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1. Introduction 

Modern technology allows digitalization of signals of high bandwidths at high 

frequencies by powerful integrated analog to digital converters. Due to many years of work on 

digital signal processing, software defined radio (SDR) is becoming common nowadays. Even 

though its power consumption, space and technology demands are very high, compared with 

traditional analog technology, its benefits of reconfigurability, adaptability and algorithm 

abilities definitely make SDR a very perspective technology. 

The SDR application is actually a program flashed into memory and run by a processing 

core like an ARM or some DSP, or it is a configuration file also stored in memory, but used 

for configuring a programmable gate array – CPLD or bigger FPGA. The processors work, 

sequentially, instruction by instruction and it slows their processing down, but their 

processing variability is vast, depending just on the flash memory space, which is mostly 

vastly extendable. There is a variety of processors available from general purpose 

microcontrollers with many integrated peripherals over specialized DSPs controlled by a very 

long instruction set (VLIW), including parallel processing, to GHz order speed multi-core 

signal processors of the highest performance able to process and put through tenths of Gbps. 

Programmable gate arrays, on the other hand, work with several times lower speed, but many 

processes are made in parallel and the processes seem to be processed in one instant. Except 

for its enormous processing speed and throughput, the number of gates is highly limited and 

the cost is still very high. 

The conversion between the analog and digital domain is performed by an analog to 

digital converter (ADC) and a digital to analog converter (DAC), respectively. Technology in 

this area is also highly developed; there are many approaches to the conversion designed for 

specialized applications like instrumentation, audio and video applications or radio frequency 

processing. The sigma-delta converters provide, due to their oversampling property, the best 

noise performance, but the oversampling, on the other hand, does not allow high speed 

sampling. The integration converters are able to suppress periodic disturbances like power-

line harmonic noise, and therefore are used in measurement equipment. The RF signals are 

converted mostly by the pipelined ADCs, because the pipelining used in this technology 

allows to reach the highest sampling frequencies and that of several hundreds even thousands 

Msps. The bandwidth of a usual signal is often many times lower, but the signal is positioned 

at higher frequencies. Using bandpass sampling is wise, as the need for sampling frequency 

depends on the signal’s bandwidth instead of its frequency position. The sampler still has to 

be fast enough to catch the sample correctly. 

Additionally, an SDR saves space on a probe and weight because of its reconfigurability 

for many communication standards, where the processing unit replaces blocks of analog 

circuits for each standard. It is even possible to make an upgrade of the whole transceiver and 

add or modify the communication standards. Considering extreme conditions in deep-space, 

there comes up questions about power consumption, heat sinking, radiation resistance, etc. 
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2. Objectives of the thesis 

Our interests focus on the satellite communication especially at very long distances, 

where signal power is lost so much that noise power becomes dominant. The satellite 

communication must cope with large Doppler shifts of the signal frequency. The way to deal 

with low signal to noise ratios is slowing the communication and narrowing the occupied 

frequency band; the significant noise power is then usually removed by filtering. By contrast, 

narrowband filters makes carrier synchronization very difficult. 

The objectives of the dissertation thesis are formulated as follows: 

 Improve digital downconversion based on undersampling by using Fourier 

transform algorithms. The downconverter is supposed to be a part of a multi-rate 

downconversion. 

The implementation of a simple mixer is straightforward and provides excellent 

results, but it requires to be driven by the NCO. It was presented that the 

implementing NCO can be a daunting task which finally makes the downconverter 

require many processing resources. On the contrary, the undersampling technique 

seems to be very effective especially for multirate downconversion. The problematic 

bandpass filtering would be provided by employing Fourier transform algorithms. 

 Investigate the possibility of frequency synchronization based on the spectral 

analysis of the received signal. Focus on the narrowband signal with poor SNR 

and large frequency offsets. 

Carrier synchronization of signals of such properties has been said to be difficult. 

The acquisition range of the known algorithms is too narrow to accommodate the 

Doppler shifts typical for satellite communication without systematically sweeping 

the frequency over the range. A special approach to spectrum averaging would give 

attractive results. 

 Develop simulation models of the investigated algorithms and provide the 

performance analyses. 

It is necessary to compare developed algorithms with existing algorithms from a 

performance point of view. Since the focus is aimed at digital processing, the 

models in MATLAB Simulink are nearly equivalent to real implementation as 

firmware on DSP or the configuration data for FPGA and the simulation with real 

input data is informative enough. 

3. Downconversion of narrowband signals 

In digital receivers the received signals are digitalized after analog processing 

(amplification, analog downconversion, filtering). Demodulation is then provided by a digital 

processing unit as mathematical computation. The desired signal is mostly several times 

oversampled and data is carried at a low intermediate frequency. Thus, the signal has to be 

digitally downconverted to the baseband. 



 

- 3 - 

3.1. Novel approach to digital downconversion 

Let us have a look at the downconverter as a “black box”. The input is a continuous 

portion of signal samples from the ADC, which contains a narrow-band signal somewhere 

within the sampled band among other signals, undesired ones, acting as noise. The output of 

the black-box is also a portion of samples, but less frequent and containing different 

information. Each sample is an average of the complex information contained in the selected 

narrow band. That is, in fact, what the discrete Fourier transform does, particularly from a 

selection of effective algorithms the Goertzel algorithm fits the most to such a purpose. 

The derivation of the Goertzel algorithm can be found in many books, e.g. [16]. The 

transfer function of the Goertzel filter is 

 𝐻(𝑧) = ∑ℎ(𝑛)𝑧−1
∞

𝑛=0

=
1

1 − 𝑧−1𝑒𝑗2𝜋
𝑘
𝑁

. (3.1) 

More convenient for implementing the Goertzel algorithm is the modified form 

 𝐻(𝑧) =
1

1 − 𝑧−1𝑒𝑗2𝜋
𝑘
𝑁

∙
1 − 𝑧−1𝑒−𝑗2𝜋

𝑘
𝑁

1 − 𝑧−1𝑒−𝑗2
𝑘
𝑁

=
1 − 𝑧−1𝑒−𝑗2𝜋

𝑘
𝑁

1 − 2𝑧−1 cos (2𝜋
𝑘
𝑁) + 𝑧

−2
 (3.2) 

which can be split into real recursive and complex direct computational parts. 

The realization of the transfer function (3.2) is shown in Figure 3.1. Notice that the filter 

has two complex poles located on the unit circle which is a condition of stability. 

 

Figure 3.1: Goertzel filter as a downconverter. 

The downsampling blocks are the realization of the rectangular windowing of the 

impulse response. The complex output is obtained by finishing by the direct part of the 

algorithm and is equivalent to the real and imaginary part. 

By substituting 𝑒𝑗𝜔 into the derived transfer function (3.1) we will not get the power 

spectral density due to the constraint of N samples after which the filter is reset. To get the 

correct frequency characteristics the inverse Fourier transform is applied to the impulse 

response of the Goertzel filter which, finally, yields the power spectral density 

Z−1
 

C 

−1 

C  ↓ N 

Z−1 

 

 

↓ N 
Complex From ADC 

𝐶 = 2cos (2𝜋
𝑘

𝑁
) 

𝐶̃ = −𝑒−𝑗2𝜋
𝑘
𝑁 
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 |𝐻𝐺(𝑓)|
2 =

sin (𝜋𝑁 (
𝑘
𝑁 − 𝑓))

2

N2sin (𝜋 (
𝑘
𝑁 − 𝑓))

2 (3.3) 

and the phase characteristic 

 arg(𝐻𝐺(𝑓)) = 𝜋 (
𝑘

𝑁
− 𝑓) (𝑁 − 1). (3.4) 

PSD only has a one-side lobe due to the complex character of the transfer function, and 

the filtered signal is then, in general, also complex. The filter is tuned to a non-integer 

frequency, 𝑘 ∈ ℝ, which is generally not possible for the discrete Fourier transform (DFT). If 

DFT is used, the frequency will be fixed for each bin and will depend on the length of DFT N. 

