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Abstrakt

Práce popisuje správu paměti v jádře linuxu. První část je věnována stručnému shrnutí architektury 

operačních systémů a teorii správy paměti – jmenovitě virtuální paměti, stránkovacím tabulkám, 

algoritmům stránkování a jádrovým alokátorům. Druhá část se soustřeďuje na vlastní implementaci 

zmíněných principů ve skutečném operačním systému, linuxu. Součástí je též sada testů navržených 

pro zjištění chování paměťového správce a krátké zmínění současně existujících omezení včetně 

jejich navrhovaných řešení.
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Operační systém, jádro, linux, správa paměti, virtuální paměť, stránkovací tabulka, algoritmus 
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Abstract

This work describes the memory manager subsystem of the linux kernel. The first part gives a brief 

account of operating systems architecture and memory management theory - of virtual memory 

management, page tables, page replacement algorithms and kernel allocators in particular. The 

second part discusses the actual implementation of these principles in a modern kernel – in linux. 

Finally, a series of tests stressing the memory subsystem is conducted to determine the memory 

manager's real behaviour. Limitations of the current linux kernel memory management and some of 

their proposed solutions are also discussed.
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Operating system, kernel, linux, memory management, virtual memory, page table, page replacement, 

memory allocation, performance, benchmark
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1  Introduction

An operating system is the central software part of a usable computer system. It is responsible 

for managing the access to hardware and software resources of the platform, setting and enforcing 

policies on allocation of processor time, memory space, input and output devices and other resources 

to user processes. It  also abstracts the low level architectural details from users, hiding away the 

existence of interrupts, disk blocks, physical (possibly non-contiguous) address space or competing 

programs  loaded  simultaneously  in  memory  and  provides  easy  to  use  concepts  such  as  distinct 

processes, named files, virtual, contiguous, protected address spaces and a private (virtual) processor 

for every existing process. In this way, the kernel forms a base for other programs to use through 

well-defined, standardised system call routines.

Conceptually, we may divide an operating system kernel into several separate subsystems:1

� The scheduler responsible for handling exceptions and interrupts, system timing as well as 

creation, execution, switching and termination of user processes. The scheduler also sets and 

enforces policies on processor time sharing between runnable processes.

� Memory manager controlling the allocation and deallocation of system memory to both user 

processes and to the kernel itself. Management of the many kernel caches and buffers and 

implementation of memory sharing and memory-mapped files are also responsibilities of this 

component.

� Virtual file system providing an architecture independent layer over numerous physical file 

systems as well as the ability to represent most of the existing hardware devices as files 

accessible with regular system calls. Virtual file system also creates a hierarchical directory 

structure and allows for device-independent mounting of partitions at directory points.

� Inter-process communication subsystem providing user processes with various means of 

communication and synchronisation - including pipes, signals, semaphores, shared memory 

and message queues.

1 We are considering monolithic kernels only, other approaches to operating systems architecture all have 

similar functionality, albeit in different forms. For example, microkernels might have many of the 

mentioned subsystems moved into user space as regular processes; exokernels would go even further and 

keep only basic hardware allocation and protection functionality and move the rest to more conventional 

kernels running in its “user space” layer
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� Networking support with implementations of all the protocol stacks required for participation 

in network communication.

This work is concerned solely with the memory manager component. First,  an account of 

historical approaches to memory management is given - virtual memory, page tables, page eviction 

and  memory  allocation  are  in  turn  discussed  in  some  detail.  Several  of  these  topics  are  further 

examined  in  the  section  on  problems  of  linux  memory  management  –  in  particular,  the  page 

replacement algorithms which are still subject to intensive research.

The  main  part  of  the  work  describes  the  implementation  of  the  linux  virtual  memory 

manager, with a special emphasis on data structures used. Certain parts of the manager are omitted 

for the sake of brevity. These include chiefly the shared memory implementation which is more a 

matter of the IPC subsystem and actual workings of page outs and page ins which belong to the 

domain of a file system layer.

The description is concluded with a series of benchmarks measuring the memory manager's 

behaviour  –  notable  among these  are  bandwidth,  latency and scalability  measurements  and tests 

intended to determine the impact of changing certain tunable values or evaluate prospects of proposed 

kernel patches making modifications to the algorithms in question.
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2  Memory Management

Beside processor clock cycles, memory is the most important resource in a computer system 

and its efficient management determines the performance (or lack thereof) of the whole platform. 

Chief among the memory manager's responsibilities are keeping track of free and assigned memory, 

its allocation on demand by user processes and by the kernel itself, deallocation when appropriate and 

efficient management of memory hierarchy. A good overall description of memory management can 

be found in [Tanenbaum01]. Here, we will present a brief account of the most important memory 

management topics.

2.1  Memory Management Approaches

Historically,  the first  memory managers made no use of  memory hierarchy,  they worked 

exclusively with main memory,  there was no concept  of  swapping or paging and the amount of 

physical memory constituted the limit on the size of a runnable process. The simplest management 

scheme used on early mainframe computers, personal computers running MS-DOS and even today on 

some embedded systems allowed just the kernel2 and one user program to be resident in memory at 

once. The operating system would execute the user program until its termination, then await further 

commands.

The  transition  to  multiprogramming  systems  was first  facilitated  by splitting  the  address 

space  into  fixed-sized  partitions,  each  able  to  load  a  different  program3.  Multiprogramming 

dramatically improves system throughput by keeping the CPU busy executing a different process 

while  the  original  one  is  blocked  waiting  for  I/O  to  complete;  it  however  introduces  a  host  of 

problems: memory manager must enforce more or less complicated policy decisions that determine 

which partition to load a new program into – for illustration: best fit implementations avoid excessive 

memory fragmentation, but compared to first fit algorithms discriminate interactive processes, which 

are  usually  small  and  tend  to  waste  space  in  a  partition.  Moreover,  programs  cannot  make 

assumptions on the memory address which they will  be loaded on,  thus linkers have to produce 

relocatable  code  –  by  providing  a  directory  of  memory  addresses  in  a  compiled  program,  the 

2 Loaded either in a reserved part of memory or in a special ROM chip

3 IBM OS/360, for example, implemented this technique
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executable can be modified before being loaded into memory by adding the starting address of the 

partition to every address in the code. Even more importantly, programs must not be allowed access 

into a partition which does not belong to it. IBM solved this problem by assigning protection bits to 

memory partitions and having the hardware trap an illegal access attempt. Another approach to both 

the relocation and protection problem was to equip the hardware with base and limit registers4; when 

executing a process, the base register was loaded with the starting address of its partition, the limit 

register with the partition's end. Upon every access to memory, the base register was added to the 

address and a trap raised if the resulting address exceeded the limit register.

With the rise of time sharing systems, these simple techniques were no longer sufficient. The 

first  attempt  to  address  their  limitations  was  by  swapping  mechanisms.  Memory  managers 

implementing swapping divide memory into dynamically sized (and resizeable) partitions which can 

also be copied to backing store on a hard drive in case of insufficient amount of memory for all 

processes and users, thus fully utilising the entire memory hierarchy. Otherwise, swapping is very 

similar to previously discussed multiprogramming with fixed partitions, with the same problems of 

relocation,  protection  and  fragmentation.  Keeping  track  of  allocated  memory  is  more  complex, 

though. Bitmaps or linked lists of holes and assigned memory areas have traditionally been used for 

its management.

2.2  Virtual Memory

Swapping in this form is not used by modern operating systems any more5 and has been 

superseded by virtual memory architectures [Fotheringham61]. The basic idea behind virtual memory 

is to map virtual addresses used by processes into physical addresses of the actual chips by hardware 

(with operating system support), transparently to the user and on demand – without necessitating for 

the  mappings  to  be  contiguous  or  even  consistent  over  the  process  lifetime.  The  most  widely 

implemented technique of achieving this goal used today is paging6.

4 CDC 6600 and, in a limited way (relocation without protection), Intel 8088 used this technique

5 But swapping has not disappeared entirely – on many UNIX systems, swapping out entire processes has 

remained as a method of load control to reduce pressure on the memory manager during thrashing

6 Segmentation, another historically popular, though not transparent, approach, used heavily in MS-DOS, 

Multics, OS/2 and others, adopted a different method. While paging provides protected address spaces by 

mapping the same virtual addresses to different physical addresses, segmentation assigns a different 

physical address space to each process
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In paged systems, the virtual address space is divided into small7, easily managed units called 

pages; similarly, physical memory is divided into page frames of the same size as pages. Processors 

contain  a  special  memory  management  unit  to  translate  virtual  addresses  of  pages  into  physical 

addresses of page frames, using page tables created and managed by the operating system as mapping 

directories. Should a program attempt to access a page not currently present in memory, the MMU 

generates a page fault exception which the operating system handles by bringing the desired page into 

memory and restarting the faulting instruction. Thus virtual memory obviated the need for running 

processes  to  be  loaded  entirely  in  main  memory,  only  the  currently  needed  pages  are  memory 

resident, making optimal use of system resources and increasing the degree of multiprogramming.

There are two principal problems with paging systems. The first is that the translation must 

be fast as performance would dramatically deteriorate with expensive directory lookups upon every 

memory access. This is addressed by introducing translation look-aside buffers into the MMU. The 

TLBs cache recent virtual-to-physical address translations, if TLB hit rate is kept reasonably high, the 

system  can  substantially  decrease  the  negative  performance  impact  of  paged  virtual  memory. 

Interestingly,  many  modern  RISC  architectures  do  not  have  hardware  TLBs  and  manage  the 

translation  buffers  in  software.  This  allows  for  more  flexible  page  table  structure,  considerably 

simplifies CPU design and frees die area for other purposes such as larger memory caches. However, 

as  described  in  [Nagle93],  software  managed  TLB  have  slower  refill  times  impacting  overall 

performance – kernel TLB misses contribute significantly to this effect. Recent trends in operating 

system architecture: shifting towards micro kernel designs, moving increasingly more functionality 

into user space and using virtual memory for mapping kernel data structures place further stress on 

TLB and decrease overall platform performance.

The second problem is the page table size. Linear, single level page tables for 32bit CPUs are 

probably doable (though impractical8) but totally infeasible for 64bit CPUs and other solutions had to 

be found. The most widely implemented ones are multilevel forward-mapped and reverse-mapped 

page tables.

7 Although nowadays, they can be very large too – 4 GB on IA64, for example

8 32bit CPUs with 4 kB pages and 4 byte page table entries would require 16 MB of memory per process 

(plus kernel) for  page tables alone
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2.3  Page Tables

Forward-mapped page tables are directories of physical addresses indexed by virtual address. 

Every process has its own page table; mapping is trivial, with page tables containing the respective 

physical address. This structure provides great flexibility, allowing easy aliasing of multiple virtual 

addresses into a single  physical  one,  sharing memory between different  processes,  copy-on-write 

optimisations9 and different protection schemes for the same memory mapped by different processes.

