
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ
BRNO UNIVERSITY OF TECHNOLOGY

FAKULTA INFORMAČNÍCH TECHNOLOGIÍ

ÚSTAV INTELIGENTNÍCH SYSTÉMŮ

FACULTY OF INFORMATION TECHNOLOGY

DEPARTMENT OF INTELLIGENT SYSTEMS

MEMORY MANAGEMENT IN LINUX

BAKALÁŘSKÁ PRÁCE
BACHELOR´S THESIS

AUTOR PRÁCE Jaroslav Tuček
AUTHOR

BRNO 2007

VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ
BRNO UNIVERSITY OF TECHNOLOGY

FAKULTA INFORMAČNÍCH TECHNOLOGIÍ

ÚSTAV INTELIGENTNÍCH SYSTÉMŮ

FACULTY OF INFORMATION TECHNOLOGY

DEPARTMENT OF INTELLIGENT SYSTEMS

SPRÁVA PAMĚTI V LINUX
LINUX VIRTUAL MEMORY MANAGER

BAKALÁŘSKÁ PRÁCE
BACHELOR´S THESIS

AUTOR PRÁCE Jaroslav Tuček
AUTHOR

VEDOUCÍ PRÁCE Ing. Tomáš Vojnar, Ph.D.
SUPERVISOR

BRNO 2007

Zadání bakalářské práce

Řešitel: Tuček Jaroslav

Obor: Informační technologie

Téma: Správa paměti v linuxu

Kategorie: Operační systémy

Pokyny:

1. Seznamte se obecně se strukturou jádra Linuxu.

2. Podrobně prostudujte koncepci a implementaci správy paměti v Linuxu řady 2.6.

3. Navrhněte a proveďte experimenty s chováním správy paměti v různých situacích.

4. Zjištěné výsledky shrňte, diskutujte a porovnejte s výsledky testů zveřejněných na

Internetu a týkajících se jak Linuxu tak také příp. i jiných operačních systémů.

Literatura:

� Silberschatz, A., Galvin, P.B., Gagne, G.: Operating Systems Concepts, 6th Edition,

John Wiley & Sons, 2001, 7th Edition, John Wiley & Sons, 2004.

� Gorman, M.: Understanding the Linux Virtual Memory Manager, Pearson Education,

2004.

� The Operating Systems Resource Center. http://www.nondot.org/sabre/os/articles

� The Linux Documentation Project. http://www.tldp.org

Licenční smlouva

Licenční smlouva je uložena v archívu Fakulty informačních technologií Vysokého učení

technického v Brně.

4

Abstrakt

Práce popisuje správu paměti v jádře linuxu. První část je věnována stručnému shrnutí architektury

operačních systémů a teorii správy paměti – jmenovitě virtuální paměti, stránkovacím tabulkám,

algoritmům stránkování a jádrovým alokátorům. Druhá část se soustřeďuje na vlastní implementaci

zmíněných principů ve skutečném operačním systému, linuxu. Součástí je též sada testů navržených

pro zjištění chování paměťového správce a krátké zmínění současně existujících omezení včetně

jejich navrhovaných řešení.

Klíčová slova

Operační systém, jádro, linux, správa paměti, virtuální paměť, stránkovací tabulka, algoritmus

stránkování, paměťový alokátor, výkon, měření výkonu

5

Abstract

This work describes the memory manager subsystem of the linux kernel. The first part gives a brief

account of operating systems architecture and memory management theory - of virtual memory

management, page tables, page replacement algorithms and kernel allocators in particular. The

second part discusses the actual implementation of these principles in a modern kernel – in linux.

Finally, a series of tests stressing the memory subsystem is conducted to determine the memory

manager's real behaviour. Limitations of the current linux kernel memory management and some of

their proposed solutions are also discussed.

Keywords

Operating system, kernel, linux, memory management, virtual memory, page table, page replacement,

memory allocation, performance, benchmark

Citace

Jaroslav Tuček: Linux Virtual Memory Manager, bakalářská práce, Brno, FIT VUT v Brně, 2007

6

Memory Management in Linux

Prohlášení

Prohlašuji, že jsem tuto bakalářskou práci vypracoval samostatně pod vedením

Ing. Tomáše Vojnara, Ph.D. Uvedl jsem všechny literární prameny a publikace,

ze kterých jsem čerpal.

……………………

Jaroslav Tuček

22.4.2007

© Jaroslav Tuček, 2007.

Tato práce vznikla jako školní dílo na Vysokém učení technickém v Brně, Fakultě informačních

technologií. Práce je chráněna autorským zákonem a její užití bez udělení oprávnění autorem je

nezákonné, s výjimkou zákonem definovaných případů.

8

Table of Contents

1 Introduction..9

2 Memory Management...11

2.1 Memory Management Approaches..11

2.2 Virtual Memory...12

2.3 Page Tables..14

2.4 Page Frame Reclamation.. ...15

2.5 Memory Allocators..16

3 Linux...20

4 Linux Virtual Memory Manager...21

4.1 Memory Organisation..21

4.2 Process Address Space...25

4.3 Memory Allocators..27

4.4 Page Frame Reclamation.. ...32

5 Experiments...36

5.1 Tunables..41

6 Problems...45

7 Conclusion..53

8 Abbreviations..54

9 References..55

10 Appendix: CD Contents...57

9

1 Introduction

An operating system is the central software part of a usable computer system. It is responsible

for managing the access to hardware and software resources of the platform, setting and enforcing

policies on allocation of processor time, memory space, input and output devices and other resources

to user processes. It also abstracts the low level architectural details from users, hiding away the

existence of interrupts, disk blocks, physical (possibly non-contiguous) address space or competing

programs loaded simultaneously in memory and provides easy to use concepts such as distinct

processes, named files, virtual, contiguous, protected address spaces and a private (virtual) processor

for every existing process. In this way, the kernel forms a base for other programs to use through

well-defined, standardised system call routines.

Conceptually, we may divide an operating system kernel into several separate subsystems:1

� The scheduler responsible for handling exceptions and interrupts, system timing as well as

creation, execution, switching and termination of user processes. The scheduler also sets and

enforces policies on processor time sharing between runnable processes.

� Memory manager controlling the allocation and deallocation of system memory to both user

processes and to the kernel itself. Management of the many kernel caches and buffers and

implementation of memory sharing and memory-mapped files are also responsibilities of this

component.

� Virtual file system providing an architecture independent layer over numerous physical file

systems as well as the ability to represent most of the existing hardware devices as files

accessible with regular system calls. Virtual file system also creates a hierarchical directory

structure and allows for device-independent mounting of partitions at directory points.

� Inter-process communication subsystem providing user processes with various means of

communication and synchronisation - including pipes, signals, semaphores, shared memory

and message queues.

1 We are considering monolithic kernels only, other approaches to operating systems architecture all have

similar functionality, albeit in different forms. For example, microkernels might have many of the

mentioned subsystems moved into user space as regular processes; exokernels would go even further and

keep only basic hardware allocation and protection functionality and move the rest to more conventional

kernels running in its “user space” layer

10

� Networking support with implementations of all the protocol stacks required for participation

in network communication.

This work is concerned solely with the memory manager component. First, an account of

historical approaches to memory management is given - virtual memory, page tables, page eviction

and memory allocation are in turn discussed in some detail. Several of these topics are further

examined in the section on problems of linux memory management – in particular, the page

replacement algorithms which are still subject to intensive research.

The main part of the work describes the implementation of the linux virtual memory

manager, with a special emphasis on data structures used. Certain parts of the manager are omitted

for the sake of brevity. These include chiefly the shared memory implementation which is more a

matter of the IPC subsystem and actual workings of page outs and page ins which belong to the

domain of a file system layer.

The description is concluded with a series of benchmarks measuring the memory manager's

behaviour – notable among these are bandwidth, latency and scalability measurements and tests

intended to determine the impact of changing certain tunable values or evaluate prospects of proposed

kernel patches making modifications to the algorithms in question.

11

2 Memory Management

Beside processor clock cycles, memory is the most important resource in a computer system

and its efficient management determines the performance (or lack thereof) of the whole platform.

Chief among the memory manager's responsibilities are keeping track of free and assigned memory,

its allocation on demand by user processes and by the kernel itself, deallocation when appropriate and

efficient management of memory hierarchy. A good overall description of memory management can

be found in [Tanenbaum01]. Here, we will present a brief account of the most important memory

management topics.

2.1 Memory Management Approaches

Historically, the first memory managers made no use of memory hierarchy, they worked

exclusively with main memory, there was no concept of swapping or paging and the amount of

physical memory constituted the limit on the size of a runnable process. The simplest management

scheme used on early mainframe computers, personal computers running MS-DOS and even today on

some embedded systems allowed just the kernel2 and one user program to be resident in memory at

once. The operating system would execute the user program until its termination, then await further

commands.

The transition to multiprogramming systems was first facilitated by splitting the address

space into fixed-sized partitions, each able to load a different program3. Multiprogramming

dramatically improves system throughput by keeping the CPU busy executing a different process

while the original one is blocked waiting for I/O to complete; it however introduces a host of

problems: memory manager must enforce more or less complicated policy decisions that determine

which partition to load a new program into – for illustration: best fit implementations avoid excessive

memory fragmentation, but compared to first fit algorithms discriminate interactive processes, which

are usually small and tend to waste space in a partition. Moreover, programs cannot make

assumptions on the memory address which they will be loaded on, thus linkers have to produce

relocatable code – by providing a directory of memory addresses in a compiled program, the

2 Loaded either in a reserved part of memory or in a special ROM chip

3 IBM OS/360, for example, implemented this technique

12

executable can be modified before being loaded into memory by adding the starting address of the

partition to every address in the code. Even more importantly, programs must not be allowed access

into a partition which does not belong to it. IBM solved this problem by assigning protection bits to

memory partitions and having the hardware trap an illegal access attempt. Another approach to both

the relocation and protection problem was to equip the hardware with base and limit registers4; when

executing a process, the base register was loaded with the starting address of its partition, the limit

register with the partition's end. Upon every access to memory, the base register was added to the

address and a trap raised if the resulting address exceeded the limit register.

With the rise of time sharing systems, these simple techniques were no longer sufficient. The

first attempt to address their limitations was by swapping mechanisms. Memory managers

implementing swapping divide memory into dynamically sized (and resizeable) partitions which can

also be copied to backing store on a hard drive in case of insufficient amount of memory for all

processes and users, thus fully utilising the entire memory hierarchy. Otherwise, swapping is very

similar to previously discussed multiprogramming with fixed partitions, with the same problems of

relocation, protection and fragmentation. Keeping track of allocated memory is more complex,

though. Bitmaps or linked lists of holes and assigned memory areas have traditionally been used for

its management.

2.2 Virtual Memory

Swapping in this form is not used by modern operating systems any more5 and has been

superseded by virtual memory architectures [Fotheringham61]. The basic idea behind virtual memory

is to map virtual addresses used by processes into physical addresses of the actual chips by hardware

(with operating system support), transparently to the user and on demand – without necessitating for

the mappings to be contiguous or even consistent over the process lifetime. The most widely

implemented technique of achieving this goal used today is paging6.

