
BRNO UNIVERSITY OF TECHNOLOGY

VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ

FACULTY OF INFORMATION TECHNOLOGY

FAKULTA INFORMAČNÍCH TECHNOLOGIÍ

DEPARTMENT OF COMPUTER SYSTEMS

ÚSTAV POČÍTAČOVÝCH SYSTÉMŮ

METHODOLOGY FOR FAULT TOLERANT

SYSTEMS DESIGN INTO LIMITED

IMPLEMENTATION AREA IN FPGA

METODIKA NÁVRHU SYSTÉMŮ ODOLNÝCH PROTI PORUCHÁM DO

OMEZENÉHO IMPLEMENTAČNÍHO PROSTORU NA BÁZI FPGA

PHD THESIS AUTOREFERATE

AUTOREFERÁT DISERTAČNÍ PRÁCE

AUTHOR Ing. LUKÁŠ MIČULKA

AUTOR PRÁCE

SUPERVISOR Doc. Ing. ZDENĚK KOTÁSEK, CSc.

ŠKOLITEL

BRNO 2017

Abstract
The work presents a methodology of fault tolerant system design into an
FPGA with the ability of the transient fault and the permanent fault
mitigation. The transient fault mitigation is done by the partial dynamic
reconfiguration. The mitigation of a certain number of permanent faults
is based on using a specific fault tolerant architecture occupying less re-
sources than the previosly used one and excluding the faulty part of the
FPGA from further use. This inovative technique is based on the precom-
piled configurations stored in an external memory. To reduce the required
space for a partial bitstream the relocation technique is used.

Keywords
fault tolerant system design, partial reconfiguration, design methodology,
FPGA.

Reference
MIČULKA, Lukáš. Methodology for Fault Tolerant
Systems Design into Limited
Implementation Area in FPGA. Brno, 2017. PhD thesis autoreferate.
Brno University of Technology, Faculty of Information Technology. Su-
pervisor Doc. Ing. Zdeněk Kotásek, CSc.

Contents
1 Introduction 2

1.1 Fault tolerant systems . 3
1.2 Fault detection and localization techniques 3
1.3 Transient fault mitigation 6
1.4 Techniques for system recovery after permanent fault oc-

curence . 7

2 Motivation and goals of the research 10
2.1 Motivation . 10
2.2 Goals of the research . 11

3 Methodology for FT system design into limited imple-
mentation area in FPGA 13
3.1 Methodology basic principles 13
3.2 Generations of alternative FT architecture configurations 15
3.3 Generic partial dynamic reconfiguration controller 17
3.4 Fault mitigation procedure 18

4 Design of FT architecture by means of developed method-
ology principles 22
4.1 Fault tolerant architectures design 22
4.2 The implementation of generated FT architectures 24

5 Implementation and experimental results 26
5.1 The implementation of GPDRC 26
5.2 FT architectures developed to secure a given part of system 27
5.3 Evaluation of resource overhead 29
5.4 Implementation results of different approaches to the par-

titioning of original system 31
5.5 SEU testing platform for the evaluation of FT system de-

sign by means of methodology principles 32

6 Conclusions 36
6.1 Benefits of this research 36
6.2 Possible enhancements of methodology 37

1

1. Introduction
In last decades, the huge progress in manufacturing electronic devices
mainly stands on shrinking its parts such as chips and transistors. The
scaling of transistors to small sizes provides high performance due to
higher densities and low power and lower costs per unit but has also very
strong drawbacks. These small devices are also very fragile on overstress
and other environmental influences during operational lifetime. Addi-
tionally, small changes inside fabric caused by these factors can lead to
large impact on device performance. It also brings bigger susceptibility
to transient upsets. Small nodes use less charge to hold state or data and
can be easily altered and upset by noise from outside environment such as
radiation. Thus, the dependability of the system becomes the key indica-
tor. System dependability expresses the ability of system to produce the
outputs that can justifiably be trusted. To increase the dependability of
system, several mechanism can be adopted such as Fault Tolerant (FT)
system design which enables a system to continue its intended operation
when some part of the system fails.

Nowadays, the FPGA technology became very popular and frequently
used. It provides high logic density and possibility to easily upgrade the
implemented designs. Another benefit of FPGA design in comparison
with custom chips is their relatively short design cycle supported by the
possibility of using existing low cost design tools. These benefits together
result in low non-recurring engineering costs (NRE) for FPGA design. On
the other side, their drawback is their vulnerability to radiation effects
[21]. This mainly concerns SRAM-based FPGAs which are becoming
increasingly popular for many applications due to their high-throughput
capabilities and relatively low cost. The use of fault tolerant system design
can be the solution to overcome their higher rate of fault occurrence.

The ability of FPGA to be configured many times also brings new
possibilities from the perspective of system fault tolerance. When the
system in FPGA is affected by a fault, the reconfiguration can be used to
overcome its effects. Partial Dynamic Reconfiguration (PDR) capable to
reconfigure only some parts of implemented system while the others can
run without interruption and also to change their layout and connections
in FPGA can be used to implement the new advanced fault localization
and mitigation methods. This flexibility allows the use of the same FPGA
for multiple missions without the need of replacement.

2

1.1 Fault tolerant systems
A fault tolerant system is that one which can perform its function and
produce correct outputs even when it is affected by a hardware or software
fault. In [7], three condition to state that system is fault tolerant are
considered:

∙ The system computation for given dataset was not interrupted when
a fault occured and complete batch of input data was processed.

∙ The outputs produced by the system are correct.

∙ The length of computation did not exceed the predefined time limit.

In FT systems, the key goal is to prevent the errors from propagating to
observable outputs of computation process. This can be achieved by the
adding space, time, information, software or other type of redundancy to
original system. In this work, the main focus is put on approaches based
on hardware redundancy such as unit replication. One of the most known
FT architectures is the system with 3 identical modules and majority voter
referred to as Triple Modular Redundancy (TMR) system or the duplex
system with 2 modules and checker units. In the systems with replicated
modules, the voter or compare logic is the most vulnerable part. Thus,
they can be implemented into more resistable fabric or also replicated.

1.2 Fault detection and localization techniques
For fault detection, the capability of systems to mitigate faults which
appear during their operation is an important feature.

The fault detection always requires some kind of redundancy. Many
techniques based on information redundancy such as parity code, check-
sum or CRC can be used. When the information redundancy is increased
the Hamming distance between the data word and encoded word can be
counted and can be used to find the detection parameters of used method
such as maximum number of errors which can be detected or repaired.
The codes with the ability to detect errors are referred to as Error Detec-
tion Codes (EDCs). If they can also repair the error, they are referred to
as Error Correction Codes (ECCs).

Fault detection and localization methods can be also based on space
redundancy. The simplest form is 𝑛-modular redundancy with 𝑛 repli-
cated modules connected in parallel (e.g. TMR). Their outputs are com-
pared and any difference indicates the presence of fault. The redundancy

3

of this system is always more then (𝑛 − 1) * 100%. As its benefit, the
ability to detect every distinct error can be seen. The problem can arise
only when the same error will be produced by all replicated units.

Alternative to module replication is the use of checker unit. This
unit is placed in parallel to operational unit and it is computing some
function with the same input. Its output can be continuously used to
check the correctness of the output of operational unit. When the outputs
of the units are not equal, it means there is a fault in the system which
caused an error to occur. The drawback of this approach is that we
cannot distinguish whether the error is produced by operational unit or
its concurrent unit.

Another option can be the use of the unit implementing the inversion
of function. This unit can be used to compute the input value from the
output of checked unit. This will avoid the possibility of the same fault in
both units but the inversion function does not always exist. It also adds
some latency to computation.

Off-line fault detection is a widely used technique which is checking
the fault occurrence while the application in the FPGA is not running.
This method can be based on external testing equipment outside FPGA or
the test equipment can be configured into FPGA. The second approach is
known as Built-In Self-Test (BIST) which typically uses design consisted
of three block - test pattern generator, block under test and output re-
sponse analyzer which are periodically switched by reconfiguration. Thus,
in several steps the entire FPGA can be fully tested. The main drawback
is its limitation that it can only detect faults during the test mode when
the FPGA is not operating. Thus, some timing-dependent faults or simi-
lar may not be detected.

In bitstream readback approach, the controller (typically external)
reads the actual FPGA configuration memory contents as well as the con-
tents of flip-flops in CLBs in the form of configuration bitstream. The
readback process can be considered as the inversion of FPGA configura-
tion. Bitstream readback is available in two modes. In readback verify
mode, the controller reads the configuration of memory cells and com-
pares it with the original bitstream. This mode is mainly used to verify
the success of previously done configuration. Readback capture mode
also reads configuration memory cells data but in addition to that it also
acquires the current states of all internal flip-flops inside CLBs and the
state of IOBs. With these gained data from FPGA and the knowledge of
data which are expected to be in the configuration memory of FPGA and

4

other resources in the moment of readback, the diagnosis algorithms can
be used to detect and localize faults in FPGA [18] [19].

The techniques based on roving STAR approach are capable to de-
tect and localize faults in FPGA. The approach is based on the dividing
the array into tiles with the same number of resources and their struc-
ture. Some of these tiles implement the function of system and in some of
them, the BIST is implemented. These tiles performing the fault detec-
tion and localization are referred to as Self-Testing AReas (STAR). While
one STAR is tested off-line the remaining blocks of system which are not
utilizing resources from actual STAR continue in run and the aplication
in FPGA is not interrupted. Testing is focused on logic blocks and con-
necting wires. When the testing is finished the partial reconfiguration of
FPGA is used to change the layout of design and another tiles previously
used to implement the function are configured as BIST and tested. The
fault coverage of this approach can be 100% because every tile of FPGA is
tested. Hardware overhead of this approach is formed by tiles needed for
STARs and the reconfiguration controller logic which is used for roving
the STAR through the FPGA.

All presented fault detection methods have both positive and negative
features. Table 1.1 is showing the results of detection methods when they
are evaluated by several criteria.

Detection
method

Granularity,
detect. speed Fault coverage Space overhead Performance

overhead

Unit
replication

coarse
fast

good
all error occurences

large
resources for

n-1 modules +S
voter needed

small
voter latency

CED coarse
fast

medium
can be impractical

for some functional units

medium
trade-off with coverage

small
just latency
of checker

Off-line
methods

fine
slow

very good
can detect also

faults not
manifested by error

small
testing controller

small
just start-up

delay

Bitstream
readback

fine
slow

very good
can detect also faults

not manifested by error

small
readback and

testing controller

small
just start-up

delay

Roving
star

fine
medium

very good
can detect also faults

not manifested by error

medium
resources for STARs
+ testing controller

large
switching la-
tency, long

critical paths

Table 1.1: The comparison of fault detection methods

5

1.3 Transient fault mitigation
The use of FPGAs in harsh conditions has significantly risen the number
of transient faults mainly caused by ionization radiation. These faults can
be mitigated but this requires additional logic.

