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SUMMARY

The floods of different probability, sequence, frequency, duration, and the riverbed with different
grain sizes, numbers, sequences, and thickness of the layers are one of the reasons for the bridge’s
abutments failure because of scour. Although the problem is very topical, the mutual impact of
multiple floods and stratified riverbed conditions on scour at the bridge abutments has not been
studied. The method for computing scour development in time at bridge abutments was
elaborated and confirmed by tests results. The method enables the computer to perform
modelling of the mutual impact of unsteady flow and bed layering of scour processes. Computer
modelling was made to expand scenarios for tests data in flume for unsteady flow for two steps of
hydrograph with different dischargers and for the bed layers with varying grain sizes, numbers,
sequence, and thickness. This approach makes it possible to estimate in advance mutual impact,
with different scenarios, floods and geological data on the depth of scour at vertical wall
abutment, at the design stage or during the maintenance period of the bridge crossing.

KEY WORDS: flow; ,unsteady flow; bed stratification; scour; bridges; modelling.

1. INTRODUCTION

The mutual impact of floods and layering of the riverbed is one of the reasons for the bridge
abutments failure because of scouring. To forecast worst scenarios of possible loads on the
bridge inflow, floods of different probability, sequence, duration, and frequency should be
considered and the river bed layers with different grain sizes, numbers, sequences, and
thickness impact on the scour evaluation should be estimated. Analysis of the possible
scenarios of the local scour development near abutments with time can be performed at the
design or the maintenance stages of the bridge crossing and, as a result, protection measures
can be taken in time.

Scours near bridge piers, abutments, spur dikes, guide bank and intakes have been widely
studied by researchers: Kothyari and Ranga Raju (2001) [1], Olivetto and Hager (2002) [2],
Radice et al. (2002) [3], Malavasi, et al. (2004) [4], Dey and Barbhuiya (2005) [5], Grimaldi et al.

ENGINEERING MODELLING 33 (2020) 1-2, 49-57 49



B. Gjunsburgs, J. Parilkova: Unsteady Flow and River Bed Stratification Mutual Impact on Scour at the Abutments

(2006) [6], Cardoso and Fael (2010) [7], Ghani et al. (2011) [8], Guo (2014) [9], Sheppard et al.
(2014) [10], Evangelista et al. (2017) [11], Link et al. (2017) [12] and the others. As the analysis
of the literature shows, at the present time, there are no methods or formulas to calculate the
depth of scour at mutual impact floods and complex geological river bed conditions.

The differential equation for equilibrium bed-sediment movement under clear water
conditions, at unsteady flow or at uniform and stratified bed at the vertical wall abutments was
used to create the model for the depth of scouring calculation. Based on the model the
computer program ARobo was performed. The calculation method for scour development in
unsteady flow (Gjunsburgs et al. 2013) [13] or at the stratified bed (Gjunsburgs et al. 2012,
2019) [14,15] was confirmed by test results. The method allows the computer to perform
modelling of the mutual impact of unsteady flow and bed layering of scour processes.
Modelling was made to expand scenarios for test data in flume for unsteady flow and bed
stratification layers with changing grain sizes, numbers, sequences, and thickness on scour at
vertical wall bridge abutments. The model and the ARobo program allow analysis performing
and finding the worst possible scenarios for scour evaluation near bridge abutments at the
natural flow conditions.

2. EXPERIMENTAL SET-UP

The tests were carried out in a flume L=3.5 m wide and L=21 m long. Cross-section of the flume
with different flow opening is presented in Figure 1.

Experimental data obtained in flumes in the open flow conditions are presented in Table 1. The
flow distribution between the channel and floodplain was studied under open flow conditions.
The rigid bed tests were performed to investigate flow modification near bridge structure and
sand-bed tests were made to study the scour development with time under different flow
parameters and at uniform or stratified river bed model.
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Fig. 1 Cross section of the flume with different flow opening Ly;
Table 1 Test data for the open flow conditions
L hf Vap Q
cm cm cm/s l/s Fr Rec Rey
L1 350 6.4 16.6 0.078 7500 4390
L2 350 7 8.5 22.7 0.103 10010 6060
L3 350 7 10.0 23.60 0.124 12280 7190
L7 350 13 7.5 35.48 0.066 13700 9740
L8 350 13 8.7 41.38 0.075 16010 11395
L9 350 13 9.9 47.10 0.087 14300 14300
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The tests were made: 1. for unsteady flow and uniform bed and 2. for steady flow and stratified
bed conditions.

For unsteady flow tests, the openings of the bridge model were (50, 80, 120, and 200) cm. The
flow contraction rate Q/Q, (where Q is the flow discharge and @, is the discharge in the
opening under open-flow conditions) varied respectively from 1.56 to 5.69.