Multilevel page tables split this structure into a small directory, the entries of which point to 

actual  page  tables;  only  used  page  table  pointers  are  filled  and  respective  second  level  tables 

allocated, the unused entries remain NULL. As processes rarely access their entire address space, this 

technique provides the desired memory savings – extensions to more than two levels are possible, if 

required10.  The downside is  an increased cost  of  TLB misses as additional  memory accesses are 

needed to traverse the page tables hierarchy, possibly causing further page faults and TLB misses.

Inverted, or reverse-mapped, page tables map the physical address space of the entire system 

into virtual address spaces of all existing processes. The physical address space being (usually) far 

smaller than the virtual one, very little memory is wasted; in addition, only one page table exists for 

the entire system. Page table entries are indexed simply by physical address (which is unfortunately 

wasteful should the system have holes in memory11), but virtual-to-physical address translation is now 

much  more  expensive  as  the  entire  page  table  must  be  scanned  to  find  the  mapping.  However, 

efficient TLBs and hashing the entries in page tables mitigate the effects substantially: a hash anchor 

table is first indexed by a hash-function of a virtual address, giving a linked list of potential page table 

entries which can be searched quickly. Another downside is that reverse-mapped tables are far less 

flexible than forward-mapped solutions as all  processes share the same table,  protection requires 

involved walk-arounds and there is no easy way to implement address aliasing (global addresses are 

usually used instead).

[Huck93]  proposes  an  improvement  upon  inverted  page  tables  –  the  hashed  page  table 

combines the traditional inverted page table and a hash table into one structure, each entry of which 

9 Sharing a writeable memory region in read-only mode until an actual write happens, thus avoiding the likely 

unnecessary allocation of private copies to each process

10 Indeed, required they are; 2.6 linux kernel, for example, makes use of four level page tables to support x86-

64 architecture and even that does not map the entire 64bit address space, only 48 addressing bits are used

11 This can be a major concern with modern hardware devices like graphics adapters mapping large portions of 

memory for its own use
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contains both virtual and physical addresses and pointers to colliding mappings, no anchor table is 

required.  Indexing  the  page  table  by  physical  address  is  thus  no  longer  necessary  -  yielding 

significant space advantages over traditional solutions whenever there are large unusable holes in 

physical memory. Importantly, aliasing can be achieved by simply adding the alias into the table, 

albeit at reduced hashed page table effectiveness.

2.4  Page Frame Reclamation

When free memory becomes tight,  it  might be necessary to evict  some pages from main 

memory to backing storage (either to make room for pages being faulted in or to keep a minimal free 

memory reserve for the system12) - it is crucial for system performance to avoid paging out a heavily 

used page frame that would be faulted in soon afterwards (from a hard drive two or three orders of 

magnitude slower than main memory).  Many algorithms for  choosing a page to evict  have been 

developed over the time, some of the more useful ones are listed below13.

The NRU (Not Recently Used) algorithm works by having the hardware set two bits in page 

table entries - the referenced bit on page access and the modified bit on page write. The referenced bit 

is cleared in software every clock interrupt. During eviction, not referenced pages are a preferred 

choice to referenced ones and not modified pages to modified ones.

The FIFO (First-In, First-Out) algorithm evicts the oldest page in the system; while trivial to 

implement its performance is terrible as old, yet still heavily used, pages are frequently paged out. A 

simple improvement upon FIFO, called Second Chance, examines the pages in FIFO order, but evicts 

only a page with the referenced bit cleared. If the page was referenced, it is given a second chance by 

being moved to the tail of the examined pages with its referenced bit cleared. The move operation can 

be  avoided  by  storing  pages  on  a  circular  list  and  simply  advancing  a  pointer  to  the  eviction 

candidate, giving a Clock algorithm – a reasonably efficient solution and often used in practice.

The LRU (Least Recently Used) algorithm maintains a linked list of pages, evicting them 

from memory from its head and moving them to the tail upon reference. While LRU has excellent 

theoretical properties,  modifying a linked list  upon each reference makes it  an unaffordably high 

12 In order to avoid the unpleasant situation when there is not enough memory to even free memory

13 Although it is hard to determine absolute merit of page replacement algorithms – for example, choosing a 

page at random usually gives appalling performance. However, it outperforms most other solutions when 

the general assumption, namely that pages used often in the past will be used again, does not hold – as it 

does not for, say, multimedia applications

16



overhead solution that is rarely used. Fortunately, there is an acceptably efficient approximation to 

LRU - LFU (Least Frequently Used). It works by maintaining a software counter for each page and 

adding the referenced bit to it on each clock. Eviction affects the page with the lowest counter value 

as the one used on the least number of past clock cycles. Ageing can be used to avoid keeping pages 

that were heavily used only relatively long ago still in memory – by simply shifting the counters right 

on each clock, the effect of old references is progressively minimised.

The Working Set page replacement algorithm keeps track of a set of pages that a process used 

in  a  given  time  –  a  working  set14 [Denning68].  Pages  to  evict  are  chosen  at  random from the 

complement of the working set. To determine the working set, a time stamp is recorded for each 

page. As with NRU, hardware sets the referenced bit on access and software runs at every clock 

which clears the referenced bit and updates the time stamp to current time if it was set (meaning the 

page  was  accessed  in  this  clock).  With  a  known  working  set  it  is  also  possible  to  implement 

prefetching mechanisms to ensure that a process has its working set in memory right at the point of 

being switched to by the scheduler thus avoiding needless and frequent page faults15.

An improvement upon the Working Set called WSClock as described in [Carr81] combines 

the working set algorithm with the efficiency of the clock by keeping pages in a circular linked list to 

avoid expensive scans – its performance and simplicity makes it a widely used solution in practice.

2.5  Memory Allocators

The memory manager's component responsible for allocating and deallocating memory is the 

single  most  important  determinant  of  the  overall  system  performance  and  consequently,  its 

implementations are often judged above all else on a merit of speed. But kernel based allocators must 

also be efficient,  as the amount of memory lost to fragmentation (both internal and external) and 

overhead is multiplied by numerous requests from the entire system. It must be well-suited for both 

allocations of long lifetimes (e.g. the address space of a user process) and respectively short ones (e.g. 

14 Note what necessarily happens should the sum of working sets of all processes exceed the amount of 

physical memory: the system will be constantly paging out “working” pages and subsequently faulting them 

in, the resulting excessive I/O will effectively freeze all useful activity – a state known as thrashing. Load 

control and other thrashing prevention mechanisms will be discussed in a chapter on the problems of the 

linux VM

15 Though this is a mere theoretical advantage, such prefetching is not often implemented to avoid wasting 

scarce I/O bandwidth on reading in pages that may never be needed again
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inode buffers for VFS system calls), for very large requests (e.g. a user process enlarging its heap) 

and  small  ones  (e.g.  any  of  the  kernel  descriptors).  It  should  prevent  leaking  old  data  between 

processes,  yet  attempt  to  reuse  once allocated objects.  Considering these  contradictory  demands, 

kernels  often  implement  more  than  one  allocator.  For  a  thorough  discussion  of  this  topic,  see 

[Vahalia96].

The simplest solution – a resource map allocator – maintains a linked list of free memory 

areas to keep track of available resources. Usually, the list is sorted by starting address to allow for 

easy coalescing of  free  areas  upon deallocation  and  a  first  fit  algorithm is  used  for  allocations. 

Though simple to implement and greatly flexible in allocation size, resource maps suffer badly from 

external fragmentation and their performance deteriorates significantly as the linked list  grows in 

size. It is not used today, except for special purposes16.

Another approach – a power-of-two free list - maintains a collection of linked lists, each of 

them grouping free blocks of the same size, which are all powers of two. Blocks are returned to 

respective lists when freed, coalescing is rarely implemented to avoid the costly linked list operations. 

Instead, a pool of blocks of each size is deemed sufficient and allocation requests can be blocked if 

the desired list is empty; alternatively, a bigger chunk of memory can be allocated to avoid blocking 

at the cost of excessive fragmentation. This solution is very fast, however, up to 50%17 of system 

memory can be wasted due to internal fragmentation. External fragmentation can also be a problem 

with a lot of needlessly large pools of small blocks making memory unusable for large requests.

The binary buddy system [Knowlton65] is a considerable improvement upon the previous 

approach and a reasonably efficient solution often used in practice. Again, a collection of linked lists 

chaining free blocks is used to keep track of available resources, all block sizes are powers of two. 

Should a block of a desired size be unavailable during allocation, a bigger block is split in half, one 

half assigned to a respective list, the other one returned to the caller. Similarly, during deallocation, 

adjacent blocks (called mates or buddies) are merged when both free (finding buddies is very fast; as 

blocks always stay aligned when split, the buddy of a block of size 2^n is simply found at the block's 

address with the (n+1)th rightmost bit toggled). This splitting and merging is performed recursively, 

if possible, up to the largest defined block size; a bitmap is used to speed both operations up. With no 

fixed pools, memory is utilised much more efficiently and still relatively quickly.

16 System V used it to allocate kernel semaphores, linux uses a similar approach (with a bitmap instead of a 

linked list) to allocate memory to itself during boot time

17 Or even much more, should the non-blocking implementation be chosen
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The  binary  buddy allocator  is  a  popular  solution  in  UNIX operating  systems  and  many 

variations and optimisations have been proposed – some of them even abandoning the fixed binary 

size limitation, providing block sizes of fibonacci series members or generalised, arbitrarily sized 

blocks, for example. Notable among binary buddy allocator optimisations are the lazy splitting and 

unaggressive  merging  used  in  System  V.  These  techniques  are  intended  to  avoid  pathological 

splitting and merging the traditional implementations exhibit when a smaller block is allocated from a 

bigger one and is deallocated shortly after that. While traditional solutions would perform the splits 

and merges, the lazy optimisations keep the deallocated blocks unmerged on appropriate lists and 

avoid both the expensive merges and, potentially, repetitions of the entire operation should another 

allocation request of the same size be forthcoming.

Another modification of the simple power-of-two free list - the McKusick-Karels allocator, 

first  used in BSD, keeps the block meta data off the linked lists.  Thus avoiding the necessity of 

unfavourable rounding towards the next bigger size (and the consequent fragmentation) should the 

desired allocation size be itself a power of two (as is very often the case).

Mach's  zone  allocator  came  with  a  completely  different  approach.  Because  the  cost  of 

initialising an object often exceeds the cost of allocating its memory, the zone allocator maintains 

caches of initialised ready-to-use objects in linked lists; each list chaining objects of the same size is 

called a zone. Should a zone be emptied by allocations, another page is obtained from a lower level 

allocator,  carved into respective objects  and they in turn used to replenish the zone.  Objects are 

returned to the zone when freed and can be easily reused. Zones can grow indefinitely and are usually 

purged periodically by a garbage collector.