Such behavior would make DFT useless as a downconverter. Fortunately, the Goertzel 

algorithm may be tuned to whatever real frequency from the sampled range. When comparing 

the downconverter based on the CIC filter with the Goertzel downconverter in Figure 3.1 one 

can find that the Goertzel filter does not perform any frequency conversion in the sense of a 

complex mixer. Since the algorithm is able to filter the desired signal in the passband, the 

downconversion can be provided by downsampling as aliasing to the baseband. The technique 

has the restriction of the integer decimation factor N, which makes the Goertzel algorithm 

useful only as a pre-downconverter, where the final downconversion has to be performed, e.g. 

by the Costas loop. 

The characteristics cannot be compared with the CIC-filter, first some conditions have 

to be applied to get desired form for comparison. The substitution the normalized frequency f 

for the angle frequency ω and assuming the desired frequency is zero yields the relation 

 |𝐻𝐺(𝜔)|
2{𝑘 = 0} =

1

𝑁2
1 − cos(𝜔𝑁)

1 − cos(𝜔)
. (3.5) 

The Goertzel algorithm frequency characteristic is exactly the same as the CIC filter’s 

one. Thus, the noise performance of the Goertzel downconverter will be the same. 

3.1.1. Low speed digital AM signal detection 

A good example of downconversion by undersampling is the DCF77 receiver published 

in [17]. The amplitude modulated signal expressed by 

 𝑓𝐴𝑀(𝑡) = 𝑚(𝑡) cos(𝜔𝑐𝑡 + 𝜑𝑐) (3.6) 

is noticeably similar to the BPSK modulation, but the modulation function m(t) is generally 

the analog band-limited function. 

In this case the conditions for the positive replica 

 
2𝜋

2𝑇𝑆
> |2𝜋

𝑛

𝑇𝑆
− 𝜔𝑐|

 
⇒ |𝑛 −

𝜔𝑐𝑇𝑆
2𝜋

| <
1

2
 (3.7) 

and for the negative replica  

 |𝑛 +
𝜔𝑐𝑇𝑆
2𝜋

| <
1

2
 (3.8) 
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has to be met. Substituting the values used in the DCF77 system to the conditions results in 

 |𝑛 ±
2𝜋 ∙ 77.5 ∙ 103

2𝜋 ∙ 24 ∙ 103
| = |𝑛 ± 3.23| <

1

2

 
⇒ 𝑛 = ∓3 (3.9) 

From the values it is possible to evaluate the position of the signal’s carrier after sampling  

 
±𝜔𝐵𝐵 = ±𝜔𝑐 − 2𝜋

𝑛

𝑇𝑆
 

= ±2𝜋 ∙ 77.5 ∙ 103 − 2𝜋 ∙ 3 ∙ 24 ∙ 103 = ±2𝜋 ∙ 5.5 ∙ 103Hz 

(3.10) 

The signal located at the low intermediate frequency has to be converted to the 

baseband to be decoded. For such a purpose, when the signal varies relatively slowly, the 

Goertzel algorithm can be used. The demodulation can be provided just by finding the 

amplitude of the bin; such evaluation does not need any complex computation. The difference 

equation 

 |𝑦(𝑛 + 1)| = √𝑑2(𝑛 + 1) − 2 cos (2𝜋
𝑘

𝑁
)𝑑(𝑛 + 1)𝑑(𝑛) + 𝑑2(𝑛) (3.11) 

evaluates the absolute value from the state variables d(n). 

Due to the rectangular windowing the leakage of the side lobes is high. The example of 

using the Hanning window is also discussed in [17] together with a more detailed description 

of the DCF77 receiver and the prototype measurement results. The description of the 

implementation of the DCF77 receiver and the discussion of the implementation problems is 

published in [18]. 

3.1.2. Goertzel filter composition 

 

Figure 3.2: Goertzel filter composition. 

Consider the digital system in Figure 3.2. The system consists of N mutually delayed 

branches of the Goertzel filter. The signals are then successively multiplexed to the output; 

this operation is depicted by upsampling and summing the signals. 

The dashed rectangle wraps the Goertzel filter which is represented by its impulse 

response ℎ(𝑛) and decimation ability with factor N. Each branch is indexed by the index r. 

𝑍−1  

 ↓ N ↑ N ℎ(𝑛)  

𝑍−1  

  

↓ N ↑ N ℎ(𝑛)  

↓ N ↑ N ℎ(𝑛)  

 

 

𝑦(𝑛) 𝑥(𝑛) 
𝑟 = 0 

𝑟 = 1 

𝑟 = 𝑁 − 1 
⋮ 
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The output spectrum of the proposed system according to Figure 3.2 can be expressed by a 

relation 

 𝑌(𝜔) = ∑ (
1

𝑁
∑ 𝐻(𝜔 − 2𝜋

𝑘

𝑀𝑇𝑆
) ∙ 𝑋 (𝜔 − 2𝜋

𝑘

𝑀𝑇𝑆
)

𝑁−1

𝑘=0

) ∙ 𝑒−𝑗𝜔𝑟𝑇𝑆

𝑁−1

𝑟=0

. (3.12) 

Finally, the output signal has been proved to be the input signal convoluted with the 

Goertzel impulse response 

 𝑌(𝜔) = 𝐻(𝜔) ∙ 𝑋(𝜔)
ℱ−1−𝑡𝑟𝑎𝑛𝑠𝑓𝑜𝑟𝑚
→            𝑦(𝑛) = 𝑥(𝑛) ∗ ℎ(𝑛). (3.13) 

It has been found that the proposed system eliminates the decimation property of the 

Goertzel filter, thus, it may be used as a downconverter with a specified decimation factor 

independently on its filtration characteristics. 

3.1.3. Goertzel filter modification for real frequency 

From its nature the discrete Fourier transform evaluates the spectrum of the input signal 

that is sampled and each sample (bin) corresponds to a precisely defined frequency. It is not 

possible to simply change coefficients in the fast Fourier transform algorithms to change the 

frequency of the bin. The Goertzel algorithm is different; its coefficient can be very easily 

changed to tune the Goertzel filter to any arbitrary frequency from the range limited by the 

sampling frequency [19]. This is true, but it behaves differently when using a simple 

rectangular window. 

The convolution is limited to N samples and k is the same variable as in the Fourier 

transform, but from now it is a real parameter (𝑘 ∈ ℝ). The relation between the tuned 

frequency and the variable k is expressed in 

 
𝑘

𝑁
=
𝑓𝑐
𝑓𝑆

 (3.14) 

where 𝑓𝑆 is the sampling frequency, 𝑓𝑐 is the tuned frequency and N is the length of the 

Fourier transform. The exact analytical evaluation of the response of the Goertzel algorithm to 

real harmonic signal of the magnitude M and the phase φ on which it is tuned after some 

computation yields the relation 

 

𝑌𝑘(𝑛) = ∑ 𝑀 ∙ cos (2𝜋
𝑘

𝑁
𝑚 + 𝜑) 𝑒𝑗2𝜋

𝑘
𝑁
(𝑛−𝑚)

𝑁−1

𝑚=0

 

=
𝑀

2
(𝑁𝑒−𝑗𝜑 + 𝑒𝑗𝜑

1 − 𝑒−𝑗4𝜋𝑘

1 − 𝑒−𝑗4𝜋
𝑘
𝑁

). 

(3.15) 

The first addend corresponds to one side spectral amplification of the Fourier transform 

and also the Goertzel algorithm. The second parameter is obviously zero whenever k is an 

integer (𝑘 ∈ ℤ) and that is in agreement with the discrete Fourier transform. However, since k 

is real, it is nonzero and the resulting value is not equal to really applied signal parameters. 

The distortion comes from the opposite side of the Fourier spectrum as spectral leakage and 

can be eliminated by additional post-processing or pre-processing. 

Substitution according to 
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 𝐴 =
1 − 𝑒−𝑗4𝜋𝑘

1 − 𝑒−𝑗4𝜋
𝑘
𝑁

 (3.16) 

and 

 𝐵 = 𝑀𝑒−𝑗𝜑 (3.17) 

yields 

 𝑌𝑘(𝑛) =
1

2
(𝐵𝑁 + 𝐵∗𝐴) (3.18) 

which is a more convenient relation for the following operations. 