Tests with stratified bad were made with different grain sizes 0.24 mm and 0.67 mm, with a
standard deviation and the thickness of the bed layers equal to (4, 7, or 10) cm for each grain
size. The opening of the bridge model was 80 cm.

For both types of the tests: the floodplain width was L= 320cm and the depth hf was 7 cm or 13
cm. The channel width was L.=30 cm and depth h. was 12 cm or 18 cm, the approach flow
velocity Vgp changing from 6.4 to 10.0 cm/s, the flow dischargers varying from 16.6 to 47.1 /s,
with the Froude number in the open-flow conditions from 0.078 to 0.1243, densimetric Froude
numbers - from 0.62 to 1.65, the slope of the flume was equal to 0.0012. The scour evaluation
was studied within one 7 hour step-time interval and within two 7 hour step-time search.

The condition Frr = Frywas fulfilled, where Frg and Frrare the Froude numbers for the low-land
river and the flume, respectively.

Computer modelling was made to study the mutual impact of unsteady flow and stratified bed
model on scour, and to expand scenarios for tests data in flume for unsteady flow for two time-
steps of hydrograph with dischargers: 1. 16.7/35.5 l/sec; 2. 22.7/41.4 1/sec; 3. 27.6/47.1 1/sec,
contraction rate 3.66 — 4.05, floodplain depth 7 cm and 13 c¢m, layers with grain sizes (0.24, 0.67
and 1.00) mm, up to 3 layers with changing sequence of the grain sizes and thickness of the bed
layers, with the opening of the bridge model equal to 80 cm.

3. MODEL

The method for calculating the scour development with time at the abutments, guide banks,
intakes during the multiple floods, or at stratified bed was elaborated and confirmed with
experimental data (Gjunsburgs et al. 2004, 2012, 2013, 2019) [14,13,15].

There are many scenarios for multiple floods of different probability, sequence, duration,
frequency, and the layers of the river bed as uniform layers with different grain sizes,
sequence, non- uniform layers, cohesive layers follow or before non- cohesive layers, number
of layers.

Computer program ARobo allows studying, analysing scenarios with the use of additional data
for different hydraulic conditions, contraction rates, Froude number of the open flow,
densimetric Froude numbers, depths of the flow, backwater, as well as parameters which
reflect the river bed conditions: grain size diameter dsy, critical velocity SV, or grain bed shear
stress, sediment non-uniformity parameter o, specific weight y, bed layering, numbers,
sequences and thickness of the layers with grain sizes d..

According to the method, the hydrograph was divided into time steps, and each step was
subdivided into time intervals. Calculations were performed for two steps of the hydrograph,
to estimate the influence of the flow unsteadiness. The parameter A; in proposed model
(Gjunsburgs et al. 2012, 2013) [14,13] changes during the scour evolution because water
depth, local velocity and critical velocity changes with time and as well as the river bed
layering grain size diameter, so that:
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With an increase of the scour depth, the local velocity Vi is decreasing due to the scour hs and
increasing because discharge increases (as sequence V; increases), the critical one [V is
increasing because of scour depth hs and varying with d; in bed layers (Eq. 2). Scouring stops
when the local velocity becomes equal to the critical on V; = SV,
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where 1 is the local velocity, V, - the critical velocity, hs - the depth of scour, hs- the depth of
water on the floodplain, d; - the grain size diameter, § - the coefficient of critical velocity
reduction near the abutment. The model allows estimating mutual impact - discharge, relative
velocity changes in time at varying numbers, sequence, and thickness of bed layers with
different grain size d; on the depth of scour at the abutments.

4. RESULTS

The depth of scour is rapidly increasing at the beginning of the scouring process with the
gradual reduction in time at a steady flow and one bed layer. Further computer modelling
results are presented for extended laboratory data for two steps of hydrograph and with
different grain sizes, numbers, sequences, and thickness of the bed layers.

Figure 2 presents calculated and test data for scour depth evaluation in time at an unsteady
flow and one bed layer. The depth of scour is increasing at the first interval, which is equal to 7
hours and is increasing more rapidly (Figure 1) at the second time interval, because of the new
hydraulic parameters.
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Fig. 2 Depth of scour development in time at unsteady flow in one uniform layer
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Figure 3 presents the depth of scour evolution at an unsteady flow with Q; = 22.7 I/sec and
Q2 = 41.4 1/sec with the sequence of the layers with grain sizes (1.00, 0.67, and 0.24) mm with
the thickness of the layers 4.6 cm and 10 cm. The rate of the scouring depends on d; and
increases more rapidly at the second time interval with Q2 = 41.4 I/sec and in the third layer
with fine grain size (Figure 3).
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Fig. 3 Depth of scour evaluation at an unsteady flow in three layers