Solaris uses a very similar approach in its slab allocator [Bonwick94]. Each type of object has 

its  own cache as in the zone allocator,  but  objects support  constructor and destructor procedures 

greatly aiding in object reuse. Caches are collections of slabs, which in turn are collections of blocks 

of memory obtained from a lower level allocator. This tiered architecture simplifies many operations 

compared  with  the  zone  allocator.  Newly created  objects  are  added to  the  slabs  initialised  by  a 

constructor,  freed  objects  are  returned  to  its  slab  again  initialised  in  a  ready-to-use  state  by  a 

destructor. Small objects are allocated directly within a page assigned to a slab including their meta 

data.  The meta  data  of  objects  that  cannot  fit  within  a  page are  kept  off  the  slab,  on  a  special 

descriptor. Descriptors themselves are stored on a linked list and a hash table is maintained to provide 

fast object-to-descriptor mappings. The slab allocator also attempts to colour its caches – that is, to 
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vary the starting address of objects to improve the performance of hardware caches by decreasing the 

occurrence of cache line collisions.
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3  Linux

Linux was originally created by Linus Torvalds while attending the University of Helsinki in 

1991 as a replacement for the Minix micro kernel, written by professor Andrew S. Tanenbaum for 

educational purposes. Since then, licensed under GPLv2, linux has been developed and extended by 

the combined effort of numerous members of the open source community and made to interoperate 

with utilities created by the GNU project - giving rise to the GNU/Linux platform.

Once dubbed as hacker's and student's toy, linux has evolved into a competitive operating 

system.  Combined  with  the  cheap  performance  of  the  x86  architecture,  it  is  quickly  displacing 

proprietary  UNIX  systems  running  expensive  RISC  machines,  gaining  foothold  in  server  and 

workstation market and making inroads into the desktop environment as well.

The current version of linux kernel, 2.6.20, offers these features:

� Full IEEE POSIX and SUS compliant unix kernel based loosely on SVR2 [Bach86], but with 

many improvements upon its design.

� Monolithic but largely modularised kernel architecture, allowing loading and unloading of 

kernel components (in many cases even during runtime and automatically on demand) or 

their easier replacement.

� Kernel-level support for multithreaded applications18. As of 2.6 version, linux is also fully 

preemptible, allowing for arbitrary interleaving execution flows in kernel space - a welcome 

feature in embedded or real-time systems.

� Linux runs on a plethora of hardware platforms, offers excellent support for symmetric 

multiprocessing and non-uniform memory access architectures, interoperates with many 

flavours of file systems, network protocol stacks and executable file types.

� The open source nature of linux ensures high code quality, low frequency of bugs and easy 

customisation of all components - possibly resulting in very small and compact or powerful 

and feature-rich systems.

18 Light-weight processes are in linux created through the non-standard clone () system call
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4  Linux Virtual Memory Manager

In this section, we will give an account of the memory manager implementation in a real 

operating system kernel, pointing out the concepts, the rationale behind choosing them and describe 

the main data structures used (note that ordering of items within the structures described has not been 

preserved to improve readability; the source code is ordered in such a way as to avoid mapping items 

often heavily used together into the same cache lines [Sears00]). An excellent description of this topic 

can be found in [Gorman04].

4.1  Memory Organisation

Linux  runs  on  a  variety  of  architectures  from  embedded  to  supercomputer  machines  - 

including platforms using non-uniform memory access (NUMA19). Such machines have their memory 

divided into independent banks each intended for a specific purpose20 and incurring different costs 

when accessed by different processors. Banks are called nodes in linux and are described by struct 

pglist_data structure, with the most important fields listed below21. Node-local allocation policy 

is used to allocate memory from the node closest to the requesting processor. Zones within a node are 

also chosen to satisfy allocations in a specific order, which is determined during zone creation and 

stored  within  its  descriptor.  Generally,  ZONE_HIGHMEM is  used  first,  sparing  the  important 

ZONE_NORMAL;  ZONE_DMA, critical for hardware devices, is used only when all other zones are 

empty.

19 Some multiprocessor Alpha and MIPS machines, for example. But linux may use NUMA concepts to 

manage UMA machines with large holes in memory, regarding the contiguous, usable chunks of memory as 

distinct nodes

20 For example, each CPU may have its own bank of memory, access to the banks of other CPUs has much 

larger latencies; another bank suitable for DMA access may be located near device cards and assigned to 

them

21 This holds true even for UMA architectures. Linux tries to maintain as much of its concepts as possible in 

the architecture independent layer. Other examples of this are the four-level page tables even for 

architectures that do not support them or TLB handling code hooks. The architecture dependent layer 

resolves all conflicts – UMA machines use one statically defined node, two-level page table machines have 

the middle directories of zero size folding back on the global directory entry, TLB handling methods are no-

ops on the many platforms that handle their TLBs in hardware and so on
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typedef struct pglist_data {

//The number of zones in this memory bank and their array

int nr_zones;

struct zone node_zones[MAX_NR_ZONES];

//The order of zones from which to allocate memory.

struct zonelist node_zonelists[GFP_ZONEMASK + 1];

//A memory map of all pages for this bank

struct page * node_mem_map;

//Starting physical address of the node22 and its size

//in present and spanned pages (holes are the difference)

unsigned long node_start_pfn;

unsigned long node_present_pages, node_spanned_pages;

//Node id and a this node's kswapd thread's process desc.

int node_id;

struct task_struct * kswapd;

} pg_data_t;

The before-mentioned zones are ranges of  memory each suitable for a different  purpose, 

which the nodes are divided into. With the x86 architecture, three zones are used: ZONE_DMA which 

covers the first 16 MB of available memory and its use is required by many device adapters that 

cannot address memory over this limit; ZONE_NORMAL including all the available memory between 

16 – 896 MB23 and  ZONE_HIGHMEM covering the remainder. The difference between the last two 

zones lies in the way kernel maps memory. Only ZONE_NORMAL is permanently mapped in kernel 

page  tables  because  of  the  limited  address  space  of  32  bit  processors24,  memory  found  in 

ZONE_HIGHMEM must be mapped temporarily by kmap () when accessed, this mechanism will be 

described in detail later.  Because only  ZONE_NORMAL is permanently mapped by the kernel,  the 

majority of operations can take place using exclusively this zone.

Consequently, it is not only the most performance-critical zone in the system, but considering 

that the mem_map array (see later in this section), page tables (though this limitation has been lifted 

in recent kernel revisions) and other important structures must be allocated from ZONE_NORMAL, it 

22 The starting address has to be stored as a page frame number instead of a virtual address because certain 

architectures (x86 with PAE – 36 bit addressing support for 32 bit processors - enabled, for example) can 

address more memory than can be represented with their word size

23 The 896 MB limit is related to the way kernel and user address spaces are split. By default, 1 GB area is 

dedicated to the kernel, the upper 128 MB of which is reserved for vmalloc () to implement non-

contiguous memory allocation in a contiguous address space, kmap () space used to map high memory 

into low memory pages and fixed mappings space required by certain subsystems that need to know its 

virtual addresses at compile time – such as APIC - leaving the kernel with only 896 MB of directly mapped 

memory

24 Consequently, 64 bit machines need neither ZONE_HIGHMEM nor perform temporary mappings when 

accessing a part of its memory, speeding memory access operations  – at least in theory

23



places a ceiling on usable memory capacity for the system (an issue for 32bit machines with PAE, for 

example).  Solutions exist  – one possible  approach is  to  give both  the kernel  and user  processes 

separate address spaces25. The downside is an inevitable performance hit in the form of a TLB flush 

and refill per system call. Alternatively, the kernel can be assigned a bigger portion of the address 

space, but this may negatively influence the functionality of user space applications26.

Zone descriptors keep track mostly of statistical data, free area information used by the buddy 

allocators, locks for multiprocessor synchronisation and wait tables used to queue processes waiting 

for I/O to complete on a desired page. Zones also determine watermarks influencing the activity of 

kswapd – the system page reclamation thread (note that there is one kswapd thread per each node 

in the system in the 2.6 kernels).  kswapd is woken up when any zone reaches only  pages_low 

free  pages  and does  not  go  back to  sleep  until  pages_high pages  are  available  again.  Under 

extreme pressure on free memory, when  page_min free pages threshold is reached, the allocator 

itself will do the work of kswapd in a synchronous manner.

struct zone {

//A lock protecting the structure from concurrent access

spinlock_t lock;

//The number of available pages in the zone

unsigned long free_pages;

//Limits which control page reclamation by kswapd

unsigned long pages_min, pages_low, pages_high;

//Free area bitmaps used by the buddy system allocator

struct free_area free_area[MAX_ORDER];

//Hash tables of wait queues of processes

//waiting on a page

wait_queue_head_t * wait_table;

//These items have analogous meaning as in a zone descr.

unsigned long zone_start_pfn;

unsigned long spanned_pages, present_pages;

//LRU lists, their length and a spinlock protecting them

//See page reclamation section later in the text

spinlock_t lru_lock;

struct list_head active_list, inactive_list;

unsigned long nr_active, nr_inactive;

};

25 http://people.redhat.com/mingo/4g-patches/

26 The obvious solution is buying a 64bit machine
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The last division of memory is into pages, described by struct page structures which are 

kept in a global  mem_map array27.  The page descriptor keeps track of the page usage and of its 

belonging to respective linked lists – chaining for example all dirty pages of a memory-mapped file, 

all  pages forming a cache in a slab allocator or all  inactive pages as far as the page reclamation 

algorithm is concerned.

struct page {

//Pages are kept on various lists through this structure

struct list_head list;

//The address space of the backing storage of this page

//The structure contains call back procedures for 

//performing operations on the backing storage

struct address_space * mapping;

//An index within a memory-mapped file or a swap space

pgoff_t index;

//The reference count of this page

atomic_t _count;

//Pages that can be swapped out28 are kept on an lru list

struct list_head lru;

//Virtual address of a page in high memory that is

//currently mapped by kmap ()29

void * virtual;

};

Several status flags are also kept for the page descriptor – bits indicating whether the page is 

active, referenced, reserved, dirty, in high memory, being swapped out and other less important flags. 

To save memory space, the mapping between a page and the zone it belongs to is also encoded in the 

status bits instead of maintaining a separate pointer. Other important mappings - between virtual and 

physical addresses and between addresses and their respective struct page descriptors – will be 

better understood after describing the user space / kernel space address split and page tables in linux.

Linux implements forward-mapped four-level page tables. The page table hierarchy consists 

of a page global directory (PGD), page upper directories (PUD), page middle directories (PMD) and 

page tables. Any virtual address can then be split into offsets into these tables and an offset within the 

actual data page frame found in the page table lookup. Beside the page frame address, page table 

27 With the zones and nodes having pointers to their respective 'subarrays' of the mem_map

28 Technically, swapping out affects whole processes and is not used in modern operating systems; pages are 

paged out. But the two words are commonly used interchangeably

29 In the 2.6 kernels, this is no longer of general necessity, the field is used only if specifically required by the 

platform; instead, a hashtable page_address_htable is used to keep track of only the truly currently 

required mappings, saving one pointer per page worth of memory space
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entries  contain  several  protection  and  status  flags  –  the  self-explanatory  _PAGE_PRESENT, 

_PAGE_RW, _PAGE_USER (indicates the privilege level necessary for access), _PAGE_DIRTY 

and _PAGE_ACCESSED flags and _PAGE_PROTNONE bit used to mark a page that is resident, yet 

inaccessible to user space, such as a page protected with mprotect () system call.