The susceptibility to these kinds of faults can be lowerred by the
special fabrication design to produce radiation-hardened FPGAs. This
radiation hardened design is based on protecting the configuration cells
at transistor or silicon level. As FPGAs become more and more complex
with large number of resources and processing capabilities, the radiation-
hardenning becomes excessively expensive in comparison with non-protec-
ted ones. Radiation hardened FPGA has slower operating frequency and
increased power consumption when compared with its commercial off-the-
shelf FPGA counterpart [15].

When a transient fault occurs in FPGA it can be repaired by recon-
figuration of affected part of configuration memory. This can be done by
complete (static) reconfiguration of FPGA or by PDR of affected Partial
Reconfigurable Module (PRM). Static reconfiguration causes the stopping
of running design in FPGA and possible loss of current status information
of implemented modules. Due to complete reconfiguration of FPGA, this
technique does not require the localization of the affected part of FPGA.
Nowadays, in most cases the application running in FPGA cannot be
stopped during the recovery process and therefore techniques based on
PDR are preferred.

Configuration bitstream scrubbing was introduced to correct configu-
ration memory after SEU occurences. This method is based on periodi-
cal reconfiguration of PRM by correct Partial Reconfiguration Bitstream
(PRB) while the FPGA is in operation. There are two common configura-
tion scrubbing strategies. In blind scrubbing, the periodical reconfigura-
tion of PRM by golden copy of designated partial configuration bitstream
is done without knowledge which module is faulty. Another scrubbing
methods use bitstream readback to detect if PRM is faulty and must be
reconfigured. The reconfiguration can be done by golden copy of bitstream
or by the read and corrected one. The scrubbing period should be stated
according to failure rate of system. The main drawback of configuration
scrubbing method is the need of continual use of the configuration port
but techniques such as [5] to overcome this issue exist.

Methods based on PDR are dependent on some kind of detection and
localization technique implemented in design which in case of fault detec-
tion triggers the process of recovery. Unlike in the configuration scrub-

6

bing, this process is started only in case of fault detection event. The
process of recovery is shown in Figure 1.1. The detection and localiza-
tion of faulty module is typically done by the design itself implementing
techniques such as CED or unit replication with checker units. The error
signals are supplied by some kind of PDR controller which will trigger the
reconfiguration process using appropriate configuration bitstream down-
loaded from configuration bitstream storage. PDR controller is typically
implemented by some softcore processor in the same FPGA where it per-
forms the PDR or in some external reliable fabric. Many techniques based
on this approach were presented [1] [2] [6].

10
01

10
01

10
01

01
10

No fault present Fault occured in module

10
01

10
01

10
01

10
01

PDR controller

reconfiguration

detection
& localization

PRM1

PRM2

PRM3

PRM1

PRM2

PRM3

VOTER VOTER

Figure 1.1: Using PDR to recover system after SEU occurence

1.4 Techniques for system recovery after per-
manent fault occurence

In this work, as the permanent fault is considered, each fault causes a
damage of FPGA resource in that way that it cannot be used in FPGA
design anymore. This happens mostly by damaging or during the wear-
out phase of FPGA or by the impact of harsh environment on FPGA.

One possible approach is to use the FPGA fabric which is designed
and manufactured with spare resources which can be utilized in case of
fatal fault occurence in currently used set of resources. This hardware
level approach can be easily used in array based resources (i.e. CLBs)
by using multiplexers or other switching logic at the ends of lines of cells.
This allows the remapping of a row or a column with damaged component
into some spare row or column [4]. For hardenning the interconnection of

7

CLBs and other hard blocks in FPGA, the fine-grain redundancy in the
interconnect blocks can be introduced [22]. The benefit of this approach
for permanent fault recovery is its transparentness to the configuration.
On the other hand, including the spare hardware resources to device is
expensive and it is firmly limited by the number of spare rows or columns.

Another approach is based on the recovery on the configuration level.
When the permanent fault occurs, the modification of current design con-
figuration by incremental re-mapping and re-routing is performed to ex-
clude the affected resources when a fault occurs. This approach can in the-
ory utilize all spare resources which are currently not used by implemented
application for logic or routing affected by faults. The drawback of this
method is the need of adaption of FPGA mapping, placement and routing
tools to operate autonomously with considering existing faults in imple-
mentation area. The incremental change of design requires not negligible
time for processing, it can increase power consumption and area overhead.
Many techniques based on this approach were presented [14] [16] [17].

As the opposite to online design modification, some other approaches
(see [13] [23]) are trying to prepare the possible solutions before the fault
appears, in the design phase. Then, the implementation space of FPGA
is typically divided into several tiles and the desired design is splitted
into modules which are configured into different tiles leaving one or more
tiles unused. The configurations with these alternative implementations
are precompiled and created partial configuration bitstreams are stored
in some type of memory. When a fault is detected and localized in some
tile, the reconfiguration of the entire design is performed with this pre-
compiled configuration which does not utilize the resources from this tile.
Since each configuration of the design contains the implementation of the
same function and the interface between the entire reconfigurable area and
the rest of design is fixed and the same in all cases, all partial bitstreams
are interchangeable and can be configured to this partial reconfigurable
region. With this approach, a fault in logic block and in local interconnec-
tions can be handled. This technique minimizes the recovery time since
the process consists of alternative configuration selection and PDR with
its precompiled bitstream. The drawbacks of this approach can be seen in
its poor area efficiency and complicated mitigation of mutliple faults but
the main one is the requirement of external storage for precompiled partial
configuration bitstreams. This can be reduced by some techniques such
as bitstream compression but there is always a trade-off with increased
time and complexity of recovery process.

8

The ability of modern FPGAs to be reconfigurated dynamically can
be used by evolutionary methods such as [3]. They can recover the system
correct operation through evolution when faults occur. These methods of-
fer a large degree of flexibility in the number and distribution of faults
which can be mitigated. There is no need to preciselly localize the fault.
Evolutionary methods attempt to facilitate repair through the reuse of
damaged resources. The fitness function of implemented Genetic Algo-
rithm (GA) is able to internally evaluate the residual functionality of the
design in FPGA and assess the fitness value. This value is used for the
upcoming selection phase. With this approach, very big flexibility can be
achieved and all remaining non-faulty resources can be utilized by the new
design. The drawback of this method is the complexity and the flexibil-
ity what can result in very time-demanding search of satisfactory design
with unpredictable duration and its result. The logic for evolutionary
algorithms can cause unnegligble area overhead.

Although many different approaches to system recovery after perma-
nent fault occurence exist, none of them is considered as universally appli-
cable. Table 1.2 is showing the comparison of presented recovery methods
from different aspects.

Recovery
method

Recovery
speed

Resource
overhead

Performance
overhead

Flexibility
of recovery

Hardware
level

very fast
just switching lines

in hardware

low
spare physical

resources needed,
no requirements
for impl. space

low
no design change

low
entire row/column

excluded

Alternative
configurations

medium
configuration
selection and

reconfig. delay

high
reconfig. controller
and config. selector

& storage for
for configurations

low
alternative confi-
guration can be

optimized

medium
trade-off with
the number of
configurations

Incremental
remapping

& rerouting

poor
time demanding
remapping and

rerouting

high
design impl. and

reconfig. controller

medium
trade-off with

impl. controller
complexity

high
non-faulty resources

can be effectively
utilized

Evolutionary
algorithms

poor
may take long
time to evolve

high
after bitstream
is read, parsed
and analysed

low
can be opti-

mized by setting
fitness function

high
non-faulty resources

can be effectively
utilized

Table 1.2: The comparison of permanent fault recovery methods

9

2. Motivation and goals of the
research

2.1 Motivation
The scaling of electronic devices and still less robustness of components
bring the strong need for more complex securing against the occurence of
faults. The use of electronic devices in new rough and noisy environment is
also another source of problems. For example, in the aerospace industry
there are requirements on electronic devices for their resilience against
radiation and on hardenning them against negative effects of material
aging during long term missions.

In recent decades, new possibilities and new challenges in the area of
system design appeared. Programmable electronic devices such as CPLDs
and FPGAs allowed rapid prototyping and started the era of reconfig-
urable computing. Faulty design can be easily fixed after the first de-
ployment and the same hardware can be also used to perform various
tasks during the lifetime where some of these can be unforeseen. The FP-
GAs came up with new possibilities in the field of fault tolerant hardware
design. The dynamic reconfiguration can be now used for changing the
mapping and routing inside FPGA in order to mitigate the faults which
have occurred. The new challenges with fault tolerance in FPGAs are con-
nected with their configuration saving. Very often the FPGAs which have
configuration stored in SRAM memory are used [9]. They are popular
because of their lower price and easy use they offer. Higher susceptibity
to SEU faults in comparison with other FPGA types can be seen as their
drawback.

Many approaches for making digital systems more dependable were
presented. Fault tolerant system design offers the possibility to overcome
the impact of fault occurence while the use of detection and localization
methods together with fault mitigation based on PDR can offer to restore
the fully operational state of system. This can be done autonomously
without the need of user intervention and without stopping system opera-
tion. Nowadays, the utilization of FPGAs is not only in rapid prototyping
but they are used frequently also in long term missions. Thus, the study
of system dependability has to focus also on permanent faults which oc-
cur more likely with the increasing age of FPGA. Many techniques for
mitigation of SEU effects in FPGA and also several mitigation techniques

10

for permanent damage of resources in FPGA are available. None of them
is universally applicable due to their high demands on memory (e.g. pre-
compiled alternative configurations), time-demanding fault recovery (e.g.
evolutionary algorithms), area overhead (e.g. incremental change of de-
sign), etc. Thus, it makes sense to focus on optimization of these tech-
niques and creating such methodology which will describe how to create
design with effective fault recovery ability.

2.2 Goals of the research
The effort to develop a methodology for fault tolerant systems design was
driven by the goal to satisfy the following aspects.

∙ The localization of the FPGA part (PRM) affected by fault.

∙ The determination of the fault type and its classification according
to considered fault model.

∙ The driving of repair proccess to return the system

– to the exactly same state as there was before - in case of tran-
sient fault,

– to the state when the functions of system are producing correct
outputs - in case of permanent fault.

∙ Keeping the design running during the reconfiguration process if it
is possible.

∙ Enabling the support for synchronization process after reconfigura-
tion is completed.

∙ The effort to shrink the number of the FPGA resources needed as
hardware overhead because of the system design according to pro-
posed methology.

The goal of this thesis is to combine the existing well known tech-
niques together with new approaches. As an example, the CED technique
together with online checkers can be used not only to ensure the fault
tolerance in system but also to localize the module affected by a fault in
FPGA if it is possible. This localization information will point at specific
reconfigurable module of FPGA which is faulty. Then some reconfigu-
ration controller will use this information to process fault mitigation in

11

it. The PDR together with FT design will be used to ensure the correct
operation even during the fault recovery process.