Equation (3.18) can be solved for unknown B, where Yk is the Goertzel filter output, so 

the result 

 𝐵 =
2

𝐴𝐴∗ − 𝑁2
(𝐴𝑌𝑘

∗ − 𝑁𝑌𝑘) (3.19) 

is actually the compensation for the real k. 

From now it is possible to find the compensation coefficients for an algebraic form of 

the result for a polar form. For clarity the real and imaginary parts of the values are denoted 

only by the indexes R and I, respectively, the index k is omitted. Equations (3.20) through 

(3.24) show the compensation coefficients for the real and imaginary parts. 

 𝐵𝑅 = 𝑌𝐼𝑄1 + 𝑌𝑅(𝑄2 − 𝑄3) (3.20) 

 𝐵𝐼 = 𝑌𝑅𝑄1 − 𝑌𝐼(𝑄2 + 𝑄3) (3.21) 

 𝑄1 =
2𝐴𝐼

𝐴𝑅
2 + 𝐴𝐼

2 − 𝑁2
 (3.22) 

 𝑄2 =
2𝐴𝑅

𝐴𝑅
2 + 𝐴𝐼

2 − 𝑁2
 (3.23) 

 𝑄3 =
2𝑁

𝐴𝑅
2 + 𝐴𝐼

2 − 𝑁2
 (3.24) 

 

Figure 3.3: Compensation coefficients for algebraic form for 𝑁 = 6. 
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Notice that when k is an integer, i.e. A is zero, the coefficients collapse to one weighting 

coefficient 
2

𝑁
. The character of the coefficients is clearly seen in Figure 3.3. Similarly the 

coefficients can be derived for the realization more convenient structure of the Goertzel 

algorithm and separate magnitude and phase calculation. 

The influence of the compensation is presented on the real example. Firstly, the 

magnitude computation is visualized as waterfall spectrograms in Figure 3.4. Bad result is 

given by the uncompensated algorithm for the non-integer value of k as shown in spectrogram 

c). After compensation the distorting pattern is suppressed around the central frequency and 

the evolution of the central frequency magnitude is constantly unity as is in accordance to the 

input signal. The distorting pattern on the spectrograms causing undesired fluctuations of the 

output magnitude value is in fact the result of spectral leakage from negative to the positive 

frequency side and vice versa. The shorter the Goertzel filter and the closer the central 

frequency to the band edges is the more apparent the leakage is. The proposed compensation 

technique recalculates the magnitude to be more or less matching the real value and is 

effective but does not solve the problem from the root of the cause. To get better results, it is 

necessary to use another technique to suppress spectral leakage to a minimum, e.g. 

windowing. 

 
a) 

 
b) 

Figure 3.4: Spectrograms of the Goertzel filter for 𝑁 = 12 –a) Uncompensated filter for 𝑘 = 2.3, 

b) Compensated filter for 𝑘 = 2.3. 

3.1.4. Improved structure of the decimating filter 

The filtration characteristic of the Goertzel algorithm has due to its simplicity a quite 

low level of signal suppression outside the pass band and the subsequent decimation causes 

aliasing noise. Common knowledge suggests weighting of the impulse response by one of 

special weighting windows the same way as is common for an FFT analysis. Such a way is, of 
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course, possible, but there is a question: Can we somehow modify the Goertzel algorithm to 

make its impulse response to be smoother? And, we can. 

The impulse response of the original Goertzel algorithm is a complex harmonic signal 

and as we know the special combination of two harmonic signals of different but near 

frequencies results in beat tones. The idea is to use beat modulation to shape the impulse 

response. First, we take two impulse responses indexed as A  

 ℎ𝐴(𝑛) = 𝑒
𝑗2𝜋

𝑘+𝑑
𝑁
𝑛

 (3.25) 

and B  

 ℎ𝐵(𝑛) = 𝑒
𝑗2𝜋

𝑘−𝑑
𝑁
𝑛

 (3.26) 

respectively, which are moved from the center frequency by the offset d, and calculate the 

convolution. The impulse response of the Goertzel filter is cut by the rectangular window and 

the convoluted impulse characteristics also have to be limited. The convolution, finally, 

equals 

 ℎ𝑀1(𝑛) =∑ℎ𝐴(𝑠)ℎ𝐵(𝑛 − 𝑠)

𝑛

𝑠=0

= 𝑒𝑗2𝜋
𝑘
𝑁
𝑛

sin (2𝜋
𝑑
𝑁
(𝑛 + 1))

sin (2𝜋
𝑑
𝑁)

. (3.27) 

Now we have to find the value d, where one beat of the impulse response fits to the 

length of N samples, so it has minimal values on its edges. Assuming reasonable conditions 

we define 

 

ℎ𝑀1(𝑁 − 1) = 𝑒
−𝑗2𝜋

𝑘
𝑁 

𝑒−𝑗2𝜋
𝑘
𝑁 = 𝑒−𝑗2𝜋

𝑘
𝑁
sin(2𝜋𝑑)

sin (2𝜋
𝑑
𝑁)

 

sin(2𝜋𝑑) = sin (2𝜋
𝑑

𝑁
). 

(3.28) 

The first suitable solution of (3.28) is 

 𝑑 =
1

2

𝑁

𝑁 + 1
  (3.29) 

 

Figure 3.5: Impulse responses of the modified Goertzel filter for N = 128 and k = 0 (left), k = 4 (right). 
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In Figure 3.5 are shown the examples of derived impulse responses for the baseband 

(k = 0) and the passband (k = 4). Both characteristics are normalized to its length N and are 

visualized as real (red) and imaginary (blue) parts. 

The derivation of the frequency characteristics is similar to the Goertzel filter frequency 

characteristics derivation and after some manipulation yields 

 𝐻𝑀1(𝑛) =

(1 − 𝑒−𝛼(𝑁+1)𝑒
𝛽
𝑁
+𝛽) (𝑒

𝛽
𝑁−𝑒−𝛼) − (1 − 𝑒−𝛼(𝑁+1)𝑒

−(
𝛽
𝑁
+𝛽)
) (𝑒−

𝛽
𝑁 − 𝑒−𝛼)

(𝑒
𝛽
𝑁 − 𝑒−

𝛽
𝑁) (𝑒−

𝛽
𝑁 − 𝑒−𝛼) (𝑒

𝛽
𝑁 − 𝑒−𝛼)

 (3.30) 

with the substitutions 

 𝑒𝛼 = 𝑒𝑗2𝜋(𝑓−
𝑘
𝑁
)
 (3.31) 

and 

 𝑒𝛽 = 𝑒𝑗2𝜋𝑑 . (3.32) 

The result is too complex, because it also includes non-optimal characteristics. If we 

assume the usage in the optimal configuration, we substitute the relation for the optimal value 

of d (3.29). The resulting simplification lies in 

 𝛽 = 𝑗𝜋
𝑁

𝑁 + 1
→ 𝑒

𝛽
𝑁
+𝛽 = −1. (3.33) 

Substituting (3.33) into (3.30) after some manipulation yields the final frequency 

characteristic for the optimal modified filter 

 𝐻𝑀1(𝑓) =

cos (𝜋 (𝑓 −
𝑘
𝑁)
(𝑁 + 1))

cos (2𝜋 (𝑓 −
𝑘
𝑁)) − cos (

𝜋
𝑁 + 1)

𝑒−𝑗𝜋(𝑓−
𝑘
𝑁
)(𝑁−1). (3.34) 

The normalization coefficient for the transfer function can be found by setting the 

transfer at the interested frequency to one, then the multiplicative coefficient is equal to the 

reciprocal value of 

 𝐻𝑀1 (
𝑘

𝑁
) =

1

1 − cos (
𝜋

𝑁 + 1)
. (3.35) 

Figure 3.6 and Figure 3.7 compare the frequency characteristics with the Goertzel filter 

characteristics. Obviously the suppression of a stop band is rapidly improved and even the 

bandwidth is not excessively widened compared to windowing by the Hann or Hamming 

windows [17]. 

