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Abstract. The emergence of low, slow, and small civilian 
unmanned aerial vehicles (UAV) brings fun and conven-
ience to life and work. However, with the widespread pop-
ularity of UAV, the illegal activities caused by them have 
gradually increased, causing great harm to social security. 
To solve this problem, in the paper, we propose a set of 
detection and recognition methods for UAV by UAV image 
transmission signal (ITS). The method is divided into two 
groups. In the first group, according to the signal charac-
teristics in different transform domains such as spectrum 
and time-frequency spectrum, three sets of algorithms are 
proposed, which are time-frequency ridge double feature 
estimation (TFRDFE), segmented spectrum estimation 
(SSE) and cycle accumulation estimation of segmented 
spectrum (CAE-SS). Three sets of algorithms are estimated 
to perform blind detection on suspected UAV ITS. The 
second group uses the accurate recognition algorithm of 
UAV ITS to extract the periodic features in the signal, and 
completes the recognition of UAV through feature match-
ing, decision criteria and other methods. The two groups of 
methods are implemented in parallel, and when the two 
groups both detect and recognize the flying target, it can 
be determined that there is UAV in the target airspace. The 
experimental results show that the recognition rate of the 
first group of suspected UAV ITS blind detection algorithm 
can reach 100% when the (signal-to-noise ratio) SNR is  
–22 dB. The second group of UAV ITS recognition algo-
rithm can achieve 100% recognition rate when SNR is  
–4 dB. Therefore, this method can complete the multi-tar-
get recognition of UAVs and has practical application 
value. 

Keywords 
UAV, image transmission signal, time-frequency 
ridge double feature estimation, segmented spectrum 
estimation, cycle accumulation estimation of seg-
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1. Introduction 
With the rapid development of information industry 

technology, the low, slow and small UAV industry has 
been developing rapidly, which attracts the attention of 
people all over the world [1], [2]. Because it adopts radio 
for signal control and has many characteristics such as low, 
slow and small, it is convenient to perform various tasks 
and provide many conveniences for life and work [3], [4].  

Although consumer UAV brings a lot of convenience 
to all walks of life, the illegal use of consumer UAV also 
brings a series of harms to the society and the country. In 
recent years, it is often reported that UAV interferes with 
flights [5], [6]. In 2015, a small UAV that had crashed was 
found on the White House lawn [7]. The same year, a UAV 
invaded the Japanese Prime Minister's residence, carrying 
plastic containers containing liquid, which police believe 
may contain cesium released by Fukushima [8]. Not only 
that, criminals often use UAV cameras to illegally take 
pictures of military bases, major conferences, and other 
areas that involve personal privacy and national security 
[9–11]. The above actions not only violate the law, but also 
pose a serious threat to the national and social public secu-
rity [12]. Therefore, it is extremely important to take 
a reasonable and effective control measure to prevent the 
illegal flight of UAV [13]. 

2. Relative Work 
In order to reduce or eliminate the threat posed by the 

illegal flight of UAVs, many scientific researchers are 
studying the problem in a variety of ways, which are 
mainly reflected in three methods, radar detection [14], 
optical detection [15], [16], acoustics detection [17] and 
radio signal detection. 

Radar detection is widely used in the detection field, 
and its effect is usually better [18]. However, the small size 
of UAV and low flight height, and the fact that plastic 
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model is often used in the shell, affect the detection perfor-
mance of radar. In addition, radar has the disadvantages of 
strong radiation, high power consumption and high cost. 

Optical detection is a way to identify aerial targets 
through optical cameras [19]. Although this method has the 
effect of visual detection and recognition, it is limited by 
the external weather environment, resulting in a short de-
tection distance. 

Acoustic detection is a way to identify UAV by re-
ceiving sound signals emitted by UAV [20]. However, in 
urban environments, various vehicles usually generate 
more noise, and the rotor sound of the small UAV itself is 
relatively small, so this method is not suitable for long-
distance detection. 

Compared with the above optical, acoustic, radar 
detection, radio signal detection is not limited by the 
weather environment, and has many advantages such as 
low power consumption, no radiation and so on [21]. There 
are two ways of radio signal detection. One needs a third-
party signal source. The third-party signal and the UAV 
rotor produce micro-Doppler effect as the identification 
method. The other is to intercept the UAV communication 
signal directly, and recognize it by analyzing the signal and 
extracting the signal features. 

Reference [22] used two methods of radio signal detec-
tion to detect UAV, and achieved certain results, but there 
are also some problems. For example, the micro Doppler 
detection mode is limited by the flight attitude of UAV and 
relies too much on the nearby third-party signal source. 
The other is based on the periodicity of the ITS, which can 
be identified by extracting the periodic features. But in the 
actual test, the random signal nearby is easy to produce the 
same features, resulting in false alarm. Reference [23] also 
uses the periodicity of UAV signals to identify. In refer-
ence [24], the deep learning method is used to recognize 
the UAV communication signal, and the recognition rate is 
high. However, it has not been tested in low SNR, and 
compared with the traditional feature extraction engineer-
ing, the deep learning recognition method has higher com-
plexity and hardware implementation difficulty. 