The goals of the research can be summarized in the following way:

1. To propose the methodology for the FT design of digital system
into FPGA with the ability to recover after transient and permanent
fault occurence which satisfies these conditions:

∙ The designed architecture of system is operating in limited im-
plementation area which means that it can only utilize the
resources from the area of FPGA which was designated for the
system at the begining of its lifetime.

∙ The occured transient fault in one system module is mitigated
while the rest of modules in FPGA are not affected by it.

∙ If the architecture of implemented system has to be modified
to recover after permanent fault occurence, the new one has
to keep producing correct outputs and it should remain fault
tolerant if it is possible.

2. To design the reconfiguration controller which will control the miti-
gation process in FPGA after fault occurence done by PDR. It sup-
plies the information about the detection and localization of fault,
it determines its type and controls the reconfiguration process. Al-
ternatively, it can also trigger the sychronization process when it is
needed.

3. To create test platform which will enable the evaluation of methods
and procedures described by the proposed methodology. For the
FT architectures designed by means of methodology principles, the
ability to survive will be tested by fault injection.

The proposed methodology covering these points is described in the fol-
lowing chapter.

12

3. Methodology for FT system
design into limited implementa-
tion area in FPGA
In this chapter the principles of the proposed methodology which aims at
securing system by implementing its parts as fault tolerant systems into
the limited implementation area in FPGA are described.

The limited implementation area from the perspective of this research
means the set of FPGA resources assigned for implementation of some
system parts which are important from the dependability point of view.
This implementation area is specified during the design phase of system
implementation and it cannot be modified during system lifetime. This
assessment limits the fault mitigation technique during permanent fault
recovery process.

3.1 Methodology basic principles
The proposed methodology defines the process of securing digital system
designed and implemented in FPGA. In other words, it can be understood
as the recipe how to redesign the given architecture of a system in FPGA
and how to prepare the system for recovery after fault attack and thus
make its lifetime longer. Such methodologies have their justification e.g.
in long term missions where the implementation area becomes smaller
after every permanent fault which occurs in the design.

The detection and localization process is based on the comparison of
replicated functional units in FT architectures and on other CED tech-
niques. No specific methods are intended. The mitigation technique re-
quires the localization on the PRM level. When the faulty PRM is lo-
calized, it must be determined to which type of fault defined by fault
model this particular fault belongs. Mitigation process is different for
both types of fault - transient and permanent. Both of them are driven
by developed controller unit - Generic Partial Dynamic Reconfiguration
Controller (GPDRC). This unit has a crucial role in the system because
it is responsible for the task of fault mitigation and is able to control the
reconfiguration performed through ICAP interface (see Section 3.3).

13

In the developed methodology, the design is protected by means of
FT architecture to guarantee the resilience against both independently
occurring transient faults and given number of permanent faults which
affect the FT system correct operation. The methodology suggests to
divide the implementation into certain number of PRMs. This set of
PRMs put together is called a configuration in the following text. Each
unit of FT system is placed in one PRM and it is assigned to Partial
Reconfiguration Region (PRR). PRMs are designed in a uniform way
which means that relative position of all sources, connections and proxy
logic inside it is identical for the particular type of the unit. This is
required for relocation process.

GPDRC

PRR0

PRR1

PRR2

PRR3

PRR4

FT architecture 1

BITSTREAM
ADDRESS

BITSTREAM
DATA

IN

OUT

PRR0

PRR1

PRR2

PRR3

PRR4

FT architecture 2
PRR0

PRR1

PRR2

PRR3

PRR4

FT architecture n

Dynamic reconfigurable area

FPGA
Static reconfigurable area

BITSTREAM STORAGE

5 10 5*n

MEMORY CONTROLLER

IN

OUT

IN

OUT

PRM error

Figure 3.1: The main structure of the proposed methodology

In Figure 3.1, an example of the complete FT system design in FPGA
based on the principles of methodology is shown. It consists of dynamic
part in which FT architectures are placed and static part which contains
GPDRC. The GPDRC utilizes the information about detection and local-
ization of faults from the CED logic units of FT architectures. The set
of error signals from PRMs (assigned in PRR1 - PRR4) are the inputs to
GPDRC. Splitting FT architecture into several PRMs gives the possibility
to exclude from the implementation one or several PRMs when they are
affected by permanent fault. The interconnection signals between mod-
ules and the connections between the particular module and the rest of
FPGA pass through single PRM assigned to PRR0 which is neighbour-
ing with all other PRRs. The other 4 PRRs can be assigned by PRMs

14

of different units of the selected FT architecture. The number of these
uniformly sized and structured PRRs can vary.

To illustrate the application of methodology for securing a real system,
several FT architectures were proposed which can be used in degradation
strategy of some system unit (see Figure 3.2). The first, most robust FT
architecture, is TMR architecture with doubled voter which enables the
detection of errors also in the voter. The next TMR architecture uses just
simple non-protected voter unit. The last architecture is based on Duplex
system with a comparator. This architecture is not fault tolerant since
there is no possibility to distinguish which output of two replicated units
is incorrect. But this system can run correctly until the first fault occurs
and then it is detected by compare unit.

Each replicated functional unit is implemented in single PRM referred
to as PRM_FU, complex voter unit is implemented in its own PRM
referred to as PRM_VOTER and the routing between replicated units and
the FT architecture external interface is constrained into PRM referred
to as PRM_ROUTE.

IN

OUT

FU

2 x VOTER &
ERR_CMP UNIT

FU

FU

PRM
error

PRM_ROUTE

PRM_VOTER

PRM_FU

IN

OUT

FU

FU

FU

PRM
error

NO PRM ASSIGNED VOTER

IN

OUT

FU

FU

PRM
error

CMP

FT architecture 1
(TMR with doubled voter)

FT architecture 2
(Simple TMR)

Non-FT architecture 3
(Duplex with compare)

Legend

Figure 3.2: The assignment of PRRs by different PRMs

3.2 Generations of alternative FT architec-
ture configurations

The methodology is based on the existence of precompiled configurations
of an FT design which are applied when a permanent fault occurs. These
configurations are divided into several generations. Configurations from
one generation contain the same FT architecture but with different PRM
placement. The enumeration of all possible generations for such FT ar-
chitectures is shown in Figure 3.3.

15

ROUTING

PRM

FU1 PRM

VOTER PRM

FU2 PRM

FU3 PRM

PRR0

PRR1

PRR2

PRR3

PRR4

Configuration code: [b1 b2 b3 b4]

Is PRR1

assigned?
(1/0)

Is PRR4

assigned?
(1/0)

...

[1111]

Legend

Generation 0

ROUTING
& VOTER

PRM

FU1 PRM

FU2 PRM

FU3 PRM

[1110]

Generation 1

ROUTING
& VOTER

PRM

FU1 PRM

FU2 PRM

FU3 PRM

[1011]

ROUTING
& VOTER

PRM

FU1 PRM

FU2 PRM

FU3 PRM

[1101]

ROUTING
& VOTER

PRM

FU1 PRM

FU2 PRM

FU3 PRM

[0111]

ROUTING
& COMP.

PRM

FU1 PRM

FU2 PRM

[1100]

Generation 2

ROUTING
& COMP.

PRM

FU1 PRM

FU2 PRM

[1001]

ROUTING
& COMP.

PRM

FU1 PRM

FU2 PRM

[1010]

ROUTING
& COMP.

PRM

[0011]

ROUTING
& COMP.

PRM

FU1 PRM

FU2 PRM

[0110]

ROUTING
& COMP.

PRM

FU1 PRM

FU2 PRM

[0101]

FU1 PRM

FU2 PRM

Figure 3.3: The generations of FT architectures and their alternative
configurations

The number of unused PRMs (PRMs excluded from use) in config-
urations of each generation reflects the generation number. The code
of configuration is assembled from flags indicating if the corresponding
PRR is assigned by PRM (see legend in Figure 3.3). The configuration
with code 1111 from generation 0 represents the starting configuration for
this system part. After the first permanent fault is detected and affected
PRM is localized, the new configuration excluding the faulty PRM from
the next generation is chosen to be used for system implementation. This
principle is applied again when a new fault affects another PRM. The
number of possible variants of configurations is rising with the number
of PRMs affected by fault. To reduce the memory requirements for the
configuration, bitstream relocation method is used to avoid the existence
of several copies of PRM containing the same type of unit. Only one
copy of PRM bitstream for each type of PRM except PRM_ROUTE is

16

needed. Only the bitstream designated as PRM_ROUTE is stored for
each configuration in the memory.

Due to the specifics of design and implementation flow adopted by
Xilinx tools, the generated partial configuration bistream of PRM cannot
be assigned to different PRR than it was originally designated to. One
PRB has to be generated for each PRR where the PRM will be config-
ured. Thus, if there is a need to apply 𝑁 PRMs of different types to any
of 𝑀 PRRs, 𝑁 * 𝑀 PRBs have to be produced and stored in external
memory for run-time partial reconfiguration. With the adoption of bit-
stream relocation technique, the number of generated PRBs is reduced
to 𝑁 . These PRBs can be used then for reconfiguration of all PRRs sat-
isfying the conditions for the application of relocation technique. These
conditions are applied in the design phase and the implementation phase.
One of the main limitations of this technique is the need to have all PRRs
with identical FPGA resources. In common, this technique always starts
by generating the PRBs for all types of PRMs in one chosen location
of PRR. Before the run-time reconfiguration, the bitstream manipulation
modifying the information related to its location to apply it into other
different PRR is needed.

3.3 Generic partial dynamic reconfiguration
controller

The concept of the first GPDRC for transient fault mitigation was pre-
sented in [20]. The first implementation within system with counter and
SEU injection was presented in [8]. Previous GPDRC design has been ex-
tended to be able to perform reconfiguration of entire FT system (several
PRMs) when the permanent fault occurs in its PRM. New issues such
as choosing the proper configuration from the next generation of con-
figurations, performing the relocation process on loaded PRBs and the
synchronization of the complete FT system were solved and implemented
into controller. The GPDRC for transient and permanent fault mitigation
was presented in [12].

Before the development of GPDRC, several design goals to be achieved
were defined:

∙ The resource utilization of new controller has to be lower than the
standard controller units implemented by universal softcore proces-
sors. It must be built in generic way to be able to perform PDR in
the systems with the different number of PRMs.

17

∙ The controller should be autonomously able to determine the type
of fault which occured in a PRM, whether it is a transient or a per-
manent one - for this purpose the information on whether the fault
occurred during n successive reconfiguration cycles (the reconfigu-
ration cycle consists of faulty PRM detection, PRM reconfiguration,
PRM synchronization) can be used. If the fault occurrence is equal
or lower than n, the fault is seen as a transient one, otherwise it is
concluded that the fault is a permanent one.

∙ The PDR will be done via internal reconfiguration interface (ICAP
in Xilinx FPGAs) and utilize its full speed (up to 100MHz).