Every process and the kernel has its own page table. The address space30 is divided into a user 

space part and the kernel space part31, the latter being shared by all processes in the system. As stated 

earlier, the kernel uses its page table to linearly map all memory in ZONE_NORMAL into its address 

space32. With this in place, the before mentioned mappings are trivial to implement. All processes 

map virtual to physical addresses using their page tables. Because kernel mappings are linear, the 

translation  from  virtual  to  physical  address  and  its  reverse  operation  are  performed  by  simply 

subtracting (adding respectively) the address of user/kernel space split. When the physical address is 

known, determining the descriptor of the page it belongs to consists in using its page frame number33 

as an index into the global mem_map array of all page descriptors. The reverse operation, mapping a 

struct page to its  physical  address,  is  achieved by determining the descriptor's  index in the 

mem_map array and left-shifting it appropriately.

4.2  Process Address Space

Every process in the system has its own private and protected address space – mapped to the 

physical address space through process page tables. The kernel never allocates memory to processes 

immediately, instead an area of memory with requested access permissions – called a memory region 

- is set aside for the process. The allocation itself is postponed until the page is actually accessed – the 

case of accessing a yet non-existent page belonging to a valid memory region is taken care of by the 

page fault exception handler, which acquires a new page from the physical memory allocator and 

restarts  the process on the faulting instruction. Similarly,  requests to copy writeable memory are 

postponed,  respective pages marked read-only and shared between processes while assigned to a 

writeable memory region. Upon writing them, the page fault handler recognises such pages as copy-

30 We are considering 32bit machines alone here, the discussion does not apply to 64bit platforms without 
ZONE_HIGHMEM

31 This defaults into 3 GB / 1 GB split on the x86 architecture

32 Huge page tables (4 MB on x86) are used for the kernel page tables, if available, saving memory by 

avoiding one level of page tables and additionally, increasing TLB hit rate

33 Which is, naturally, determined by right-shifting the address by the number of bits in the page frame offset
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on-write  optimisations  and allocates  a  new page,  marking both  the  new one and the original  as 

writeable. The page fault handler resolves all other cases of invalid memory references. Allocated, 

but not present,  pages are brought into memory either from the page cache or the swap backing 

storage and expandable memory regions (like the stack) are grown to cover as of yet invalid space. 

SIGSEGV signal is sent to a process accessing an invalid (non-existent,  non-growable) region or 

lacking sufficient permissions to access a valid one.

Memory regions thus group contiguous pages intended for a similar purpose – for example a 

process  stack  or  a  heap  area,  shared  libraries  or  memory-mapped  files  –  they  are  described  by 

struct vm_area_struct structure, the important fields of which are:

struct vm_area_struct {

//The address space descriptor of the process this memory

//region belongs to

struct mm_struct * vm_mm;

//Limits of this memory region

unsigned long vm_start, vm_end;

//All memory regions of a process are kept on a linked 

//list and a red-black tree34 for fast look-up

struct vm_area_struct * vm_next;

rb_node_t vm_rb;

//Protection and status flags

pgprot_t vm_page_prot;

unsigned long vm_flags;

};

All memory regions for a process are kept sorted by address on a linked list for convenient 

sequential access (for example, when searching for a free memory hole) and on a red-black tree for 

fast random access (for example, when searching for a memory region covering a specific address); 

efficiency of random access is essential as it is required relatively often – including in exception 

handlers.  Besides the obvious read, write  and execute permissions,  regions can be allowed to be 

shared or grown (either down – as stacks do, or up – as the heap does), memory in a region can also 

be locked to avoid being swapped.  In case the region has a memory-mapped file  backing it,  the 

descriptor also records the respective file pointer and an offset beginning on which it is mapped.

The process address space itself is described by  struct mm_struct structure. It keeps 

track  of  various  statistical  information,  limits  of  program  sections  its  process  is  executing, 

34 Previous kernel versions used AVL trees which enforce more rigorous balancing to ensure better worse-case 

scenarios; however, AVL trees require more expensive balancing operations
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synchronisation mechanisms to protect its fields from concurrent access, pointers to all of its memory 

regions and a PGD address. The address space descriptor of the init process is statically defined at 

compile time, all others are created as copies of the descriptor belonging to its parent process by the 

fork () system call.

struct mm_struct {

//The list head and the tree root chaining memory regions

struct vm_area_struct * mmap;

rb_root_t mm_rb;

//The page tables' pointer

pgd_t * pgd;

//The reference count of users and anonymous users35

//accessing this address space

atomic_t mm_users, mm_count;

//A semaphore and a spinlock protecting the descriptor

struct rw_semaphore mmap_sem;

spinlock_t page_table_lock;

//All address space descriptors are linked through this

struct list_head mmlist;

//Limits of various sections of the address space

unsigned long start_code, end_code, start_data, end_data;

unsigned long start_brk, brk, start_stack;

unsigned long arg_start, arg_end, env_start, env_end;

//Statistical data36

unsigned long rss, total_vm, locked_vm;

};

4.3  Memory Allocators

Linux makes  use  of  four  different  memory allocators.  A very rudimentary bitmap based 

solution  responsible  for  initialising  the  system during  boot  time,  the  buddy system as  a  general 

allocator of contiguous blocks, a resource map based allocator mapping non-contiguous memory into 

a contiguous address space and the slab allocator as a special purpose cache system for frequently 

used objects.

The boot memory allocator is a very simple solution. Bitmaps are used to keep track of free 

memory and areas suitable for allocation are searched in first-fit fashion. The allocator can merge 

35 Anonymous users access only the kernel part of the address space (kernel threads, for example) – context 

switching to them does not necessitate a TLB flush as the page tables of the previous process can be 

borrowed (a technique called lazy TLB switch), greatly speeding context switch times

36 Number of resident pages (this does not include global zero page – a page assigned to the process when a 

new page is requested, until modified), total memory space occupied and locked pages count
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subsequent allocations that do not require a whole page size, thus decreasing external fragmentation. 

When  the  kernel  initialisation  phase  completes,  the  boot  memory  allocator  retires  itself.  All 

unallocated pages37 are given to the buddy system which from now on takes full control.

The  binary  buddy  system  is  the  general  kernel  allocator  used  in  linux.  As  described 

previously, the binary buddy system maintains a linked lists of free memory blocks formed by a 

power of two consecutive pages (the powers of two range from 0 to MAX_ORDER38). The allocator 

searches the list of blocks of a desired size and if no block is available a bigger block is split into 

halves, called buddies, one of them is inserted into a proper list, the other is returned to the caller. 

This process is performed recursively, if necessary. Buddies are coalesced whenever possible upon 

being freed.

Linux does  not  implement  any optimisations  intended to  avoid  unnecessary  splitting  and 

subsequent merging. The increase in code complexity is probably not worth the performance increase 

(if  any),  because  the caching slab allocator  minimises  the number of  calls  to the  buddy system. 

Moreover, many parts of the kernel maintain quicklists of frequently used data structures themselves 

to further avoid using the potentially expensive allocator39.

In addition, a set of caches of single free pages is maintained for each processor and zone: the 

hot cache and the cold cache. Pages belonging to the hot cache are likely, whereas those in the cold 

cache unlikely, to be still in the given processor's hardware cache. Using pages that are already cache 

mapped is, naturally, beneficial to system performance. But there are cases when requested pages are 

known to remain unreferenced for a relatively long time – for example, when performing I/O read 

ahead or using DMA, in case of which the processor caches are not involved anyway – then it would 

be a needless waste to allocate hot pages and a cold cache is used instead. Single page requests (by far 

the most common ones in linux) are satisfied from the cache, which is replenished when empty in one 

larger batch request to the allocator itself. Note that in effect, the relatively expensive splittings are 

deferred - achieving one of the benefits of a lazy buddy systems.

37 Including all pages used for data and code sections of functions called only during boot time

38 MAX_ORDER equals 11 in the 2.6.20 kernel

39 For example, the memory manager may maintain quicklists of page table directories (this is architecture 

specific, some architectures may consider caching page global directories as overzealous optimisation 

because they are only needed during process creation, already an expensive operation) – data are taken from 

these lists when needed and later returned to them when no longer so. The buddy system is only called when 

the quicklist in question gets empty. Also, the lists are purged when memory is tight by the kswapd kernel 

thread
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Bitmaps are used to manage the state of memory blocks. To conserve memory, only one bit is 

used to track both buddies. Whenever either of them is allocated or freed, the respective bit in the 

bitmap is toggled, consequently the bit is zero if both buddies are free or both in use.

The allocator employs node-specific allocation policy to assign memory from a bank closest 

to  the  requesting  processor  (which,  naturally,  necessitates  in  NUMA  architectures  maintaining 

processor-ID  to  node-ID  mappings).  Zones  are  also  tried  in  order  determined  during  the  node 

creation,  which  is  usually  such  as  to  spare  DMA  memory  and  prefer  high  memory  to 

ZONE_NORMAL.

The buddy system behaviour can be customised by passing several flags by the caller, the 

most interesting of them indicate whether the caller can sleep or perform I/O; the system can also be 

forced to try indefinitely in case of critical requests that absolutely must not fail.  Allocations are 

attempted in  several  passes if  enough memory is  not  immediately available,  the  kswapd kernel 

thread responsible for paging out unused memory is woken up between passes in that case. Should 

even  its  actions  not  free  enough  memory,  the  buddy system will  try  to  free  some pages  itself. 

However, the freed memory will not be inserted into the global pool, but used to satisfy the caller 

exclusively.

The  blocks  allocated  by  the  buddy  systems  are  contiguous  in  memory.  Not  only  is  the 

allocation itself performed more quickly, the kernel page tables need not be modified at all, sparing 

the  system  the  expense  of  a  TLB  flush.  However,  the  buddy  system  suffers  from  external 

fragmentation and satisfying a request with contiguous blocks is thus not always possible.  Linux 

provides another allocator, the  vmalloc (),  based on resource maps, to address this issue and 

allocate non-contiguous memory40.

To implement  vmalloc (), a part of the kernel virtual address space is reserved and its 

respective page tables  modified by  vmalloc () to point  to correct  physical  pages.  The pages 

themselves are allocated by the buddy system. Although the kernel page tables are modified to point 

to the physical memory, the page fault generated by the caller upon access to an incorrect memory 

area  is  recognised  by  the  exception  handler  and  the  page  tables  of  the  faulting  process  are 

synchronised with the reference kernel page tables. The vmalloc () address space is managed by 

40 This is, however, used sparingly in the kernel: module loading and swap map allocation are two principal 

areas where vmalloc() is employed
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a linked list of struct vm_struct structures - basically, simple (starting address, allocated size) 

pairs.