Figure 4 shows relative velocity changes in time because of the scour evolution at unsteady
flow with Q;=22.7 I/sec and Q; = 41.4 l/sec with the sequence of the layers with grain sizes
(1.00, 0.67, and 0.24) mm with the thickness of the layers 4. 6 cm and 10 cm r. With the increase
of the depth of scour, the relative velocity Vi;/V,: increases in the first time interval and reduces
at the second one because of the increase of the local velocity V; and the reduction of the
critical velocity SV, in the layer with d3 = 0.24 mm (Eq. 2).
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Fig. 4 Relative velocity changes versus depth of scour at unsteady flow and three layers

Impact of unsteady flow with discharges 16.7/35.5 I/sec or 27.1/47.1 l/sec on the depth of
scour for three layers with d; - (1.0, 67, 0.24) mm of each layer with thickness (4, 6, 10) cm is
shown in Figure 5. As discharge increases the scour depth is increasing.
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Fig. 5 Depth of scour development in two time steps with different discharges in three layers

Depth of scour in two layers with d; - (1.00, 0.24) mm with the thickness of the layers 5 and 10
c¢m, and in three layers with d; - (1.00, 0.67, 0.24) mm and with the thickness of 10, 5, and 10
cm. For the same time step is presented in Figure 6. With the addition of a third layer of d; =
0.67 mm, the depth of scour reduces.
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Fig. 6 Depth of scour evaluation in two layers with d;- 1.00 mm, 0.24 mm with thickness 5 cm, 10 cm (hg)
and in three layers with d;- (1.00, 0.67, 0.24) mm and with thickness (10, 5, 10) cm (hs>)

With an increase in the thickness of the fine sand layer d; - 0.24 mm, the depth of scour
increases (Figure 7). Comparison is made for grain sizes for each layer (0.24, 0.67, 1.00) mm
and different thickness of the fine send layer - (15, 5, 10) cm (h;) or (5, 5, 10) cm. (h2).
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Fig. 7 Depth of scour comparison for three layers and two layers with thickness for the first fine sand one
equal 15cmor5cm
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Fig. 8 Depth of scour evolution at unsteady flow and different sequence of the layer

Figure 8 presents the depth of scour evolution at an unsteady flow and different sequence of
the layers. Sequence of layers are grain size diameters: (0.24, 1.00, 0.67) mm; (1.00, 0.67, 0.24)
mm and (0.24, 0.67, 1.00) mm and with the same thickness of the layers 4.6 cm and 10 cm. The
coarse sand on the top layers increases the time of scour and reduces scour depth. For layers
with d;reduction, when the first two layers are washed out the depth of scour rapidly develops
at the fine sand layer and gives greater scour depth (Figure 7).

5. CONCLUSION

The damage of engineering structures in rivers due to scour (near intakes, pumping stations,
bridge structures - abutments, guide banks, dams, etc.) leads to the considerable
environmental and economic losses. The reasons are the mutual impacts of multiple floods,
river bed geology, flow contractions, type and shape of the structure, and increasing scour
hole, which under clear-water conditions is summing up from flood to flood. Increased
dimensions of the scour hole at the unexpected flush flood can lead to damage or bridge
failure.
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The models for calculation of scour development in an unsteady flow (Gjunsburgs et al. 2013)
[13] or at stratified bed (Gjunsburgs et al. 2012, 2019) [14,15] were elaborated and confirmed
by test results, which enabled to make computer modelling to study the mutual impact of an
unsteady flow and bed layering on the depth of scour.

Computer modelling was made to expand scenarios for test data in flume for an unsteady flow
for two steps of hydrograph with dischargers: first 16.7/35.5 1/sec; second 22.7/41.4 1/sec;
third 27.6/47.1 1/sec, and contraction rates 3.66 - 4.05, floodplain depths of 7 cm and 13 cm,
layers with grain sizes 0.24, 0.67, and 1.00 mm, with up to 3 numbers, changing sequence and
with the thickness 4 cm - 10 cm of the bed layers.

As it is confirmed by calculation, the rate and value of scour depth depend on the mutual
impact of an unsteady flow and river bed stratification (grain size d, numbers, sequences, and
thickness of the layers). There are changes in scour depth evaluation with increased discharge
and grain diameter in layers (Figure 3) and/or discharges (Figure 5), numbers (Figures 6 and
7), and sequence (Figure 8) of the layers. Relative velocity Vi/V,: increases in time steps of
hydrograph and in any sand layer (Figure 3), when the ratio of the velocities becomes equal,
the scour evaluation stops.

Model and ARobo program can detect worst possible scenarios in nature for scour evaluation
at the abutments at an unsteady flow: for floods of different probability, sequence, duration or
frequency and for river bed layering with different numbers, sequences and thickness of the
layers with grain sizes d; at both the design and the maintenance stages of the bridge crossing.
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