program was modi-

fied using suitably selected boundary conditions in order 

to respect the model characteristics described in formulas (4) 

to (5), Fiala [7]. According to Haňka [9], in any investigation into 

electro-dynamic systems it is necessary to respect the relativistic 

approach to electrodynamics. As described below, the entire 

problem begins at the moment when the vector of intensities 

of both the electric and the magnetic fields of the moving system 

is relative. 

4. Relativity effect in the model 

In the example provided by Haňka [9], the current density 

in the A system is =J v ; for the mutually moving A-A´ 

systems, the density is expressed in the component form 

 x x y y z z t
= jJ u u u uJ J J c     

. (7) 

The continuity equation can be formulated as 

 =0Jdiv .  (8) 

After applying the Lorentz transformation to obtain a simple 

representation of the moving systems in the direction of x, 

the current density (7) can be written in the form  

  

 𝑱𝑾
=

𝐽𝑥
´ +j

𝑣𝑥
𝑐
𝐽𝑡
´

√1−(
‖𝒗‖

𝑐
)
2
𝒖x + 𝐽𝑦

´ 𝒖y + 𝐽𝑧
´𝒖z + j

𝑐´−
𝑣𝑥
𝑐
𝐽𝑥
´

√1−(
‖𝒗‖

𝑐
)
2
𝒖t. (9) 

 C D 

From formula (7), for the instantaneous velocity of the moving 

system A´ in relation to observer A (Fig. 1) and at v<<c, the com-

ponent part C is negligible. A simplified form of the above 

relations (9) can then be written as  

 𝐽𝑊
=

𝐽𝑥
´

√1−(
‖𝒗‖

𝑐
)
2
𝒖x + 𝐽𝑦

´ 𝒖y + 𝐽𝑧
´𝒖z + j

𝑐´−
𝑣𝑥
𝑐
𝐽𝑥
´

√1−(
‖𝒗‖

𝑐
)
2
𝒖t. (10) 

 C D 

This relation, or component C from expression (10), is well-

known from electromagnetodynamics in respecting the ratio 

of velocities v/c. However, the second part, or component D 

in expression (9), is nonnegligible and has a relative character 

with respect to the systems A-A´ and component D in expression 

(10). The first part of the relation (C) from formula (10) is based 

on electrodynamics at the conventional current of v<<c. 

The second relation, D, (10) is – for the magnitude of the electric 

charge density ´=0 – unknown in electrodynamics and is typical 

of the relativistic description of the behaviour of two mutually 

moving systems. Then we can easily formulate 

 xJ
c

v
2

  (11) 

In the non-dynamic system, the model is shown in relations 

(1) and (2). In order to eliminate possible errors, it is suitable 

to include in relation (7) the term which respects Faraday´s law 

of induction: 

  =
B

E v Brot rot
t


  


, 

  =
D

H J J v D
s m

rot rot
t


   


, (12) 

where  is the volume density of the electric charge. 

The complete Maxwell equations are covariant in all the systems; 

it is thus not important to specify the system within which 

the observer moves, because the described relations always hold 

true. After the derivation of the four-vector and respecting 

the Lorentz transformation for the moving electric charge with 

the density  from the viewpoint of two individual systems 

relatively moving at the velocity of v (A and A´), the source 

current density is written in the form 

 
t

= j
s

J u
s

c
t

 





, (13) 

where s is the position vector of a material point in the coordinate 

system. Then the interface between the dielectric with the electric 

permittivity  and the conductive material having the conductivity 

 (12) is written as 

    
1

= j
B

E v B v u
t

rot rot rot c
t

 



    


 

    = j
D

H v v B u v D
t

rot c rot
t

  


     


 (14) 

where j is the symbol of the imaginary component of the quantity 

complex shape, c is the velocity module of light in the vacuum, 

s is the position vector of the relative system and the system, 

Fig. 4, of the moving electric charge in axis x of the Cartesian 

coordinate system with the electric charge density . For 

the continuity equation (1) there holds 

  =0Jdiv . (15) 