Another part of the kernel address space is reserved for kmap () to temporarily map high 

memory pages into low memory41. A similar mechanism to high memory pages mapping exists in the 

kernel – the bounce buffers which are responsible for performing I/O with the full range of memory 

available on devices unable to address it42. For this purpose, the I/O is performed on buffers in low 

memory and they are subsequently synchronised with the high memory buffer that the I/O operation 

caller specified. This entails an undesirable but necessary performance hit as data is copied twice 

during the operation. 

The slab allocator is intended to offset the internal fragmentation problems with the buddy 

system by allowing for requests smaller than a page. Moreover, the slab allocator caches commonly 

used  object  in  an  initialised,  ready  to  use  state  –  thus  compensating  for  the  time  required  for 

initialising an object being much higher than allocating it, as is often the case. The slab allocator is 

made by a collection of caches chained on a linked list.  Each cache is formed by blocks of page 

frames, called slabs, allocated from the buddy system. The slabs themselves are carved into objects 

that the cache manages.

To avoid  the  internal  fragmentation problems inherent  in  binary  buddy systems,  a  set  of 

caches of objects ranging from 32 bytes to 128 kB is maintained (in pairs, one cache suitable for 

allocation from ZONE_DMA, the other from ZONE_NORMAL). Kernel routines may allocate memory 

from these buffers by calling the kmalloc () function. Besides these general caches, new caches 

can be created with kmem_cache_create () for allocation of other often used objects.

Each  type  of  objects  that  is  obtainable  through  the  slab  allocator  has  its  own  cache43, 

described by the kmem_cache_s structure.

41 By default, 32 MB are reserved on x86, which may seem rather low considering the 64 GB physical 

memory limit of x86 processors with PAE support, but kmap () mapped memory is supposed to be soon 

unmapped by kunmap ()

42 Such as 32 bit devices on 64 bit processor systems

43 The kernel exports the information on used caches through /proc/slabinfo
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struct kmem_cache {

//Lists (full, partial, free) linking slabs for the cache

//are kept in this structure, along with a spinlock and

//other required information

struct kmem_list3 * nodelists[MAX_NUMNODES];

//The size of objects in the cache, the size of each slab

//in pages and the number of objects per slab

int obj_size

unsigned int gfporder, num;

//Various flags indicating the state of the cache

unsigned int flags, dflags;

gfp_t gfpflags;

//Per-CPU data

struct array_cache * array[NR_CPUS];

unsigned int batchcount;

//Colouring of the cache for hardware optimisation

size_t colour;

unsigned int colour_off, colour_next;

//Constructor and destructor functions for objects

void (* ctor) (void *, kmem_cache *, unsigned long);

void (* dtor) (void *, kmem_cache *, unsigned long);

//All caches are linked through this structure

struct list_head next;

};

To increase the speed of allocating an object from a cache as well as to simplify the cache 

reaping (that is removing free pages from the cache by the  kswapd kernel thread when short of 

memory),  all  slabs belonging to a cache are grouped on three different lists  – slabs without  free 

objects in them, completely free slabs and partially used slabs. Allocations are always satisfied from a 

partially used slab, if possible.

Caches  can be  customised  by  being told  how to  align  their  objects,  where to  store  slab 

descriptors (either in the slab itself or in a special cache), whether they can be subject to reaping and 

what kind of callers will use them (similar to the buddy system, e.g. a flag indicating whether the 

allocation is allowed to block the caller). The slab allocator also provides the caches with abundant 

debugging and statistics gathering functionality.

One of the major functions of the slab allocator is improving the performance of hardware 

caches and multiprocessor systems. This is achieved in two ways – by colouring the slabs and by 

maintaining pools of per-CPU objects in each cache. Slab colouring is a simple technique that uses 

memory otherwise wasted in a slab (if the slab size is not an exact multiple of the size of objects 

stored in it) to offset objects in different slabs of a given cache by varying amounts. Consequently, 

the objects would use different lines in a hardware cache and not flush themselves out.
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The per-CPU pools  of  objects  try  to keep data  in  use on the  same processor  as long as 

possible.  This is,  again,  beneficial  by not  dirtying the cache with yet  unused memory addresses. 

Allocations and deallocations are satisfied from and to the pool; objects from the slabs will be taken 

only if the pool is exhausted – and in that case, in a large batch which will replenish the pool to 

minimise  the  number  of  calls  to  the  allocator.  Another  big  advantage  of  this  technique  is  that 

spinlocks do not have to be held during requests as there is no possibility of a contention from other 

processors.

The slabs are described by a much simpler struct slab_s structure:

struct slab {

//The list (free, partial, full) this slab belongs to

struct list_head list;

//The colouring offset calculated for the slab by a cache

unsigned long colouroff;

//The starting address of the first object in the slab

void * s_mem;

//The number of objects currently allocated from the slab

unsigned int inuse;

//An array used to store locations of free objects

kmem_bufctl_t free;

};

To map already allocated objects to the slab and the cache they belong to, pointers within a 

corresponding page descriptor  (those that  otherwise link the descriptor on various LRU, dirty or 

active lists within the kernel) are used. The kmem_bufctl_t array then serves as a pseudo-linked 

list of free usable objects within a given slab.

The slab descriptors can be stored either within the actual slab or in a special cache reserved 

for this purpose. The desired method is chosen according to the object size. Slabs in caches of large 

objects44 would suffer overly from fragmentation with slab descriptors stored within them, so the 

special cache is preferred.

4.4  Page Frame Reclamation

A running system is bound to use all available memory to satisfy requests by user processes, 

store  various  kernel  descriptors  and  implement  performance  enhancing  buffers  and  caches.  A 

44 512 bytes on x86 architecture
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mechanism is therefore required for selecting page frames to be invalidated and freed in order to be 

used for future memory allocations. The reclamation is performed by the  kswapd kernel thread. 

kswapd sleeps  most  of  the  time  and  is  awoken  by  the  buddy  system  allocator45 only  when 

pages_low free pages have been reached in any zone.

All  pages  subject  to  page  reclamation  algorithm  in  linux  (user  mode  pages  and  pages 

belonging to the page cache - pages that are not free, reserved, locked, dynamically allocated by the 

kernel or a part of kernel mode stacks; pages assigned to some caches and the slab allocator are also 

handled  separately)  are  maintained  on  two  lists  (per  each  zone)  linked  through  pointers  in  the 

page.lru structure:  the  active_list containing the approximation46 to a working set  of  all 

processes and the inactive_list chaining all reclaim candidates. When pages are first created, 

they  are  added  by  lru_cache_add  () to  the  inactive_list and  get  moved  to  the 

active_list by  mark_page_accessed  ().  Linux  tries  to  keep  the  size  of  the 

active_list at about 2/3 of the page cache size by moving pages from the tail of active_list 

to the  inactive_list by  refill_inactive_zone () function - for example,  when the 

caches  are  being  shrunk.  The  refill_inactive_zone  () function  resembles  a  clock 

algorithm, pages at the tail of the examined list have their PG_referenced flag checked. If it was 

set, the page is moved to the head of the list with the bit cleared because it has been recently used and 

is likely to be used again soon. Otherwise, it is moved to the inactive_list. 

Pages in the system may also be kept  in the page cache – a collection of several caches 

maintained in order to decrease the number of reads from and writes to slow disk devices. These 

include the buffer cache of pages buffering operations with block devices and file systems; the swap 

cache of anonymous pages that have a slot on a backing storage assigned47 for page-out and a cache 

containing pages faulted in by reading or writing a regular but memory mapped file. These pages are 

also kept in a hash table to be quickly located on demand. Depending on their state, all pages that 

have  a  backing  storage  assigned  are  also  linked  on  one  of  three  inode  queues  through  the 

page.list field.  These queues are  clean_pages chaining up-to-date pages,  dirty_pages 

45 Though traditionally, kswapd was woken up periodically

46 Approximation because the list is not updated on every reference

47 User processes shared memory created with shmget () and shmat () or anonymous mmap () with 

MAP_SHARED have a virtual file system attached as a backing storage – tmpfs or shm are used for this 

purpose
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including all  pages that were modified since last sync to disk and  locked_pages of all  pages 

currently in a locked state48.

In earlier versions of the kernel, the swap cache's main responsibility was to group pages 

belonging to shared regions. This was important to implement the synchronisation between processes 

sharing a page, one of them having the page paged-out. Without the swap cache, should the memory 

be written, the process with a paged-out page would lose the update because there was no quick way 

to map struct page to all page table entries pointing to it and was consequently not attempted. 

Swap  cache  took  care  of  this  problem.  The  2.6  kernels,  however,  implement  reverse  mapping, 

allowing for quick location of all page table entries corresponding with a given  struct page, 

obviating the major need for a swap cache. The object-based reverse mapping (the objects here refer 

to memory regions), used in current kernels, achieves this end by maintaining a PTE-chain associated 

with each struct page – the chains are kept for memory regions, not for each page descriptor, in 

order to conserve memory. Memory regions of shared anonymous memory are chained on a doubly-

linked list because there is rarely an exceedingly large number of such sharing processes. Memory 

regions of shared mapped pages, however, are kept on a priority search tree (one for each file) to 

improve lookup times (consider the case of glibc shared by almost every process in the system).

The page-out part of the reclamation subsystem takes pages off the inactive_list and 

decides how to deal with them. Locked pages are skipped, unless examined for a second time. In that 

case, it is better to wait for the I/O to finish and reclaim this page and the replacement algorithm goes 

to sleep until the I/O completes; dirty, unmapped pages are locked and scheduled for syncing to the 

backing storage; mapped anonymous pages have their usage counters decremented49 and are paged 

out in case it reaches zero; pages not mapped by any process are either simply discarded if they 

existed just on the page cache, otherwise they were a part of a file mapping and are also removed 

from a respective inode queue.

Next, the replacement algorithm reaps caches that consist of pages not linked on the active 

and inactive lists – the slab allocator caches and three caches related to the file system – the dcache, 

the icache and the dqcache.

After a predetermined number of pages have been removed from the caches, user space pages 

are swapped out. Page tables of all processes are walked until enough pages have been freed. All 

48 For example, pages that have I/O operation in execution upon them and must not be paged out

49 To determine whether the page is shared by multiple processes
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pages are examined but pages either belonging to a zone that is not currently under memory pressure, 

on the  active_list or  the  inactive_list and with  their  PG_referenced flag  set  are 

skipped. The page tables are walked through the list of memory regions to avoid scanning mostly 

sparse address spaces.