4 CDC 6600 and, in a limited way (relocation without protection), Intel 8088 used this technique

5 But swapping has not disappeared entirely – on many UNIX systems, swapping out entire processes has

remained as a method of load control to reduce pressure on the memory manager during thrashing

6 Segmentation, another historically popular, though not transparent, approach, used heavily in MS-DOS,

Multics, OS/2 and others, adopted a different method. While paging provides protected address spaces by

mapping the same virtual addresses to different physical addresses, segmentation assigns a different

physical address space to each process

13

In paged systems, the virtual address space is divided into small7, easily managed units called

pages; similarly, physical memory is divided into page frames of the same size as pages. Processors

contain a special memory management unit to translate virtual addresses of pages into physical

addresses of page frames, using page tables created and managed by the operating system as mapping

directories. Should a program attempt to access a page not currently present in memory, the MMU

generates a page fault exception which the operating system handles by bringing the desired page into

memory and restarting the faulting instruction. Thus virtual memory obviated the need for running

processes to be loaded entirely in main memory, only the currently needed pages are memory

resident, making optimal use of system resources and increasing the degree of multiprogramming.

There are two principal problems with paging systems. The first is that the translation must

be fast as performance would dramatically deteriorate with expensive directory lookups upon every

memory access. This is addressed by introducing translation look-aside buffers into the MMU. The

TLBs cache recent virtual-to-physical address translations, if TLB hit rate is kept reasonably high, the

system can substantially decrease the negative performance impact of paged virtual memory.

Interestingly, many modern RISC architectures do not have hardware TLBs and manage the

translation buffers in software. This allows for more flexible page table structure, considerably

simplifies CPU design and frees die area for other purposes such as larger memory caches. However,

as described in [Nagle93], software managed TLB have slower refill times impacting overall

performance – kernel TLB misses contribute significantly to this effect. Recent trends in operating

system architecture: shifting towards micro kernel designs, moving increasingly more functionality

into user space and using virtual memory for mapping kernel data structures place further stress on

TLB and decrease overall platform performance.

The second problem is the page table size. Linear, single level page tables for 32bit CPUs are

probably doable (though impractical8) but totally infeasible for 64bit CPUs and other solutions had to

be found. The most widely implemented ones are multilevel forward-mapped and reverse-mapped

page tables.

7 Although nowadays, they can be very large too – 4 GB on IA64, for example

8 32bit CPUs with 4 kB pages and 4 byte page table entries would require 16 MB of memory per process

(plus kernel) for page tables alone

14

2.3 Page Tables

Forward-mapped page tables are directories of physical addresses indexed by virtual address.

Every process has its own page table; mapping is trivial, with page tables containing the respective

physical address. This structure provides great flexibility, allowing easy aliasing of multiple virtual

addresses into a single physical one, sharing memory between different processes, copy-on-write

optimisations9 and different protection schemes for the same memory mapped by different processes.

Multilevel page tables split this structure into a small directory, the entries of which point to

actual page tables; only used page table pointers are filled and respective second level tables

allocated, the unused entries remain NULL. As processes rarely access their entire address space, this

technique provides the desired memory savings – extensions to more than two levels are possible, if

required10. The downside is an increased cost of TLB misses as additional memory accesses are

needed to traverse the page tables hierarchy, possibly causing further page faults and TLB misses.

Inverted, or reverse-mapped, page tables map the physical address space of the entire system

into virtual address spaces of all existing processes. The physical address space being (usually) far

smaller than the virtual one, very little memory is wasted; in addition, only one page table exists for

the entire system. Page table entries are indexed simply by physical address (which is unfortunately

wasteful should the system have holes in memory11), but virtual-to-physical address translation is now

much more expensive as the entire page table must be scanned to find the mapping. However,

efficient TLBs and hashing the entries in page tables mitigate the effects substantially: a hash anchor

table is first indexed by a hash-function of a virtual address, giving a linked list of potential page table

entries which can be searched quickly. Another downside is that reverse-mapped tables are far less

flexible than forward-mapped solutions as all processes share the same table, protection requires

involved walk-arounds and there is no easy way to implement address aliasing (global addresses are

usually used instead).

[Huck93] proposes an improvement upon inverted page tables – the hashed page table

combines the traditional inverted page table and a hash table into one structure, each entry of which

9 Sharing a writeable memory region in read-only mode until an actual write happens, thus avoiding the likely

unnecessary allocation of private copies to each process

10 Indeed, required they are; 2.6 linux kernel, for example, makes use of four level page tables to support x86-

64 architecture and even that does not map the entire 64bit address space, only 48 addressing bits are used

11 This can be a major concern with modern hardware devices like graphics adapters mapping large portions of

memory for its own use

15

contains both virtual and physical addresses and pointers to colliding mappings, no anchor table is

required. Indexing the page table by physical address is thus no longer necessary - yielding

significant space advantages over traditional solutions whenever there are large unusable holes in

physical memory. Importantly, aliasing can be achieved by simply adding the alias into the table,

albeit at reduced hashed page table effectiveness.

2.4 Page Frame Reclamation

When free memory becomes tight, it might be necessary to evict some pages from main

memory to backing storage (either to make room for pages being faulted in or to keep a minimal free

memory reserve for the system12) - it is crucial for system performance to avoid paging out a heavily

used page frame that would be faulted in soon afterwards (from a hard drive two or three orders of

magnitude slower than main memory). Many algorithms for choosing a page to evict have been

developed over the time, some of the more useful ones are listed below13.

The NRU (Not Recently Used) algorithm works by having the hardware set two bits in page

table entries - the referenced bit on page access and the modified bit on page write. The referenced bit

is cleared in software every clock interrupt. During eviction, not referenced pages are a preferred

choice to referenced ones and not modified pages to modified ones.

The FIFO (First-In, First-Out) algorithm evicts the oldest page in the system; while trivial to

implement its performance is terrible as old, yet still heavily used, pages are frequently paged out. A

simple improvement upon FIFO, called Second Chance, examines the pages in FIFO order, but evicts

only a page with the referenced bit cleared. If the page was referenced, it is given a second chance by

being moved to the tail of the examined pages with its referenced bit cleared. The move operation can

be avoided by storing pages on a circular list and simply advancing a pointer to the eviction

candidate, giving a Clock algorithm – a reasonably efficient solution and often used in practice.

The LRU (Least Recently Used) algorithm maintains a linked list of pages, evicting them

from memory from its head and moving them to the tail upon reference. While LRU has excellent

theoretical properties, modifying a linked list upon each reference makes it an unaffordably high

12 In order to avoid the unpleasant situation when there is not enough memory to even free memory

13 Although it is hard to determine absolute merit of page replacement algorithms – for example, choosing a

page at random usually gives appalling performance. However, it outperforms most other solutions when

the general assumption, namely that pages used often in the past will be used again, does not hold – as it

does not for, say, multimedia applications

16

overhead solution that is rarely used. Fortunately, there is an acceptably efficient approximation to

LRU - LFU (Least Frequently Used). It works by maintaining a software counter for each page and

adding the referenced bit to it on each clock. Eviction affects the page with the lowest counter value

as the one used on the least number of past clock cycles. Ageing can be used to avoid keeping pages

that were heavily used only relatively long ago still in memory – by simply shifting the counters right

on each clock, the effect of old references is progressively minimised.

The Working Set page replacement algorithm keeps track of a set of pages that a process used

in a given time – a working set14 [Denning68]. Pages to evict are chosen at random from the

complement of the working set. To determine the working set, a time stamp is recorded for each

page. As with NRU, hardware sets the referenced bit on access and software runs at every clock

which clears the referenced bit and updates the time stamp to current time if it was set (meaning the

page was accessed in this clock). With a known working set it is also possible to implement

prefetching mechanisms to ensure that a process has its working set in memory right at the point of

being switched to by the scheduler thus avoiding needless and frequent page faults15.

An improvement upon the Working Set called WSClock as described in [Carr81] combines

the working set algorithm with the efficiency of the clock by keeping pages in a circular linked list to

avoid expensive scans – its performance and simplicity makes it a widely used solution in practice.

2.5 Memory Allocators

The memory manager's component responsible for allocating and deallocating memory is the

single most important determinant of the overall system performance and consequently, its

implementations are often judged above all else on a merit of speed. But kernel based allocators must

also be efficient, as the amount of memory lost to fragmentation (both internal and external) and

overhead is multiplied by numerous requests from the entire system. It must be well-suited for both

allocations of long lifetimes (e.g. the address space of a user process) and respectively short ones (e.g.

14 Note what necessarily happens should the sum of working sets of all processes exceed the amount of

physical memory: the system will be constantly paging out “working” pages and subsequently faulting them

in, the resulting excessive I/O will effectively freeze all useful activity – a state known as thrashing. Load

control and other thrashing prevention mechanisms will be discussed in a chapter on the problems of the

linux VM

15 Though this is a mere theoretical advantage, such prefetching is not often implemented to avoid wasting

scarce I/O bandwidth on reading in pages that may never be needed again

17

inode buffers for VFS system calls), for very large requests (e.g. a user process enlarging its heap)

and small ones (e.g. any of the kernel descriptors). It should prevent leaking old data between

processes, yet attempt to reuse once allocated objects. Considering these contradictory demands,

kernels often implement more than one allocator. For a thorough discussion of this topic, see

[Vahalia96].

The simplest solution – a resource map allocator – maintains a linked list of free memory

areas to keep track of available resources. Usually, the list is sorted by starting address to allow for

easy coalescing of free areas upon deallocation and a first fit algorithm is used for allocations.

Though simple to implement and greatly flexible in allocation size, resource maps suffer badly from

external fragmentation and their performance deteriorates significantly as the linked list grows in

size. It is not used today, except for special purposes16.

Another approach – a power-of-two free list - maintains a collection of linked lists, each of

them grouping free blocks of the same size, which are all powers of two. Blocks are returned to

respective lists when freed, coalescing is rarely implemented to avoid the costly linked list operations.

Instead, a pool of blocks of each size is deemed sufficient and allocation requests can be blocked if

the desired list is empty; alternatively, a bigger chunk of memory can be allocated to avoid blocking

at the cost of excessive fragmentation. This solution is very fast, however, up to 50%17 of system

memory can be wasted due to internal fragmentation. External fragmentation can also be a problem

with a lot of needlessly large pools of small blocks making memory unusable for large requests.

The binary buddy system [Knowlton65] is a considerable improvement upon the previous

approach and a reasonably efficient solution often used in practice. Again, a collection of linked lists

chaining free blocks is used to keep track of available resources, all block sizes are powers of two.

Should a block of a desired size be unavailable during allocation, a bigger block is split in half, one

half assigned to a respective list, the other one returned to the caller. Similarly, during deallocation,

adjacent blocks (called mates or buddies) are merged when both free (finding buddies is very fast; as

blocks always stay aligned when split, the buddy of a block of size 2^n is simply found at the block's

address with the (n+1)th rightmost bit toggled). This splitting and merging is performed recursively,

if possible, up to the largest defined block size; a bitmap is used to speed both operations up. With no

fixed pools, memory is utilised much more efficiently and still relatively quickly.