For simplification, if we assume the motion of one reference 

system as ()´ (for example, in the x axis of the Cartesian coordi-

nate system), Fig.5, the four-vector of the current density can 

be written – after application of the Lorentz transformation 

– in the (invariant) form (9), and the electric charge volume 

density in the reference system is, after transformation, written as 

 
x

x2

2
=

1
v

v
J

c

c




 

 
  
 

, 
x

x2

2
=

1
v

v
J

c

c







 
  
 

. (16) 
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Fig. 5. The relation of two moving systems with the objects A and A´ (moving 

mutually at velocity v) 

Applying Maxwell’s equation for the presence of electric 

charge in the modeled area, Fig. 2, we have 

 = Ddiv . (17) 

The expression for the current density J can be written in the 

form for the interface between the dielectric and the conductive 

layer, Fig. 6. 
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Fig. 6. The approximation of conditions on the dielectric/metal interface 

for the relativistic approach to the model 
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Then for the unabbreviated formula, respecting the motion 

at velocity v in all directions, the current density with respect 

to the moving system A-A´ can be written as 

 

x y

2 2

z

2 2

=

1 1

1 1

x y

x y

yx z
z x y z

z t

J v div J v div

c c

vv v
J v div cdiv J J J

c c c
j

c c

 

 

 

 

 

 

    
           

   
    
   

    
                

   
    
   

J J

J u u

v v

J J

u u

v v

 (18) 

The expression for the current density in the area of conduc-

tive material with conductivity  can be written from formula (10) 

in the form assuming zero value of the electric charge  

in the electrically conductive material (metal) 

 

yx z

2 2 2

2

=

1 1 1

1

x y z

yx z
x y z

t

JJ J

c c c

vv v
J J J

c c cj

c

 
 

     
       
     

    


 
  
 

J u u u

v v v

u

v

. (19) 

  

 
2

1

''

















 

c

v

jv
w

J
J  (20) 

For the relationship within one system A the relations are 

known and written in the form 

  =
D

H J v Drot rot
t


   


  


  

  =-
B

E v Brot rot
t


  


 


, (21) 

and the expression of the current density J within two mutually 

moving systems A-A´ is 

 

3 3 1

2 3 4

3 1 2

1 3 4

32 1

1 2 4

31 2

1 2 3

0

0

=

0

0

J

H H D
jc

x x x

H H D
jc

x x x

DH H
jc

x x x

DD D
jc jc jc

x x x

   
   

 
   
  
  

 
  

  
  

 
  
 

   

. (22) 

5. Demonstration of the relativity effect 

on a simple model 

It has been shown by Haňka [9] that a simple model can 

be used to demonstrate the critical velocity at which the relativistic 

effect described in the current density J, relation (18), will 

appear. The model, whose scheme is presented in Fig. 4,

is a magnetic circuit composed of pole extensions and an exciting 

coil. A very long (“infinite”) conductive strip of finite thickness 

passes through an air gap in the magnetic circuit; with respect 

to the circuit, this strip moves at an instantaneous velocity with 

the component in the x-axis of the Cartesian coordinate system, 

vx = 1 m/s. 

It is evident from both Haňka [9] and the example according 

to Fig. 7 that a significant contribution to the effect can be 

assigned only to the normal component of the electric field inten-

sity En at the boundary of conductor/air in the magnetic circuit 

air gap. For the first approximation, the component is perpendicu-

lar to the velocity vector vx of the moving conductive strip. 

The resulting form of the flow lines is shaped by, among other 

aspects, the electric charge density  in formula (9). Even though 

at first sight the electric charge density  may appear as a very 

small value, it will cause excitation of the electric intensity 

and current density, which in superposition with the exciting value 

of the electric intensity and current density will create a deformed 

magnetic field. However, there remains the question of the value 

of the instantaneous velocity v at which the effect will manifest 

itself.  

The problem can be described as follows: 

We chose J = 1 A/mm2 (formal notation: J = 1.106 A·m-2) with 

the electrical conductivity of  = 100 MS m-1; the electric field 

intensity is E = J/, E = 0.01 V·m-1. Let us assume a plane unlim-

ited problem and thus the electric field intensity function depend-

ing on the distance from the plate Ex=k.x. Then, for simplicity, 

we can write the above formula (17) as 

  =div E  , then  div E



 ,  

d

d
x

E
div E

x
  (23) 

By comparison of relations (23), we have 

 
d

d
x

E

x




  (24) 

and, therefore, for the approximation 128 8 10.    F·m-1 

the electric charge volume density is in the distance of x = 10-1 m 

 
d

d
x

E

x
  , 

2
12

1

10
8 8 10

10
.