In final form of the transfer function of the modified filter 

 𝐻𝑀1(𝑧) =
1 − 𝐶̃1𝑧

−1 + 𝐶̃2𝑧
−2

1 − 𝐶2(𝑧−1 + 𝑧−3) + 𝐶1𝑧−2 + 𝑧−4
 (3.36) 

the coefficients are reformulated to a more convenient form 
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 𝐶̃1 = 2 cos (2𝜋
𝑑

𝑁
)𝑒−𝑗2𝜋

𝑘
𝑁 , (3.37) 

 𝐶̃2 = 𝑒
−𝑗4𝜋

𝑘
𝑁 , (3.38) 

 𝐶1 = 2(cos (4𝜋
𝑘

𝑁
) + cos (4𝜋

𝑑

𝑁
) + 1), (3.39) 

 𝐶2 = 4 cos (2𝜋
𝑘

𝑁
) cos (2𝜋

𝑑

𝑁
). (3.40) 

 

Figure 3.6: Magnitude frequency characteristics of the Goertzel filter and its modified version for N = 32 and 

k = 0. 

 

Figure 3.7: Phase frequency characteristics of the Goertzel filter and its modified version for N = 32 and k = 0. 

The transfer function (3.36) is realized by the difference equation 

 
𝑦(𝑛) = 𝑥(𝑛) − 𝐶̃3𝑥(𝑛 − 1) + 𝐶̃2𝑥(𝑛 − 2) 

+𝐶2(𝑦(𝑛 − 1) + 𝑦(𝑛 − 3)) − 𝐶1𝑦(𝑛 − 2) − 𝑦(𝑛 − 4). 
(3.41) 

The realization structure in Figure 3.8 is the application of the modified Goertzel filter 

as a downconverter according to the previous discussion. It was expected that the derived 

structure will be twice more complex than the original Goertzel downconverter, but the 𝐶2 
coefficient can be applied after summation, which saves one multiplication in the recursive 

part. The resulting number of multiplication in the recursive part is then 2 and equals the 



 

- 12 - 

number of multiplication in the structure using the original Goertzel algorithm applied to the 

window weighted signal. 

 

Figure 3.8: Signal diagram of the modified Goertzel filter. 

3.2. Digital downconverter performance 

3.2.1. BER influence 

The frequency characteristics of the CIC-filter and the Goertzel filter are the same, so its 

comparison is not relevant; we perform a comparison between the Goertzel filter and its 

modified version in the first step. Secondly, the filters are compared with a half decimation 

factor, where the half sampling frequency reduction, but significantly lower aliasing are 

expected. In Figure 3.9 there are depicted two aliasing situations for the Goertzel filter (N = 8, 

k = 0). It is obvious, that the side lobes contribute to aliasing noise several fold less in the 

case of the half decimation factor (right plot). The characteristic of the pass band is flatter and 

aliasing is lower near the center frequency. The Goertzel algorithm characteristic has zeros 

periodically located in such a way that they, after decimation, fit right to the center of the 

desired band and they have an essential impact on aliasing noise performance. The modified 

algorithm has different positions of zeros as is seen in Figure 3.6 and aliasing performance 

should be expected significantly worse even if it, from a global view, looks better. 

 

Figure 3.9: Downconverter filter aliasing with decimation factor  𝑀 (left) and 
𝑀

2
 (right). 
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According to the analysis, we based our calculations on Parseval’s theorem. The 

integration over the pass band is 

 𝑆(𝑓𝑆, 𝑁, 𝑟) =
1

𝑁2 ∙ 𝑓𝑆
∫ |𝐻(𝑓)|2𝑑𝑓

𝑟∙𝑓𝑆
2

−
𝑟∙𝑓𝑆
2

 (3.42) 

and analyzed parameters are the desired bandwidth (bandwidth ratio) r and the filter length N, 

which in this case equals the decimation factor. The aliasing noise has to be expressed 

differently 

 𝑁𝐺(𝑓𝑆, 𝑁, 𝑟) =
1

𝑁2 ∙ 𝑓𝑆
∑∫ |𝐻𝐺(𝑓, 𝑘, 𝑁)|

2𝑑𝑓

𝑟∙𝑓𝑆
2

−
𝑟∙𝑓𝑆
2

𝑁−1

𝑘=0

. (3.43) 

The integration is calculated over the same bandwidth of all discrete frequencies (𝑘 ∈ ℤ). 

 

Figure 3.10: Aliasing noise performance of the Goertzel and modified Goertzel downconverter. 

The results for the Goertzel downconverter and the modified Goertzel filter 

downconverter are depicted in Figure 3.10. 

The results say that the bandwidth ratio significantly influences BER degradation and is 

the lowest for narrowband signals. The Goertzel length does not influence the results 

significantly. If we look at the modified Goertzel downconverter, the results are completely 

different. The pass lobe of the filter is wider and worsens BER performance due to its main 

contribution to aliasing noise power. The different location of zeros of the magnitude 

characteristic causes the aliasing noise to spread and the bandwidth ratio then does not have a 
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very helpful impact. The differences for each length N are also caused by the different zero 

locations. 

 

Figure 3.11: Aliasing noise performance of the Goertzel and modified Goertzel downconverter for the half 

decimation factor. 

The noise contribution of the half decimation factor versions comes newly from every 

second integer frequency 

 𝑁𝐺(𝑓𝑆, 𝑁, 𝑟) =
1

𝑁2 ∙ 𝑓𝑆
∑∫ |𝐻𝐺(𝑓, 2𝑘, 𝑁)|

2𝑑𝑓

𝑟∙𝑓𝑆
2

−
𝑟∙𝑓𝑆
2

𝑁
2
−1

𝑘=0

. (3.44) 

The results are shown in Figure 3.11. The situation is different for the modified filter, 

the influence of the main lobe has been removed and better suppression of the side lobes is 

obvious. BER degradation stays very low over the whole bandwidth ratio interval and 

significantly surpasses the Goertzel downconverter for higher bandwidths. 

3.2.2. Computational demands 

Once the target platform, where the downconverter is planned to be implemented, the 

computational demands of each algorithm have to be known. One of the assessment methods 

is the evaluation of multiplication and addition operation demands. The actual demands can 

then easily be judged over lots of platforms including microcontrollers and gate arrays. 

The results summarized in Table 3.1 show that the original Goertzel algorithm is more 

effective from the number of operation point of view. The Goertzel algorithm is able to 
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reduce sampling rate, which is important especially in sequential systems like 

microcontrollers. The downfall of the improved algorithms is their complexity, but the benefit 

is better characteristics. 

Table 3.1: Downconverter computational demands. 

Downconverter type Multiplications Additions Memory space 

CIC 2M + 2 2M + 2 5 

Goertzel N + 2 2N + 1 5 

Modified Goertzel 2N + 4 4N + 3 10 

Goertzel – half 

decimation 
2N + 4 4N + 2 N/2 + 10 

Modified Goertzel – 

half decimation 
4N + 8 8N + 6 N/2 + 20 

3.2.3. Quantization errors of the algorithms 

The general issues of overflowing and rounding errors are strongly dependent on the 

final implementation, but we can find general influence of the coefficient quantization error. 

The function of the Goertzel filter has two poles from which one is eliminated by a zero. The 

error of C coefficient ε causes misalignment of the poles 

 1 − 2(𝐶 + 𝜀)𝑧−1 + 𝑧−2 = (1 − 𝑒𝑗 cos
−1(𝐶+𝜀))(1 − 𝑒𝑗 cos

−1(𝐶+𝜀)), (3.45) 

but its movement is limited to the unity circuit for relatively small errors, which do not make 

the coefficient be out of the range 〈1;−1〉. It means that the quantization error causes 

frequency tuning error. 