16 System V used it to allocate kernel semaphores, linux uses a similar approach (with a bitmap instead of a

linked list) to allocate memory to itself during boot time

17 Or even much more, should the non-blocking implementation be chosen

18

The binary buddy allocator is a popular solution in UNIX operating systems and many

variations and optimisations have been proposed – some of them even abandoning the fixed binary

size limitation, providing block sizes of fibonacci series members or generalised, arbitrarily sized

blocks, for example. Notable among binary buddy allocator optimisations are the lazy splitting and

unaggressive merging used in System V. These techniques are intended to avoid pathological

splitting and merging the traditional implementations exhibit when a smaller block is allocated from a

bigger one and is deallocated shortly after that. While traditional solutions would perform the splits

and merges, the lazy optimisations keep the deallocated blocks unmerged on appropriate lists and

avoid both the expensive merges and, potentially, repetitions of the entire operation should another

allocation request of the same size be forthcoming.

Another modification of the simple power-of-two free list - the McKusick-Karels allocator,

first used in BSD, keeps the block meta data off the linked lists. Thus avoiding the necessity of

unfavourable rounding towards the next bigger size (and the consequent fragmentation) should the

desired allocation size be itself a power of two (as is very often the case).

Mach's zone allocator came with a completely different approach. Because the cost of

initialising an object often exceeds the cost of allocating its memory, the zone allocator maintains

caches of initialised ready-to-use objects in linked lists; each list chaining objects of the same size is

called a zone. Should a zone be emptied by allocations, another page is obtained from a lower level

allocator, carved into respective objects and they in turn used to replenish the zone. Objects are

returned to the zone when freed and can be easily reused. Zones can grow indefinitely and are usually

purged periodically by a garbage collector.

Solaris uses a very similar approach in its slab allocator [Bonwick94]. Each type of object has

its own cache as in the zone allocator, but objects support constructor and destructor procedures

greatly aiding in object reuse. Caches are collections of slabs, which in turn are collections of blocks

of memory obtained from a lower level allocator. This tiered architecture simplifies many operations

compared with the zone allocator. Newly created objects are added to the slabs initialised by a

constructor, freed objects are returned to its slab again initialised in a ready-to-use state by a

destructor. Small objects are allocated directly within a page assigned to a slab including their meta

data. The meta data of objects that cannot fit within a page are kept off the slab, on a special

descriptor. Descriptors themselves are stored on a linked list and a hash table is maintained to provide

fast object-to-descriptor mappings. The slab allocator also attempts to colour its caches – that is, to

19

vary the starting address of objects to improve the performance of hardware caches by decreasing the

occurrence of cache line collisions.

20

3 Linux

Linux was originally created by Linus Torvalds while attending the University of Helsinki in

1991 as a replacement for the Minix micro kernel, written by professor Andrew S. Tanenbaum for

educational purposes. Since then, licensed under GPLv2, linux has been developed and extended by

the combined effort of numerous members of the open source community and made to interoperate

with utilities created by the GNU project - giving rise to the GNU/Linux platform.

Once dubbed as hacker's and student's toy, linux has evolved into a competitive operating

system. Combined with the cheap performance of the x86 architecture, it is quickly displacing

proprietary UNIX systems running expensive RISC machines, gaining foothold in server and

workstation market and making inroads into the desktop environment as well.

The current version of linux kernel, 2.6.20, offers these features:

� Full IEEE POSIX and SUS compliant unix kernel based loosely on SVR2 [Bach86], but with

many improvements upon its design.

� Monolithic but largely modularised kernel architecture, allowing loading and unloading of

kernel components (in many cases even during runtime and automatically on demand) or

their easier replacement.

� Kernel-level support for multithreaded applications18. As of 2.6 version, linux is also fully

preemptible, allowing for arbitrary interleaving execution flows in kernel space - a welcome

feature in embedded or real-time systems.

� Linux runs on a plethora of hardware platforms, offers excellent support for symmetric

multiprocessing and non-uniform memory access architectures, interoperates with many

flavours of file systems, network protocol stacks and executable file types.

� The open source nature of linux ensures high code quality, low frequency of bugs and easy

customisation of all components - possibly resulting in very small and compact or powerful

and feature-rich systems.

18 Light-weight processes are in linux created through the non-standard clone () system call

21

4 Linux Virtual Memory Manager

In this section, we will give an account of the memory manager implementation in a real

operating system kernel, pointing out the concepts, the rationale behind choosing them and describe

the main data structures used (note that ordering of items within the structures described has not been

preserved to improve readability; the source code is ordered in such a way as to avoid mapping items

often heavily used together into the same cache lines [Sears00]). An excellent description of this topic

can be found in [Gorman04].

4.1 Memory Organisation

Linux runs on a variety of architectures from embedded to supercomputer machines -

including platforms using non-uniform memory access (NUMA19). Such machines have their memory

divided into independent banks each intended for a specific purpose20 and incurring different costs

when accessed by different processors. Banks are called nodes in linux and are described by struct

pglist_data structure, with the most important fields listed below21. Node-local allocation policy

is used to allocate memory from the node closest to the requesting processor. Zones within a node are

also chosen to satisfy allocations in a specific order, which is determined during zone creation and

stored within its descriptor. Generally, ZONE_HIGHMEM is used first, sparing the important

ZONE_NORMAL; ZONE_DMA, critical for hardware devices, is used only when all other zones are

empty.

19 Some multiprocessor Alpha and MIPS machines, for example. But linux may use NUMA concepts to

manage UMA machines with large holes in memory, regarding the contiguous, usable chunks of memory as

distinct nodes

20 For example, each CPU may have its own bank of memory, access to the banks of other CPUs has much

larger latencies; another bank suitable for DMA access may be located near device cards and assigned to

them

21 This holds true even for UMA architectures. Linux tries to maintain as much of its concepts as possible in

the architecture independent layer. Other examples of this are the four-level page tables even for

architectures that do not support them or TLB handling code hooks. The architecture dependent layer

resolves all conflicts – UMA machines use one statically defined node, two-level page table machines have

the middle directories of zero size folding back on the global directory entry, TLB handling methods are no-

ops on the many platforms that handle their TLBs in hardware and so on

22

typedef struct pglist_data {

//The number of zones in this memory bank and their array

int nr_zones;

struct zone node_zones[MAX_NR_ZONES];

//The order of zones from which to allocate memory.

struct zonelist node_zonelists[GFP_ZONEMASK + 1];

//A memory map of all pages for this bank

struct page * node_mem_map;

//Starting physical address of the node22 and its size

//in present and spanned pages (holes are the difference)

unsigned long node_start_pfn;

unsigned long node_present_pages, node_spanned_pages;

//Node id and a this node's kswapd thread's process desc.

int node_id;

struct task_struct * kswapd;

} pg_data_t;

The before-mentioned zones are ranges of memory each suitable for a different purpose,

which the nodes are divided into. With the x86 architecture, three zones are used: ZONE_DMA which

covers the first 16 MB of available memory and its use is required by many device adapters that

cannot address memory over this limit; ZONE_NORMAL including all the available memory between

16 – 896 MB23 and ZONE_HIGHMEM covering the remainder. The difference between the last two

zones lies in the way kernel maps memory. Only ZONE_NORMAL is permanently mapped in kernel

page tables because of the limited address space of 32 bit processors24, memory found in

ZONE_HIGHMEM must be mapped temporarily by kmap () when accessed, this mechanism will be

described in detail later. Because only ZONE_NORMAL is permanently mapped by the kernel, the

majority of operations can take place using exclusively this zone.

Consequently, it is not only the most performance-critical zone in the system, but considering

that the mem_map array (see later in this section), page tables (though this limitation has been lifted

in recent kernel revisions) and other important structures must be allocated from ZONE_NORMAL, it

22 The starting address has to be stored as a page frame number instead of a virtual address because certain

architectures (x86 with PAE – 36 bit addressing support for 32 bit processors - enabled, for example) can

address more memory than can be represented with their word size

23 The 896 MB limit is related to the way kernel and user address spaces are split. By default, 1 GB area is

dedicated to the kernel, the upper 128 MB of which is reserved for vmalloc () to implement non-

contiguous memory allocation in a contiguous address space, kmap () space used to map high memory

into low memory pages and fixed mappings space required by certain subsystems that need to know its

virtual addresses at compile time – such as APIC - leaving the kernel with only 896 MB of directly mapped

memory

24 Consequently, 64 bit machines need neither ZONE_HIGHMEM nor perform temporary mappings when

accessing a part of its memory, speeding memory access operations – at least in theory

23

places a ceiling on usable memory capacity for the system (an issue for 32bit machines with PAE, for

example). Solutions exist – one possible approach is to give both the kernel and user processes

separate address spaces25. The downside is an inevitable performance hit in the form of a TLB flush

and refill per system call. Alternatively, the kernel can be assigned a bigger portion of the address

space, but this may negatively influence the functionality of user space applications26.

Zone descriptors keep track mostly of statistical data, free area information used by the buddy

allocators, locks for multiprocessor synchronisation and wait tables used to queue processes waiting

for I/O to complete on a desired page. Zones also determine watermarks influencing the activity of

kswapd – the system page reclamation thread (note that there is one kswapd thread per each node

in the system in the 2.6 kernels). kswapd is woken up when any zone reaches only pages_low

free pages and does not go back to sleep until pages_high pages are available again. Under

extreme pressure on free memory, when page_min free pages threshold is reached, the allocator

itself will do the work of kswapd in a synchronous manner.

struct zone {

//A lock protecting the structure from concurrent access

spinlock_t lock;

//The number of available pages in the zone

unsigned long free_pages;

//Limits which control page reclamation by kswapd

unsigned long pages_min, pages_low, pages_high;

//Free area bitmaps used by the buddy system allocator

struct free_area free_area[MAX_ORDER];

//Hash tables of wait queues of processes

//waiting on a page

wait_queue_head_t * wait_table;

//These items have analogous meaning as in a zone descr.

unsigned long zone_start_pfn;

unsigned long spanned_pages, present_pages;

//LRU lists, their length and a spinlock protecting them

//See page reclamation section later in the text

spinlock_t lru_lock;

struct list_head active_list, inactive_list;

unsigned long nr_active, nr_inactive;

};

25 http://people.redhat.com/mingo/4g-patches/

26 The obvious solution is buying a 64bit machine

24

The last division of memory is into pages, described by struct page structures which are

kept in a global mem_map array27. The page descriptor keeps track of the page usage and of its

belonging to respective linked lists – chaining for example all dirty pages of a memory-mapped file,

all pages forming a cache in a slab allocator or all inactive pages as far as the page reclamation

algorithm is concerned.

struct page {

//Pages are kept on various lists through this structure

struct list_head list;

//The address space of the backing storage of this page

//The structure contains call back procedures for

//performing operations on the backing storage

struct address_space * mapping;

//An index within a memory-mapped file or a swap space

pgoff_t index;

//The reference count of this page

atomic_t _count;

//Pages that can be swapped out28 are kept on an lru list

struct list_head lru;

//Virtual address of a page in high memory that is

//currently mapped by kmap ()29

void * virtual;

};

Several status flags are also kept for the page descriptor – bits indicating whether the page is

active, referenced, reserved, dirty, in high memory, being swapped out and other less important flags.

To save memory space, the mapping between a page and the zone it belongs to is also encoded in the

status bits instead of maintaining a separate pointer. Other important mappings - between virtual and

physical addresses and between addresses and their respective struct page descriptors – will be

better understood after describing the user space / kernel space address split and page tables in linux.