These steps are executed several times if necessary, each time with an increased priority – 

indicating how severely to reclaim memory. Should the reclamation algorithm fail to free enough 

pages,  as a last  resort,  the system will  choose a process to be killed,  in hope that its pages will 

replenish the free memory pool allowing the original request to succeed. A victim process is chosen 

according to its calculated  badness – a value that tends to be high for processes which use large 

amounts of memory but are still relatively young.

All swap areas in linux, either logical partitions or regular files, are described by  struct 

swap_info_struct structures and linked on a list.  The swap area descriptor is a rather large 

structure but most of its fields are of little general interest, providing various accounting functions 

and  optimising  the  search  for  a  free  slot  within  a  given  area.  The  only  interesting  field  is  the 

swap_map array of integers managing the state of every swap slot. The array is indexed by the slot 

number and its values equal reference counts50 of the respective slot. All swap areas are chained on a 

list sorted by priority51.

Swap area slots are page sized blocks of the swap space. When a page is committed to be 

paged out, a free swap area slot is found and the page's page table entry is modified to contain the 

position of the found area in the swap area list and the  swap_map index of the found slot, then 

marked as not present.

50 To protect against the unlikely but possible case of the reference count overflowing, the greatest possible 

reference count – 1 represents a permanently reserved slot

51 Swap areas on a faster disks may be given a higher priority by the system administrator and will be used 

first
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5  Experiments

In this section, we will conduct a series of tests in order to determine the actual behaviour of a 

linux kernel. Unless stated otherwise, all experiments were run on a 2 GHz Athlon (Thoroughbred 

core) workstation with 1 GB 133 MHz DDR RAM. Kernel releases 2.6.20 and 2.4.18 (with high 

memory support enabled and SMP support disabled at compile time) were used for comparison.

The first of the benchmarks used to measure the virtual memory subsystem performance is 

lmbench52 [McVoy96], a suit of programs designed to uncover bottlenecks in performance of a wide 

range of applications. The part of lmbench that we are interested in stresses the system by a series of 

small latency and bandwidth critical loads moving data among the processor, cache, memory and disk 

drive – determining not  only the  performance of  the  underlying hardware platform but  also  any 

software limits imposed by the operating system.

lmbench's memory bandwidth benchmark measures the system's ability to copy,  read and 

write  data  of  varying  sizes,  later  versions  of  lmbench  also  include  McCalpin's  STREAM  and 

STREAM version 2 benchmark tests [McCalpin95].

Copy  bandwidth  is  determined  in  two  ways:  first  by  a  user-level  library  bcopy () 

interface; second by a hand-unrolled loop that loads and stores memory-aligned words53. The tests 

vary  the  size  of  memory  blocks  copied  -  effectively  bypassing  processor  hardware  caches  for 

sufficient sizes; care is also taken for the source and destination memory addresses not to map into 

the same cache line54. The copy test works with bytes copied, not moved - thus the results should 

theoretically be at best half (or third in case of less advanced architectures which perform another 

read before write of memory about to be overwritten55) the values of the read test or the McCalpin's 

stream benchmark.

Memory  reading  is  measured  by  an  unrolled  loop  that  sums  up  an  integer  series  stored 

sequentially in memory. An optimising compiler is highly desirable in this benchmark as to avoid 

generating  too  many  assembly  instructions  and  placing  the  bottleneck  on  the  processor  - 

52 http://www.bitmover.com/lmbench/

53 Or 4 bytes on x86

54 The source and destination memory blocks are originally allocated with the valloc () function and 

consequently, page aligned. Finally, one of the buffers' beginning address is advanced by a predetermined 

number of bytes

55 For example in order to maintain cache coherency in multiprocessor systems
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consequently, the addition instruction is required in order for the reads not to be optimised away as 

redundant.  Considering  the  relative  speeds  of  today's  processors  and  memory  subsystems,  the 

overhead of one integer addition is negligible. Memory writing is measured by very similar means 

and will not be discussed further.

Another area of interest, as far as memory management is concerned, is lmbench's cached I/O 

benchmark set intended to test the efficiency of reusing data in the file system page cache through the 

mmap () system call. Note that no I/O is performed during these tests, the file about to be mapped is 

first copied into a private temporary version which effectively results in the file being forced into the 

page cache;  mmap () then maps the entire file to the process address space as a distinct memory 

region  and  reads  it  as  any  regular  memory  block.  Good  systems  will  have  mmap () results 

approaching the results of the memory read test - because the file system overhead is virtually zero - 

but operating systems in general (and linux in particular - as found in [McVoy96]) have traditionally 

performed dramatically worse.
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bcopy () bandwidth - somewhat under the 1/2 theoretical limit for the  

x86 platform



We can see that both 2.4 and 2.6 kernels perform very well in this respect, 2.6.20 having 

nearly identical memory read and mmap () bandwidths.

Memory latency measurements reflect not only the performance of the underlying hardware 

architecture but also the efficiency of prefetching algorithms, both hardware and operating systems 

based. lmbench measures the back-to-back-load memory read latency, which is the time each cache 

missing load takes, assuming the instructions before and after are also cache missing loads. If desired, 

the entire memory hierarchy can be measured, including the latencies and sizes of various processor 

caches, main memory and (possibly even) TLB miss impact [Saavedra92] by varying the array size 

and stride during testing. For each size, a list of pointers is created for all of the different strides, 

loads equivalent to C code p = * p; are executed and their time reported. It is assumed that the 

processor is capable of executing a load instruction in one clock cycle and its length is subtracted 

from  the  measured  time,  thus  yielding  pure  latency.  Plotted  results  display  the  entire  memory 

hierarchy – multiple levels of on- and off-die caches and the main memory.
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Next, we will explore the scalability potential of the linux memory manager with a simple 

mmap () benchmark inspired by the gatling56 experimental web server performance analysis suite. 

The benchmark consists of mapping a large number of files into memory. In order to avoid the need 

to create many unique files, we will mmap () distinct page-sized chunks of a single large file (thus 

creating  a  large  number  of  memory  regions57)  and  measure  the  latencies  of  the  operations. 

Performance-wise,  this  may  be  particularly  important  for  object  oriented  database  management 

systems or network servers which are required to handle request for many files at once. We will try to 

determine  whether  the  operating  system  overhead  increases  as  the  number  of  memory  regions 

belonging to our process rises. To make sure the file system does not become a bottleneck during 

56 You may get gatling through anonymous cvs here: cvs -d :pserver:cvs@cvs.fefe.de:/cvs -z9 co gatling

57 A list of memory regions for each process is available in /proc/{$PID}/maps
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testing, the benchmark process will start by reading the first byte of every page to force them into the 

page cache.

The results are truly impressive for the 2.6 kernels – they scale with O(1) with negligible 

latency for most of the system calls – a large improvement upon the O(n) linear scaling of the 2.4 

kernels with latencies in thousands microseconds.

These improvements are mainly due to two changes between the 2.4 a 2.6 kernel revisions. 

First, process descriptors were made to cache the first available hole in their address space to improve 

search times; this is very important for processes with a large number of memory regions, because 

finding a free hole cannot be achieved by using a tree and involves a linear walk through a linked list. 

Second, finding pages in the page cache no longer involves linear searches. In the 2.6 kernels, pages 

are kept on a radix tree instead, greatly improving performance. Incidentally, though this is not the 

case in our benchmark, the 2.6 kernel can also perform non-linear virtual memory areas population if 

passed the  MAP_POPULATE flag to the  mmap () system call.  This  would cause the system to 

populate page tables for a file mapping by performing read-ahead on a file (in our benchmark, the file 

is  read  entirely  into  the  page  cache  beforehand,  so  there  are  no  major  page  faults  accessing  it 

anyway).

Concerning the 2.4 kernels, you can see a sudden latency jump around 5,000 mapped regions. 

Obviously, the kernel must be detecting an excessive pressure on this part of the memory manager 
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and switching to an algorithm or data structure more suitable for the demand. The exact nature of the 

optimisation, however, I have failed to determine.

5.1  Tunables

The behaviour of a running kernel can be customised and controlled through the  sysctl 

(8) mechanism  or  by  writing  desired  values  directly  into  respective  files  located  on  the 

/proc/sys file system which represent configurable kernel parameters. Of especial interest to the 

memory manager are the files found in /proc/sys/vm directory, each of them (available in the 2.6.20 

kernel release) will be briefly discussed below (most are documented in Documentation/sysctl/vm.txt 

in the linux source code directory).

block_dump parameter turns on and off the block I/O debugging, which, when enabled, 

causes the kernel to report all read and write operations and any block dirtying of pages with a file 

backing storage attached

dirty_background_ratio parameter  configures  the  percentage  of  total  system 

memory that will, when dirtied, trigger the background write-back by the pdflush58 kernel thread

dirty_expire_centisecs parameter  defines  when  dirty  blocks  qualify  as  old  and 

consequently subject to writeback

dirty_ratio parameter  defines  the  percentage  of  system  memory  at  which  dirty 

writeback will be performed by the generating process in synchronous fashion

dirty_writeback_centisecs parameter  defines  whether  the  pdflush daemon 

should be woken up periodically, and if so, how often

drop_caches parameter  will  cause,  when  written,  the  kernel  to  immediately  drop  the 

contents of the page cache, the dentry cache and the inode cache in order to free their memory

laptop_mode parameter causes the kernel to flush all dirty blocks during any physical disk 

I/O thus avoiding unnecessary hard drive spin ups in the future and conserving battery capacity

legacy_va_layout parameter disables the 32-bit mmap () map layout introduced in the 

2.6 kernels and makes the kernel use the legacy 2.4 layout for all processes

58 pdfush has replaced the functionality of bdflush (which scanned the page cache looking for dirty pages) 

and kupdate (which ensured that no page would remain dirty for too long in protection from data loss in 

case of power failures) kernel threads used in earlier kernels
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lowmem_reserve_ratio is the user-definable low memory watermark for each memory 

zone mentioned earlier which triggers the awakening of the kswapd kernel thread

max_map_count parameter defines the maximum allowable number of memory regions 

per  process  (defaults  to  65,536 which can  be  limiting  for  certain  kinds  of  applications  –  object 

oriented  database  systems,  as  mentioned  in  the  mmap () benchmark  section,  or  malloc () 

debuggers, which may need to create up to two memory regions per allocation)

min_free_kbytes specifies the memory reserve which the kernel dips into only while 

allocating  for  high  priority  requests  when low on  free  memory  –  mainly  used  for  serving  non-

blocking requests (issued mostly by interrupt handlers)

nr_pdflush_threads is a read-only value indicating the count of concurrently running 

pdflush threads

overcommit_memory controls  the  memory  overcommitment  kernel  feature.  When 

disabled, the total address space commit of the system is determined as a sum of the swap area space 

and a configurable part (see next parameter) of the system physical memory. When enabled, it allows 

processes to allocate (but, naturally, not use) more memory than available – two modes of operation 

are possible in this case – always overcommit and the heuristic default. The heuristic allows slight 

overcommits while trying to block overgreedy attempts to hog memory (this restriction is somewhat 

looser for super-user processes)

overcommit_ratio parameter defines which part of the physical memory will figure in 

overcommit calculations

page_cluster is a binary logarithm value of a page-sized cluster which is written to swap 

in a single operation, in other words the swap I/O size. Defaults to 3, meaning 8 pages (32 kB on x86) 

worth of data

panic_on_oom parameter determines whether the kernel should panic or invoke an out-of-

memory killer feature when running out of free memory. The out-of-memory killer is a somewhat 

controversial part of the kernel as a martyr process is determined by comparing the badness ratios of 

all running processes. A process with the highest value is killed. Badness is calculated in such a way 

as to penalise young processes with large amounts of allocated memory, but less than wise guesses do 

happen
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percpu_pagelist_fraction parameter determines a fraction of pages per zone that 

are allocated for each per-cpu,  per-zone hot  cache of single pages (see the description of buddy 

allocator optimisations for details)

swappiness influences  what  ratio  does  the  kernel  prefer  dropping  pages  from system 

buffers and caches to swapping out memory belonging to processes.  Generally,  setting this value 

lower will tend to improve interactive response (as processes are more likely to be kept in memory) 

while higher values will benefit system throughput (as memory is given to more immediately useful 

buffers instead of being wasted by processes that need not use it again at all)

We will demonstrate the impact of swappiness on system behaviour by a simple benchmark. 