   C.m-3. (25) 

From expression (16) we can obtain the formula for the value 

of instantaneous velocity in the moving systems A-A´ respecting 

the relativistic effect of the system electrodynamics: 

x
x2

2
=

1
v

v
J

c

c




 

 
  
 

, which for the assumed problem and the low 

value of the instantaneous velocity module from relation (11) is  

 
2

x

c
v

J





.  (26) 

For the above-quoted problem, 

 
 

2
11 82

x 6

8 8 10 3 10
0 79

1 10

.
.

c
v

J


 

  
 

 m·s-1. 

Then, with respect to formula (26), for the non-moving system 

A, in which the instantaneous velocity value v will not influence 

the relativistic effect of the moving systems A-A´, we can calcu-

late a different value v according to (4): 

 
6

19

13

10
= 1 13 10

8 8 10
.

.
v


  


m·s-1. (27) 

Thus, in relations (26) and (27) can be traced the difference 

of results with comparable values of the electric field intensity 

and at the instantaneous motion velocity value of the moving strip. 

There follows an example of the representation of changes 

in the electromagnetic field distribution for the given task, Fig. 7; 

for simplicity, the velocity of the moving strip is assumed 

to be vx = 1 m·s-1. 
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Fig. 7. A simple geometry for the verification of the relativistic approach of electrodynamics (a) and its numerical model (b) 

a) 

  A)   

 b) 

   B) 

 

Fig. 8. The analysis of magnetic flux density: A) quasi-stationary B) distribution of the superposed magnetic flux density Bs vector module (with the relativistic effect) 

In the numerical analysis, the simple model in Fig. 7 is used 

to demonstrate the influence of the relativistic approach 

on the mathematical model (18), (19) and to compare the results 

obtained by analyzing the non-relativistic (1) – (6) and relativistic 

(18), (19) models (Fig. 8). The physical model is based 

on the solution of the reduced Maxwell equations [17], Fiala [5]. 

The resulting current density J is formed by the exciting current 

density Js =v with the specific density of the electric charge  

and the current density caused by the eddy currents Jv. The motion 

effect for the instantaneous velocity vector v is respected 

in the model by the current density Jm. The finite element method 

(FEM) program was modified using suitably selected boundary 

conditions in order to respect the model characteristics described 

in Fiala [5, 7]. The entire problem begins at the moment when 

the vector of intensities of both the electric and the magnetic fields 

of the moving system is relative. The complete Maxwell equations 

are covariant in all the systems; therefore, it is not important 

to specify the system within which the observer moves 

as the described relations always hold true. After the derivation 

of the four-vector and respecting the Lorentz transformation, 

the current density is written in the form (21). 

There is no problem to obtain, by means of reversing the sign 

of velocity, transformed quantities of the opposite system (which 

is moving) for the above-expressed transformed quantities. Let us 

have a simple geometric task, Fig. 7. The model example consists 

of a conductive strip in the air gap which is a part of the magnetic 

circuit. The distribution of the magnetic field in the system 

is evaluated for a different case of the strip movement and 

for the non-relativistic and relativistic approaches.  

Numerical analysis of the above-mentioned example provided 

by the author of [9] is realized for the assumption of linear materi-

al environment by means of the superposition method. Generally, 

the first step consists in an elementary analysis of the magnetic 

field without the moving strip, formula (1), the second 

step embodies an analysis of the magnetic field with a steady 

motion of the conductive strip and the effect of eddy currents, 

and the third action involves the evaluation of current density

in the moving strip with electrodynamic and relativistic effects 

according to relations (18) to (22). These analyses were performed 

using the program providing FEM analysis Ansys [1] (program 

in the APDL language for ANSYS). 