The rest of this paper consists of the following parts: 
The third section describes the system architecture and 
signal model. The fourth section explains the blind detec-
tion of suspected UAV image transmission signal (BD-Sus-
pected UAV ITS) and accurate recognition of UAV image 
transmission signal (AR-UAV ITS) algorithms in detail. In 
the fifth section, the BD-Suspected UAV ITS and AR-UAV 
ITS algorithms are simulated and verified. Finally, the sixth 
section gives the conclusion and prospect. 

3. Signal Model 
The civil UAV signals are mainly divided into two 

categories. One is the signal used by the remote control  
to control the UAV, that is the flight control signal [25]. The 

 
Fig. 1. UAV detection and identification deployment diagram. 

other is the signal transmitted by the UAV to the remote 
control, that is the ITS. As shown in Fig. 1, the acquisition 
system can collect UAV flight control signals and ITS, and 
extract baseband signals through mixing, digital down-
conversion, and filtering. The baseband signals are pro-
cessed by algorithms to complete the entire identification 
operation. 

In this paper, the UAV ITSs are mainly studied, and 
OFDM communication is adopted for ITS [26–28]. OFDM 
is a multi-carrier modulation mode, which overcomes 
channel frequency selective fading by reducing and elimi-
nating the influence of inter-symbol crosstalk. An OFDM 
symbol includes multiple modulated subcarriers. Assume 
that N represents the number of subcarriers, and T repre-
sents the duration of the OFDM symbol, di(i = 0,1,…, N – 1) 
is the data symbol allocated to each subcarrier, f0 is the 
carrier frequency of the 0-th subcarrier, Rectangular func-
tion rect(t) = 1, t  T/2, then an OFDM symbol starting 
from t = ts can be expressed as: 

 s 0 s s s
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  (1) 
where Re represents the real part data, ts represents the 
sampling interval, and j is the imaginary unit. 

 
Fig. 2.  Physical picture of acquisition system. 
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In order to verify the signal model, the UAV ITS is 
collected by zero (intermediate frequency) IF receiver. The 
sampling rate of the acquisition system is 40 MSPS after 
down-conversion. The hardware diagram of the acquisition 
system is shown in Fig. 2. 

Firstly, two DJI Phantom 4Pro UAVs, one DJI Inspire 
Two UAV and Wi-Fi signal are collected respectively, and 
the receiver acquisition time is 0.2 s. 

 ( ) ( )  ( )X t S t N t    (2) 

where t is the duration of 0.2 s, S(t) is the UAV ITS, N(t) is 
the flight control signal, natural noise, radio interference 
signal, etc. 

The signal is extracted by AD9361 Analog-digital 
conversion, mixing frequency, digital-analog down-con-
version and bandpass filtering to obtain 12bit IQ signals. 

 ( ) ( )  ( )X n S n N n  .   (3) 

Among them, n = 0,1,…, 8106, the Fast Fourier transform 
of the signal has the following evolution: 
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Among them, K = 0,1,…, N – 1, N = 8106. 

Then, the time-frequency analysis of the measured 
signal is performed by segmented FFT, as shown in Fig. 3. 

It can be seen from the figure that the bandwidth of 
the UAV ITS and Wi-Fi signal is larger, and the duration 
time is longer in the time-frequency spectrum. 

4. UAV ITS Recognition Algorithm 
The UAV grouping parallel detection method based 

on the multi-features of the ITS is divided into two groups, 
each group is composed of different features, and the two 
groups are executed in parallel without affecting each 
other. 

As shown in Fig. 4, the first group is algorithm A, 
which is used for BD-Suspected UAV ITS. Algorithm A is 
divided into three algorithms, namely TFRDFE, SSE and 
CAE-SS. The three algorithms are proposed in this paper 
through the signal characteristics in different transform 
domains such as frequency spectrum and time-frequency 
spectrum. The purpose is to find the optimal detection 
algorithm for suspected UAV. 

The second group is algorithm B, which is used for 
the AR-UAV ITS. Its core is to extract the specific charac-
teristics of each UAV ITS through sliding shift cyclic auto-
correlation feature extraction (SSCAFE) algorithm to iden-
tify the UAV.  

Since the first group and the second group of 
algorithms run separately, they are prone to false alarms. 
Therefore, the two groups of algorithms adopt a parallel ope- 

  
(a) DJI Phantom 4Pro Number One 

 
(b) DJI Phantom 4Pro Number Two 

 
(c) DJI Inspire Two 

 
(d) Wi-Fi 

Fig. 3.  Spectrogram of the measured signal. 

 
Fig. 4.  Algorithm structure diagram. 
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ration mode. When both groups detect and recognize the 
UAV, it is deemed that the UAV exists. 