The coefficient of the poles C is common to be implemented as a signed fractional 

number and the real position of the pole is expressed by 

 𝑒−𝑗 cos
−1(𝐶+𝜀) = cos(𝑐𝑜𝑠−1(𝐶 + 𝜀)) − 𝑗 sin(𝑐𝑜𝑠−1(𝐶 + 𝜀)). (3.46) 

If the complex coefficient of the zero 𝐶̃ is implemented separately for the real and 

imaginary parts, the complex quantization error will affect the zero position according to  

 𝐶̃ = 𝑒−𝑗2𝜋
𝑘
𝑁 + 𝜀̃ = (cos(𝛼) + 𝑅𝑒{𝜀̃}) − 𝑗(sin(𝛼) + 𝐼𝑚{𝜀̃}). (3.47) 

The real part of the complex coefficient 𝐶̃ is identical to the real coefficient C, and 

therefore we can assume that the implementation of these coefficients are also identical or 

even the real part of the 𝐶̃ coefficient is used instead of the C coefficient with improved 

memory savings. This assumption implies that the error 𝜀 equals the error 𝑅𝑒{𝜀̃}. Now the 

misalignment of the pole and its compensation zero is 

 𝑒 = 𝑗 (sin(𝛼) + 𝐼𝑚{𝜀̃} − √1 − (𝑅𝑒{𝜀̃} + cos(𝛼))2). (3.48) 

The error vector says that the mentioned way of implementation minimizes the zero 

from the pole misalignment only to the imaginary dimension. The function has its extremes at 

the edges of the sampled frequency band. 
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From the analysis of the frequency tuning error caused by the quantization error of the 

coefficient C we can find the relation 

 
𝑒𝑓 =

cos−1 (cos (2𝜋
𝑘
𝑁) + 𝜀)

2𝜋
. 

(3.49) 

It is obvious that the most critical region is also near the edges of the sampled frequency 

band. A possible way to deal with this issue is pre-filtering as published in [20]. 

3.3. Simulink tests 

The tests of the proposed downconverters were achieved by simulations in MATLAB 

Simulink. Each testing model has more or less been composed from the available design 

blocks. An assessing criterion was the sensitivity of the RF system to SNR performance. The 

chain of the general tested model is depicted in Figure 3.12. A random signal modulated onto 

the RF carrier was put through a radio channel and then processed by the tested item, i.e. the 

demodulator block. The “received” data was compared to the original copy and the Bit Error 

Rate was estimated. 

 

Figure 3.12: General schematic of the tested model. 

3.3.1. BERtool models 

BERtool is a simple MATLAB tool for bit error rate simulation of communication 

systems. It is possible to plot and export simulation results as the bit error ratio dependent on 

the signal energy to signal power ratio. The reference BEP function for BPSK modulation is 

 𝐵𝐸𝑃 = 𝑄

(

 
 √
2 ∙ 10

𝐸𝑏
𝑁0
⁄

10

)

 
 
=
1

2
𝑒𝑟𝑓𝑐 (√10

𝐸𝑏
𝑁0∙10) (3.50) 

where the 𝑄(𝑥) function is a probability function of the Gaussian probability distribution and 

𝑒𝑟𝑓𝑐(𝑥) is a complementary Gaussian error function. 

 

Figure 3.13: BERtool model of baseband BPSK modulator with Square-Root Raised Cosine filter. 

The influence of the Raised-cosine filter was also tested; the model is depicted in Figure 

3.13. The implemented filter is the square-root type, therefore two filters are used, one on the 
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transmitter side and one on the receiver side. In Figure 3.14 there is depicted the model for the 

Goertzel algorithm based downconverter simulations. 

 

Figure 3.14: BERtool model of Goertzel downconverter. 

The models for the modified Goertzel downconverter and for the version of half 

decimation factor were not tested by BERtool, but a special script to see the difference from 

the original Goertzel downconverter immediately. Since the half decimation factor version 

gives twice more samples than the symbol rate, the downconverter must be followed by an 

additional decimator consisting of a half-band filter and a downsampling module. 

3.3.2. BER simulation results 

The BER characteristics of the proposed downconversion algorithms obtained by 

simulation are shown in the following figures. In Figure 3.15 there are shown characteristics 

for the proposed Goertzel and modified Goertzel downconverters in two versions dependent 

on the used main lobe width. The results may be surprising because they are in strong 

disagreement with the theoretical assumption in chapter 3.2.1. However, the explanation is 

clear. In the theoretical analysis we supposed the out-of-band signals to be noise with a 

destructive effect on the in-band signal, but the unfiltered BPSK signal has a significant part 

of its power out of the downconverted band. The full-band Goertzel downconverter has the 

filtration characteristic somehow “matched” to this power spectral density, because it 

comprises the rectangular window of the same width as the input signal symbol period, and 

therefore aliasing is partly constructive. The modified version of the Goertzel downconverter 

has better attenuation in the stop-band and has zeros located differently which effectively 

suppresses the out-of-band partly constructive components and consequently worsens the 

overall BER characteristic. Additionally, since the signal power is spread, after filtration the 

𝐸𝑏/𝑁0 ratio is worse than expected. The same effect works for the half-band versions with the 

difference that the Goertzel downconverter filtration characteristic is no longer matched to the 

input signal. 

The simulation results are obviously different in Figure 3.16, where the Raised-Cosine 

filter is used on the transmission side and the output power is corrected to the nominal power. 

In these cases the modified Goertzel downconverter performs better. We suppose that the roll-

off factor of values around 0.5 is more desirable than 1.0, because there is sufficient 

attenuation of the side lobes, and in this case the downconverters perform in expected order. 

The modified Goertzel half-band downconverter gave us the best results while both full-band 

downconverters are the worst. The characteristic of the baseband transmission is shown for 

comparison and checking the power level. The performance of the downconverters with the 

filter with a roll-off factor of 1.0 is again influenced by constructive spectral leakage caused 

by weak attenuation of the closest side lobes. 
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Figure 3.15: BER simulation results of the Goertzel and modified Goertzel downconverters with no matched 

filter on the transmission side. The full-band version on the left hand side and the half-band version on the right 

hand side. 

 

Figure 3.16: BER simulation results of the Goertzel and modified Goertzel downconverters and both full-band 

and half-band versions with the Raised-Cosine matched filter at the transmission side. The simulation for the 

filter with the roll-off factor 0.5 on the left hand side and for the roll-off factor 1.0 on the right hand side. 
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4. Carrier synchronization 

The correct demodulation of received radio frequency signals lies in the knowledge of 

carrier parameters. Static systems with a non-critical working environment are satisfied with a 

non-coherent demodulation. In the case of listening to far objects, typically satellites and the 

deep-space probes, which are often moving so fast, that the Doppler frequency shift becomes 

significant degrading aspect, using coherent and partially coherent demodulation giving a 

margin in the detection error performance is inevitable. Such digital systems need special 

algorithms for carrier parameter estimation. 

4.1. Frequency estimation 

4.1.1. Spectrum averaging frequency estimator 

The specific spectral characteristics of the receiving signals may allow us to find 

another approach to carrier frequency estimation. The complete BPSK signal with the 

modulation index β of carrier frequency 𝜔𝑐 and phase 𝜑𝑐 is defined by 

 𝑠𝐵𝑃𝑆𝐾(𝑡) = √2𝑃 cos(𝛽) sin(𝜔𝑐𝑡 + 𝜑𝑐) + √2𝑃 sin(𝛽) ∑ 𝑐𝑘𝑝(𝑡 − 𝑘𝑇𝑅)

∞

𝑘=−∞

cos(𝜔𝑐𝑡 + 𝜑𝑐). (4.1) 

The P stands for RMS signal power, which is, by the modulation index, divided into 

carrier power and data symbol 𝑐𝑘 power. The symbols are modeled by the pulse function 

𝑝(𝑡), where 𝑇𝑅 is the symbol period. The index R is used to prevent it being mixed up with 

the sampling period 𝑇𝑆. 

The baseband BPSK signal spectrum with assumption of the zero carrier frequency and 

the zero carrier phase equals 

 𝑆𝑆𝐶𝐵𝐵(𝜔) =
sin (𝜔

𝑇𝑅
2 )

𝜔
𝑇𝑅
2

. (4.2) 

The spectrum of the BPSK signal is symmetric and this is the key property of the 

proposed algorithm, firstly because we suppose that the symmetry of the spectrum is 

unnatural, and secondly it uses the whole signal power for detection, which is important for 

detection in the noisy environment. 