First, we will launch a process which calls  malloc () to allocate a large portion (90% or so) of 

memory (touching every page to force the kernel to perform the actual allocation), then goes to sleep; 

Subsequently, we will use dd to simultaneously copy 4 GB worth of data from /dev/zero to two 

files  located  on  separate  hard  drives  (swap partition  is  located  on  a  disk  of  its  own)59.  We are 

interested in determining how much of the memory grabbed by the sleeping process will be swapped 

out to make room for buffers improving system throughput.

The results  show that increasing swappiness does not make much of a difference (that is 

benchmark specific, of course) until about the value 50, when the system starts to page out process 

memory quite heavily. Most of the  malloc () space is paged out by the value 70 as the system 

uses its memory for buffers and caches. 

59 The tests are repeated for different values of swappiness, echo 1 > /proc/sys/vm/drop_caches 

&& swapoff -a && swappon -a are used between the runs to ensure the results are not affected by 

previous activity
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Swappiness is a matter of some controversy among kernel developers. Andrew Morton, for 

example, proclaims to have all his computers set at swappiness 100 as not to prevent the kernel from 

using available memory for something useful. On the other hand, Rik van Riel adamantly pushes 

swappiness to 0 for interactivity on desktop computers60. The kernel defaults to 60.

What kind of performance increase the enlarged buffers can bring depends on the degree of 

disk data reuse by the application. We will demonstrate the effects of the extreme values, 0 and 100 

respectively, on the performance of a script which copies the same 400 MB file ten time in sequence 

to /dev/null (simulating the behaviour of a high reuse program) with 995 MB total out of 1024 

MB system memory held by sleeping applications. Ideally, only the first copy should perform disk 

I/O, the rest should go from the page cache. But this is obviously impossible without the memory 

hogging application, at least partially, paged out.

Swappiness Average copy bandwidth

0 27.60 MBps

100 133.86 MBps

vdso_enabled parameter  triggers  the  creation  of  virtual  dynamic  shared  objects  for 

processes (enabled by default). When enabled, a page with such an object, called the  vsyscall 

page, is mapped into process address space and passed to glibc upon exec (). Its purpose is to 

speed up system calls made by the process by providing an optimal method of entering kernel space. 

Processes  can  take  advantage  of  this  capability  by  using  call 0xFFFFF000 instead  of  the 

traditional int 0x80 for initiating system calls

vfs_cache_pressure parameter controls the kernel's tendency to reap the dcache and 

inode cache compared to the swap and page caches

60 http://kerneltrap.org/node/3000
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6  Problems

This  section  will  list  the  major  known  shortcomings  of  contemporary  virtual  memory 

managers, with an emphasis on the problems and limitation of the implementation found in the linux 

kernel.

Linux  and most,  if  not  all,  other  current  operating  systems implement  page  replacement 

algorithms that try to keep recently used pages memory resident, with the assumption that such pages 

are probable to be used again soon. However, this assumption is no longer valid for an increasing 

number of today's typical workloads and applications. For example, garbage collection systems do 

not explicitly free memory which they are not going to use again and may not reuse memory quickly; 

moreover, the garbage collector itself often has access patterns completely different from the program 

that uses its services. Streaming I/O, such as multimedia or data mining applications, will likely never 

access a recently used page again; pages these kinds of applications need, the not (for some time) 

accessed ones, are pages the traditional eviction algorithms are designed to page out. Many advanced, 

adaptive, algorithms have been developed to cope better with the situations when traditional solutions 

fail, their one common characteristic is the need to keep track of past memory usage pattern. We will 

describe some of the most promising ones here61.

ARC, the Adaptive Replacement Cache [Megiddo03], tries to achieve dynamic, on-the-fly, 

adaptation to varying system workloads, without any a priori tuning of the algorithm parameters. 

ARC maintains two lists of pages, one chaining pages that have been accessed just once in a given 

time period (cold pages); the other contains pages that have been accessed at least twice in the same 

period (hot pages). Consequently, pages on the former list can be thought of as belonging to process 

parts exhibiting recency-reuse behaviour, while the pages on the latter list exhibiting frequency-reuse 

behaviour. The relative size of the lists is modified at run-time according to the actual workload – the 

list experiencing hits is grown at the expense of the other list – this learning method ensures continual 

adaptation to varying conditions in the system. There are many areas where the caching algorithm 

may be used; when applied to operating systems, a variation can be adopted, which keeps both lists at 

roughly the size of physical memory (so their combined size equals twice the system memory) and 

61 Unofficial experimental patches to the mainline linux kernel exist that implement all the listed solutions
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the  learning  mechanism  continually  varies  the  ratio  of  each  list  that  would  actually  remain  in 

memory, the remainder is paged out to backing store.

LIRS, the Low Inter-reference Recency Set [Jiang02], attempts to address the limitation of 

LRU-like algorithms (making eviction decisions solely on the basis of recency) by keeping an inter-

reference recency (IRR) counter for every page. The IRR records the number of pages that have been 

accessed between the last and the pen-ultimate access to the give page. Pages with the highest value 

of their IRR are the current eviction candidates. In this way, LIRS avoids the problems sudden bursts 

of references cause to LRU (e.g. sequential scans of large files forcing the page-out of still heavily 

used data),  because the pages accessed just  once may have a very low recency but  their  IRR is 

effectively infinite as there was no pen-ultimate access to their data.

Both  LIRS  and  ARC  were  originally  intended  for  I/O  cache  management  and  their 

implementation in a general purpose OS memory manager entails a relatively high overhead cost. 

Clock-Pro [Jiang05] attempts to combine the features and performance of LIRS with the simplicity of 

the LRU clock algorithm. In Clock-Pro, as in LIRS, the inter-reference recency is used to determine 

the replacement candidate. Pages with large IRR are called cold, pages with low IRR hot (we may 

think of these set as the inactive_list and active_list in linux); cold pages are given a test 

period,  during  which  if  accessed,  they  are  marked  as  hot.  Resident  cold  pages  are  the  reclaim 

candidates. All possibly reclaimable pages in a system are placed on a circular linked list and three 

hands move around it. The hot hand points to a hot page which has been unused the longest; the cold 

hand points to the longest unused cold page and the test hand points to the last cold page in the test 

period.

The search for a page to evict starts at the cold hand position. The page pointed to is evicted 

if it has its referenced bit unset. Otherwise, the cold hand continues advancing until an unreferenced 

cold page is found and reclaimed. A page is spared if its referenced bit is set (it is reset by the hand); 

moreover, if the page is in the test period, it is marked as hot, because, in effect, an access in the test 

period can be thought of  as a low IRR. This triggers  the movement of  the hot  hand – the hand 

advances (resetting the referenced bits of hot pages in the process) until it finds an unreferenced hot 

page, a hot page with the currently largest IRR, and marks it cold. When it encounters a cold page, it 

performs the same work as the test hand (which is advanced only when the number of non-resident 

pages reaches certain limit) – terminates their test period.
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To better illustrate the promise of page replacement algorithms based on more information 

than recency, we will perform two benchmarks. First, a simple test consisting of allocating an array 

slightly larger than the available pool of memory and then repeatedly walking it sequentially without 

reusing the data in between the subsequent walks – a common scenario of most recently accessed 

pages evicting pages that will be needed the soonest. The results are for kernel revision 2.6.18 with 

and without Peter Zijlstra's Clock-Pro patch62 applied booted with 96 MB of memory; an array of 100 

MB is walked 100 times in strides of a page size (4096 bytes).

The second test, based on an example from [O'Neil93], randomly accesses a database through 

a B-tree indexed key. We will use miniDB63, a barebones database management system, to create an 

approximately 700 MB database file with an index file about 1/10 of its size. Obviously, it would be 

desirable to keep the entire index file memory-bound because any of its blocks are accessed with 

much higher probability than the data file blocks are. There will be many more accesses to the data 

file, though, and a page replacement algorithm based solely on recency will happily evict the index 

pages to make room for data pages that are extremely unlikely to be needed again any time soon.

Kernel Sequential Scan Indexed Database

2.6.18 [Vanilla] 27m:13s 2h:06m:16s

2.6.18 [Clock-Pro patched] 13m:06s 2h:03m:31s

In theory, both tests should benefit hugely from the properties of Clock-Pro and we can see 

that it more than doubles the performance of our sequential scan benchmark64; the improvements to 

our database application are more modest, though - with Clock-Pro achieving approximately a 2.2% 

time decrease.

Even with an optimal page replacement algorithm, paging would sooner or later occur – and 

with the ever increasing gap between memory and hard drive latencies, its costs continue to rise. With 

a high enough load, any system can be brought to the point of thrashing when all useful computation 

virtually stops as processes spend most of the time waiting for I/O to complete instead of computing. 

Consequently,  there is  a need for a mechanism of keeping the pressure on the memory manager 

62 http://programming.kicks-ass.net/kernel-patches/page-replace/2.6.18-pr1.patch

63 http://master.kernel.org/~marcelo/benchmarks/mdb-bench-2.1.tar.gz

64 This property of eviction algorithms is called scan-resistance. LRU-like algorithms do not possess it
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within reasonable bounds. Traditional solutions of thrashing prevention – like temporarily suspending 

or even swapping out entire processes – necessitate in more complex, multi-level schedulers which 

have to consider not only fair CPU sharing but fair memory residence as well, because load control 

should not penalize any process exceedingly compared to the rest of the system; every individual 

process must be guaranteed to make eventual progress. Combined with other requirements for load 

control mechanisms – e.g. self tuning ability and preferential treatment of interactive processes65 - the 

traditional methods are not satisfactory.