4.1 Algorithm A: BD-Suspected UAV ITS 

BD-Suspected UAV its method includes three sets of 
sub algorithms TFRDFE, SSE, CAE-SS, and all of them 
are proposed by the special characteristics of the signal 
transmitted in the frequency and time-frequency domain. 

For the UAV ITS in frequency domain, the most typi-
cal characteristic is that it has a bandwidth of 10 MHz and 
20 MHz. Generally, only Wi-Fi and other multicarrier 
signals in ISM (Industrial Scientific Medical) band have 
this feature. Therefore, this paper proposes a UAV ITS 
detection and identification method based on signal band-
width, such as SSE and CAE-SS.  

For the time-frequency domain, because the time-fre-
quency spectrum of UAV ITS has the characteristics of 
wide bandwidth and long duration time point, this paper 
proposes to extract the time-frequency ridge double fea-
tures to detect the UAV ITS, such as TFRDFE. Among 
them, time-frequency analysis methods are widely used in 
many signal processing fields, including medical and biol-
ogy [29], arc detection [30], signal estimation [31] and so 
on. This paper improves on the time-frequency analysis 
method, and proposes a set of time-frequency ridge dual-
feature detection algorithm suitable for UAV detection. 

In addition, the three proposed UAV detection meth-
ods under different domains and different characteristics 
will be explained one by one in this section. And in the 
next section, the three sets of methods will be compared by 
simulation, and other UAV detection methods will also be 
compared to select the optimal algorithm. 

4.1.1 TFRDFE Algorithm 

This algorithm mainly studies the extraction of UAV 
ITS characteristics in the time-frequency domain, and uses 
the characteristics to detect UAVs. 

Step 1: Segmented signal processing: 

Perform segmental FFT processing on the measured 
signal x(t), a total of 7812 segments; 
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Step 2: Time-frequency ridge line extraction: 

The peak value and frequency value of each spectrum 
are extracted. Because each spectrum has a peak value, and 
7812 spectrum has 7812 peak points, the peak points are 
connected one by one, which is the ridge line described in 
this paper. 
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Among them, _ _Max fft data is the maximum value of 

each segment and _ _Max fft index  is the maximum value 

coordinate. 

Step 3: Piecewise spectrum reconstruction: 

After extracting the time-frequency ridge line in the 
previous step, perform spectrum reconstruction to restore 
the true frequency value. When the ridge line value is 
greater than the noise threshold, the following algorithm 
steps are performed. 
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  (7) 
Among them,  0,1,2 7812.i    

Step 4: Interference elimination: 

After the pretreatment of the previous step, the signal 
still contains various radio interference signals such as 
flight control signal, noise, Wi-Fi, etc. so most of the 
interference signals need to be removed to facilitate the 
subsequent algorithm analysis. 

According to the time-frequency diagram, the non-
ITS is within 5 MHz bandwidth, and the number of con-
tinuous time points is small. By analyzing the flight control 
signals and burst signals of multiple UAVs, it is concluded 
that the signal duration time threshold can be set to 100, 
that is, less than 100, and this segment of the signal is elimi-
nated. 

As shown in Fig. 5, it is the time-frequency diagram 
of DJI Phantom 4Pro Number One, which includes ITS, 
flight control signal and various electromagnetic interfer-
ence signals. A flight control signal is gradually amplified 
and displayed, and its duration time points can be obtained 
through its left and right borders, which is approximately 
equal to 25000. Perform segmental FFT processing on the 
signal with a resolution of 1024. Through calculation, the 
number of continuous segments of the flight control signal 
is approximately equal to 24, and its value is much less 
than 100, which satisfies the set conditions. 

In addition, the acquisition range of each channel of 
the device is 40 MHz, and the ITS bandwidth of 10 MHz 
or 20 MHz is easily partly sampled by the first channel and 
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(a) First stage enlarged diagram 

 
(b) Second stage enlarged diagram 

Fig. 5. DJI Phantom 4Pro Number one time-frequency diagram. 

the other part is sampled by the second channel. For 
example, the first channel is sampled at 4 MHz, and the 
second channel is sampled at 6 MHz. 

Therefore, 5 MHz bandwidth and 100 duration time 
points can be set as the characteristic threshold to eliminate 
the interference signal. The details are as follows. 
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  (8) 
where cnt is the number of duration time points. 

In addition, by removing the ridge line value of each 
segment that does not meet the condition, the remaining 
time-frequency ridge line value segment h will be less than 
or equal to 7812. 

Step 5: Bandwidth center coordinate estimation method: 

Through the difference method, the first 100 times 
signal frequency duration time points within the 20 MHz 
bandwidth of the ITS are counted and averaged. The 
average value can be assumed to be the center bandwidth 
point. 

if (( _ ( 1) _ ( )) 512)
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Among them, band_est_cnt is the statistical value of the 
signal duration time point, and the value of h is less than or 
equal to 7812, which is the time-frequency ridge value 
segment after removing noise and interference signals. 

if (0 _ _ 101)

       _   _ ( )  _ ;

                            1;

elseif ( _ _ 101)  

_
       _    ;

100
     _   0;

                

band est cnt

Sum index fft frequency h Sum index

h h

band est cnt

Sum index
Avr index

Sum index

 
 
 






        0;

else

       _   0;

                          0;

h

Sum index

h


















 

(10) 

Among them, Sum_index is the sum of frequency points, 
and Avr_index is its average value, which is the center 
bandwidth estimation point. 