∙ To reduce the number of needed precompiled PRBs the controller
has to implement the technique to use the same PRB for the PDR
of several PRMs where it is possible (e.g. the same type of PRM
but different physical assignment to PRR).

∙ The controller should allow the synchronization of reconfigured PRMs.

∙ The controller should support different external memory devices.

The detailed architecture of GPDRC can be seen in Figure 3.4. Its
interface contains an error vector of FT architectures as input. Its width
depends on the number of FT architectures and the available number of
PRMs for each of them. The next interface signals such as bitstream ad-
dress and data are designated to communication with external bitstream
storage when bitstream is transported through ICAP interface of FPGA.
The sync done and rec done signals are intended for controlling the syn-
chronization of reconfigured PRMs in FT architectures, the fatal signal
announces the situation when the FT architecture cannot be repaired
by GPDRC because the number of available PRMs has fallen below the
required minimum.

3.4 Fault mitigation procedure
In Figure 3.5 the behavior of the system after a fault is detected in PRM
is shown in flow diagram. The fault is detected by the FT architecture.
The FT architecture generates a set of error signals which identify the
faulty PRM (step 0). This is possible due to the fact that the functional
units and voters are implemented into separate PRMs and the relation
between the units and PRMs where they are placed is known.

18

Reloc.
 unit

 ICAP
wrapper

Input Capture
 Register

 Actual Error
 Register

FT Architectures PRM Error Vectors

Previous Error
 Register

 Hard Error
Detection Unit

hard
PRM
hard
error

Round Robin
 unit

PRM Type
 LUTs

 PRM Route
 Address
 LUT

Encoder Unit

 PRM
Error Index

 PRM
Index

hardReconf. PRM Index

 PRM n-1
 type

PRM Type
 Address
 LUT

Reconf.
 PRM
 Type

Address
Counter

FSM

bitstream
data

bitstream
address

v
a
li
d

Start
Addr

rec. done

 PRM 0
 type

sync. done

End
Addr

v
a
li
d

fatal

Frame
Address

LUT

Configuration Code

FT Arch.
 status

Actual Arch.
Previous Error
Vector

Actual
Architecture
Error Vector

=0

Memory controller

arch. index

hard

PRM error
index

Bitstream storage memory

address data

Figure 3.4: Fault tolerant system structure for SRAM based FPGA

When the faulty PRM is localized, the GPDRC determines, if the
occured fault will be considered as transient or permanent one. The solu-
tion used in the case of transient fault occurence is denoted as the option
A further in this text. If the fault is seen as a permanent one, then the
subsequent steps depend on whether the current configuration comes from
the final generation (Generation 2 in this case). The GPDRC stores the
configuration code of actual configuration so it is able to identify that it is
from final generation. If it is from final generation, there is no additional
option to continue in mitigation of this new permanent fault and the FT
architecture will indicate this to GPDRC unit. Then, the intervention
from outside is needed (e.g. physical placement of configuration is moved

19

(A1)

(A2)

(B1)

(B2)

(B3)

(B4)

(0)

(A3)
RECONFIGURE ALL PRMs

(EXCEPT PRM_ROUTE)
BY RELOCATED BITSTREAMS

DOWNLOAD AND RELOCATE
BITSTREAM OF ALL PRMs USED

BY CONFIGURATION
EXCEPT OF PRM_ROUTE

DOWNLOAD BITSTREAM OF
PRM_ROUTE FROM CHOSEN

CONFIGURATION AND PERFORM
RECONFIGURATION

CHOOSE THE NEXT GENERATION
CONFIGURATION NOT USING

AFFECTED PRM LOCALITY

SYNCHRONIZE
RECONFIGURE PRM

RECONFIGURE PRM
WITH FAULT BY

RELOCATED BITSTREAM

DOWNLOAD AND RELOCATE
BITSTREAM OF PRM

WITH THE SAME TYPE
AS THE AFFECTED PRM

ACTUAL
CONFIGURATION

FROM FINAL
GENERATION

PERMANENT FAULT

REPORT
UNREPAIRABLE STATE

YESNO

YES

NO

YES

NO
FAULT DETECTED

LOCALIZE FAULTY PRM

NORMAL OPERATION MODE
&

GPDRC CHECKS FOR FAULT

Figure 3.5: Reconfiguration flow diagram

to another locality of FPGA or the FPGA is replaced with a new one). In
the situation when actual configuration is not from final generation, it is
possible to mitigate the occured fault and the solution is denoted as the
option B.

Option A - recovery from a transient fault: After a transient
fault is detected, GPDRC reads from external memory the PRB which re-

20

sponds to the type (PRM_FU, PRM_VOTER, PRM_CHECKER, etc.)
of the identified faulty PRM. The type of the unit is known because the
GPRDC knows which configuration is configured actually and the distri-
bution of PRMs in it. The downloaded PRB is originally designated to
the first suitable PRR (typically to PRR1). Therefore, the next step of
mitigation process (step A1) will be the relocation of this bitstream in
such way that it can be used for reconfiguration of the affected PRM. The
reconfiguration process of this PRM with the relocated PRB is driven by
GPDRC (step A2).

After the reconfiguration is finished, in some cases the PRM must be
synchronized with other components of FT architecture. The synchro-
nization can be also controlled by GPDRC (step A3).

Option B - recovery from a permanent fault: After a permanent
fault is detected in PRM and the actual configuration does not belong to
the final generation, new configuration from the following generation is
selected. This configuration will not use the faulty PRM. The GPDRC will
choose configuration according to configuration code which will respond
to bitwise negation of the vector of error signals from FT architecture (B1
step).

The PRB for PRM_ROUTE (PRM with the interconnections) of se-
lected configuration is stored in the external bitstream storage. This bit-
stream is designated to reconfigure resources of PRR0 (the only PRR of
FPGA where this bitstream of PRM_ROUTE can be assigned). This
implies that there is no need to relocate this PRB (step B2).

The downloading of PRB copies implementing all remaining PRMs
will be the next action. The number of needed bitstream copies and their
type (if it is implementing PRM_FU, PRM_CHECKER or PRM_VOTER)
is determined by the selected configuration. PRBs of all PRM types are
downloaded from the same destination, as in the case of reconfiguration
after transient fault. Each of these downloaded PRBs will go through
relocation process which will make them suitable for appropriate PRRs
(step B3).

The downloaded and relocated PRBs are used for the reconfiguration
of PRMs, which are used in the configuration (step B4). After completion
of the reconfiguration, local reset of units in newly configured PRMs is
performed. Also some kind of synchronization (state recovery of all units
in affected PRMs) can be performed in this step.

21

4. Design of FT architecture by
means of developed methodol-
ogy principles
The process of FT architecture system design to meet requirements de-
fined by the proposed methodology is described in this chapter.

4.1 Fault tolerant architectures design
The application of the methodology requires the specific process of system
design. When this design is adopted, it is ensured that faults appearing
subsequently in functional modules or other FT modules (containing vot-
ers, checkers, etc.) of design can be mitigated.

The original system design delivered from a designer for securing has
to be divided into important parts in terms of required dependability and
the remaining parts which may remain unsecured (from the methodology
point of view) or they are secured in some other way. From the chosen
important system parts every single part will be secured as single FT
architecture with fault mitigation capability according to the methodol-
ogy. The process of partitioning has to be driven by designer knowledge
of importance of each system part. This can be gained as the result of
modelling reliability of system parts and the impacts of faults occured in
specific system part to entire system. The partitioning can be done with
different granularity (see also Figure 4.1)

∙ Coarse-grained partitioning - The complete system is just one part.

∙ Fine-grained partitioning - The system is divided into more smaller
parts. This reduces the overall size of all needed bitstreams but
the GPDRC size is increased and it brings more complexity to fault
mitigation process.

∙ Mixed partitioning - The combination of two previous approaches
can be done by grouping several small system parts into several
groups and implement each of them as single FT architecture.

The next step is the selection of degradation strategy for each chosen
important part according to their stated level of importance. Permanent

22

FU1 FU2

FU4

FU3

FU5

FU6

PART1

(a) Coarse-grained partitioning

FU1 FU2

FU4

FU3

FU5

FU6

PART1 PART2
PART4 PART5 PART6

PART3

(b) Fine-grained partitioning

FU1 FU2

FU4

FU3

FU5

FU6

PART1
PART3 PART4

PART2

(c) Mixed partitioning

Figure 4.1: Design partitioning with different granularity

fault occurence in system is mitigated by downgrading the FT architecture
from the robust one to less robust one. This step is required every time a
permament fault occurs in currently occupied PRR containing the PRM
of FT architecture (see Figure 4.2). The less robust FT architecture will
exclude this PRR from the further use. The number of PRRs which can
be excluded at the same time then specifies the number of permanent
faults which can be handled by this secured part of the system.

VOTER

CHECKER1

FU1

CHECKER2

FU2

CHECKER3

FU3

=

CHECKER1

FU1

CHECKER2

FU2

CHECKER1

FU1

Figure 4.2: The set of FT architectures as a sample of degradation strategy

In the next step, the implementation area in FPGA for each system
part implemented as FT architecture has to be stated. This area is al-
located in dynamic area. It enables the modification of assigned PRMs
by PDR. The remaining parts are placed in static area. For each chosen
important part of system, several PRRs will be created. To these PRRs,
the PRMs of currently used FT architecture will be assigned according to

23

stated procedure (see Figure 4.3). The location and the size of PRRs for
implementing one system part must respect this conditions:

∙ The number of PRRs is the same or bigger than the number of
PRMs of the starting (the most robust) FT architecture for given
system part.

∙ The set of created PRRs will contain one specific PRR for PRM
with routing (PRM_ROUTE). This PRR has to be located in the
neighbourhood of all other PRRs.

∙ Every PRR from the set of created PRRs (except of the PRR desig-
nated to be configured by PRM with routing) has to have the same
size, the same structure and the same local placement of the FPGA
resources.

∙ The placement of PRR and also the size of the smallest possible
PRR (𝑃𝑅𝑅𝑚𝑖𝑛) is limited by the fact that reconfiguration is done
per configuration frames.As the configuration frame is modifying the
configuration of specified number of resources at once, the location
and the size of PRR has to respect these principles and can only
allocate resources corresponding to one 𝑃𝑅𝑅𝑚𝑖𝑛 or its multiples.

ERROR

OUT

IN

ERROR

OUT

IN

ERROR

PRR0

PRR0

 PRR5

PRR0

PRR0

PRR0

The implementation area
corresponding to one PRR min

PRM with routing

PRM with FU

No PRM asigned

 4 PRR 5 PRR 6 PRR

 PRR4

 PRR3

 PRR2

 PRR1

 PRR0

 PRR4

 PRR3

 PRR2

 PRR1

 PRR3

 PRR2

 PRR1

OUT

IN

Figure 4.3: Several possibilities with area allocation for simple TMR ar-
chitecture

4.2 The implementation of generated FT ar-
chitectures

The complete process starting with the entry of unsecured system design
to the final step of configuration of FPGA with the equipment to tolerate
the fault impacts and their mitigation consists of several steps:

24

1. Design entry - the designer enters VHDL source codes.

2. The specification of the system parts to be secured - the designer
chooses the parts and the degradation stategy for each of these parts.