In Figure 4.1, there is shown the block diagram of the proposed algorithm.  

 

Figure 4.1: Spectrum averaging frequency estimator. 

The spectrum is estimated by the fast Fourier transform (FFT). Since the transform is 

applied to the finite length generally non-deterministic signal, the estimation more or less 

differs from reality. It is usual to use windowing technique to improve the estimation 

parameters; the spectral resolution and the spectral leakage are two key contradictory 

parameters of the windows. In our case the high dynamic range of the signal is also important, 
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because of the focus on the signals with a high level of additional noise, and every window 

more or less significantly decreases the dynamic of the analyzed signal. A rectangular 

window has very high spectral leakage, but excellent resolution characteristic for the signals 

of comparable strength and signal power is not weighted. That is why the rectangular window 

is a good choice for the spectral analysis within the frequency estimator, at least in the first 

step of the development. 

The result of FFT applied to the real signal has a symmetric magnitude to which the 

correlation can be applied. The correlation function will result in a high peak if the signals are 

similar to each other. As proposed in [21], the correlation does not converge for signals with a 

non-zero mean, so a better way is to use the auto-covariance function, where the mean is 

estimated and subtracted first. The algorithm then has the following steps; the power spectrum 

estimation 

 𝑃(𝑘) = |𝑆(𝑘)|2 = 𝑅𝑒{𝑆(𝑘)}2 + 𝐼𝑚{𝑆(𝑘)}2, (4.3) 

mean estimation 

 𝑃̅ =
1

𝑁
∑ 𝑃(𝑛)

𝑁−1

𝑛=0

 (4.4) 

and covariance function estimation using the auto-correlation of the AC component 

 𝑃𝐴𝐶(𝑘) = 𝑃(𝑘) − 𝑃̅ (4.5) 

 𝐶(𝑘) = ∑ 𝑃𝐴𝐶(𝑛)𝑃𝐴𝐶(𝑛 + 𝑘)

∞

𝑛=−∞

. (4.6) 

The sum with limits of the correlation corrected to N samples is 

 𝐶(𝑘) = ∑ 𝑃𝐴𝐶(𝑛)𝑃𝐴𝐶(𝑛 + 𝑘)

𝑁−𝑘

𝑛=0

. (4.7) 

Signal containing strong noise can be easily averaged. The averaging algorithm used is 

a simple exponential cumulation for the frames of 2N samples. The averaged covariance 

peaks for the two noise level examples are shown in Figure 4.2. 

 

Figure 4.2 Averaged covariance function for 
𝐸𝑏

𝑁0
= 10𝑑𝐵 (left) and 

𝐸𝑏

𝑁0
= 0𝑑𝐵 (right). 
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The position of the peak defines the carrier frequency of the BPSK signal. The desired 

frequency 𝑓𝑐𝑐 from the peak position index 𝑘𝑐 is then calculated using the formula 

 𝑓𝑐𝑐 = 𝑓𝑆
𝑁 − 𝑘𝑐 − 1

2𝑁
. (4.8) 

N defines the length of FFT, and because spectrum estimation is discretized in frequency, the 

resulting frequency estimation suffers from quantization error ∆𝑓 =
𝑓𝑆

𝑁
. The result is then 

considered as coarse estimate. The carrier frequency lying between the FFT bins can be 

exactly evaluated from the characteristic of the rectangular window, but the calculation and 

resulting formula is expected to be too complex, and therefore an empirical approximation 

formula was found for 𝐶̅(𝑘𝑙) > 𝐶̅(𝑘𝑟) 

 𝑓𝑐 = 𝑓𝑐𝑐 +
∆𝑓

2
(1 −

𝐶̅(𝑘𝑟)

𝐶̅(𝑘𝑙)
) (4.9) 

and for 𝐶̅(𝑘𝑙) < 𝐶̅(𝑘𝑟) 

 𝑓𝑐 = 𝑓𝑐𝑐 −
∆𝑓

2
(1 −

𝐶̅(𝑘𝑙)

𝐶̅(𝑘𝑟)
) (4.10) 

where 𝐶̅ is the averaged covariance output and l and  r indexes the left hand neighbor sample 

from the coarse estimation and the right hand sample respectively. 

4.1.2. Closed loop spectrum averaging frequency estimator 

The spectral averaging frequency estimator proposed in the previous chapter gives the 

absolute frequency of the BPSK signal. The frequency can be used as the error signal of the 

closed loop estimator too. The input signal is slowly moved to the baseband and then the 

frequency estimator gives zero frequency, which is correct. The only complication is the 

averaging algorithm within the estimator, since the input signal is moving in the frequency 

domain, the averaged spectrum will be disrupted. The solution for such an issue is to make the 

loop slow enough to allow the estimator to efficiently track the spectral changes. 

4.1.3. Modified closed loop spectrum averaging frequency estimator 

The modified estimator block diagram is shown in Figure 4.3. The frequency error is 

provided by additional linear operations. The covariance peak is differentiated to linearly 

transform the maximum to the zero crossing. 

 

Figure 4.3 Modified spectrum averaging frequency estimator. 

Figure 4.4 shows a single instance of the covariance peak and its derivative. Even 

though the noise level is low, the derivative is very noisy. However, the shape of the 

derivative is antisymmetric around the zero frequency and thus the integral over the frequency 

interval is on average zero. To eliminate the parasitic ripple at the curve’s edges, the 

integration range is narrowed. Then the locking range of the closed loop estimator will be 

widened. Every deviation from the nominal carrier frequency will result in the positive or 

negative error deviation and the loop will force to compensate the error. 

𝑒(𝜔𝑐) 

FFT Covariance |𝑋|2 Pulse filter Derivative Integration 
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Figure 4.4 Covariance peak of the modified spectrum averaging algorithm (left) and its derivative (right). 

At the very beginning of the block schematic in Figure 4.3, there is a pulse filter, which 

is typical also for the ML estimator and plays several roles. At first, the filter acts as a 

matched filter, which is necessary especially for filters like root RC filters. It is a low pass 

filter, which suppresses noise at higher frequencies and significantly improves the SNR of the 

signal. On the other hand, the low pass filter narrows the range of loop acquisition and if the 

signal is not pre-downconverted correctly, the loop will not be able to lock anymore. The 

pulse filter is also very important for covariance peak shaping. The filter is set to downsample 

the input signal to fit the FFT resolution to the desired bandwidth and it noticeably widens the 

covariance pulse. The peak width has an essential impact on the shape of the S-curve. 

4.2. Simulink tests 

Carrier synchronization systems are usually characterized by an error estimator transfer 

function, the so called S-curve, and a frequency estimate variance dependent on the signal 

noise performance. The chain of the general simulation model of the frequency estimators is 

shown in Figure 4.5. 

 

Figure 4.5 General schematic of the frequency estimator simulation model. 

4.2.1. Spectrum averaging frequency estimator model 

The model of the open loop spectrum averaging frequency estimator is shown in Figure 

4.6. It starts with the buffer followed by the m-file function of which its code is depicted in 

Listing 4.1. The size of the buffer indirectly sets the size of the FFT window, which can be 

seen in the code, where the size is extracted. As is expected from the function block name, the 

code estimates the covariance function of the signal spectrum. The covariance function 

bearing the carrier frequency in the form of the conspicuous peak is averaged by the 
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exponential cumulation with a period of 2𝑁 − 1 samples. The last m-file function block 

contains the code providing the peak position seeking and recalculation of the position into 

the frequency estimate. The peak position seeking is based on the maximum position index 

searching and the discrete frequency calculated form (4.8) is then refined with inclusion of the 

maximum value and values of the nearest neighbor samples according to equations (4.9) and 

(4.10). 

 

Figure 4.6 Open loop spectrum averaging frequency estimator. 

 

Listing 4.1 FFT power covariance code. 

