
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ
BRNO UNIVERSITY OF TECHNOLOGY

FAKULTA INFORMAČNÍCH TECHNOLOGIÍ
ÚSTAV POČÍTAČOVÉ GRAFIKY A MULTIMÉDIÍ

FACULTY OF INFORMATION TECHNOLOGY
DEPARTMENT OF COMPUTER GRAPHICS AND MULTIMEDIA

FINITE STATE GRAMMARS AS LANGUAGE MODELS
FOR AUTOMATIC SPEECH RECOGNITION

BAKALÁŘSKÁ PRÁCE
BACHELOR’S THESIS

AUTOR PRÁCE KAREL BENEŠ
AUTHOR

BRNO 2014

VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ
BRNO UNIVERSITY OF TECHNOLOGY

FAKULTA INFORMAČNÍCH TECHNOLOGIÍ
ÚSTAV POČÍTAČOVÉ GRAFIKY A MULTIMÉDIÍ

FACULTY OF INFORMATION TECHNOLOGY
DEPARTMENT OF COMPUTER GRAPHICS AND MULTIMEDIA

KONEČNĚ STAVOVÉ GRAMATIKY JAKO JAZYKOVÉ
MODELY PRO AUTOMATICKÝ PŘEPIS ŘEČI
FINITE STATE GRAMMARS AS LANGUAGE MODELS FOR AUTOMATIC SPEECH RECOGNI-

TION

BAKALÁŘSKÁ PRÁCE
BACHELOR’S THESIS

AUTOR PRÁCE KAREL BENEŠ
AUTHOR

VEDOUCÍ PRÁCE Dipl.-Ing. MIRKO HANNEMANN
SUPERVISOR

BRNO 2014

Abstrakt
Tato práce se zabývá transformací bezkontextových gramatik na váhované kone£n¥ stavové
p°evodníky. Je vybrána podmnoºina bezkontextových gramatik, kterou lze tranformovat
p°esn¥. Je p°edstaven test, zda daná gramatika naleºí do této podmnoºiny, i algoritmus
p°evodu. Dále je popsán vlastní nástroj, který tyto postupy implementuje, v£etn¥ zp·sobu
zpracování vstupu a výstupu. S pouºitím toho nástroje byl vytvo°en systém rozpoznání
°e£i pro kokpit letadla. Jsou p°edstaveny výsledky ukazující, ºe systém zaloºený na takto
získaném modelu jazyka podává výrazn¥ lep²í výkon, neº je dosaºen p°i pouºití obecného
modelu.

Abstract
This thesis deals with the transformation of Context Free Grammars (CFG) into Weighted
Finite State Transducers (WFST). A subset of CFG is chosen, that can be transformed
exactly. Both the test of whether a CFG ful�lls such condition and the algorithm for the
following transformation are presented. A tool has been implemented, which performs both
these tasks, also its input and output processing are reported. Using this tool, a speech
recognition system for aircraft cockpit control has been built. Results are presented which
show, that the system based on the transformed grammar outperforms the system based on
general-purpose language model.

Klí£ová slova
jazykový model, bezkontextová gramatika, váhované kone£n¥ stavové p°evodníky, rozpozná-
vací sí´, automatické rozpoznávání °e£i

Keywords
Language Model, Context Free Grammar, Weighted Finite State Transducer, recognition
network, automatic speech recognition

Citace
Karel Bene²: Finite State Grammars as Language Models for Automatic Speech Recogni-
tion, bakalá°ská práce, Brno, FIT VUT v Brn¥, 2014

Finite State Grammars as Language Models for Au-

tomatic Speech Recognition

Prohlá²ení
Prohla²uji, ºe jsem tuto bakalá°skou práci vypracoval samostatn¥ pod vedením Dipl.-Ing.
Mirko Hannemanna. Uvedl jsem v²echny literární prameny a publikace, ze kterých jsem
£erpal. Systémy popsané ve £tvrté kapitole jsou zaloºeny na práci dal²ích £len· skupiny
Speech@FIT, toto je vºdy explicitn¥ uvedeno.

. .
Karel Bene²

May 19, 2014

Pod¥kování
I would like to thank my supervisor Mirko Hannemann for his patience, guidance and
support. I am grateful to him for the thorough constructive criticism on this thesis.

I would like to thank Kate°ina �molíková for the advice on the use of the system, which
she has trained.

c© Karel Bene², 2014.
Tato práce vznikla jako ²kolní dílo na Vysokém u£ení technickém v Brn¥, Fakult¥ infor-

ma£ních technologií. Práce je chrán¥na autorským zákonem a její uºití bez ud¥lení oprávn¥ní

autorem je nezákonné, s výjimkou zákonem de�novaných p°ípad·.