3. The generation of FT architectures for the use in degradation strate-
gies - the developed tool is used for the generation of FT architec-
tures for each system part.

4. The creation of secured FT system - the original system design is
modified by replacement of selected parts by their implementations
as FT architectures. This can be done without much effort because
the interface of original part (unit) is a subset of the interface of the
generated FT architecture. Further, the GPDRC instance has to
be added and the error signals from all FT architectures have to be
gathered and connected to its error input. The controller for some
external memory device (e.g. the developed SD card controller) has
to be added, too. This unit is needed to provide the configuration
bitstream data for GPDRC. Alternatively, the synchronization con-
troller and logic to perform synchronization of the modules of FT
architectures can be added as well in this step.

5. The implementation of static design with the starting configuration -
for the complete (static) reconfiguration of FPGA, the system design
where all chosen important parts are secured with most robust FT
archictures from generation 0 is used. This implementation run is
also used for generating partial bitstreams for all PRMs utilized by
FT architectures in generation 0. From these partial bitstreams,
one from each PRM type is chosen as golden copy to be stored in
external memory storage. These bitstreams can be later relocated
and used during fault mitigation process.

6. The implementation of all partial configuration bitstreams - to cre-
ate partial bitstreams which can be used by GPDRC for recovery
from permanent fault, PRBs for each PRM with routing for all pos-
sible alternative configurations in each FT architecture is created.

25

5. Implementation and experi-
mental results
This chapter describes the implementation results of systems where the
methodology was applied and several experiments simulating transient
and permanent fault occurences and their mitigation

5.1 The implementation of GPDRC
In the secured system design, a very important role is designated to
GPDRC unit. The reason for its development as the alternative to con-
trollers implemented into softcore processor is its smaller size and lower
reconfiguration latency due to its specialization. Its size (the number of
utilized FPGA resources) is mainly affected by the number of PRMs into
which the system is implemented.

For the evaluation of GPDRC resource utilization results for different
system partitioning approaches, a design with counters, registers, decoders
and other logic was created. The complexity of this implemented system
does not play any role in the evaluation of GPDRC size. It is mainly
influenced by the overall number of PRMs and other attributes mentioned
in above paragraph. Thus, the entire design in FPGA was divided into
several FT architectures and they were divided into the same number
of PRMs. The experiments were done for 3 to 6 PRMs. The size of
GPDRC for various numbers of FT architectures and the number of PRMs
is presented in Figure 5.1.

The size of GPDRC and its units together with the comparison with
the size of MicroBlaze IP core used as PDR controller is shown in Ta-
ble 5.1. These results are valid for 32 FT architectures with 6 PRMs per
each controlled by the GPDRC. The meaning of the columns is as follows:
the name of unit (column 1), the size of unit in slices (2), the number of
occupied LUTs (3) and FlipFlops (4) and the size of TMR alternative (5).

26

50

100

150

200

250

300

350

400

1 5 10 15 20 25 30

N
um

be
r

of
 o

cc
up

ie
d

S
li

ce
s

Number of FT architectures

3 PRM per FT architecture
4 PRM per FT architecture
5 PRM per FT architecture
6 PRM per FT architecture

Figure 5.1: GPDRC size vs. the number of FT architectures for various
numbers of PRMs per FT architecture

ML506 - Virtex5 Size LUTs F/Fs TMR
192 PRMs [slices] [#] [#] [slices]

Input Capture Register 49 (0,6%) 97 192 127 (2,6x)
Actual Error Register 48 (0,6%) 101 101 124 (2,6x)

Previous Error Register 48 (0,6%) 192 192 124 (2,6x)
Hard Error Unit 3 (0,1%) 4 0 9 (3,0x)

Round Robin Unit 5 (0,1%) 6 6 14 (2,9x)
Error Encoder 3 (0,1%) 3 0 6 (2,0x)

Relocation Unit 7 (0,1%) 16 1 20 (2,9x)
Architecture Status Unit 2 (0,1%) 49 32 6 (3,0x)

Address Counter 22 (0,3%) 52 21 56 (2,5x)
FSM 22 (0,3%) 48 17 59 (2,7x)

Others (LUTs, MUXs...) 135 (1,7%) 317 186 414 (3,1x)
GPDRC total 344 (4,2%) 885 748 959 (2,8x)

MicroBlaze 628 (7,7%) 1414 1491 1664 (2,8x)

Table 5.1: The numbers of FPGA resources for GPDRC (32 FT architec-
tures, 6 PRM per FT architecture)

5.2 FT architectures developed to secure a
given part of system

This section presents the basic features of FT architectures which were
developed as a model architectures for each generation (0, 1 and 2). Dif-

27

ferent FT architectures which have the ability to detect and localize faults
on PRM level can be used. The proposed FT architectures utilize 5 PRMs
and thus 5 error signals can be identified on the output of PRM_ROUTE
block. These signals are connected to the inputs of GPDRC where they
indicate the occurrence of a fault.

The initial FT architecture of Generation 0 is based on TMR scheme in
which the outputs of all FUs are checked by the majority element (voter).
This architecture consists of 5 PRMs (3 PRM_FUs, PRM_VOTER and
PRM_ROUTE). Figure 5.2 presents the proposed structure of this ar-
chitecture. Each FU of the architecture is implemented as a standalone
PRM without any additional diagnostic logic. The outputs of all PRM
FUs are connected into PRM_VOTER block which is implemented as a
duplex architecture because of the need to detect fault occurrence in its
structure.

FU2

PRM

FU3

PRM

in

FU1

PRM

cmp

out

cmp

&

cmp

&

&

1

err3

err2

err1

err_voter

voter

voter

FU1_err

FU2_err

FU3_err

FU1_err

FU2_err

FU3_err

 PRM

ROUTE
PRM_VOTER

 PRM

ROUTE

err_route
’0’

Figure 5.2: The FT Architecture of Generation 0 based on TMR

The FT architecture of Generation 1 is based on a duplex scheme with
the addition of one PRM with CHECKER unit (PRM_CHECKER). As
can be seen in Figure 5.3, this architecture consists of four PRMs (2
PRM_FU, PRM_CHECKER and PRM_ROUTE). Each FU of the ar-
chitecture is implemented as a single PRM and their outputs are switched
by output multiplexor which is controlled by error signal from diagnostic
logic.

In order to detect any fault in PRM_ROUTE block, this block is sup-
posed to be implemented as duplex architecture with comparator. The
alternative of FT architecture of Generation 1 can be seen in Figure 5.4.
The comparator output is connected to error signal err_route, the oc-
currence of logical one value on error signal will cause the start of PDR
process.

28

CHECKER

PRM

FU2

PRM

Mx

in

FU1

PRM

cmp

cmp

&

&

&

err1

err_ch

err2

out

PRM_ROUTE
 PRM

ROUTE

err_voter

err_route
’0’

Figure 5.3: The FT Architecture of Generation 1 based on Duplex with
checker

CHECKER

PRM

FU2

PRM

in

1

err1

err_ch

err2

PRM_ROUTE

 PRM

ROUTE

detection

logic B

detection

logic A
cmp

out

cmp

err_route

err_voter
’0’

FU1

PRM

Figure 5.4: The alternative FT Architecture of Generation 1

The final architecture of Generation 2 is based on classical duplex
scheme (see Figure 5.5). This architecture is not FT and it has only 3
PRMs (2 PRM_FU and PRM_ROUTE). In this architecture, PRM_ROUTE
block contains additional diagnostic logic for fault detection. Because it
is not known which one of the two PRM implementing FUs is faulty,
the reconfiguration process is applied to both of FU PRMs. This is final
architecture, no recovery from permanent fault is possible.

5.3 Evaluation of resource overhead
The sizes of FT architecture components which cause hardware overhead
in FPGA are shown in Table 5.2. In this table, the overhead of only
those units which were utilized and extended by our methodology when
compared to the standard use of these units are taken into account. For

29

FU2
PRM

in

FU1
PRM cmp

out

err1

err2

PRM
ROUTE PRM_ROUTE

err3

err_voter

err_route

’0’

Figure 5.5: The architecture of Generation 2 based on Duplex

the generation 0, the overhead includes the size of PRM_ROUTE and
PRM_VOTER units. The sizes of any of three FUs were not consid-
ered into overhead as they are present also in the standard TMR scheme.
The size of PRM_VOTER unit was decremented by the size of standard
majority voter unit without the ability of faulty unit localization to get
only the overhead caused by the use of our methodology. For both types
of the generation 1 and for the generation 2, the overhead includes only
PRM_ROUTE unit for the same reasons as for the generation 0. The
meaning of the columns is as follows: column 1 - the width of each FU
output in bits; column 2 to 5 - the overhead of FT architecture from the
specified generation in slices.

XC5VSX50T Generation Generation Generation Generation
data width 0 1 1-variant 2

[bits] [slices] [slices] [slices] [slices]
2 12 5 12 1
4 22 11 24 2
8 36 17 39 3
16 68 31 68 7
32 126 57 122 12
64 206 111 210 23

Table 5.2: The overheads of Generations in slices

30

5.4 Implementation results of different ap-
proaches to the partitioning of original
system

The key step in design process of securing a given system is its partitioning
into parts which will be implemented as standalone FT architectures. To
examine the properties of a secured system such as hardware overhead
or the size of PRBs used for the reconfiguration after fault occurence for
different types of its partitioning, the test design of system with MB-LITE
softcore processor (see [10]) was developed. Altough the top-level design
contains only two main units - the instance of MB-LITE and Wishbone
adapter, the processor can be further divided into 4 functional units - IF,
ID, EX and MEM.

From the implementation results revealed the fact that the unit per-
forming the execute stage of pipeline (MB-LITE - EX) utilizes much more
slices than other units which is caused by a big number of used LUTs.
Therefore, the following possibilities for partitioning based on different
granularity were proposed:

∙ 1 FT architecture - all functional units are grouped together and
replicated (coarse-grained partitioning), see Figure 5.6.

∙ 2 FT architectures - EX unit of MB-LITE processor is implemented
as one FT architecture, the remaining units are grouped together
and implemented as the second FT architecture.

∙ 5 FT architectures - each unit mentioned in the above provided table
is implemented in a single FT architecture (fine-grained partition-
ing).

Table 5.3 shows the implementations of all variants of the secured
system. They were compared by their resource utilization (column 1),
hardware overhead in comparison to original design (column 2) and the
sizes of their PRBs (column 3).