Step 6: Signal bandwidth estimation: 

It is known that the maximum bandwidth of UAV ITS 
is 20 MHz, that is, the difference between all signal fre-
quency points and its central bandwidth point is less than 
or equal to 10 MHz. According to this feature, by making 
a difference between the signal with interference removed 
and the central bandwidth point, when it is less than 
10 MHz, the number of points after quantization is 256, 
then counting. 

if ( _ ( )  _  256)

      _ _ _ _ 1;

else

       _ _ 0;

fft frequency n Avr index

band ofdm cnt band ofdm cnt

band ofdm cnt

 

 



  (11) 

Among them, band_ofdm_cnt is the number of time 
duration time point, n is less than or equal to 7812. 

It can be seen from Fig. 3 that the total number of 
continuous points of the UAV ITS in the time-frequency 
diagram is at least more than 1/4, so it is defined as the 
characteristic of the time-frequency points of the ITS, and 
the threshold value is 1953. If it is greater than this thresh-
old, it is deemed that there is a suspected UAV ITS. 

4.1.2 SSE Algorithm 

The algorithm is mainly to transform the signal by 
segment spectrogram, and detect the signal according to 
the bandwidth value displayed in the spectrogram and the 
number of segments satisfying the bandwidth value. The 
algorithm is described in the following steps. 

Step 1: Segmented signal processing: 

This part is consistent with TFRDFE algorithm, and 
the segmented data is obtained. 

Step 2: Segmented spectrum reconstruction: 

First, it is necessary to satisfy that the maximum 
amplitude of the segment number is greater than the thresh-
old before proceeding to the subsequent steps. Through 
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this threshold, it can be judged whether there is a signal in 
the channel. 

When Xi(n) > threshold_fft_max, perform the follow-
ing steps. Xi(n) is the FFT amplitude value, n is the fre-
quency coordinate point, the resolution is 1024. 

The setting of the threshold determines the complex-
ity of subsequent signal processing: The threshold is high 
and the complexity is low. Low threshold means high com-
plexity, but farther detection distance; 
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where fft_Amplitude is the spectrum amplitude value after 
spectrum reconstruction, n is the number of frequency 
points, and the resolution is 1024. 

Step 3: Establishment of segmented spectrum threshold: 

Analyze the 7812 segment of the spectrum, as shown 
in Fig. 6 for one of the segments, there are three different 
color threshold lines. After simulation verification, the 
green line is the best threshold line. 

Step 4: Segment bandwidth statistics: 

When the signal is larger than the threshold line, the 
number of consecutive points of the signal will be counted. 
If the signal is smaller than the threshold line, it will not be 
processed and the spectrum signal will be discarded. In 
fact, as shown in Fig. 6, the bandwidth of the ITS is 
10 MHz, and each frequency point in the signal is not 
greater than the threshold line (green line), resulting in the 
wrong calculation of the signal bandwidth. The frequency 
points less than the threshold line can be called leakage 
points. In order to prevent the misjudgment of bandwidth 
caused by leakage, the leakage should be supplemented. 
After testing and verification, the leakage judgment thresh-
old is set to 10, that is, the spectrum amplitude of 10 con-
secutive points is allowed to be less than the threshold, 
which can better complete the bandwidth calculation of ITS. 
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Fig. 6.  DJI Phantom 4Pro Number One segmented spectrum. 

From (13), when del_cnt is greater than or equal to 
10, band_cnt is reset to 0. When del_cnt is less than 10 and 
fft_Amplitude(n) is greater than or equal to band_threshold, 
band_cnt counts. 
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Equation (14) means that when del_cnt is greater than 
or equal to 10, del_cnt is reset to 0. When del_cnt is less 
than 10, if fft_Amplitude(n) is greater than or equal to 
band_threshold, del_cnt is reset to 0, otherwise del_cnt 
continues to count. Where band_cnt is the bandwidth count 
value, del_cnt is the missing point count value, 
fft_Amplitude(n) is the FFT amplitude, and band_threshold 
is the bandwidth threshold. 

Similar to the TFRDFE algorithm, the number of 
segments of the entire signal must be at least 1/4, that is, 
greater than or equal to 1953, which can demonstrate that 
there is a suspected UAV ITS. 

4.1.3 CAE-SS Algorithm 

The CAE-SS algorithm is modified and optimized on 
the basis of the SSE algorithm. 

Step 1: Segmented signal processing: 

This part is consistent with the STFSE algorithm and 
the TFRDFE algorithm, and the segmented data Xi(n) is 
obtained. 