Linux implements forward-mapped four-level page tables. The page table hierarchy consists

of a page global directory (PGD), page upper directories (PUD), page middle directories (PMD) and

page tables. Any virtual address can then be split into offsets into these tables and an offset within the

actual data page frame found in the page table lookup. Beside the page frame address, page table

27 With the zones and nodes having pointers to their respective 'subarrays' of the mem_map

28 Technically, swapping out affects whole processes and is not used in modern operating systems; pages are

paged out. But the two words are commonly used interchangeably

29 In the 2.6 kernels, this is no longer of general necessity, the field is used only if specifically required by the

platform; instead, a hashtable page_address_htable is used to keep track of only the truly currently

required mappings, saving one pointer per page worth of memory space

25

entries contain several protection and status flags – the self-explanatory _PAGE_PRESENT,

_PAGE_RW, _PAGE_USER (indicates the privilege level necessary for access), _PAGE_DIRTY

and _PAGE_ACCESSED flags and _PAGE_PROTNONE bit used to mark a page that is resident, yet

inaccessible to user space, such as a page protected with mprotect () system call.

Every process and the kernel has its own page table. The address space30 is divided into a user

space part and the kernel space part31, the latter being shared by all processes in the system. As stated

earlier, the kernel uses its page table to linearly map all memory in ZONE_NORMAL into its address

space32. With this in place, the before mentioned mappings are trivial to implement. All processes

map virtual to physical addresses using their page tables. Because kernel mappings are linear, the

translation from virtual to physical address and its reverse operation are performed by simply

subtracting (adding respectively) the address of user/kernel space split. When the physical address is

known, determining the descriptor of the page it belongs to consists in using its page frame number33

as an index into the global mem_map array of all page descriptors. The reverse operation, mapping a

struct page to its physical address, is achieved by determining the descriptor's index in the

mem_map array and left-shifting it appropriately.

4.2 Process Address Space

Every process in the system has its own private and protected address space – mapped to the

physical address space through process page tables. The kernel never allocates memory to processes

immediately, instead an area of memory with requested access permissions – called a memory region

- is set aside for the process. The allocation itself is postponed until the page is actually accessed – the

case of accessing a yet non-existent page belonging to a valid memory region is taken care of by the

page fault exception handler, which acquires a new page from the physical memory allocator and

restarts the process on the faulting instruction. Similarly, requests to copy writeable memory are

postponed, respective pages marked read-only and shared between processes while assigned to a

writeable memory region. Upon writing them, the page fault handler recognises such pages as copy-

30 We are considering 32bit machines alone here, the discussion does not apply to 64bit platforms without
ZONE_HIGHMEM

31 This defaults into 3 GB / 1 GB split on the x86 architecture

32 Huge page tables (4 MB on x86) are used for the kernel page tables, if available, saving memory by

avoiding one level of page tables and additionally, increasing TLB hit rate

33 Which is, naturally, determined by right-shifting the address by the number of bits in the page frame offset

26

on-write optimisations and allocates a new page, marking both the new one and the original as

writeable. The page fault handler resolves all other cases of invalid memory references. Allocated,

but not present, pages are brought into memory either from the page cache or the swap backing

storage and expandable memory regions (like the stack) are grown to cover as of yet invalid space.

SIGSEGV signal is sent to a process accessing an invalid (non-existent, non-growable) region or

lacking sufficient permissions to access a valid one.

Memory regions thus group contiguous pages intended for a similar purpose – for example a

process stack or a heap area, shared libraries or memory-mapped files – they are described by

struct vm_area_struct structure, the important fields of which are:

struct vm_area_struct {

//The address space descriptor of the process this memory

//region belongs to

struct mm_struct * vm_mm;

//Limits of this memory region

unsigned long vm_start, vm_end;

//All memory regions of a process are kept on a linked

//list and a red-black tree34 for fast look-up

struct vm_area_struct * vm_next;

rb_node_t vm_rb;

//Protection and status flags

pgprot_t vm_page_prot;

unsigned long vm_flags;

};

All memory regions for a process are kept sorted by address on a linked list for convenient

sequential access (for example, when searching for a free memory hole) and on a red-black tree for

fast random access (for example, when searching for a memory region covering a specific address);

efficiency of random access is essential as it is required relatively often – including in exception

handlers. Besides the obvious read, write and execute permissions, regions can be allowed to be

shared or grown (either down – as stacks do, or up – as the heap does), memory in a region can also

be locked to avoid being swapped. In case the region has a memory-mapped file backing it, the

descriptor also records the respective file pointer and an offset beginning on which it is mapped.

The process address space itself is described by struct mm_struct structure. It keeps

track of various statistical information, limits of program sections its process is executing,

34 Previous kernel versions used AVL trees which enforce more rigorous balancing to ensure better worse-case

scenarios; however, AVL trees require more expensive balancing operations

27

synchronisation mechanisms to protect its fields from concurrent access, pointers to all of its memory

regions and a PGD address. The address space descriptor of the init process is statically defined at

compile time, all others are created as copies of the descriptor belonging to its parent process by the

fork () system call.

struct mm_struct {

//The list head and the tree root chaining memory regions

struct vm_area_struct * mmap;

rb_root_t mm_rb;

//The page tables' pointer

pgd_t * pgd;

//The reference count of users and anonymous users35

//accessing this address space

atomic_t mm_users, mm_count;

//A semaphore and a spinlock protecting the descriptor

struct rw_semaphore mmap_sem;

spinlock_t page_table_lock;

//All address space descriptors are linked through this

struct list_head mmlist;

//Limits of various sections of the address space

unsigned long start_code, end_code, start_data, end_data;

unsigned long start_brk, brk, start_stack;

unsigned long arg_start, arg_end, env_start, env_end;

//Statistical data36

unsigned long rss, total_vm, locked_vm;

};

4.3 Memory Allocators

Linux makes use of four different memory allocators. A very rudimentary bitmap based

solution responsible for initialising the system during boot time, the buddy system as a general

allocator of contiguous blocks, a resource map based allocator mapping non-contiguous memory into

a contiguous address space and the slab allocator as a special purpose cache system for frequently

used objects.

The boot memory allocator is a very simple solution. Bitmaps are used to keep track of free

memory and areas suitable for allocation are searched in first-fit fashion. The allocator can merge

35 Anonymous users access only the kernel part of the address space (kernel threads, for example) – context

switching to them does not necessitate a TLB flush as the page tables of the previous process can be

borrowed (a technique called lazy TLB switch), greatly speeding context switch times

36 Number of resident pages (this does not include global zero page – a page assigned to the process when a

new page is requested, until modified), total memory space occupied and locked pages count

28

subsequent allocations that do not require a whole page size, thus decreasing external fragmentation.

When the kernel initialisation phase completes, the boot memory allocator retires itself. All

unallocated pages37 are given to the buddy system which from now on takes full control.

The binary buddy system is the general kernel allocator used in linux. As described

previously, the binary buddy system maintains a linked lists of free memory blocks formed by a

power of two consecutive pages (the powers of two range from 0 to MAX_ORDER38). The allocator

searches the list of blocks of a desired size and if no block is available a bigger block is split into

halves, called buddies, one of them is inserted into a proper list, the other is returned to the caller.

This process is performed recursively, if necessary. Buddies are coalesced whenever possible upon

being freed.

Linux does not implement any optimisations intended to avoid unnecessary splitting and

subsequent merging. The increase in code complexity is probably not worth the performance increase

(if any), because the caching slab allocator minimises the number of calls to the buddy system.

Moreover, many parts of the kernel maintain quicklists of frequently used data structures themselves

to further avoid using the potentially expensive allocator39.

In addition, a set of caches of single free pages is maintained for each processor and zone: the

hot cache and the cold cache. Pages belonging to the hot cache are likely, whereas those in the cold

cache unlikely, to be still in the given processor's hardware cache. Using pages that are already cache

mapped is, naturally, beneficial to system performance. But there are cases when requested pages are

known to remain unreferenced for a relatively long time – for example, when performing I/O read

ahead or using DMA, in case of which the processor caches are not involved anyway – then it would

be a needless waste to allocate hot pages and a cold cache is used instead. Single page requests (by far

the most common ones in linux) are satisfied from the cache, which is replenished when empty in one

larger batch request to the allocator itself. Note that in effect, the relatively expensive splittings are

deferred - achieving one of the benefits of a lazy buddy systems.

37 Including all pages used for data and code sections of functions called only during boot time

38 MAX_ORDER equals 11 in the 2.6.20 kernel

39 For example, the memory manager may maintain quicklists of page table directories (this is architecture

specific, some architectures may consider caching page global directories as overzealous optimisation

because they are only needed during process creation, already an expensive operation) – data are taken from

these lists when needed and later returned to them when no longer so. The buddy system is only called when

the quicklist in question gets empty. Also, the lists are purged when memory is tight by the kswapd kernel

thread

29

Bitmaps are used to manage the state of memory blocks. To conserve memory, only one bit is

used to track both buddies. Whenever either of them is allocated or freed, the respective bit in the

bitmap is toggled, consequently the bit is zero if both buddies are free or both in use.

The allocator employs node-specific allocation policy to assign memory from a bank closest

to the requesting processor (which, naturally, necessitates in NUMA architectures maintaining

processor-ID to node-ID mappings). Zones are also tried in order determined during the node

creation, which is usually such as to spare DMA memory and prefer high memory to

ZONE_NORMAL.

The buddy system behaviour can be customised by passing several flags by the caller, the

most interesting of them indicate whether the caller can sleep or perform I/O; the system can also be

forced to try indefinitely in case of critical requests that absolutely must not fail. Allocations are

attempted in several passes if enough memory is not immediately available, the kswapd kernel

thread responsible for paging out unused memory is woken up between passes in that case. Should

even its actions not free enough memory, the buddy system will try to free some pages itself.

However, the freed memory will not be inserted into the global pool, but used to satisfy the caller

exclusively.

The blocks allocated by the buddy systems are contiguous in memory. Not only is the

allocation itself performed more quickly, the kernel page tables need not be modified at all, sparing

the system the expense of a TLB flush. However, the buddy system suffers from external

fragmentation and satisfying a request with contiguous blocks is thus not always possible. Linux

provides another allocator, the vmalloc (), based on resource maps, to address this issue and

allocate non-contiguous memory40.

To implement vmalloc (), a part of the kernel virtual address space is reserved and its

respective page tables modified by vmalloc () to point to correct physical pages. The pages

themselves are allocated by the buddy system. Although the kernel page tables are modified to point

to the physical memory, the page fault generated by the caller upon access to an incorrect memory

area is recognised by the exception handler and the page tables of the faulting process are

synchronised with the reference kernel page tables. The vmalloc () address space is managed by

40 This is, however, used sparingly in the kernel: module loading and swap map allocation are two principal

areas where vmalloc() is employed

30

a linked list of struct vm_struct structures - basically, simple (starting address, allocated size)

pairs.

Another part of the kernel address space is reserved for kmap () to temporarily map high

memory pages into low memory41. A similar mechanism to high memory pages mapping exists in the

kernel – the bounce buffers which are responsible for performing I/O with the full range of memory

available on devices unable to address it42. For this purpose, the I/O is performed on buffers in low

memory and they are subsequently synchronised with the high memory buffer that the I/O operation

caller specified. This entails an undesirable but necessary performance hit as data is copied twice

during the operation.

The slab allocator is intended to offset the internal fragmentation problems with the buddy

system by allowing for requests smaller than a page. Moreover, the slab allocator caches commonly

used object in an initialised, ready to use state – thus compensating for the time required for

initialising an object being much higher than allocating it, as is often the case. The slab allocator is

made by a collection of caches chained on a linked list. Each cache is formed by blocks of page

frames, called slabs, allocated from the buddy system. The slabs themselves are carved into objects

that the cache manages.