Contents

1 Introduction 2

2 Speech recognition with Weighted Finite State Transducers 3

2.1 Hidden Markov Models as models for sequence matching 3
2.2 Weighted Finite State Transducers . 5
2.3 Creating a recognition network . 7
2.4 Decoding in such a network . 10
2.5 Recognition performance metric . 10

3 Turning context free grammars into WFST speci�ed language models 12

3.1 Speech Recognition Grammar Speci�cation 12
3.2 Transformation into Context Free Grammar 13
3.3 Deciding on the power of the grammar . 14
3.4 Construction of Weighted Finite State Transducers from Weighted Context

Free Grammars . 15
3.5 Implementation and output format . 17

4 Use Case: The A-PiMod project 20

4.1 Input grammar . 20
4.2 Overview of relevant parts of the Kaldi toolkit 22
4.3 Acoustic models used for recognition . 23
4.4 Baseline language model . 23
4.5 Experiments and results . 24

5 Conclusion 26

1

Chapter 1

Introduction

Speech recognition nowadays is based on a statistical approach, where the parameters of
the models are trained on huge amounts of data, with humans directly a�ecting only the
structure of these models. However, the situation may arise, that additional constraints on
the input speech are known. This is usually the case when recognizing domain- or even
application-speci�c speech. In this case, we can exploit them to improve the performance
of our systems.

This thesis deals with such a situation and presents a way to use the knowledge of the
typical utterances spoken, when we are given a context free grammar (CFG) describing it.

At �rst, the key concepts of speech recognition are introduced in chapter 2, including the
mathematical de�nition of automatic speech recognition (ASR), an intuition for the process
of ASR and the error metrics used in the evaluation of the experiments.

Chapter 3 describes the design of a tool developed for transformation of the input knowl-
edge encoded as a CFG into a Weighted Finite State Transducer (WFST) used in modern
speech recognition systems. Details about design decisions limiting the set of accepted input
grammars are presented, as well as nontrivial input transformations, that allow the tool to
work with a real-world grammar speci�cation.

Finally, in chapter 4, the application of this tool in a project, in which the Speech@FIT
group participates, is described. Speci�c issues of the provided grammars are shown and
a basic description of the system is given. Then, taking an example from this project,
experiments are described and their result are discussed.

2

Chapter 2

Speech recognition with Weighted

Finite State Transducers

Speech recognition is a complex process, that can be, from both the engineering and the-
oretical point of view, decomposed into several independent parts. The basic structure is
captured in �gure 2.1. The signal processing computes features from the input audio signal.
The acoustic modeling then evaluates to which class (e.g. silence, particular phonemes,
noise etc.) the sound most likely belongs. During the decoding, this information is com-
bined with a model of language, which constrains the possible sequences of words, to give
the most likely word sequence as recognition output.

Figure 2.1: Simple schema of a speech recognizer. This work deals mainly with the language
modelling and decoding parts.

This work deals mainly with language modeling, with respect to the decoding, thus
a popular model for representing language constraints � the Weighted Finite State Trans-
ducer � is presented in this chapter, as well as a statistical tool � the Hidden Markov Model �
that connects it to acoustic modeling, so that the speech recognition is theoretically well
de�ned.

2.1 Hidden Markov Models as models for sequence matching

The Hidden Markov Model (HMM) is a statistical model typically used for modeling tem-
poral sequences. It models a system in which the distribution of observed variables is

3

determined by a state, which itself is an unobserved process. Following [13], the HMM can
be de�ned as a 5-tuple:

HMM = (N,M,A,B, π)

where: N denotes the number of states. M de�nes the output space ([13] de�nes it as dis-
crete, in speech recognition the whole continuous space of required dimensionality is usually
considered). The transition probability distribution A = {Aij} describes the probability of
moving from a given state to another in a single step, with Aij = P (Sn+1 = j|Sn = i).
B is a probability density function (probability mass function for discrete M) of observed
variables given the actual state of the HMM. We can write it as B = bi(x), where x is a
vector from the sample space. Finally, π is a probability mass function, where πi is the
probability of state i being the initial state. From the probabilistic point of view, HMMs
are well described as graphical models, as captured in �gure 2.2.