Step 2: Segmented spectrum reconstruction: 

To reconstruct the frequency spectrum of the 
segmented signal, the formula is as follows. 
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  (15) 

Among them, fft_Amplitude(n) is the segmented spectrum 
value, n is the frequency value, ranging from 0 to 1023. 
The segmented spectrum reconstruction diagram is in Fig. 7. 

Step 3: Signal accumulation; 

Perform one-to-one cumulative summation for each 
frequency point of each of the above signals, a total of 
7812 times. 
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(a) Before spectrum reconstruction    (b) After spectrum reconstruction 

Fig. 7.   Segmented spectrum reconstruction diagram. 
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Among them, 0,1,2 , ,i noc  7811,noc   Sum_fft(i) is 
the cumulative sum. 

Through accumulation, the signal amplitude increases 
and the spectral quality is obtained to optimize for easier 
signal detection. Figure 8 shows the cumulative spectrum 
of the measured signal after adding gaussian white noise. 
The noise is 20 dB and –8 dB, respectively. 

Step 4: Establishment of judgment threshold; 

As shown in Fig. 8, the blue line is the maximum, the 
red line is the average, and the green line is the average of 
the blue and red lines. Among them, the red threshold line 
and the green threshold line have the same effect in the 
case of 20 dB, but the red threshold line is better under  
–8 dB. However, using the red line as the threshold is easy 

 
(a) 20 dB piecewise cumulative spectrum 

 
(b) –8 dB piecewise cumulative spectrum 

Fig. 8.   Segmented spectrum reconstruction diagram. 

to misjudge noise as a signal. Therefore, through experi-
mental verification, setting the threshold of the number of 
missing points to 3 can prevent signal misjudgment and 
obtain the best recognition effect. 

Step 5: Signal judgment: 

This step is mainly used to determine whether the 
channel has a signal. Because there is only noise when 
there is no signal, there is no need to perform the next step 
of signal processing. The noise threshold can be set based 
on multiple actual collection statistics of the surrounding 
noise. When the spectrum accumulation signal is greater 
than the noise threshold, the next step is executed. 

 _ ( ) _ ,     0,1,2 1023Sum fft n noise threshold n     (17) 

where noise_threshold is the set noise threshold. 

Step 6: Suspected OFDM signal estimation; 

Then, the bandwidth value is calculated by the miss-
ing point complementation algorithm, and the signal 
band_cnt is used to count the number of points continu-
ously greater than the set signal judgment threshold (red 
threshold line) in the spectrogram. When the number of 
consecutive points meets the bandwidth greater than 
5 MHz and less than 20 MHz, it can be determined that 
there is a suspected image transmission signal. The details 
are as described in (18). 

 

if ( _  3)

       _ 0;

       _     0;
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       _
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  (18) 

In the formula, the band_cnt and the del_cnt reset to 0. 
if the del_cnt is greater than or equal to 3. When the 
del_cnt is less than 3 and the Sum_fft value is greater than 
or equal to the band_threshold, the band_cnt and the 
del_cnt reset to 0. When the del_cnt is less than 3 and 
Sum_fft the value is less than the band_threshold, the 
band_cnt count remains unchanged and the del_cnt count.  
 

Algorithm Characteristic 
TFRDFE Time-frequency spectrum: 

(1)  Signal duration time point 
(2)  Signal bandwidth characteristics 

SSE Spectrum diagram: 
(1)  Signal bandwidth characteristics 

(2) The number of segments that meet the bandwidth 
requirements 

CAE-SS Spectrum diagram: 
  Integration bandwidth characteristics 

Tab. 1.  Characteristics comparison of sub algorithms  
for BD- suspected UAV ITS. 
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Here del_cnt is the leakage point meter value, band_cnt is 
the bandwidth meter value, Sum_fft is the integral ampli-
tude of FFT, band_threshold is the bandwidth threshold. 
When the bandwidth points meet the requirements in the 
range of 5 MHz to 20 MHz, it can be regarded as a sus-
pected UAV ITS. 

For the BD-suspected UAV ITS, the signal charac-
teristics of the three sub algorithms included in the algo-
rithm are shown in Tab. 1. 

4.2 Algorithm B: AR-UAV ITS 

UAV ITS belongs to OFDM signal, and OFDM sig-
nal is composed of cyclic prefix and useful signal length. 
The structure of OFDM symbol is shown by Fig. 9. There-
fore, the total data length of one OFDM symbol is the sum 
of preamble data length and useful data length. 

Cyclic prefix of each symbol is performed as guard 
interval with copying the last part of signal data to the front 
of the symbol. For OFDM signal with cyclic prefix, cyclo-
stationary characteristics could be detected on each frame 
symbol of the signal [32]. The mathematical description is 
that the autocorrelation function of OFDM signal is a peri-
odic function of time. It is learned that OFDM technique 
with cyclic prefix is widely used in the downlink of UAVs. 
Thus, features with cyclostaionary characteristics could be 
helpful to detect and identify UAV signals. 