The Simulink model of the frequency estimator using the open loop spectrum averaging 

frequency estimator is shown in Figure 4.7. 

 

Figure 4.7 Open loop spectrum averaging frequency estimator model. 

The closed loop spectrum averaging frequency estimator model is based only on its 

modified version according to Figure 4.3. The pulse filter is in our case the square root filter. 

The decimation factor of the pulse filter is in this model adjustable in dependence on the 

desired error estimator bandwidth and the noise immunity. 
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function y = fcn(x) 

 

len = length(x); 

y = zeros(2*len - 1, 1); 

 

x = (abs(fftshift(fft(x)))/(len/2)).^2; 

 

x = x - sum(x)/length(x); 

xA = x; 

xB = [zeros(len - 1, 1); flipud(x); zeros(len - 1, 1)]; 

 

for i = 1:(2*len - 1) 

    y(i) = 0; 

    for j = 1:len 

        y(i) = y(i) + xA(j)*xB(j + i - 1); 

    end 

end 
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Figure 4.8 Closed loop spectrum averaging frequency estimator. 

The code of the error estimator is based on the code of the open loop estimator, but with 

several modifications. Since the decimation factor of the pulse filter is adjustable, due to the 

covariance peak shaping, the spectrum of the oversampled signal will contain spectral 

components at irrelevant frequencies. These components are put away from the covariance 

calculation. The covariance estimate is then differentiated to convert the value to the error 

function. Finally, the function is filtered by the integration, realized by the sum over specified 

interval centered on the zero frequency. The testing model for the closed loop spectrum 

averaging frequency estimator is in Figure 4.9. 

 

Figure 4.9 Closed loop spectrum averaging frequency estimator model. 

4.2.2. Estimation simulation results 

In Figure 4.10 there are shown the simulated S-curves of the ML closed loop and 

spectrum averaging closed loop frequency estimators. The function is the immediate reaction 

of the error estimator to the carrier frequency variations. It is possible to read out the range of 

acquisition if the carrier frequency is out of the S-curve; the error estimator provides no 

reaction to such an offset and thus the system is not able to synchronize. The slope of the 

linear region crossing the zero level in the middle of the S-curve defines the tracking 

performance of the system. Comparing the ML and spectrum averaging estimator S-curves 

shows that the systems have nearly identical acquisition and tracking characteristics with the 

difference that the spectrum averaging system has a slightly narrower acquisition region. 

Unlike the BPSK signal, the theoretical BER of DBPSK modulation is slightly 

different. The difference lies in the fact that the single detection error for differentially coded 

modulation results in two, not necessarily consecutive, data bits. The bit error probability for 

the differentially coherent DBPSK is [23] 

 𝐵𝐸𝑃 =
1

2
exp (−

𝐸𝑏
𝑁0
). (4.11) 
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Figure 4.10 Frequency estimators S-curves. 

The bit error rates measured by the simulation of the frequency estimator models are 

plotted in Figure 4.11 (left). It is nicely seen that the simulated BER of both models are in 

good conformity with the theoretical error probability BEP and it indicates that both 

estimators work fine and do not have a big impact on detection. 

 

Figure 4.11 Frequency estimators BER results (left) and carrier variance (right). 

The right plot of Figure 4.11 shows the variance performance of the models compared 

to the modified Cramer-Rao bound. Both estimators are quite far from ideal performance. 

There are many averaged parameters, and therefore our expectation could not be more 

optimistic. The spectrum averaging frequency estimator was designed for carrier 

synchronization of signals in very noisy environments within none-aided systems (without 



 

- 26 - 

data aid or symbol timing). Comparing to the maximum likelihood estimator, the evolution is 

different, for higher 𝐸𝑏/𝑁0 ratios the ML estimator has undoubtedly better performance. For 

higher noise power, however, the performance of the introduced novel estimator comes closer 

and even crosses the ML line, where it shows better performance. Of course, we have to be 

critical and state that the region of better performance is very close to the useless signal to 

noise ratios in usual systems. On the other hand, the algorithm seemingly has potential for 

further interests. 

5. Experimental tests 

The methods discussed previously are intended for signal processing within the 

reception of the narrowband satellite signals. We obtained a record of a wideband signal from 

a fixed frequency SDR system, which includes the desired narrowband BPSK modulated 

signal from a PSAT satellite distorted by the Doppler shift during flyover. The PSK31 

transponder carried by the PSAT satellite was designed at the department of Radioelectronics in 

collaboration with United States Naval Academy and the satellite was launched on May 20, 2015. 

5.1. Frequency synchronization 

The recorded signal was loaded from a *.wav file to the MATLAB workspace as a 

timeseries. Firstly, the signal is pre-processed to limit its bandwidth to the range of the 

possible Doppler shift with its center frequency near to the satellite transmission frequency. 

All used frequency estimators are not able to synchronize the phase that is needed for 

coherent demodulation, but are used as a necessary frequency aid since the Costas loop, 

acting as the phase synchronizer, has a very limited acquisition range. The frequency aid from 

the open loop estimator is led to the Costas loop directly by addition to the DDS tuning signal. 

This is an efficient solution because the frequency conversion is performed by a single mixer 

within the Costas loop. The situation is different for the closed loop frequency estimators 

where the loop requires its own mixer, and therefore the frequency correction is prepended to 

the Costas loop and the system requires two independent mixers in each loop. 

 

Figure 5.1: Waterfall spectrogram with the frequency estimate from the open loop spectrum averaging estimator 

– coarse estimate (left), corrected signal (right). 
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The transmitted signal is the PSK31, which is used for very slow communication of 

keyboard typing speed, from this radio-teletype (RTTY) [25]. The carrier signal is modulated 

by BPSK modulation by differentially coded data of speed 31.25 Bd. The useful bandwidth of 

the PSK31 signal is therefore about 60 Hz. In contrast, the Doppler shift at carrier frequency 

435 MHz from the PSAT satellite at low Earth orbit (LEO) reaches ±600 Hz. 

In Figure 5.1, there are shown the waterfall spectrograms of the recorded sample signal 

of the sampled bandwidth 1500 Hz. This signal was led unfiltered to the open loop spectrum 

averaging frequency estimator to obtain the frequency estimate. The estimator does not need 

any setting of an initial frequency, it uses all the input bandwidth. The results show that the 

coarse estimation is very successful. In the signal, there are noisy parts with a lack of the 

PSK31 signal, but the recovery is fairly fast. 

On the contrary, the closed loop frequency estimators employ lowpass filtration at its 

input and this significantly narrows the acquisition range. Initial frequency setting is therefore 

important for correct acquisition. The simulation results for the closed loop spectrum 

averaging and closed loop maximum likelihood frequency estimators are shown in Figure 5.2. 

The initial frequency was set to 450 Hz, which can be supposed as near to the expected 

frequency offset at the beginning of the satellite flyover. 

 

Figure 5.2: Waterfall spectrogram with the frequency estimate from the closed loop estimators with 450 Hz 

initial frequency – spectrum averaging (left), maximum likelihood (right). 

It is obvious that unlike the CL SA estimator, the CL ML estimator has lost lock even 

after a short period of signal loss and therefore using CL ML is disqualified for frequency 

synchronization of such signals in this straightforward version. However, the results show that 

with a properly set initial frequency, the CL SA estimator is applicable for the signals with 

strong Doppler shifts and limited drop-out times. 

The benefits of the OL SA frequency estimator now seem to be undisputable, but there 

is an additional point. The curves of fine estimations of each method show different residual 

noise and this naturally affects the detection error rate. The experiments showed the main 

drawback of the spectrum averaging methods – high estimation noise. Comparing the closed 

loop estimators, the Costas loop locking times are significantly faster in the case of the ML 

estimator. 
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5.2. Digital downconversion 

Signal recording also includes a signal from the ground radio-beacon. The signal is also 

PSK31 modulated with no frequency Doppler shift. The signal bandwidth to the sampled 

bandwidth ratio is around 100 and it is an ideal opportunity for applying the Goertzel 

downconverter. The beacon signal center frequency is about 320 Hz in the 12 kHz sampled 

record. The decimation factor of all the developed downconverters is set to 32, thus, the 

resulting signal has a sampling frequency of 375 Hz and the signal of interest is aliased to the 

center frequency of -55 Hz. 