The results summarized in the table show that the HW overhead is
slightly lower for the variant with 1 FT architecture. This is caused by the
smaller GPDRC unit due to lower number of PRMs. On the other side,
this is degraded by bigger PRB size which causes longer reconfiguration
time. The table shows that there is a tradeoff between HW overhead and
the overall size of all PRBs (or the time of reconfiguration).

31

IF

Wishbone adapter

ID MEM

IF

Wishbone adapter

ID MEM

IF

Wishbone adapter

ID MEM

VOTER

INSTRUCTION

DATA

EX

FPGA

FT arch. 1

GPDRC

MEMORY
CTRL

BITSTREAM DATA

BITSTREAM ADDRESS

EX

EX

Figure 5.6: All units in one FT architecture

XC5VSX50T PRMs Slices HW overhead Bitstream sizes
The variant of PRM_ROUTE: [kB]
secured system # # % PRM_FU : [kB]
Original design 0 723 0 -
TMR design (w/o PDR) 0 2287 216 -
1 FT arch. 5 2421 235 6,6

408
2 FT arch. 10 2484 244 6,6; 6,6

92,4; 39,6
5 FT arch. 25 2572 256 6,6; 6,6; 6,6; 6,6; 6,6

6,6; 19,8; 92,4; 13,2; 6,6

Table 5.3: The comparison of resource utilization and hardware overhead
for different implementations of the given system

5.5 SEU testing platform for the evaluation
of FT system design by means of method-
ology principles

To evaluate the quality of secured FPGA to cope with transient and per-
manent fault occurence, the special test platform was developed. The
testing was based on fault injection into configuration bitstream to simu-
late an SEU fault occurence. The platform allows to observe the behaviour
of entire secured system implemented in FPGA when a fault occurs. The
test platform contains several parts which are creating together the nec-
essary test and evaluation equipment (see Figure 5.7). The FPGA is

32

configured by the implementation of system secured by the means of the
methodology. The remaining parts of the test platform are implemented
and run on PC.

Source codes
of secured

system
(VHDL)

Design
constraints

Design
synthesis &

implementation

Designer
sources

&
design

generation
tool

Implementation tool
(Xilinx ISE)

SEU simulation & evaluation framework

BIT
NCD

BIT

VHD
UCF
TCL

Reconfiguration tool
(Xilinx Impact)

Test & evaluation tool
(BASH scripts)

JTAG

RS-232

OUT
DATA

SEU injection

Evaluation tool

SEU bits list generator
(Rapidsmith)

NCD to XDL
conversion

Generation of bit list
for SEU injection

XDL

Device
programming

FPGA

TPG
FU

Evaluation
unit

UART

MEMORY CTRL

BITSTREAM MEMORY

GPDRC

Figure 5.7: Dependability evaluation platform with SEU injection test
platform

For the SEU injection into configuration memory, the external SEU
injector presented in [11] was used. It uses PDR to simulate the radiation-
induced upsets by artificially changing the contents of the configuration
memory. This injector is written as TCL script and is run on PC. It
accesses the JTAG external reconfiguration interface of FPGA. It uses
the ChipScope library function of Xilinx ISE toolkit to perform the upset
in configuration memory by toggling some bit value in the configuration
bitstream.

One simulation step for testing a secured design consists of one SEU
injection into one of FT architecture PRMs and checking its output for
error. When the fault is detected by the compare logic in the evaluation
unit or by detection and localization logic implemented in FT architecture,
the status message is sent via RS-232 to the evaluation tool in PC. If the
reconfiguration is performed, the GPDRC status is observed and after rec.
done signal is set, the next status message is sent to the evaluation tool.

33

Experimental results of GPDRC transient fault miti-
gation process
The test platform described in the above section was implemented and
tested with Virtex 5 FPGA (XC5VSX50T) on an ML506 development
board. To implement the system design for FPGA and for bitstream
generation, the Xilinx ISE 14.7 toolkit was used. The FU contains several
8-bit counters, decoders and multiplexers, the data width of input was
6 bits and the data width of output was 16 bits. The design contains
one FT architecture with 5 PRMs and the FT architectures described in
Section 5.2 was used in the degradation strategy. The size of a PRB for
PRMs with FU, PRM with doubled voter and PRM with checker unit
was 6632 bytes, the sizes of PRBs for each PRM with routing were 26582
bytes.

XC5VSX50T PRM SEU detected FT arch. SEU missed GPDRC
utiliz. by FT arch. output errors by FT. arch reconf.

PRM type % # # # #
PRM_FU
(all generations) 45% 7806 552 25 7826
PRM_VOTER
(generation 0) 30% 3345 1571 105 3345
PRM_CHECKER
(generation 1) 45% 6901 552 11 6900
PRM_ROUTE
(generation 0) 1% 0 21 21 0
PRM_ROUTE
(generation 1) 12% 3542 1243 234 3541
PRM_ROUTE
(generation 2) 6% 2432 1056 351 2430

Table 5.4: The number of detected SEUs in FUs of the architecture

From the results summarized in Table 5.4, it can be seen that the FT
architecture of generation 0 and 1 can detect and repair more than 97%
SEUs in PRM with FU, voter or checker unit. Except the FT architecture
from generation 0 which do not have ability to detect faults in PRM with
routing, this PRM type in the FT architectures from other generations
was able to detect faults in more than 85% cases. Almost all detected
faults have triggered the mitigation process done by GPDRC. In all cases,
the PRM with routing was able to survive most of the SEU faults injected
inside it due to very low utilization of FPGA resources.

34

Testing and evaluating recovery from permanent fault
occurence
According to the results of SEU injection campaign during transient fault
simulation process only some configuration bits of FT architecture PRMs
were used for permanent fault simulation. A specific bit was chosen for
permanent fault injection campaign, if the fault that it creates in the
unit implemented in PRM was detected by the detection logic of FT
architecture or it has been manifested as an error on FT architecture
output during the transient fault simulation campaign.

The experimental results for a permanent fault injection campaign to
the same FT architectures as in previous experiment are shown in Ta-
ble 5.5. The meaning of the columns in the table is as follows: column 1 -
the type of FT architecture and which generation it belongs to; column 2
- the number of injected SEU faults; column 3 - the number of incorrect
data on the outputs of FT architecture; column 4 - the number of perma-
nent faults detected; column 5 - the number of performed permanent fault
recoveries by the reconfiguration to a different FT architecture; column 6
- the mean time to repair the system to the correctly operating state.

XC5VSX50T Injected FT arch. output Perm. fault Recovery MTTR
faults data errors detected done

Generation # # # # [ms]
Generation 0
(TMR-2xVOTER) 12768 2144 12515 12480 512
Generation 1
(TMR-simple) 12575 1796 12287 9802 351
Generation 2
(Duplex) 7987 708 156 0 -

Table 5.5: The number of successfully detected permanent faults and the
MTTR for permanent fault recovery

The results summarized in Table 5.5 show that the number of de-
tected faults is decreasing with the number of PRMs which are used by
FT architecture. This is caused mainly by masking the faults which are
injected into excluded PRMs. The repair process is shorter for less robust
FT architectures due to the fact that the reconfiguration of fewer PRM
is performed.

35

6. Conclusions
In this work, the methodology of FT system design with the ability to
mitigate transient faults caused by SEUs and to recover from several
permanent fault occurences was proposed as the alternative to existing
methods or methodologies. This methodology benefits from the ability to
PDR in modern FPGAs which can be used for the run-time repair or the
change of current FPGA configuration. The production of correct outputs
from the system implemented in FPGA even during its PDR is ensured
by its designing as an FT architecture. For the transient and permanent
fault mitigation techniques, the set of relocatable PRBs to create the sets
of alternative configurations is created and used for PDR. The final sys-
tem implementation is then ready to survive many transient and several
permanent fault occurences.

6.1 Benefits of this research
As the main benefit of this research, the proposal of alternative method-
ology for the FT system design with the ability of fault mitigation can be
mentioned. This methodology brings some new features such as the use
of dedicated reconfiguration controller or the application of the relocation
technique in transient fault mitigation and also in the recovery process
from permanent fault occurence. This greatly suppresses the main disad-
vantage of the use of precompiled configurations to mitigate faults which
is space demanding storing of many configuration bitstreams. All benefits
are summarized in the following points.

∙ The exact procedure of transformation the system design entered
by designer to secured system where selected important parts are
implemented as FT architectures with the mechanism of transient
fault mitigation and recovery from permanent fault was described.

∙ The dedicated reconfiguration controller (GPDRC) with the ability
to determine the type of fault and perform the correct mitigation
procedure was developed. It was designed with the effort to reduce
the necessary area and performance overhead.

∙ There is a possibility to define the level of importance for every
system part by specifying the degradation strategy. This strategy

36

is used when the recovery after permanent fault occurence is per-
formed.

∙ The final system design can be extended with synchronization mech-
anism for reconfigured units. The GPDRC is designed to cooperate
with the synchronization controller.

6.2 Possible enhancements of methodology
This complex methodology is based on many principles and incorporates
many methods which can be further enhanced to achieve better perfor-
mance of final secured system, to lower the neccessary area overhead in
FPGA or to lower the necessary capacity of external bitstream storage.

One of possible approaches to reduce the space for storing the data is
data compression. It can be incorporated into final FT system designed
by means of proposed methodology. Due to the fact that the GPDRC
unit does not implement the direct read from the memory but it uses
external memory controller unit, the decompressor unit for processing the
compressed bitstream can be inserted to the data path between these
units.

Current methodology uses the standard PR design flow defined by
Xilinx to implement the final FT system and generate the static design
bitstream and the set of partial configuration bistreams. Another flow
such as IDF can be adopted to make the system more secure by reducing
the possibility of fault occurence which affects more than one PRM at
once. This can be achieved by thorough isolation of PRMs. It can also
simplify the relocation of PRBs designated to these isolated PRMs.

Several enhancements would be also possible in the GPDRC unit. One
of the current issues in this unit is its permanent occupation of ICAP. If the
system entered by designer would like to use the PDR ability of FPGA for
its reconfiguration it will not be possible because only one instance of this
unit can be used. This can be solved by excluding the ICAP instance from
the GPDRC unit and using it externally. Then some multiplexing logic
can be added and this one ICAP instance can be shared by the original
system and by the GPDRC. Because the final secured system (designed
by means of the methodology) is based on the set of FT architectures and
thus the fault can be masked by them the instant fault mitigation is not
necessary. The GPDRC unit can wait until the ICAP instance is not used
and then finally perform the mitigation process.

37

Bibliography

[1] Cristiana Bolchini, Antonio Miele, and Marco D. Santambrogio.
Tmr and partial dynamic reconfiguration to mitigate seu faults in
fpgas. In 22nd International Symposium on Defect and
Fault-Tolerance in VLSI Systems (DFT ’07), pages 87–95,
Washington, DC, USA, 2007. IEEE CS.