To avoid the internal fragmentation problems inherent in binary buddy systems, a set of

caches of objects ranging from 32 bytes to 128 kB is maintained (in pairs, one cache suitable for

allocation from ZONE_DMA, the other from ZONE_NORMAL). Kernel routines may allocate memory

from these buffers by calling the kmalloc () function. Besides these general caches, new caches

can be created with kmem_cache_create () for allocation of other often used objects.

Each type of objects that is obtainable through the slab allocator has its own cache43,

described by the kmem_cache_s structure.

41 By default, 32 MB are reserved on x86, which may seem rather low considering the 64 GB physical

memory limit of x86 processors with PAE support, but kmap () mapped memory is supposed to be soon

unmapped by kunmap ()

42 Such as 32 bit devices on 64 bit processor systems

43 The kernel exports the information on used caches through /proc/slabinfo

31

struct kmem_cache {

//Lists (full, partial, free) linking slabs for the cache

//are kept in this structure, along with a spinlock and

//other required information

struct kmem_list3 * nodelists[MAX_NUMNODES];

//The size of objects in the cache, the size of each slab

//in pages and the number of objects per slab

int obj_size

unsigned int gfporder, num;

//Various flags indicating the state of the cache

unsigned int flags, dflags;

gfp_t gfpflags;

//Per-CPU data

struct array_cache * array[NR_CPUS];

unsigned int batchcount;

//Colouring of the cache for hardware optimisation

size_t colour;

unsigned int colour_off, colour_next;

//Constructor and destructor functions for objects

void (* ctor) (void *, kmem_cache *, unsigned long);

void (* dtor) (void *, kmem_cache *, unsigned long);

//All caches are linked through this structure

struct list_head next;

};

To increase the speed of allocating an object from a cache as well as to simplify the cache

reaping (that is removing free pages from the cache by the kswapd kernel thread when short of

memory), all slabs belonging to a cache are grouped on three different lists – slabs without free

objects in them, completely free slabs and partially used slabs. Allocations are always satisfied from a

partially used slab, if possible.

Caches can be customised by being told how to align their objects, where to store slab

descriptors (either in the slab itself or in a special cache), whether they can be subject to reaping and

what kind of callers will use them (similar to the buddy system, e.g. a flag indicating whether the

allocation is allowed to block the caller). The slab allocator also provides the caches with abundant

debugging and statistics gathering functionality.

One of the major functions of the slab allocator is improving the performance of hardware

caches and multiprocessor systems. This is achieved in two ways – by colouring the slabs and by

maintaining pools of per-CPU objects in each cache. Slab colouring is a simple technique that uses

memory otherwise wasted in a slab (if the slab size is not an exact multiple of the size of objects

stored in it) to offset objects in different slabs of a given cache by varying amounts. Consequently,

the objects would use different lines in a hardware cache and not flush themselves out.

32

The per-CPU pools of objects try to keep data in use on the same processor as long as

possible. This is, again, beneficial by not dirtying the cache with yet unused memory addresses.

Allocations and deallocations are satisfied from and to the pool; objects from the slabs will be taken

only if the pool is exhausted – and in that case, in a large batch which will replenish the pool to

minimise the number of calls to the allocator. Another big advantage of this technique is that

spinlocks do not have to be held during requests as there is no possibility of a contention from other

processors.

The slabs are described by a much simpler struct slab_s structure:

struct slab {

//The list (free, partial, full) this slab belongs to

struct list_head list;

//The colouring offset calculated for the slab by a cache

unsigned long colouroff;

//The starting address of the first object in the slab

void * s_mem;

//The number of objects currently allocated from the slab

unsigned int inuse;

//An array used to store locations of free objects

kmem_bufctl_t free;

};

To map already allocated objects to the slab and the cache they belong to, pointers within a

corresponding page descriptor (those that otherwise link the descriptor on various LRU, dirty or

active lists within the kernel) are used. The kmem_bufctl_t array then serves as a pseudo-linked

list of free usable objects within a given slab.

The slab descriptors can be stored either within the actual slab or in a special cache reserved

for this purpose. The desired method is chosen according to the object size. Slabs in caches of large

objects44 would suffer overly from fragmentation with slab descriptors stored within them, so the

special cache is preferred.

4.4 Page Frame Reclamation

A running system is bound to use all available memory to satisfy requests by user processes,

store various kernel descriptors and implement performance enhancing buffers and caches. A

44 512 bytes on x86 architecture

33

mechanism is therefore required for selecting page frames to be invalidated and freed in order to be

used for future memory allocations. The reclamation is performed by the kswapd kernel thread.

kswapd sleeps most of the time and is awoken by the buddy system allocator45 only when

pages_low free pages have been reached in any zone.

All pages subject to page reclamation algorithm in linux (user mode pages and pages

belonging to the page cache - pages that are not free, reserved, locked, dynamically allocated by the

kernel or a part of kernel mode stacks; pages assigned to some caches and the slab allocator are also

handled separately) are maintained on two lists (per each zone) linked through pointers in the

page.lru structure: the active_list containing the approximation46 to a working set of all

processes and the inactive_list chaining all reclaim candidates. When pages are first created,

they are added by lru_cache_add () to the inactive_list and get moved to the

active_list by mark_page_accessed (). Linux tries to keep the size of the

active_list at about 2/3 of the page cache size by moving pages from the tail of active_list

to the inactive_list by refill_inactive_zone () function - for example, when the

caches are being shrunk. The refill_inactive_zone () function resembles a clock

algorithm, pages at the tail of the examined list have their PG_referenced flag checked. If it was

set, the page is moved to the head of the list with the bit cleared because it has been recently used and

is likely to be used again soon. Otherwise, it is moved to the inactive_list.

Pages in the system may also be kept in the page cache – a collection of several caches

maintained in order to decrease the number of reads from and writes to slow disk devices. These

include the buffer cache of pages buffering operations with block devices and file systems; the swap

cache of anonymous pages that have a slot on a backing storage assigned47 for page-out and a cache

containing pages faulted in by reading or writing a regular but memory mapped file. These pages are

also kept in a hash table to be quickly located on demand. Depending on their state, all pages that

have a backing storage assigned are also linked on one of three inode queues through the

page.list field. These queues are clean_pages chaining up-to-date pages, dirty_pages

45 Though traditionally, kswapd was woken up periodically

46 Approximation because the list is not updated on every reference

47 User processes shared memory created with shmget () and shmat () or anonymous mmap () with

MAP_SHARED have a virtual file system attached as a backing storage – tmpfs or shm are used for this

purpose

34

including all pages that were modified since last sync to disk and locked_pages of all pages

currently in a locked state48.

In earlier versions of the kernel, the swap cache's main responsibility was to group pages

belonging to shared regions. This was important to implement the synchronisation between processes

sharing a page, one of them having the page paged-out. Without the swap cache, should the memory

be written, the process with a paged-out page would lose the update because there was no quick way

to map struct page to all page table entries pointing to it and was consequently not attempted.

Swap cache took care of this problem. The 2.6 kernels, however, implement reverse mapping,

allowing for quick location of all page table entries corresponding with a given struct page,

obviating the major need for a swap cache. The object-based reverse mapping (the objects here refer

to memory regions), used in current kernels, achieves this end by maintaining a PTE-chain associated

with each struct page – the chains are kept for memory regions, not for each page descriptor, in

order to conserve memory. Memory regions of shared anonymous memory are chained on a doubly-

linked list because there is rarely an exceedingly large number of such sharing processes. Memory

regions of shared mapped pages, however, are kept on a priority search tree (one for each file) to

improve lookup times (consider the case of glibc shared by almost every process in the system).

The page-out part of the reclamation subsystem takes pages off the inactive_list and

decides how to deal with them. Locked pages are skipped, unless examined for a second time. In that

case, it is better to wait for the I/O to finish and reclaim this page and the replacement algorithm goes

to sleep until the I/O completes; dirty, unmapped pages are locked and scheduled for syncing to the

backing storage; mapped anonymous pages have their usage counters decremented49 and are paged

out in case it reaches zero; pages not mapped by any process are either simply discarded if they

existed just on the page cache, otherwise they were a part of a file mapping and are also removed

from a respective inode queue.

Next, the replacement algorithm reaps caches that consist of pages not linked on the active

and inactive lists – the slab allocator caches and three caches related to the file system – the dcache,

the icache and the dqcache.

After a predetermined number of pages have been removed from the caches, user space pages

are swapped out. Page tables of all processes are walked until enough pages have been freed. All

48 For example, pages that have I/O operation in execution upon them and must not be paged out

49 To determine whether the page is shared by multiple processes

35

pages are examined but pages either belonging to a zone that is not currently under memory pressure,

on the active_list or the inactive_list and with their PG_referenced flag set are

skipped. The page tables are walked through the list of memory regions to avoid scanning mostly

sparse address spaces.

These steps are executed several times if necessary, each time with an increased priority –

indicating how severely to reclaim memory. Should the reclamation algorithm fail to free enough

pages, as a last resort, the system will choose a process to be killed, in hope that its pages will

replenish the free memory pool allowing the original request to succeed. A victim process is chosen

according to its calculated badness – a value that tends to be high for processes which use large

amounts of memory but are still relatively young.

All swap areas in linux, either logical partitions or regular files, are described by struct

swap_info_struct structures and linked on a list. The swap area descriptor is a rather large

structure but most of its fields are of little general interest, providing various accounting functions

and optimising the search for a free slot within a given area. The only interesting field is the

swap_map array of integers managing the state of every swap slot. The array is indexed by the slot

number and its values equal reference counts50 of the respective slot. All swap areas are chained on a

list sorted by priority51.

Swap area slots are page sized blocks of the swap space. When a page is committed to be

paged out, a free swap area slot is found and the page's page table entry is modified to contain the

position of the found area in the swap area list and the swap_map index of the found slot, then

marked as not present.

50 To protect against the unlikely but possible case of the reference count overflowing, the greatest possible

reference count – 1 represents a permanently reserved slot

51 Swap areas on a faster disks may be given a higher priority by the system administrator and will be used

first

36

5 Experiments

In this section, we will conduct a series of tests in order to determine the actual behaviour of a

linux kernel. Unless stated otherwise, all experiments were run on a 2 GHz Athlon (Thoroughbred

core) workstation with 1 GB 133 MHz DDR RAM. Kernel releases 2.6.20 and 2.4.18 (with high

memory support enabled and SMP support disabled at compile time) were used for comparison.

The first of the benchmarks used to measure the virtual memory subsystem performance is

lmbench52 [McVoy96], a suit of programs designed to uncover bottlenecks in performance of a wide

range of applications. The part of lmbench that we are interested in stresses the system by a series of

small latency and bandwidth critical loads moving data among the processor, cache, memory and disk

drive – determining not only the performance of the underlying hardware platform but also any

software limits imposed by the operating system.

lmbench's memory bandwidth benchmark measures the system's ability to copy, read and

write data of varying sizes, later versions of lmbench also include McCalpin's STREAM and

STREAM version 2 benchmark tests [McCalpin95].