Linux implements (since 2.6.11 version) another layer of thrashing prevention - a swap token 

tuning method of load control [Jiang05a]. A token is introduced into the system that is passed to a 

selected process during a prethrashing phase – after the algorithm has determined that thrashing is 

forthcoming but well before the system detects a high enough pressure on the virtual memory to start 

suspending  processes.  The  ownership  of  the  token  gives  the  process  immunity  from  page  out, 

allowing it to quickly establish its working set. It is hoped that the load spike the system experiences 

is temporary and can be overcome in this way – by allowing select processes to quickly progress, 

eventually reducing the overall  load without  having to swap out a single process.  There are still 

problems with the swap token passing implementation, however. For example, although the algorithm 

provides considerable benefits during high loads, it is detrimental to system performance under very 

light  virtual  memory pressure.  Also,  ensuring fair  passing of the token between processes is  not 

completely solved as of now.

We will demonstrate what kind of performance to expect from the swap token tuning by a 

benchmark that forks off ten processes, each of them allocates and uses a chunk of memory for a 

predetermined time period and then terminates. The results were obtained on a workstation with 768 

MB memory, ten processes each of which allocated 130 MB and read 2 bytes of every page 35 times. 

2.4.18 kernel was used as a reference system without any kind of thrashing prevention. 2.6.18 kernel 

with  swap  token  tuning  enabled  and  swap_token_timeout (more  on  this  later)  set  to  300 

represented the load control algorithm.

Kernel Time required

2.4.18 [No thrashing prevention] 12m33s

2.6.18 [Swap token tuning] 5.1s

65 A shell being used by the system administrator to solve the current overload situation should definitely not 

be swapped out
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The  algorithm  can  be  parametrised  by  one  newly  introduced  sysctl () variable  – 

swap_token_timeout. It specifies  the length of the period a process is granted the swap token 

for. The value is in units of HZ66 and defaults to 300, which may not be optimal as our test67 shows.

The last issue connected with page replacement that we will mention here is the possibility of 

swap prefetching. With any global68 page replacement algorithm, a large (memory footprint-wise) 

application is  bound to cause page evictions from memory owned by other  processes.  When the 

application exits, the system is left with a large pool of free memory while considerable portions of 

other processes are paged out leading to poor interactivity when they are switched to by the user 

again.

A number of attempts have been made to counter this undesirable effect but no solution that 

would  not  negatively  impact  the  overall  system  performance  has  been  found  so  far.  The 

implementation merged into the -mm source tree69 (since version 2.6.16) tries to keep the overhead 

and negative influences to a minimum. A new, low-priority, kernel thread is introduced to perform 

66 HZ is a kernel macro which equals the frequency of the timer interrupt – usually 100 for x86

67 And this information: http://lwn.net/Articles/105136/

68 And local policies are not often implemented (VMS is one exception) – they are hard to tune to make 

optimal use of system resources and if made auto-tuning tend to mimic global policy instead

69 Linux source code is developed in several independent trees maintained by influential developers to test 

different (and conflicting) kernel features. The most prominent ones are the -mm tree maintained by Andrew 

Morton, the -rmap tree maintained by Rik van Riel and the mainline tree maintain by Linus Torvalds
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the swap prefetching; in addition, a limited number of pages paged out most recently is remembered – 

it  is  assumed  that  these  are  the  pages  that  will  be  needed  the  soonest.  The  thread  wakes  up 

periodically to perform the prefetch but goes back to sleep immediately if it detects a high memory 

activity – the criteria include free memory amount, number of dirty pages, disk writeback in progress 

or the swap cache size. If the thread concludes it is safe to proceed with the prefetch, read pages are 

placed to the end of inactive_list and their copies kept on the backing store – in this way, they 

will be the first to be paged out, and cheaply too, in case memory becomes scarce soon.

As a demonstration of the positive influence of swap prefetching (although this would be 

obviously best demonstrated with an interactive application and user's experience), we will write a 

short program that allocates a block of memory and then forks off a child which does something 

memory hungry and causes the parent's data to be paged out. This simulates an inactive application 

having its working set paged out by unrelated activity in the system. The parent just waits for the 

child to complete and goes to sleep to give the swap prefetching algorithm a chance. Finally, the 

parent wakes up and measures the latency of accessing every page of the original allocated block. We 

will  use  Con  Kolivas'  swap  prefetching  patch70 to  the  2.6.18  kernel  revision.  With  prefetching 

disabled71,  the  kernel  would  have  to  bring  most  of  the  pages  from  the  swap  area;  while  with 

prefetching enabled it would, hopefully, find most of the desired pages already in main memory.

Kernel Average Time

2.6.18 [swap prefetching disabled] 9.7s

2.6.18 [swap prefetching enabled] 4.1s

This particular case had the parent allocate 20% of all available memory before forking off a 

child,  which in turn allocated 150% of available memory before exiting.  The prefetching feature 

decreased the time required to re-access the original memory block to less than a half. The parent 

slept for one minute before performing the re-access, this was enough for the swap prefetch to bring 

in all its remembered pages (among them, approximately 75% of our buffer's paged out portion) – 

other applications, with different fractions of their memory in the prefetcher's remembered pool will 

benefit accordingly.

70 http://ck.kolivas.org/patches/swap-prefetch/2.6.18-rc2-swap_prefetch-33.patch

71 Through the sysctl () swap_prefetch variable
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Another issue with the memory manager's design is the increasing cost, both in time and the 

amount of memory used, of accessing page tables [Szmajda03]. 64bit address space machines require 

slow and expensive page table structures; moreover, modern CPUs became much faster than main 

memory making the effect of TLB misses much worse than in the past. This is even aggravated by the 

rising memory capacity because TLBs can now cache a much lesser portion of available memory. 

Making TLBs larger yields diminishing returns as TLBs need to be invalidated fairly often; besides, 

sophisticated CAM memory is required for their construction, which is very hard to be made large, 

fast  and  cool.  Other  factors  contribute  to  the  issue;  for  example,  while  memory  sharing  can  be 

recognised and optimised by both main memory and CPU caches (the physically indexed ones, of 

course), each of the sharing processes requires a separate TLB entry for a shared page72.

Larger pages are one possibility of improving this situation – by keeping page tables smaller 

and TLB hit rates higher. However, larger pages cause fragmentation problems and decreased I/O 

bandwidth, so it is desirable to be able to use different page sizes – each for a different purpose. Some 

architectures may provide hardware support for pages of different sizes73 or contiguous pages can be 

clustered together and treated as one superpage in software.

This clustering is inefficient though, and it is much more desirable to have hardware do the 

work, which can be considerably simplified by a suitable page table structure. For example, x86 can 

regard the lowest page directory entry as a page table entry mapping 4 MB of memory. This is how 

the kernel creates its page tables as mentioned earlier.

But this structure is rigid, x86 with two levels of page tables cannot support more than two 

different  page  sizes  this  easily.  The  variable  radix  page  table  was  designed  to  address  this 

shortcoming.  Outwardly,  it  is  a forward-mapped page table,  which however  allows for  a  virtual 

address to be split into a different number of fields of varying lengths (contrary to the fixed 10 bits 

for the directories, 12 bits for the page table used in a traditional “fixed radix page table” on x86). 

Consequently, different depths of page tables can be used for different parts of an address space, 

easily allowing the use of superpages when required.

Regarding the page table structure, there has been an effort to push the currently used page 

tables in linux to the architecture dependant layer of x86 and provide an architecture independent 

72 Though there are advanced TLB designs with tags that do not identify an address space but a protection 

domain shared by many distinct address spaces

73 x86 provides only two – 4 kB and 4 MB (2 MB with PAE enabled), but machines with much better support 

exist – IA64 provides a total of 11 different page sizes ranging from 4 kB to 4 GB
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interface allowing for easy reimplementation of different page tables for each architecture. This has 

been specifically proposed with variable radix page tables in mind (for the IA64 machines). More 

information on the project can be found on the Gelato web page74.

74 http://www.gelato.unsw.edu.au/IA64wiki/PageTableInterface
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7  Conclusion

The  work  presents  a  condensed  view  on  memory  management  in  general  and  its  linux 

implementation in particular. Many details of description have been omitted for the sake of brevity, 

most of the topics included in Section 6 were merely hinted on as each would deserve a work of its 

own. Nevertheless, we believe the work offers a coherent account of the topic and may serve as an 

introduction to the domain of memory management.

With  this  said,  the  work  cannot  honestly  pretend  to  represent  original  contribution.  All 

algorithms,  data  structures  and  approaches  discussed  are  well  studied  and  proven  solutions.  The 

behaviour of the linux kernel under many imaginable conditions is well known and tested, all the 

unofficial  patches  mentioned  have  both  rationale  and  test  results  backing  their  claims  and  well 

understood and described limitations on the ground of which they were denied merging into the 

mainline kernel. The work provides merely a summary of these scattered facts.

Possible improvements and ideas for future revisions include a more thorough description of 

the page eviction algorithm implemented in linux and conducting more detailed benchmarks. It would 

probably be interesting to perform some regression tests on the linux kernel, explore the impact of 

different hashing functions used in kernel space or determine the performance of the buddy system 

allocator variations.

Of works similar in topic and approach, we would like to mention Mel Gorman's description 

and detailed, line by line, code commentary of the linux memory manager [Gorman04]. Interested 

reader can consult the book for further details.
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8  Abbreviations

APIC Advanced programmable interrupt controller

ARC Adaptive replacement cache

AVL Adelson-Velsky, Landis

BSD Berkeley Software Distribution

CAM Content-addressable memory

CPU Central processing unit

DDR Dual data rate

DMA Direct memory access

FIFO First-in, first-out

GNU GNU's not UNIX

GPL GNU Public Licence

IEEE Institute of Electrical and Electronics Engineers

I/O Input/output

IPC Inter-process communication

IRR Inter-reference recency

LFU Least frequently used

LIRS Low inter-reference recency set

LRU Least recently used

MIPS Multiprocessor without interlocked pipeline stages

MMU Memory management unit

NRU Not recently used

NUMA Non-uniform memory access

PAE Physical address extension

PGD Page global directory

PMD Page middle directory

PTE Page table entry

PUD Page upper directory

POSIX Portable Operating System Interface

RAM Random access memory

RISC Reduced instruction-set computer

ROM Read-only memory

SMP Symmetrical multiprocessing

SUS Single UNIX Specification

SVR2 System V Release 2

TLB Translation look-aside buffer

UMA Uniform memory access

VFS Virtual file system
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10  Appendix: CD Contents

Benchmarks source code:

memory_hog.c

mmap.c

sequential_scan.c

swap_prefetch.c

thrashing.c

Makefile

Complete lmbench results in accordance with the program's licence agreement:

lmbench_results.dat

Source code of third party benchmarks:

lmbench-3.0-a7.tar.bz2

Kernel patches tested:

swap_prefetch33-2.6.18-rc2.patch

clock_pro1-2.6.18-rc5.patch
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