[2] Cristiana Bolchini, Antonio Miele, and Marco D. Santambrogio.
Tmr and partial dynamic reconfiguration to mitigate seu faults in
fpgas. In 22nd International Symposium on Defect and
Fault-Tolerance in VLSI Systems (DFT ’07), pages 87–95,
Washington, DC, USA, 2007. IEEE CS.

[3] R. F. DeMara and Kening Zhang. Autonomous fpga fault handling
through competitive runtime reconfiguration. In 2005 NASA/DoD
Conference on Evolvable Hardware (EH’05), pages 109–116, June
2005.

[4] F. Hatori, T. Sakurai, K. Nogami, K. Sawada, M. Takahashi,
M. Ichida, M. Uchida, I. Yoshii, Y. Kawahara, T. Hibi, Y. Saeki,
H. Muroga, A. Tanaka, and K. Kanzaki. Introducing redundancy in
field programmable gate arrays. In Custom Integrated Circuits
Conference, 1993., Proceedings of the IEEE 1993, pages 7.1.1–7.1.4,
May 1993.

[5] J. Heiner, B. Sellers, M. Wirthlin, and J. Kalb. Fpga partial
reconfiguration via configuration scrubbing. In Field Programmable
Logic and Applications (FPL ’09), pages 99–104, Washington, USA,
2009. IEEE CS.

[6] Yoshihiro Ichinomiya, Shiro Tanoue, Motoki Amagasaki, Masahiro
Iida, Morihiro Kuga, and Toshinori Sueyoshi. Improving the

38

robustness of a softcore processor against seus by using tmr and
partial reconfiguration. In Proceedings of the 2010 18th IEEE
Annual International Symposium on Field-Programmable Custom
Computing Machines, FCCM ’10, pages 47–54, Washington, DC,
USA, 2010. IEEE Computer Society.

[7] Hlavicka J. Cislicove systemy odolne proti porucham. CVUT, 1992.

[8] Straka M., Miculka L., Kastil J. and Kotasek Z. Test platform for
fault tolerant systems design qualities verification. In 15th IEEE
International Symposium on Design and Diagnostics of Electronic
Circuits and Systems, pages 336–341. IEEE Computer Society, 2012.

[9] F. Kastensmidt, L. Carro, and R. Reis. Designing fault tolerant
systems into sram-based fpgas. In Design Automation Conference,
2003. Proceedings, pages 650–655, June 2003.

[10] T. Kranenburg and R. van Leuken. Mb-lite: A robust, light-weight
soft-core implementation of the microblaze architecture. In 2010
Design, Automation Test in Europe Conference Exhibition (DATE
2010), pages 997–1000, March 2010.

[11] Kastil J., Straka M., Miculka L. and Kotasek Z. Dependability
analysis of fault tolerant systems based on partial dynamic
reconfiguration implemented into fpga. In 15th Euromicro
Conference on Digital System Design: Architectures, Methods and
Tools, pages 250–257. IEEE Computer Society, 2012.

[12] Miculka L. and Kotasek Z. Generic partial dynamic reconfiguration
controller for transient and permanent fault mitigation in fault
tolerant systems implemented into fpga. In 17th IEEE Symposium
on Design and Diagnostics of Electronic Circuits and Systems,
pages 171–174. IEEE Computer Society, 2014.

[13] J. Lach, W. H. Mangione-Smith, and M. Potkonjak. Enhanced fpga
reliability through efficient run-time fault reconfiguration. IEEE
Transactions on Reliability, 49(3):296–304, Sep 2000.

[14] Vijay Lakamraju and Russell Tessier. Tolerating operational faults
in cluster-based fpgas. In Proceedings of the 2000 ACM/SIGDA
Eighth International Symposium on Field Programmable Gate
Arrays, FPGA ’00, pages 187–194, New York, NY, USA, 2000.
ACM.

39

[15] Tyler M. Lovelly and Alan D. George. Comparative analysis of
present and future space processors with device metrics. Journal of
Aerospace Information Systems, 14(3):184–197, 2017.

[16] J. Narasimham, K. Nakajima, C. S. Rim, and A. T. Dahbura. Yield
enhancement of programmable asic arrays by reconfiguration of
circuit placements. IEEE Transactions on Computer-Aided Design
of Integrated Circuits and Systems, 13(8):976–986, Aug 1994.

[17] M. M. Pereira, L. Braun, M. Hübner, J. Becker, and L. Carro.
Run-time resource instantiation for fault tolerance in fpgas. In 2011
NASA/ESA Conference on Adaptive Hardware and Systems (AHS),
pages 88–95, June 2011.

[18] Aiwu Ruan, Bairui Jie, Li Wan, Junhao Yang, Chuanyin Xiang,
Zujian Zhu, and Yu Wang. A bitstream readback-based automatic
functional test and diagnosis method for xilinx fpgas.
Microelectronics Reliability, 54(8):1627–1635, 2014.

[19] T. D. A. W. Ruan and P. L. B. R. Jie. A bitstream readback based
fpga test and diagnosis system. In 2014 International Symposium
on Integrated Circuits (ISIC), pages 592–595, Dec 2014.

[20] M. Straka, J. Kastil, and Z. Kotasek. Generic partial dynamic
reconfiguration controller for fault tolerant designs based on fpga. In
NORCHIP ’10, pages 1–4, Washington, DC, USA, 2010. IEEE CS.

[21] M. Wirthlin, E. Johnson, N. Rollins, M. Caffrey, and P. Graham.
The reliability of fpga circuit designs in the presence of radiation
induced configuration upsets. In Field-Programmable Custom
Computing Machines, 2003. FCCM 2003. 11th Annual IEEE
Symposium on, pages 133–142, April 2003.

[22] A. J. Yu and G. G. F. Lemieux. Defect-tolerant fpga switch block
and connection block with fine-grain redundancy for yield
enhancement. In International Conference on Field Programmable
Logic and Applications, 2005., pages 255–262, Aug 2005.

[23] Shu-Yi Yu and Edward J. McCluskey. Permanent fault repair for
fpgas with limited redundant area. In DFT ’01: Proceedings of the
16th IEEE International Symposium on Defect and Fault-Tolerance
in VLSI Systems, pages 125–133, Washington, DC, USA, 2001.
IEEE Computer Society.

40

Author’s publications
1. Towards a State Synchronization Methodology for Recovery Pro-

cess after Partial Reconfiguration of Fault Tolerant Systems. In 4th
Prague Embedded Systems Workshop. Proceedings of 4th PESW,
2016 (20%)

2. Miculka L. and Kotasek Z. Generic partial dynamic reconfiguration
controller for transient and permanent fault mitigation in fault tol-
erant systems implemented into fpga. In 17th IEEE Symposium on
Design and Diagnostics of Electronic Circuits and Systems, pages
171–174. IEEE Computer Society, 2014 (70%)

3. Szurman K., Miculka L. and Kotasek Z. State synchronization af-
ter partial reconfiguration of fault tolerant can bus control system.
In 17th Euromicro Conference on Digital Systems Design, pages
704–707. IEEE Computer Society, 2014 (30%)

4. Szurman K., Miculka L. and Kotasek Z. Towards a state synchro-
nization methodology for recovery process after partial reconfigura-
tion of fault tolerant systems. In 9th IEEE International Conference
on Computer Engineering and Systems, pages 231–236. IEEE Com-
puter Society, 2014 (20%)

5. Miculka L. and Kotasek Z. Synchronization technique for tmr sys-
tem after dynamic reconfiguration on fpga. In The Second Work-
shop on Manufacturable and Dependable Multicore Architectures at
Nanoscale (MEDIAN 2013), pages 53–56. Politecnico di Milano,
2013 (80%)

6. Miculka L. Metoda návrhu systémů odolných proti poruchám do
omezeného implementačního prostoru na bázi FPGA. In Počítačové
architektury & diagnostika 2013, pages 63–68. University of West
Bohemia in Pilsen, 2013 (100%)

7. Miculka L., Straka M. and Kotasek Z. Methodology for fault toler-
ant system design based on fpga into limited redundant area. In
16th Euromicro Conference on Digital System Design: Architec-
tures, Methods and Tools, pages 227–234. IEEE Computer Society,
2013 (50%)

8. Straka M., Kastil J., Kotasek Z. and Miculka L. Fault tolerant sys-
tem design and seu injection based testing. Microprocessors and
Microsystems, 2013(37):155–173, 2013 (10%)

41

9. Kastil J., Straka M., Miculka L. and Kotasek Z. Dependability
analysis of fault tolerant systems based on partial dynamic recon-
figuration implemented into fpga. In 15th Euromicro Conference
on Digital System Design: Architectures, Methods and Tools, pages
250–257. IEEE Computer Society, 2012 (15%)

10. Miculka L. and Kotasek Z. Design sychronization after partial dy-
namic reconfiguration of fault tolerant system. In 15th Euromicro
Conference on Digital System Design: Architectures, Methods and
Tools, pages 20–21. IEEE Computer Society, 2012 (70%)

11. Miculka L. Metoda návrhu systémů odolných proti poruchám do
omezeného implementačního prostoru na bázi FPGA. In Počítačové
architektury & diagnostika 2012, pages 109–115. Faculty of Informa-
tion Technology, Czech Technical University in Prague, 2012 (100%)

12. Straka M., Miculka L., Kastil J. and Kotasek Z. Test platform for
fault tolerant systems design qualities verification. In 15th IEEE
International Symposium on Design and Diagnostics of Electronic
Circuits and Systems, pages 336–341. IEEE Computer Society, 2012
(30%)

13. Miculka L. Metoda návrhu systémů odolných proti poruchám do
omezeného implementačního prostoru na bázi FPGA. In Počítačové
architektury & diagnostika 2011, pages 61–66. Faculty of Informat-
ics and Information Technologies, Slovak University of Technology
in Bratislava, 2011 (100%)

42

Publications cited by other authors
∙ Miculka L. and Kotasek Z. Generic partial dynamic reconfiguration

controller for transient and permanent fault mitigation in fault tol-
erant systems implemented into fpga. In 17th IEEE Symposium on
Design and Diagnostics of Electronic Circuits and Systems, pages
171–174. IEEE Computer Society, 2014

– B. H. Krishna and C. A. Kumar. A novel method of recon-
figurable image processing using fpga. In 2016 International
Conference on Electrical, Electronics, and Optimization Tech-
niques (ICEEOT), pages 3784–3789, 2016

– S. Di Carlo, P. Prinetto, P. Trotta, and J. Andersson. A
portable open-source controller for safe dynamic partial recon-
figuration on xilinx fpgas. In Field Programmable Logic and
Applications (FPL), 2015 25th International Conference on,
pages 1–4, 2015

∙ Miculka L. and Kotasek Z. Synchronization technique for tmr sys-
tem after dynamic reconfiguration on fpga. In The Second Work-
shop on Manufacturable and Dependable Multicore Architectures at
Nanoscale (MEDIAN 2013), pages 53–56. Politecnico di Milano,
2013