However, OFDM signal transmission mechanisms of 
different devices usually have different useful symbol 
length, so according to this characteristic, it can be used to 
distinguish different types of UAVs. Therefore, the algo-
rithm is also defined as the AR-UAV ITS, which is mainly 
composed of SSCAFE algorithm, decision criteria and 
other signal processing methods. The algorithm is de-
scribed in detail step by step as follows: 

Step 1: Sliding shift cyclic autocorrelation: 

If signal s(t) is a cyclically stationary signal, the fol-
lowing two formulas hold. 

 S S 0( ) [ ( )] ( )m t E s t m t T   ,   (19) 

  S S 0( , )=E s( / 2) ( / 2) = ( , )R t t s t R t T      .  (20) 

It is said that the signal s(t) is a cyclostationary signal with 
T0 as the cycle period. 

 
Fig. 9.	 OFDM symbol structure. 

Obviously, the expansion of time-varying autocorrela-
tion function RS(t,τ) can be written into the expression of 
Fourier series according to the Fourier expansion formula 
of periodic signal as shown in the following formula. 

 0j2 / j2
S S S( , ) e emt T t

m m

R t R R  
 

 

    (21) 

where α = m/T0. RS
α(τ) represents the Fourier series 

coefficient of the periodic correlation function RS(t,τ) and 
the following formula can be obtained. 

 j2
S S

0

1
( ) ( , ) e dtR R t t

T
     .   (22) 

The Fourier series coefficient RS
α(τ) is called the cyclic 

autocorrelation function. According to the principle of 
signal sampling, the sampling period is T0, sampling at any 
time has ergodic property of all states, so the mean value of 
the sampling sample can be used to estimate the autocorre-
lation function value RS(t,τ). 
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Substitute RS(t,τ) into (22), and the following equa-
tion can be obtained: 

  
0 0

0 0

/2 j2
S /2

0

1 1
( ) lim ( ( ) ( )e d )

2 1

T NT t

T NTN
R s t s t t

N T
  

  

 
 

  . (24) 

When 0(2 1)T N T   is set, we can get: 
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where α is the cycle frequency. 

Discrete sampling of the above formula can get the 
following formula: 
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In the three-dimensional diagram of OFDM cycle 
autocorrelation function RS

α(τ), when α is 0 and τ is equal 
to the useful signal length of OFDM, the peak value will 
appear. Therefore, according to each UAV ITS has differ-
ent useful signal duration length, it is used as a characteris-
tic value for UAV ITS recognition.  

Step 2: Establish a feature library: 

According to the ITS of each model of UAV has dif-
ferent useful signal length, it is used as a feature for UAV 
identification. The feature library is extracted from multi-
ple UAVs by SSCAFE algorithm in advance. 

Step 3: Signal recognition: 

SSCAFE algorithm is used to extract the feature of 
the test target signal, and the feature is matched with the 
feature library. The matching method needs to establish 
a judgment criterion, which is as follows: 
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Repeat steps one to three of the SSCAFE algorithm 
ten times. If three consecutive adjacent features are the 
same as the signal feature library of a certain model of 
UAV, it can be regarded as that model of UAV. If three 
consecutive adjacent segments have the same characteristic 
but not the same as the UAV ITS feature library, and are 
not the same as the Wi-Fi signal feature library, they can be 
identified as an unknown suspected UAV. This criterion is 
based on actual verification and can prevent signal contin-
gency. 

5. Simulation 

5.1 Experimental test A: BD-Suspected UAV 
ITS 

In this experiment, two DJI Phantom 4Pro UAVs, one 
DJI Inspire Two UAV and Wi-Fi signals were tested. The 
signal is collected by the zero IF receiver with a sampling 
rate of 40 MSPS. 

Experiment 1: The three algorithms of BD-Suspected 
UAV ITS, TFRDFE, SSE, and CAE-SS, are used to test, 
and the recognition rate reached 100%. The measured 
signal is collected at a short distance, but in practice, the 
UAV has a longer distance and higher altitude from the 
protected core area. Theoretically speaking, the farther and 
higher the flying target that can be identified, the better is 
the effect of the recognition algorithm. For this reason, in 
the simulation experiment, we superimpose Gaussian ran-
dom white noise on the measured signal to reduce the 
SNR, thereby verifying the anti-noise performance of the 
system. The specific experiment is as described in Experi-
ment 2. 

Experiment 2: On the basis of the original measured 
data, Gaussian random white noise is superimposed to 
obtain a graph with the SNR as the horizontal axis and the 
recognition rate as the vertical axis, which effectively 
proves the respective performance of the three algorithms 
TFRDFE, SSE, and CAE-SS. The time-frequency diagram 
of signal superimposed with 0 dB noise is in Fig. 10. 