 

Figure 5.3: Waterfall signal spectrogram after downconversion by the Goertzel full-band downconverter (left) 

and by the Goertzel modified full-band downconverter (right). 

Figure 5.3 shows the spectrograms of the full-band Goertzel downconverter and its 

modified version with the Costas loop frequency estimate (black line). There is also visible a 

weaker signal at a complementary frequency, this is actually the -320 Hz signal complement 

of the real beacon signal. The beacon signal is at relatively low frequency within the sampled 

band, and therefore the two complements are very close and thus hard to be filtered out. 

 

Figure 5.4: Waterfall signal spectrogram after downconversion by the Goertzel half-band downconverter (left) 

and by the Goertzel modified half-band downconverter (right). 
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The following figures show the characteristics of each downconverter. The modified 

Goertzel downconverter has sharper attenuation of undesired bands and this is confirmed by a 

significantly lower level of an interfering component in Figure 5.3 right. The same situation 

can be observed in Figure 5.4 depicting the results of the half-band (HB) versions of the 

downconverter. The Goertzel HB downconverter performs strong attenuation at the edges of 

the sampled region caused by the well-defined zeros at its transfer function. Unlike the 

modified Goertzel HB version, the interfering component stays recognizable. The modified 

version has strong attenuation of the side bands, however, it should be remembered that the 

zeros are not defined well for aliasing minimization. 

6. Conclusion 

The dissertation is focused on the development of new digital signal processing 

algorithms for software defined receivers of narrowband satellite signals. Particularly, the 

thesis firstly deals with effective downconversion including filtration and downsampling and 

secondly with carrier frequency estimation of signals distorted by a strong Doppler shift and 

AWGN. These are the two main objectives of the thesis and the third one comprises the 

modeling of the developed algorithms and experimental tests. 

The first part of the thesis is an introduction to downconversion and frequency 

estimation algorithms described in literature and used in practice. There are also laid the 

foundations such as sampling theory and used spectral effective modulations for space 

communications. 

Digital downconversion is discussed in section 3. The novel approach is based on the 

Goertzel algorithm, which is a special form of the discrete Fourier transform calculation. 

Downconversion is provided by undersampling and bandpass filtration. This approach is 

typically avoided, but the Goertzel algorithm offers operations to be performed very 

effectively. It has been shown that the filtration characteristic is comparable to the CIC filter, 

which is often used in FPGA-based systems. The Goertzel algorithm allows effective signal 

power estimation that is useful for AM detection and it was proved by the DCF77 receiver 

application. The drawback of undersampling based downconversion is the discrete conversion 

frequency suggesting the algorithm to be employed in multirate downconverters. It is possible 

to tune the filtration characteristic to the real frequency, but the power calculation is affected 

by strong fluctuations in this case. This issue was solved by special coefficients included in 

the calculation. The calculation is performed on the low-rate side that keeps the algorithm’s 

efficiency high. The bandwidth of the bandpass filter and the decimation factor are 

inseparable characteristics. It was found that the special constellation of Goertzel filters 

allows to set the decimation factor independently on the filter bandwidth. The constellation of 

two parallel Goertzel filters was employed as the half-decimation Goertzel downconverters 

and helped to suppress aliasing during downsampling. The impulse response of the 

downconverter was improved by doubling the zero and pole of the original Goertzel filter. 

Consequently, the side-band attenuation of the frequency response was significantly 

increased. From these discoveries, four different downconverters were derived – the full-

decimation Goertzel downconverter, the half-decimation Goertzel downconverter employing 

the parallelization of two Goertzel downconverters, the full-decimation and half-decimation 

modified Goertzel downconverters employing the improved version of the Goertzel 

downconverter. The algorithms were theoretically analyzed from the points of view of BER 

performance, computational demands, and quantization errors. The algorithms were modeled 

in MATLAB Simulink and the theoretical results were confronted with simulation results 
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over the AWGN channel. Finally, the downconverters were subjected to tests with a real 

signal. All the results showed that the algorithms can be considered as useful for 

downconversion of narrowband signals within appropriate platforms as the first stage of 

multirate downconversion. 

In section 4, we focused on carrier frequency estimation of BPSK modulated input 

signals. Firstly, the known theoretical foundations such as Cramer-Rao bounds and maximum 

likelihood approach to carrier parameter estimation were laid. The main contribution to the 

objective of establishing new frequency estimators for narrowband signals with strong 

Doppler shifts and a high level of AWGN is based on the cumulation of the covariance 

function of the signal spectrum magnitude and from this we call the algorithms “spectrum 

averaging”. Both open and closed loop versions of the spectrum averaging frequency 

estimators were introduced. The closed loop estimator was, at first, based on the open loop 

estimator put into the control loop, but strong nonlinearity in the form of maximum search 

function made adjustability hard and the overall performance of the estimator was poor 

compared to the ML estimator. This, finally, disqualified this approach. In the second version 

of the closed loop estimator, the maximum search function was replaced by a set of linear 

functions and it allowed averaging to be performed by the loop filter. This resulted in an 

estimator with parameters more comparable to the ML version. For simulations and tests on 

the real signal, the algorithms were modeled in the MATLAB Simulink and also for decoding 

the models of the Costas loop and the codes of offline decoders were prepared. The new SA 

open loop and SA closed loop estimators and the reference ML closed loop estimators were 

tested on a real satellite signal with a strong Doppler shift. Both ML open and closed loop 

estimators employ a pulse filter that removes as much noise as possible. The estimate is then 

fine, but the narrow pulse filter also narrows the acquisition range. The acquisition range is 

the field in which the SA estimators can compete and even beat the ML ones. The price paid 

is then higher levels of estimation noise. 

At this point, all the objectives of the thesis can be considered as accomplished. 

However, the novel algorithms presented in the thesis will be studied deeply in real-time 

applications. There could be many unknown issues connected with the implementation of the 

algorithms and its transformation to fixed-point architecture. 
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Abstract 

The dissertation is focused on software defined receivers intended for narrowband 

satellite communication. The satellite communication channel including deep space 

communication suffers from a high level of noise, typically modeled by AWGN, and 

from a strong Doppler shift of a signal caused by the unprecedented speed of an object 

in motion. The dissertation shows possible approaches to the issues of computationally 

efficient digital downconversion of narrowband signals and the carrier frequency 

estimation of narrowband signals distorted by the Doppler shift in the order of multiples 

of the signal bandwidth. The description of the proposed algorithms includes an 

analytical approach of its development and, if possible, the analytical performance 

assessment. The algorithms are modeled in MATLAB Simulink and the models are 

used for validating the performance of the simulation. The models were also used for 

experimental tests on the real signal received from the PSAT satellite at the laboratory 

of experimental satellites at the department of radio electronics. 

Abstrakt 

Dizertační práce je zaměřena na softwarově definované přijímače určené 

k úzkopásmové družicové komunikaci. Komunikační kanály družicových spojů 

zahrnujících komunikaci s hlubokým vesmírem jsou zatíženy vysokými úrovněmi 

šumu, typicky modelovaného AWGN, a silným Dopplerovým posuvem signálu 

způsobeným mimořádnou rychlostí pohybu objektu. Dizertační práce představuje 

možné postupy řešení výpočetně efektivní digitální downkonverze úzkopásmových 

signálů a systému odhadu kmitočtu nosné úzkopásmových signálů zatížených 

Dopplerovým posuvem v řádu násobků šířky pásma signálu. Popis navrhovaných 

algoritmů zahrnuje analytický postup jejich vývoje a tam, kde je to možné, i analytické 

hodnocení jejich chování. Algoritmy jsou modelovány v prostředí MATLAB Simulink 

a tyto modely jsou využity pro ověření vlastností simulacemi. Modely byly také využity 

k experimentálním testům na reálném signálu přijatém z družice PSAT v laboratoři 

experimentálních družic na ústavu radioelektroniky. 

 