– J. Jiménez, U. Bidarte, C. Cuadrado, E. García, and J. Lázaro.
Safesoc: A fault-tolerant-by-redundancy evaluation card for
high speed serial communications. In 2016 Conference on De-
sign of Circuits and Integrated Systems (DCIS), pages 1–4,
2016

∙ Miculka L., Straka M. and Kotasek Z. Methodology for fault toler-
ant system design based on fpga into limited redundant area. In
16th Euromicro Conference on Digital System Design: Architec-
tures, Methods and Tools, pages 227–234. IEEE Computer Society,
2013

– A. S. B. Lopes, E. Santos, M. Kreutz, and M. Pereira. A
runtime mapping algorithm to tolerate permanent faults in a
cgra. In 2016 VI Brazilian Symposium on Computing Systems
Engineering (SBESC), pages 63–70, 2016

– R. Backasch, G. Hempel, S. Werner, S. Groppe, and T. Pio-
nteck. Identifying homogenous reconfigurable regions in het-
erogeneous fpgas for module relocation. In ReConFigurable
Computing and FPGAs (ReConFig), 2014 International Con-
ference on, pages 1–6, 2014

43

∙ Straka M., Kastil J., Kotasek Z. and Miculka L. Fault tolerant sys-
tem design and seu injection based testing. Microprocessors and
Microsystems, 2013(37):155–173, 2013

– P. H. W. Leong, H. Amano, J. Anderson, K. Bertels, J. M. P.
Cardoso, O. Diessel, G. Gogniat, M. Hutton, J. Lee, W. Luk,
P. Lysaght, M. Platzner, V. K. Prasanna, T. Rissa, C. Silvano,
H. So, and Yu Wang. Significant papers from the first 25 years
of the fpl conference. In 2015 25th International Conference
on Field Programmable Logic and Applications (FPL), pages
1–3, 2015

– Thomas E. Carney, Richard P. McWilliam, and Alan Purvis.
Modelling electronic circuit failures using a xilinx fpga system.
Procedia CIRP, 38:277 – 282, 2015

– Deepa Jose, P. Nirmal Kumar, Arfath Hussain, and Prabhu
Shanker. Vlsi circuit partitioning using ant colony optimisation
to yield fault tolerant testable systems. Arabian Journal for
Science and Engineering, 39(12):8709–8729, 2014

– Antonio da Silva, Pablo Parra, Óscar R. Polo, and Sebastián
Sánchez. Runtime instrumentation of systemc/tlm2 interfaces
for fault tolerance requirements verification in software cosim-
ulation. Model. Simul. Eng., 2014:42:42–42:42, 2014

– Reza Omidi Gosheblagh and Karim Mohammadi. Article: Dy-
namic partial based single event upset (seu) injection plat-
form on fpga. International Journal of Computer Applications,
76(3):19–24, 2013

– D. Jose, P. N. Kumar, and A. David Naveen Dhas. Implemen-
tation of power optimized vlsi designs for reliable processing
using majority circuit. In 2013 Annual IEEE India Conference
(INDICON), pages 1–6, 2013

– Reza Omidi Gosheblagh and Karim Mohammadi. New ap-
proach to emulate seu faults on sram based fpgas. Journal of
Electronics (China), 31(1):68–77, 2014

– Reza Omidi Gosheblagh and Karim Mohammadi. Seu-secure
parity prediction multiplier on sram-based fpgas. Journal of
Circuits, Systems and Computers, 23(06):1450081, 2014

– Xiuhai Cui, Haigang Yang, Yu Peng, and Xiyuan Peng. Re-
search on the packing algorithm for anti-seu of fpga based on
triple modular redundancy and the numbers of fan-outs of the
net. Journal of Electronics (China), 31(4):284–289, 2014

44

– M. Psarakis, A. Vavousis, C. Bolchini, and A. Miele. Design
and implementation of a self-healing processor on sram-based
fpgas. In 2014 IEEE International Symposium on Defect and
Fault Tolerance in VLSI and Nanotechnology Systems (DFT),
pages 165–170, 2014

– Shobana. M and Senthil Murugan. S. Reconfigurable data
processing using duplex fault tolerance system. In 2015 Inter-
national Conference on Innovations in Information, Embedded
and Communication Systems (ICIIECS), pages 1–5, 2015

– R. Santos, S. Venkataraman, and A. Kumar. Generic scrub-
bingbased architecture for custom error correction algorithms.
In 2015 International Symposium on Rapid System Prototyping
(RSP), pages 112–118, 2015

– I. Villalta, U. Bidarte, J. Gomez-Cornejo, J. Lazaro, and C.
Cuadrado. Dependability in fpgas, a review. In 2015 Con-
ference on Design of Circuits and Integrated Systems (DCIS),
pages 1–6, 2015

– D. Agiakatsikas, N. T. H. Nguyen, Z. Zhao, T. Wu, E. Cetin,
O. Diessel, and L. Gong. Reconfiguration control networks
for tmr systems with module-based recovery. In 2016 IEEE
24th Annual International Symposium on Field-Programmable
Custom Computing Machines (FCCM), pages 88–91, 2016

– M. Vavouras and C. S. Bouganis. Area-driven partial recon-
figuration for seu mitigation on sram-based fpgas. In 2016
International Conference on ReConFigurable Computing and
FPGAs (ReConFig), pages 1–6, 2016

∙ Kastil J., Straka M., Miculka L. and Kotasek Z. Dependability
analysis of fault tolerant systems based on partial dynamic recon-
figuration implemented into fpga. In 15th Euromicro Conference
on Digital System Design: Architectures, Methods and Tools, pages
250–257. IEEE Computer Society, 2012

– Khaza Anuarul Hoque, Otmane Ait Mohamed, and Yvon Savaria.
Formal analysis of SEU mitigation for early dependability and
performability analysis of fpga-based space applications. Jour-
nal of Applied Logic, 21:–, 2017

– V. Simek and R. Ruzicka. Reconfigurable platform with poly-
morphic digital gates and partial reconfiguration feature. In
2014 European Modelling Symposium, pages 501–506, 2014

– K.A. Hoque, O.A. Mohamed, Y. Savaria, and C. Thibeault.
Probabilistic model checking based dal analysis to optimize a

45

combined tmr-blind-scrubbing mitigation technique for fpga-
based aerospace applications. In Formal Methods and Models
for Codesign (MEMOCODE), 2014 Twelfth ACM/IEEE Inter-
national Conference on, pages 175–184, 2014

– B. Navas, J. Oberg, and I. Sander. The upset-fault-observer: A
concept for self-healing adaptive fault tolerance. In Adaptive
Hardware and Systems (AHS), 2014 NASA/ESA Conference
on, pages 89–96, 2014

– Felix Siegle, Tanya Vladimirova, Jorgen Ilstad, and Omar Emam.
Mitigation of radiation effects in sram-based fpgas for space ap-
plications. ACM Comput. Surv., 47(2):37:1–37:34, 2015

– F. Siegle, T. Vladimirova, C. Poivey, and O. Emam. Validation
of fdir strategy for spaceborne sram-based fpgas using proton
radiation testing. In 2015 15th European Conference on Radi-
ation and Its Effects on Components and Systems (RADECS),
pages 1–8, 2015

– F. Siegle, T. Vladimirova, J. Ilstad, and O. Emam. Availability
analysis for satellite data processing systems based on sram fp-
gas. IEEE Transactions on Aerospace and Electronic Systems,
52(3):977–989, 2016

– L. Sterpone, L. Boragno, and D. M. Codinachs. Analysis of
radiation-induced seus on dynamic reconfigurable systems. In
2016 11th International Symposium on Reconfigurable Commu-
nicationcentric Systems-on-Chip (ReCoSoC), pages 1–6, 2016

∙ Straka M., Miculka L., Kastil J. and Kotasek Z. Test platform for
fault tolerant systems design qualities verification. In 15th IEEE
International Symposium on Design and Diagnostics of Electronic
Circuits and Systems, pages 336–341. IEEE Computer Society, 2012

– Felix Siegle, Tanya Vladimirova, Jorgen Ilstad, and Omar Emam.
Mitigation of radiation effects in sram-based fpgas for space ap-
plications. ACM Comput. Surv., 47(2):37:1–37:34, 2015

46

Curriculum vitae - Ing. Lukáš Mičulka
∙ Born on December 15th, 1985 in Uherské Hradiště.
∙ 2001 - 2005: Secondary school (gymnasium) in Uherské Hradiště.
∙ 2005 - 2008: Bachelor degree programme Information Technology

at the Faculty of Information Technology at the Brno University of
Technology. The studies finished by state final examination.

∙ 2008 - 2010: Master degree programme Computer Systems and Net-
works at the Faculty of Information Technology at the Brno Univer-
sity of Technology. The studies finished by state final examination.

∙ From 2010: Doctoral degree programme Computer Science and En-
gineering at the Faculty of Information Technology at the Brno Uni-
versity of Technology. The state doctoral examination passed in
2012.

Activities
∙ Teaching the tutorials in Peripheral devices course.
∙ The supervisor of bachelor thesis (4) and master thesis (1).
∙ The reviewer of bachelor thesis (3) and master thesis (3).

Research projects
∙ Zvyšování spolehlivost a provozuschopnosti v obvodech SoC, GAČR,

GA102/09/1668, 2009-2011, team member

∙ Matematické a inženýrské metody pro vývoj spolehlivých a bezpečných
paralelních a distribuovaných počítačových systémů, GAČR,
GD102/09/H042, 2009-2012, team member

∙ Bezpečné, spolehlivé a adaptivní počítačové systémy, BUT, FIT-S-
10-1, 2010, co-solver

∙ Manufacturable and Dependable Multicore Architectures at Nanoscale,
COST, IC1103, 2011-2015, team member

∙ Metodiky pro návrh systémů odolných proti poruchám do rekonfig-
urovatelných architektur - vývoj, implementace a verifikace, MŠMT,
LD12036, 2012-2015, team member

∙ Architektury paralelních a vestavěných počítačových systémů, BUT,
FIT-S-14-2297, 2014-2016, team member

47

	Introduction
	Fault tolerant systems
	Fault detection and localization techniques
	Transient fault mitigation
	Techniques for system recovery after permanent fault occurence

	Motivation and goals of the research
	Motivation
	Goals of the research

	Methodology for FT system design into limited implementation area in FPGA
	Methodology basic principles
	Generations of alternative FT architecture configurations
	Generic partial dynamic reconfiguration controller
	Fault mitigation procedure

	Design of FT architecture by means of developed methodology principles
	Fault tolerant architectures design
	The implementation of generated FT architectures

	Implementation and experimental results
	The implementation of GPDRC
	FT architectures developed to secure a given part of system
	Evaluation of resource overhead
	Implementation results of different approaches to the partitioning of original system
	SEU testing platform for the evaluation of FT system design by means of methodology principles

	Conclusions
	Benefits of this research
	Possible enhancements of methodology