It can be seen from Fig. 10 that there are still UAV 
ITS at 5 MHz to 15 MHz, but under the noise flood, the 
time-frequency spectrum of the ITS becomes dim. In addi-
tion, the UAV remote control signal can be seen in the 
spectrum, which can also be used for UAV identification, 
but this article has not studied the signal at present. There-
fore, it can be concluded that after Gaussian random white 
noise is superimposed, the entire time-frequency diagram is 
full of noise interference points, and the signal quality is 
reduced. As the SNR decreases, its performance impact is 
greater. 

In this experiment, the recognition rate of the DJI 
Phantom 4Pro Number One, DJI Phantom 4Pro Number 
Two, DJI Inspire Two, and Wi-Fi signal under SNR of  
–30 dB to 5 dB was analyzed. The recognition rate curve is 
in Fig. 11. 

 
Fig. 10.  Time-frequency analysis diagram of signal with signal-

to-noise ratio of 0 dB.  

 
(a) DJI Phantom 4Pro Number One 

 
(b) DJI Phantom 4Pro Number Two 

 
(c) DJI Inspire Two 

 
(d) Wi-Fi 

Fig. 11.   Comparison of the recognition rate curves of BD-
suspected UAV ITS.   
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According to Fig. 11(a) DJI Phantom 4Pro Number 
One recognition rate curve simulation, the TFRDFE 
algorithm drops to 0% at –10 dB, but starts to fluctuate at  
–21 dB. This is because at –21 dB, the noise is too large, 
the time-frequency spectrum is full of noise, and the time-
frequency characteristics are changed, resulting in the 
algorithm error recognition. Therefore, when it is less than 
–21 dB, the recognition rate of the algorithm is wrong. As 
can be seen from Fig. 11(a), the SSE algorithm has 
a recognition rate of 0% at –1 dB, and then it has been 0%. 
It can be seen from Fig. 11(a) that the CAE-SS algorithm 
decreases when the SNR is –18 dB, until –30 dB it is 0%. 
Through analysis, the CAE-SS algorithm has the best per-
formance for the DJI Phantom 4Pro Number One, followed 
by the TFRDFE algorithm, but the TFRDFE algorithm is 
prone to misjudge in a low SNR environment, leading to 
false alarms. For DJI Phantom 4Pro Number Two and DJI 
Inspire Two, the recognition rate curve characteristics are 
similar to DJI Phantom 4Pro Number One. 

Moreover, CAE-SS algorithm can meet 100% recog-
nition rate of UAV at –22 dB, TFRDFE algorithm can 
meet 100% recognition rate of UAV at –10 dB. And they 
are superior to the UAV detection and recognition method 
based on micro-Doppler proposed in [23], and the UAV 
recognition method based on Convolutional Neural Net-
works and deep learning in [24] and [33]. 

In addition, for BD-Suspected UAV ITS, the perfor-
mance comparison of the three sets of algorithms proposed 
in this paper can be shown in Tab. 2. 

As can be seen from Tab. 2 and the above simulation 
diagram: For the algorithm recognition performance, CAE-
SS > TFRDFE > SSE. For algorithm complexity, TFRDFE 
> CAE-SS > SSE. In summary, the CAE-SS is the optimal 
algorithm of the first group. 

5.2 Experimental test B: AR-UAV ITS 

Although the performance of the first group of three 
suspected ITS detection algorithms is verified by experi-
ments, the algorithms can effectively complete the target 
detection. But in fact, the bandwidth characteristics of the 
first group of algorithms cannot distinguish between Wi-Fi 
and UAV, and it is easy to give false alarms only through 
BD-suspected UAV ITS. In response to the above prob-
lems, the AR-UAV ITS algorithm is used to distinguish 
between UAVs and Wi-Fi. The specific experiment is as 
follows: 

Experiment 1: AR-UAV ITS algorithm is composed 
of SSCAFE algorithm and decision criteria. In the experi-
ment, the ITS and Wi-Fi signal (analog interference signal) 
of three UAVs were simulated, and the sliding shift cyclic 
autocorrelation diagram was obtained. 

Through the sliding shift cyclic autocorrelation dia-
gram of the above four kinds of measured signals, as 
shown in Fig. 12, the abscissa is the number of delay 

points, and the ordinate is the data amplitude. The above 
characteristic results can be shown in Tab. 3. 
 

Algorithm Advantages and disadvantages 
TFRDFE (1)  Slightly poor noise immunity 

(2)  Unstable performance 
(3)  High complexity 

SSE (1)  Poor noise immunity 
(2)  Stable performance 
(3)  Low complexity 

CAE-SS (1)   Strong anti-noise performance 
(2)   Stable performance 
(3)   Slightly higher complexity 

Tab. 2. BD-suspected UAV ITS performance comparison table. 

 
(a) DJI Phantom 4Pro Number One 

 
(b) DJI Phantom 4Pro Number Two 

 
(c) DJI Inspire Two 

 
(d) Wi-Fi 

Fig. 12.   Sliding shift cyclic autocorrelation diagram of ITS.  
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Test target 
Signal delay points 

(characteristic value) 
DJ Phantom 4PRO Number One 2667 
DJ Phantom 4PRO Number Two 2667 
DJ Inspire Two 3657 
Wi-Fi 5080 

Tab. 3.  Test signal sliding shift cyclic autocorrelation 
characteristic value. 