The resulting distribution of the magnetic field and the real 

component module of the magnetic induction Bre vector are 

shown in Fig. 8, naturally, it is possible to perform the analysis 

also for the imaginary part of the current density component Jima. 

6. Example of the relativity effect 

on the experimental model 

The numerical model and the basic geometry of the ballistic 

projectile velocity measurement are shown in Fig. 9. There are 

electric coils for the excitation of the basic magnetic flux density 

B, Fig. 10. The secondary magnetic flux density on the surface of 

the projectile is dependent on the effect of the velocity of the 

projectile. The final magnetic flux density B depends on the ef-

fects of eddy currents and the theory of relativity. Then the final 

vector magnetic flux density is measured with classic sensors, 

Fig.11a. Thus, we can demonstrate the real and imaginary compo-

nents of the current density module J, Fig. 11b, and indicate the 

results of the relativistic contribution of the magnetic flux density 

module, Bre, Bim, Fig. 12. 

 

Fig. 9. The electrodynamic magnetic field analysis: a model of the measurement 

of velocity in a simple ballistic projectile 
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 a b 

Fig. 10. The electrodynamic magnetic field analysis:a) the basic magnetic flux density vector module B distribution, b) the final magnetic flux density vector module B 

distribution 

 

 a b 

Fig. 11. The electrodynamic magnetic field analysis: a) the real component current density Jre vector module distribution, b) the imaginary component current density Jim vector 

module distribution 

 

 a b 

Fig. 12. The electrodynamic magnetic field analysis: a) the real component of the magnetic flux density Bre, b) the imaginary component of the magnetic flux density Bim 
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7. Results of the experimental measurement  

Using the fabricated prototype, we completed the research 

by performing a large number of test measurements in both the 

laboratories of the DTEEE, FEEC BUT (Fig. 13) and the facilities 

managed by the PROTOTYPA company. The signals obtained 

from one and two sensors are presented in Fig. 14. 

The measured data were digitized and processed via the 

MATLAB program, in which we conducted the numerical 

postprocessing and evaluated the envelopes of the signals from 

the individual sensors, Fig. 15. 

The theoretical models were numerically processed and evalu-

ated in partial experiments performed using the finite element 

method. A connection (and effects too) was proved between 

the inductance L of the sensor coil and the position of the moving 

metal object. Based on the related analyses, we designed 

and fabricated a functional sample of the inductive sensor 

(Figs. 3, 16, 17). 

 
Fig. 13. The measurement system with two ports and electronics 

  
Fig. 14. The measured signals: a) the signal acquired from one sensor, b) the signal obtained from two sensors 

 
Fig. 15. An example of signal processing in MATLAB 

 

Fig. 16. The final measurement head EMG-1 from PROTOTYPA a.s., PROTOTYPA [16] 



10       IAPGOŚ 3/2015      p-ISSN 2083-0157, e-ISSN 2391-6761 

 

 

 

Fig. 17. The final measurement system EMG-1 from PROTOTYPA a.s., 

PROTOTYPA 
[16] 

8. Conclusion  

The model shows the distinction by order of the individual 

phenomena. It is evident that the relativistic electro-magneto-

dynamic principle is indispensable and introduces substantial 

changes into the original non-dynamic conception of this type 

of simple problem analysis.  

The effect is apparent of motion on the magnetic field imbal-

ance. A higher value of an elementary magnetic field combines 

with a decrease in the relative magnitude of the electro-magneto-

dynamic field influence. 

Formulas (18) to (21) ought to be considered and respected 

in the process of designing dynamic and electromechanical 

systems such as rotary electrical machines; in the same manner, 

the relations should be utilized in electromagnetic and electrome-

chanical systems with moving elements designed for velocity 

in the order of 1 m/s, for example in the topics of papers Jha P., 

Raj G., Upadhyaya A. K. [12], Holmes J., Ishimaru A. [10], Ya-

rim C., Daybelge U., Sofyali A. [21]. It can be assumed that, due 

to the disrespect of results following from this interpretation of the 

electromagnetic field of dynamic systems, inaccuracies occur 

within the modeling and simulation that supports the actual design 

and realization of the systems EMG-1 from PROTOTYPA a.s., 

PROTOTYPA [16]. 
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