Copy bandwidth is determined in two ways: first by a user-level library bcopy ()

interface; second by a hand-unrolled loop that loads and stores memory-aligned words53. The tests

vary the size of memory blocks copied - effectively bypassing processor hardware caches for

sufficient sizes; care is also taken for the source and destination memory addresses not to map into

the same cache line54. The copy test works with bytes copied, not moved - thus the results should

theoretically be at best half (or third in case of less advanced architectures which perform another

read before write of memory about to be overwritten55) the values of the read test or the McCalpin's

stream benchmark.

Memory reading is measured by an unrolled loop that sums up an integer series stored

sequentially in memory. An optimising compiler is highly desirable in this benchmark as to avoid

generating too many assembly instructions and placing the bottleneck on the processor -

52 http://www.bitmover.com/lmbench/

53 Or 4 bytes on x86

54 The source and destination memory blocks are originally allocated with the valloc () function and

consequently, page aligned. Finally, one of the buffers' beginning address is advanced by a predetermined

number of bytes

55 For example in order to maintain cache coherency in multiprocessor systems

37

consequently, the addition instruction is required in order for the reads not to be optimised away as

redundant. Considering the relative speeds of today's processors and memory subsystems, the

overhead of one integer addition is negligible. Memory writing is measured by very similar means

and will not be discussed further.

Another area of interest, as far as memory management is concerned, is lmbench's cached I/O

benchmark set intended to test the efficiency of reusing data in the file system page cache through the

mmap () system call. Note that no I/O is performed during these tests, the file about to be mapped is

first copied into a private temporary version which effectively results in the file being forced into the

page cache; mmap () then maps the entire file to the process address space as a distinct memory

region and reads it as any regular memory block. Good systems will have mmap () results

approaching the results of the memory read test - because the file system overhead is virtually zero -

but operating systems in general (and linux in particular - as found in [McVoy96]) have traditionally

performed dramatically worse.

38

Illustration 1: Various memory bandwidths. This particular machine

has 256 kB L2 cache. As an example, exact values for the 512 kB

memory size are 944 MBps memory read bandwidth and 385 MBps

bcopy () bandwidth - somewhat under the 1/2 theoretical limit for the

x86 platform

We can see that both 2.4 and 2.6 kernels perform very well in this respect, 2.6.20 having

nearly identical memory read and mmap () bandwidths.

Memory latency measurements reflect not only the performance of the underlying hardware

architecture but also the efficiency of prefetching algorithms, both hardware and operating systems

based. lmbench measures the back-to-back-load memory read latency, which is the time each cache

missing load takes, assuming the instructions before and after are also cache missing loads. If desired,

the entire memory hierarchy can be measured, including the latencies and sizes of various processor

caches, main memory and (possibly even) TLB miss impact [Saavedra92] by varying the array size

and stride during testing. For each size, a list of pointers is created for all of the different strides,

loads equivalent to C code p = * p; are executed and their time reported. It is assumed that the

processor is capable of executing a load instruction in one clock cycle and its length is subtracted

from the measured time, thus yielding pure latency. Plotted results display the entire memory

hierarchy – multiple levels of on- and off-die caches and the main memory.

39

Illustration 2: 2.6 kernel mmap ()

bandwidth

Illustration 3: 2.4 kernel mmap ()

bandwidth

Next, we will explore the scalability potential of the linux memory manager with a simple

mmap () benchmark inspired by the gatling56 experimental web server performance analysis suite.

The benchmark consists of mapping a large number of files into memory. In order to avoid the need

to create many unique files, we will mmap () distinct page-sized chunks of a single large file (thus

creating a large number of memory regions57) and measure the latencies of the operations.

Performance-wise, this may be particularly important for object oriented database management

systems or network servers which are required to handle request for many files at once. We will try to

determine whether the operating system overhead increases as the number of memory regions

belonging to our process rises. To make sure the file system does not become a bottleneck during

56 You may get gatling through anonymous cvs here: cvs -d :pserver:cvs@cvs.fefe.de:/cvs -z9 co gatling

57 A list of memory regions for each process is available in /proc/{$PID}/maps

40

Illustration 4: Memory latencies. By observing the latency plateaus on the graph, we may

determine that this particular machine has 64 kB level one and 256 kB level two on-die

caches.

testing, the benchmark process will start by reading the first byte of every page to force them into the

page cache.

The results are truly impressive for the 2.6 kernels – they scale with O(1) with negligible

latency for most of the system calls – a large improvement upon the O(n) linear scaling of the 2.4

kernels with latencies in thousands microseconds.

These improvements are mainly due to two changes between the 2.4 a 2.6 kernel revisions.

First, process descriptors were made to cache the first available hole in their address space to improve

search times; this is very important for processes with a large number of memory regions, because

finding a free hole cannot be achieved by using a tree and involves a linear walk through a linked list.

Second, finding pages in the page cache no longer involves linear searches. In the 2.6 kernels, pages

are kept on a radix tree instead, greatly improving performance. Incidentally, though this is not the

case in our benchmark, the 2.6 kernel can also perform non-linear virtual memory areas population if

passed the MAP_POPULATE flag to the mmap () system call. This would cause the system to

populate page tables for a file mapping by performing read-ahead on a file (in our benchmark, the file

is read entirely into the page cache beforehand, so there are no major page faults accessing it

anyway).

Concerning the 2.4 kernels, you can see a sudden latency jump around 5,000 mapped regions.

Obviously, the kernel must be detecting an excessive pressure on this part of the memory manager

41

and switching to an algorithm or data structure more suitable for the demand. The exact nature of the

optimisation, however, I have failed to determine.

5.1 Tunables

The behaviour of a running kernel can be customised and controlled through the sysctl

(8) mechanism or by writing desired values directly into respective files located on the

/proc/sys file system which represent configurable kernel parameters. Of especial interest to the

memory manager are the files found in /proc/sys/vm directory, each of them (available in the 2.6.20

kernel release) will be briefly discussed below (most are documented in Documentation/sysctl/vm.txt

in the linux source code directory).

block_dump parameter turns on and off the block I/O debugging, which, when enabled,

causes the kernel to report all read and write operations and any block dirtying of pages with a file

backing storage attached

dirty_background_ratio parameter configures the percentage of total system

memory that will, when dirtied, trigger the background write-back by the pdflush58 kernel thread

dirty_expire_centisecs parameter defines when dirty blocks qualify as old and

consequently subject to writeback

dirty_ratio parameter defines the percentage of system memory at which dirty

writeback will be performed by the generating process in synchronous fashion

dirty_writeback_centisecs parameter defines whether the pdflush daemon

should be woken up periodically, and if so, how often

drop_caches parameter will cause, when written, the kernel to immediately drop the

contents of the page cache, the dentry cache and the inode cache in order to free their memory

laptop_mode parameter causes the kernel to flush all dirty blocks during any physical disk

I/O thus avoiding unnecessary hard drive spin ups in the future and conserving battery capacity

legacy_va_layout parameter disables the 32-bit mmap () map layout introduced in the

2.6 kernels and makes the kernel use the legacy 2.4 layout for all processes

58 pdfush has replaced the functionality of bdflush (which scanned the page cache looking for dirty pages)

and kupdate (which ensured that no page would remain dirty for too long in protection from data loss in

case of power failures) kernel threads used in earlier kernels

42

lowmem_reserve_ratio is the user-definable low memory watermark for each memory

zone mentioned earlier which triggers the awakening of the kswapd kernel thread

max_map_count parameter defines the maximum allowable number of memory regions

per process (defaults to 65,536 which can be limiting for certain kinds of applications – object

oriented database systems, as mentioned in the mmap () benchmark section, or malloc ()

debuggers, which may need to create up to two memory regions per allocation)

min_free_kbytes specifies the memory reserve which the kernel dips into only while

allocating for high priority requests when low on free memory – mainly used for serving non-

blocking requests (issued mostly by interrupt handlers)

nr_pdflush_threads is a read-only value indicating the count of concurrently running

pdflush threads

overcommit_memory controls the memory overcommitment kernel feature. When

disabled, the total address space commit of the system is determined as a sum of the swap area space

and a configurable part (see next parameter) of the system physical memory. When enabled, it allows

processes to allocate (but, naturally, not use) more memory than available – two modes of operation

are possible in this case – always overcommit and the heuristic default. The heuristic allows slight

overcommits while trying to block overgreedy attempts to hog memory (this restriction is somewhat

looser for super-user processes)

overcommit_ratio parameter defines which part of the physical memory will figure in

overcommit calculations

page_cluster is a binary logarithm value of a page-sized cluster which is written to swap

in a single operation, in other words the swap I/O size. Defaults to 3, meaning 8 pages (32 kB on x86)

worth of data

panic_on_oom parameter determines whether the kernel should panic or invoke an out-of-

memory killer feature when running out of free memory. The out-of-memory killer is a somewhat

controversial part of the kernel as a martyr process is determined by comparing the badness ratios of

all running processes. A process with the highest value is killed. Badness is calculated in such a way

as to penalise young processes with large amounts of allocated memory, but less than wise guesses do

happen

43

percpu_pagelist_fraction parameter determines a fraction of pages per zone that

are allocated for each per-cpu, per-zone hot cache of single pages (see the description of buddy

allocator optimisations for details)

swappiness influences what ratio does the kernel prefer dropping pages from system

buffers and caches to swapping out memory belonging to processes. Generally, setting this value

lower will tend to improve interactive response (as processes are more likely to be kept in memory)

while higher values will benefit system throughput (as memory is given to more immediately useful

buffers instead of being wasted by processes that need not use it again at all)

We will demonstrate the impact of swappiness on system behaviour by a simple benchmark.

First, we will launch a process which calls malloc () to allocate a large portion (90% or so) of

memory (touching every page to force the kernel to perform the actual allocation), then goes to sleep;

Subsequently, we will use dd to simultaneously copy 4 GB worth of data from /dev/zero to two

files located on separate hard drives (swap partition is located on a disk of its own)59. We are

interested in determining how much of the memory grabbed by the sleeping process will be swapped

out to make room for buffers improving system throughput.

The results show that increasing swappiness does not make much of a difference (that is

benchmark specific, of course) until about the value 50, when the system starts to page out process

memory quite heavily. Most of the malloc () space is paged out by the value 70 as the system

uses its memory for buffers and caches.

59 The tests are repeated for different values of swappiness, echo 1 > /proc/sys/vm/drop_caches

&& swapoff -a && swappon -a are used between the runs to ensure the results are not affected by

previous activity

44

Swappiness is a matter of some controversy among kernel developers. Andrew Morton, for

example, proclaims to have all his computers set at swappiness 100 as not to prevent the kernel from

using available memory for something useful. On the other hand, Rik van Riel adamantly pushes

swappiness to 0 for interactivity on desktop computers60. The kernel defaults to 60.

What kind of performance increase the enlarged buffers can bring depends on the degree of

disk data reuse by the application. We will demonstrate the effects of the extreme values, 0 and 100

respectively, on the performance of a script which copies the same 400 MB file ten time in sequence

to /dev/null (simulating the behaviour of a high reuse program) with 995 MB total out of 1024

MB system memory held by sleeping applications. Ideally, only the first copy should perform disk

I/O, the rest should go from the page cache. But this is obviously impossible without the memory

hogging application, at least partially, paged out.