It can be seen from Fig. 12 and Tab. 3 that different 
types of UAVs and Wi-Fi signals have different sliding 
shift cyclic autocorrelation characteristics, and the same 
type of UAVs have the same characteristics. 

Experiment 2: In order to better verify the recognition 
performance of the algorithm, Random Gaussian white 
noise was superimposed on the basis of experiment 1, and 
the above three types of UAV ITS are further classified 
and recognized. The recognition rate curve is shown in 
Fig. 13.  

In Fig. 13 the abscissa is the SNR and the ordinate is 
the recognition rate. According to the analysis in Fig. 13, 
the recognition rate of DJI Inspire Two reaches 100% at  
–4 dB. With the decrease of SNR, the recognition rate 
gradually decreases to 0% at –12 dB. The recognition rate 
of DJI Phantom 4Pro Number One reach 100% at –2 dB 
and decrease to 0% at –10 dB with the SNR decreasing. 
The recognition rate of DJI Phantom 4Pro Number Two is 
100% at 2 db and 0% at –8 dB. In Fig. 13, the recognition 
rate of the three UAVs decreases with the decrease of 
SNR, among which the recognition rate of DJI Inspire Two 
is the strongest.  

Because the quality of signal collected by each UAV 
is different, and the actual test signal itself is not pure sig-
nal. Therefore, the recognition rate of the same type of 
UAV is slightly different. However, through analysis, the 
recognition rate of UAV is almost 0% at –12 dB and be-
low, and almost 100% at 4 dB and above. Compared with 
the BD-suspected UAV ITS, the algorithm is relatively 
poor in the case of low SNR. 

In general, the AR-UAV ITS can distinguish the 
UAV type, and can also identify whether there is UAV ITS 
from Wi-Fi signal. 

In addition, compared with the algorithm based on 
convolutional neural network proposed in references [24] 
and [33], AR-UAV ITS algorithm has lower complexity 
and higher recognition rate. Therefore, the algorithm can 
be used as an effective method for UAV detection and 
recognition. 

6. Conclusion 
In this paper, we propose a parallel detection method 

for UAV group based on multi characteristics of ITS. The 
method is divided into two groups, the first group is used 
for BD-suspected UAV ITS, and the second group is used 
for AR-UAV ITS. In order to improve the efficiency of the 

 
Fig. 13.  AR-UAV ITS recognition rate curve. 

 

Algorithm Advantages and disadvantages 

First group 
(BD-Suspected 

UAV ITS) 

(1)   Strong anti-noise performance 
(2)   Low complexity 
(3)  Unable to distinguish between UAV image 

transmission signal and other multi-carrier 
signals

Second Group 
(AR-UAV ITS) 

(1)   The specific UAV model can be identified 
(2)   Multi-target recognition 
(3)   Poor noise immunity 
(4)   High complexity 

Tab. 4.  Comparison of the advantages and disadvantages of 
the two groups of algorithms. 

algorithm, parallel implementation is adopted. For the BD-
suspected UAV ITS algorithm, including TFRDFE, SSE, 
CAE-SS three algorithms are all proposed in the research 
process of this article. According to the experimental test, 
CAE-SS has the best performance, and the recognition rate 
can reach 100% when the SNR is –22 dB. For AR-UAV 
ITS, it is composed of SSCAFE algorithm and decision 
criteria. The experimental results show that the recognition 
rate of the algorithm reaches 100% when the SNR is –4 dB. 
The advantages and disadvantages of the two groups of 
algorithms can be shown in Tab. 4. 

It can be seen from Tab. 4 that the suspected UAV 
ITS can be judged by the BD-suspected UAV ITS algo-
rithm, but it is also easy to misidentify the remaining multi-
carrier signals. The AR-UAV ITS algorithm can distin-
guish different multi-carrier signals, thereby identifying 
which UAV the signal belongs to, but the algorithm is easy 
to misidentify when the SNR is low. Because of the two 
groups of algorithms, the BD-suspected UAV ITS algo-
rithm has strong anti-noise performance, but does not have 
the function of UAV type recognition, while the AR-UAV 
ITS algorithm has the function of UAV type recognition, 
but the anti-noise performance is poor, easy to misjudge. 
Therefore, in order to ensure the stability of the recognition 
algorithm, the two groups of algorithms are combined to 
make up for their shortcomings and improve the detection 
and recognition performance. 

At present, there are many researches on UAV iden-
tification, but there are relatively few researches on UAV 
identification by wireless signal, especially by using the 
radio signal detection method and realized by the specific 
underlying hardware. Therefore, in the follow-up research, 
we need to optimize the algorithm and use hardware to 
realize the whole system, complete the system develop-
ment, and improve the practical value of the algorithm. 
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