Swappiness Average copy bandwidth

0 27.60 MBps

100 133.86 MBps

vdso_enabled parameter triggers the creation of virtual dynamic shared objects for

processes (enabled by default). When enabled, a page with such an object, called the vsyscall

page, is mapped into process address space and passed to glibc upon exec (). Its purpose is to

speed up system calls made by the process by providing an optimal method of entering kernel space.

Processes can take advantage of this capability by using call 0xFFFFF000 instead of the

traditional int 0x80 for initiating system calls

vfs_cache_pressure parameter controls the kernel's tendency to reap the dcache and

inode cache compared to the swap and page caches

60 http://kerneltrap.org/node/3000

45

6 Problems

This section will list the major known shortcomings of contemporary virtual memory

managers, with an emphasis on the problems and limitation of the implementation found in the linux

kernel.

Linux and most, if not all, other current operating systems implement page replacement

algorithms that try to keep recently used pages memory resident, with the assumption that such pages

are probable to be used again soon. However, this assumption is no longer valid for an increasing

number of today's typical workloads and applications. For example, garbage collection systems do

not explicitly free memory which they are not going to use again and may not reuse memory quickly;

moreover, the garbage collector itself often has access patterns completely different from the program

that uses its services. Streaming I/O, such as multimedia or data mining applications, will likely never

access a recently used page again; pages these kinds of applications need, the not (for some time)

accessed ones, are pages the traditional eviction algorithms are designed to page out. Many advanced,

adaptive, algorithms have been developed to cope better with the situations when traditional solutions

fail, their one common characteristic is the need to keep track of past memory usage pattern. We will

describe some of the most promising ones here61.

ARC, the Adaptive Replacement Cache [Megiddo03], tries to achieve dynamic, on-the-fly,

adaptation to varying system workloads, without any a priori tuning of the algorithm parameters.

ARC maintains two lists of pages, one chaining pages that have been accessed just once in a given

time period (cold pages); the other contains pages that have been accessed at least twice in the same

period (hot pages). Consequently, pages on the former list can be thought of as belonging to process

parts exhibiting recency-reuse behaviour, while the pages on the latter list exhibiting frequency-reuse

behaviour. The relative size of the lists is modified at run-time according to the actual workload – the

list experiencing hits is grown at the expense of the other list – this learning method ensures continual

adaptation to varying conditions in the system. There are many areas where the caching algorithm

may be used; when applied to operating systems, a variation can be adopted, which keeps both lists at

roughly the size of physical memory (so their combined size equals twice the system memory) and

61 Unofficial experimental patches to the mainline linux kernel exist that implement all the listed solutions

46

the learning mechanism continually varies the ratio of each list that would actually remain in

memory, the remainder is paged out to backing store.

LIRS, the Low Inter-reference Recency Set [Jiang02], attempts to address the limitation of

LRU-like algorithms (making eviction decisions solely on the basis of recency) by keeping an inter-

reference recency (IRR) counter for every page. The IRR records the number of pages that have been

accessed between the last and the pen-ultimate access to the give page. Pages with the highest value

of their IRR are the current eviction candidates. In this way, LIRS avoids the problems sudden bursts

of references cause to LRU (e.g. sequential scans of large files forcing the page-out of still heavily

used data), because the pages accessed just once may have a very low recency but their IRR is

effectively infinite as there was no pen-ultimate access to their data.

Both LIRS and ARC were originally intended for I/O cache management and their

implementation in a general purpose OS memory manager entails a relatively high overhead cost.

Clock-Pro [Jiang05] attempts to combine the features and performance of LIRS with the simplicity of

the LRU clock algorithm. In Clock-Pro, as in LIRS, the inter-reference recency is used to determine

the replacement candidate. Pages with large IRR are called cold, pages with low IRR hot (we may

think of these set as the inactive_list and active_list in linux); cold pages are given a test

period, during which if accessed, they are marked as hot. Resident cold pages are the reclaim

candidates. All possibly reclaimable pages in a system are placed on a circular linked list and three

hands move around it. The hot hand points to a hot page which has been unused the longest; the cold

hand points to the longest unused cold page and the test hand points to the last cold page in the test

period.

The search for a page to evict starts at the cold hand position. The page pointed to is evicted

if it has its referenced bit unset. Otherwise, the cold hand continues advancing until an unreferenced

cold page is found and reclaimed. A page is spared if its referenced bit is set (it is reset by the hand);

moreover, if the page is in the test period, it is marked as hot, because, in effect, an access in the test

period can be thought of as a low IRR. This triggers the movement of the hot hand – the hand

advances (resetting the referenced bits of hot pages in the process) until it finds an unreferenced hot

page, a hot page with the currently largest IRR, and marks it cold. When it encounters a cold page, it

performs the same work as the test hand (which is advanced only when the number of non-resident

pages reaches certain limit) – terminates their test period.

47

To better illustrate the promise of page replacement algorithms based on more information

than recency, we will perform two benchmarks. First, a simple test consisting of allocating an array

slightly larger than the available pool of memory and then repeatedly walking it sequentially without

reusing the data in between the subsequent walks – a common scenario of most recently accessed

pages evicting pages that will be needed the soonest. The results are for kernel revision 2.6.18 with

and without Peter Zijlstra's Clock-Pro patch62 applied booted with 96 MB of memory; an array of 100

MB is walked 100 times in strides of a page size (4096 bytes).

The second test, based on an example from [O'Neil93], randomly accesses a database through

a B-tree indexed key. We will use miniDB63, a barebones database management system, to create an

approximately 700 MB database file with an index file about 1/10 of its size. Obviously, it would be

desirable to keep the entire index file memory-bound because any of its blocks are accessed with

much higher probability than the data file blocks are. There will be many more accesses to the data

file, though, and a page replacement algorithm based solely on recency will happily evict the index

pages to make room for data pages that are extremely unlikely to be needed again any time soon.

Kernel Sequential Scan Indexed Database

2.6.18 [Vanilla] 27m:13s 2h:06m:16s

2.6.18 [Clock-Pro patched] 13m:06s 2h:03m:31s

In theory, both tests should benefit hugely from the properties of Clock-Pro and we can see

that it more than doubles the performance of our sequential scan benchmark64; the improvements to

our database application are more modest, though - with Clock-Pro achieving approximately a 2.2%

time decrease.

Even with an optimal page replacement algorithm, paging would sooner or later occur – and

with the ever increasing gap between memory and hard drive latencies, its costs continue to rise. With

a high enough load, any system can be brought to the point of thrashing when all useful computation

virtually stops as processes spend most of the time waiting for I/O to complete instead of computing.

Consequently, there is a need for a mechanism of keeping the pressure on the memory manager

62 http://programming.kicks-ass.net/kernel-patches/page-replace/2.6.18-pr1.patch

63 http://master.kernel.org/~marcelo/benchmarks/mdb-bench-2.1.tar.gz

64 This property of eviction algorithms is called scan-resistance. LRU-like algorithms do not possess it

48

within reasonable bounds. Traditional solutions of thrashing prevention – like temporarily suspending

or even swapping out entire processes – necessitate in more complex, multi-level schedulers which

have to consider not only fair CPU sharing but fair memory residence as well, because load control

should not penalize any process exceedingly compared to the rest of the system; every individual

process must be guaranteed to make eventual progress. Combined with other requirements for load

control mechanisms – e.g. self tuning ability and preferential treatment of interactive processes65 - the

traditional methods are not satisfactory.

Linux implements (since 2.6.11 version) another layer of thrashing prevention - a swap token

tuning method of load control [Jiang05a]. A token is introduced into the system that is passed to a

selected process during a prethrashing phase – after the algorithm has determined that thrashing is

forthcoming but well before the system detects a high enough pressure on the virtual memory to start

suspending processes. The ownership of the token gives the process immunity from page out,

allowing it to quickly establish its working set. It is hoped that the load spike the system experiences

is temporary and can be overcome in this way – by allowing select processes to quickly progress,

eventually reducing the overall load without having to swap out a single process. There are still

problems with the swap token passing implementation, however. For example, although the algorithm

provides considerable benefits during high loads, it is detrimental to system performance under very

light virtual memory pressure. Also, ensuring fair passing of the token between processes is not

completely solved as of now.

We will demonstrate what kind of performance to expect from the swap token tuning by a

benchmark that forks off ten processes, each of them allocates and uses a chunk of memory for a

predetermined time period and then terminates. The results were obtained on a workstation with 768

MB memory, ten processes each of which allocated 130 MB and read 2 bytes of every page 35 times.

2.4.18 kernel was used as a reference system without any kind of thrashing prevention. 2.6.18 kernel

with swap token tuning enabled and swap_token_timeout (more on this later) set to 300

represented the load control algorithm.

Kernel Time required

2.4.18 [No thrashing prevention] 12m33s

2.6.18 [Swap token tuning] 5.1s

65 A shell being used by the system administrator to solve the current overload situation should definitely not

be swapped out

49

The algorithm can be parametrised by one newly introduced sysctl () variable –

swap_token_timeout. It specifies the length of the period a process is granted the swap token

for. The value is in units of HZ66 and defaults to 300, which may not be optimal as our test67 shows.

The last issue connected with page replacement that we will mention here is the possibility of

swap prefetching. With any global68 page replacement algorithm, a large (memory footprint-wise)

application is bound to cause page evictions from memory owned by other processes. When the

application exits, the system is left with a large pool of free memory while considerable portions of

other processes are paged out leading to poor interactivity when they are switched to by the user

again.

A number of attempts have been made to counter this undesirable effect but no solution that

would not negatively impact the overall system performance has been found so far. The

implementation merged into the -mm source tree69 (since version 2.6.16) tries to keep the overhead

and negative influences to a minimum. A new, low-priority, kernel thread is introduced to perform

66 HZ is a kernel macro which equals the frequency of the timer interrupt – usually 100 for x86

67 And this information: http://lwn.net/Articles/105136/

68 And local policies are not often implemented (VMS is one exception) – they are hard to tune to make

optimal use of system resources and if made auto-tuning tend to mimic global policy instead

69 Linux source code is developed in several independent trees maintained by influential developers to test

different (and conflicting) kernel features. The most prominent ones are the -mm tree maintained by Andrew

Morton, the -rmap tree maintained by Rik van Riel and the mainline tree maintain by Linus Torvalds

50

Illustration 5: The same swap token tuning test as in a

previous section (1 GB workstation and 10 processes

allocating 150 MB each) is now performed for different

values of swap_token_timeout - the optimal value

seems to be 30

the swap prefetching; in addition, a limited number of pages paged out most recently is remembered –

it is assumed that these are the pages that will be needed the soonest. The thread wakes up

periodically to perform the prefetch but goes back to sleep immediately if it detects a high memory

activity – the criteria include free memory amount, number of dirty pages, disk writeback in progress

or the swap cache size. If the thread concludes it is safe to proceed with the prefetch, read pages are

placed to the end of inactive_list and their copies kept on the backing store – in this way, they

will be the first to be paged out, and cheaply too, in case memory becomes scarce soon.

As a demonstration of the positive influence of swap prefetching (although this would be

obviously best demonstrated with an interactive application and user's experience), we will write a

short program that allocates a block of memory and then forks off a child which does something

memory hungry and causes the parent's data to be paged out. This simulates an inactive application

having its working set paged out by unrelated activity in the system. The parent just waits for the

child to complete and goes to sleep to give the swap prefetching algorithm a chance. Finally, the

parent wakes up and measures the latency of accessing every page of the original allocated block. We

will use Con Kolivas' swap prefetching patch70 to the 2.6.18 kernel revision. With prefetching

disabled71, the kernel would have to bring most of the pages from the swap area; while with

prefetching enabled it would, hopefully, find most of the desired pages already in main memory.

Kernel Average Time

2.6.18 [swap prefetching disabled] 9.7s

2.6.18 [swap prefetching enabled] 4.1s

This particular case had the parent allocate 20% of all available memory before forking off a

child, which in turn allocated 150% of available memory before exiting. The prefetching feature

decreased the time required to re-access the original memory block to less than a half. The parent

slept for one minute before performing the re-access, this was enough for the swap prefetch to bring

in all its remembered pages (among them, approximately 75% of our buffer's paged out portion) –

other applications, with different fractions of their memory in the prefetcher's remembered pool will

benefit accordingly.

70 http://ck.kolivas.org/patches/swap-prefetch/2.6.18-rc2-swap_prefetch-33.patch

71 Through the sysctl () swap_prefetch variable

51

Another issue with the memory manager's design is the increasing cost, both in time and the

amount of memory used, of accessing page tables [Szmajda03]. 64bit address space machines require

slow and expensive page table structures; moreover, modern CPUs became much faster than main

memory making the effect of TLB misses much worse than in the past. This is even aggravated by the

rising memory capacity because TLBs can now cache a much lesser portion of available memory.

Making TLBs larger yields diminishing returns as TLBs need to be invalidated fairly often; besides,

sophisticated CAM memory is required for their construction, which is very hard to be made large,

fast and cool. Other factors contribute to the issue; for example, while memory sharing can be

recognised and optimised by both main memory and CPU caches (the physically indexed ones, of

course), each of the sharing processes requires a separate TLB entry for a shared page72.

Larger pages are one possibility of improving this situation – by keeping page tables smaller

and TLB hit rates higher. However, larger pages cause fragmentation problems and decreased I/O

bandwidth, so it is desirable to be able to use different page sizes – each for a different purpose. Some

architectures may provide hardware support for pages of different sizes73 or contiguous pages can be

clustered together and treated as one superpage in software.

This clustering is inefficient though, and it is much more desirable to have hardware do the

work, which can be considerably simplified by a suitable page table structure. For example, x86 can

regard the lowest page directory entry as a page table entry mapping 4 MB of memory. This is how

the kernel creates its page tables as mentioned earlier.

But this structure is rigid, x86 with two levels of page tables cannot support more than two

different page sizes this easily. The variable radix page table was designed to address this

shortcoming. Outwardly, it is a forward-mapped page table, which however allows for a virtual

address to be split into a different number of fields of varying lengths (contrary to the fixed 10 bits

for the directories, 12 bits for the page table used in a traditional “fixed radix page table” on x86).

Consequently, different depths of page tables can be used for different parts of an address space,

easily allowing the use of superpages when required.

Regarding the page table structure, there has been an effort to push the currently used page

tables in linux to the architecture dependant layer of x86 and provide an architecture independent

72 Though there are advanced TLB designs with tags that do not identify an address space but a protection

domain shared by many distinct address spaces

73 x86 provides only two – 4 kB and 4 MB (2 MB with PAE enabled), but machines with much better support

exist – IA64 provides a total of 11 different page sizes ranging from 4 kB to 4 GB

52

interface allowing for easy reimplementation of different page tables for each architecture. This has

been specifically proposed with variable radix page tables in mind (for the IA64 machines). More

information on the project can be found on the Gelato web page74.

74 http://www.gelato.unsw.edu.au/IA64wiki/PageTableInterface

53

7 Conclusion

The work presents a condensed view on memory management in general and its linux

implementation in particular. Many details of description have been omitted for the sake of brevity,

most of the topics included in Section 6 were merely hinted on as each would deserve a work of its

own. Nevertheless, we believe the work offers a coherent account of the topic and may serve as an

introduction to the domain of memory management.

With this said, the work cannot honestly pretend to represent original contribution. All

algorithms, data structures and approaches discussed are well studied and proven solutions. The

behaviour of the linux kernel under many imaginable conditions is well known and tested, all the

unofficial patches mentioned have both rationale and test results backing their claims and well

understood and described limitations on the ground of which they were denied merging into the

mainline kernel. The work provides merely a summary of these scattered facts.

Possible improvements and ideas for future revisions include a more thorough description of

the page eviction algorithm implemented in linux and conducting more detailed benchmarks. It would

probably be interesting to perform some regression tests on the linux kernel, explore the impact of

different hashing functions used in kernel space or determine the performance of the buddy system

allocator variations.

Of works similar in topic and approach, we would like to mention Mel Gorman's description

and detailed, line by line, code commentary of the linux memory manager [Gorman04]. Interested

reader can consult the book for further details.

54

8 Abbreviations

APIC Advanced programmable interrupt controller

ARC Adaptive replacement cache

AVL Adelson-Velsky, Landis

BSD Berkeley Software Distribution

CAM Content-addressable memory

CPU Central processing unit

DDR Dual data rate

DMA Direct memory access

FIFO First-in, first-out

GNU GNU's not UNIX

GPL GNU Public Licence

IEEE Institute of Electrical and Electronics Engineers

I/O Input/output

IPC Inter-process communication

IRR Inter-reference recency

LFU Least frequently used

LIRS Low inter-reference recency set

LRU Least recently used

MIPS Multiprocessor without interlocked pipeline stages

MMU Memory management unit

NRU Not recently used

NUMA Non-uniform memory access

PAE Physical address extension

PGD Page global directory

PMD Page middle directory

PTE Page table entry

PUD Page upper directory

POSIX Portable Operating System Interface

RAM Random access memory

RISC Reduced instruction-set computer

ROM Read-only memory

SMP Symmetrical multiprocessing

SUS Single UNIX Specification

SVR2 System V Release 2

TLB Translation look-aside buffer

UMA Uniform memory access

VFS Virtual file system

55

9 References

[Bach86] Maurice J. Bach, “The Design of the UNIX Operating System”, Prentice Hall – 1986

[Bonwick94] Jeff Bonwick, “The Slab Allocator: An Object-Caching Kernel Memory Allocator”,

Proceedings of the USENIX Summer 1994 Technical Conference, pp. 87-98 - 1994

[Carr81] Richard W. Carr and John L. Hennessy, “WSClock – A Simple and Effective Algorithm for

Virtual memory Management”, Proceedings of the 8th ACM symposium on Operating Systems

Principles, pp. 87-95, Pacific Grove, California - 1981

[Denning68] Peter J. Denning, “The Working Set Model for Program Behavior”, Communications of

the ACM, Volume 11, Issue 5, pp. 323-333 – May 1968

[Fotheringham61] John Fotheringham, “Dynamic Storage Allocation in the Altas Computer,

Including an Automatic Use of Backing Store”, ACM Communications 4, 10, pp. 435-436 –

October 1961

[Gorman04] Mel Gorman, “Understanding the Linux Virtual Memory Manager”, Prentice Hall - 2004

[Huck93] Jerry Huck and Jim Hays, “Architectural Support for Translation Table Management in

Large Address Space Machines”, Proceedings of the 20th Annual International Symposium on

Computer Architecture, pp. 39-50, San Diego, California – 1993

[Jiang02] Song Jiang and Xiaodong Zhang, “LIRS: An Efficient Low Intere-reference Recency Set

Replacement To Improve Buffer Cache Performance”, Proceedings of the 2002 ACM

SIGMETRICS Conference on Measurement and Modeling of Computer Systems, Marina Del

Rey – California – June, 2002

[Jiang05] Song Jiang, Feng Chen and Xiaodong Zhang, “CLOCK-Pro: An Effective Improvement of

the CLOCK Replacement”, Proceedings of 2005 USENIX Annual Technical Conference,

Anaheim, CA - April, 2005

[Jiang05a] Song Jiang and Xiaodong Zhang, “Token-ordered LRU: An Effective Page Replacement

Policy And Its Implementation in Linux Systems”, Performance Evaluation, Vol. 60, Issue 1-4,

pp. 5 – 29, 2005

[Knowlton65] Kenneth C. Knowlton, “A Fast Storage Allocator”, ACM Communications 8, 10, pp.

623 – 624 – October 1965

[McCalpin95] John D. McCalpin, “Memory Bandwidth and Machine Balance in Current High

Performance Computers”, IEEE Technical Committee on Computer Architecture – Septermber

1995

[McVoy96] Larry W. McVoy and Carl Staelin, “lmbench: Portable Tools for Performance Analysis”,

Proceedings of the USENIX 1996 Annual Technical Conference - San Diego, California,

January 1996

[Megiddo03] Nimrod Megiddo and Dharmendra S. Modha, “ARC: A Self-Tuning, Low Overhead

Replacement Cache”, Proceedings of the USENIX File & Storage Technologies Conference

(FAST) – San Francisco, CA – March, 2003

[Nagle93] David Nagle, Richard Uhlig, Tim Stanley, Stuart Sechret, Trevor Mudge and Richard

Brown, “Design Tradeoffs for Software-Managed TLBs”, Proceedings of the 20th Annual

International Symposium on Computer Architecture, pp. 27-38 – May 1993

56

[O'Neil93] Elizabeth O'Neil, Gerhard Weikum and Patrick O'Neil, “The LRU-K Page-Replacement

Algorithm for Database Disk Buffering”, Proceedings of the ACM SIGMOD Conference, pp.

296-306, Washington, D.C. - May, 1993

[Saavedra95] Rafael H. Saavedra and Alan Jay Smith, “Measuring Cache and TLB Performance and

Their Effect on Benchmark Runtimes”, IEEE Transactions on Computers, 44 (10), pp. 1223-

1235 – October 1995

[Sears00] Chris B. Sears, “The Elements of Cache Programming Style”, Proceedings of the 4th

Annual Showcase and Conference, pp. 283-298, Berkeley, CA – October 2000

[Szmajda03] Cristan Szmajda and Gernot Heiser, “Variable Radix Page Table: A Page Table for

Modern Architectures”, Asia-Pacific conference on advances in computer systems architecture

2003, pp. 290-304 – September, 2003

[Tanenbaum01] Andrew S. Tanenbaum, “Modern Operating Systems”, second edition, Prentice Hall

– February 2001

[Vahalia96] Uresh Vahalia, “Unix Internals: The New Frontiers”, Prentice Hall - 1996

57

10 Appendix: CD Contents

Benchmarks source code:

memory_hog.c

mmap.c

sequential_scan.c

swap_prefetch.c

thrashing.c

Makefile

Complete lmbench results in accordance with the program's licence agreement:

lmbench_results.dat

Source code of third party benchmarks:

lmbench-3.0-a7.tar.bz2

Kernel patches tested:

swap_prefetch33-2.6.18-rc2.patch

clock_pro1-2.6.18-rc5.patch

58

	1 Introduction
	2 Memory Management
	2.1 Memory Management Approaches
	2.2 Virtual Memory
	2.3 Page Tables
	2.4 Page Frame Reclamation
	2.5 Memory Allocators

	3 Linux
	4 Linux Virtual Memory Manager
	4.1 Memory Organisation
	4.2 Process Address Space
	4.3 Memory Allocators
	4.4 Page Frame Reclamation

	5 Experiments
	5.1 Tunables

	6 Problems
	7 Conclusion
	8 Abbreviations
	9 References
	10 Appendix: CD Contents