Figure 2.2: The Hidden Markov Model shown as a graphical model. This schema has been
taken from [7]. This is a model of an observed sequence of arbitrary length. The shaded
nodes xi correspond to the distributions of the observed samples, while the uncolored nodes
zi correspond to the hidden Markov process. Each arrow symbolizes conditioning, e.g. the
arrow from z1 to x1 implies, that we know the distribution p(x1|z1) or that the distribution
of x1 is given in terms of z1. Also the Markov property is captured in the fact, that each
zi+1 is conditioned on zi only.

The HMM can be viewed as a generative model: Assign a token to a random initial state
i according to π. Then draw a sample from the corresponding probability density function
bi. Finally choose the next state j according to A. Then loop over the steps 'draw a sample'
and 'move the token' for the desired number of times. There is no notion of a `�nal state'
in the HMM, so the token does not need to reach it.

In terms of HMM, the task of speech recognition can be described as �nding the most
probable sequence S′ of the hidden states, representing phonetic (sub)units, e.g. phones or
triphones, given X, the observed sequence of features. This process is generally referred to
as decoding. This can be expressed using Bayes' theorem:

S′ = arg max
S

P (S|X) = arg max
S

P (X|S)P (S)
P (X)

Since the denominator is a constant with respect to S, it can be omitted:

S′ = arg max
S
{P (X|S)P (S)}

4

This factorization directly relates to the process of speech recognition. The P (S) is the
prior probability of the sequence. This prior probability re�ects the pronunciation of words
in the language and the expected word order. From a formal point of view, this knowledge is
captured in the transition probability distribution A. It is usually referred to as the language
model1. Actual techniques used for language modelling are introduced in 2.2. On the other
hand, the likelihood of the observed sequence P (X|S) relates the phones (hidden states of
the HMM) to the actual observed samples. This is referred to as the acoustic model.

Decoding may be viewed, and is often implemented, as passing several tokens through
the HMM, where every token has a probability associated with it. At every decoding step n,
for each transition of non-zero probability leading from a state Sn where there is a token t, a
new token s is generated in the state Sn+1. Let xn denote the n-th observed sample. Then
the likelihood of the token s can be described as P (s) = P (t)ASnSn+1bSn+1(xn+1). Out of
all the tokens obtained this way, only a certain number of those with the highest likelihood
is kept for further processing. This is usually referred to as the width of the decoding beam.

The estimation of the parameters of an HMM is a non-trivial task which is of no direct
impact on this thesis, thus it will not be further discussed here � [13] presents the classi-
cal Baum-Welch algorithm. Generally the training follows the Expectation-Maximization
scheme [7].

2.2 Weighted Finite State Transducers

Several components (pronunciation model, language model) of modern speech recognizers
can be naturally described by some form of �nite automaton. As a common framework for
formally de�ning these, weighted �nite state transducers are used. The following paragraphs
are based on [15].

Being an extension of �nite state automata (FSA), weighted �nite state transducers
(WFST) can be de�ned as an 8-tuple:

T = (Q,Σ,Γ, I, F,E, λ, ρ)

where:
Q is a �nite set of states
Σ is a �nite input alphabet
Γ is a �nite output alphabet
I ⊆ Q is the set of initial states
F ⊆ Q is the set of �nal states
E ⊆ Q× (Σ ∪ {ε})× (Γ ∪ {ε})×Q×K is the set of transitions
λ : I → K de�nes weights of initial states
ρ : F → K de�nes weights of �nal states

where K, the set of weights, forms a suitable semiring2. Therefore, the WFST can be seen
as a �nite automaton, where each transition has an output symbol and a weight associated.
Thus the basic idea of how a WFST operates on an input string is the same as with the
�nite state automaton.

The usage of the semiring (K,⊕,⊗, 0, 1) is the following: Let a path π = e1 · · · ek be a
sequence of consecutive transitions, that is for i = 1, . . . , k − 1 the destination state of ei

1The term language model has two meanings in speech recognition. Here it is applied in broader terms
containing pronunciation dictionary as well, the other meaning puts constraints on the word level only.

2This is not a mandatory condition, but is necessary for practical applications.

5

is equal to the origin of ei+1. Its weight is de�ned as the ⊗-product of the weights of the
single transitions: w[π] = w[e1]⊗· · ·⊗w[ek]. The weight of a �nite set of paths R is de�ned
as w[R] =

⊕
π∈R w[π]. Depending on the properties of the semiring, this may be de�ned

for in�nite sets of paths as well.
Similar to classical FSA, operations such as weighted determinization and minimization

are de�ned on WFSTs. The exact algorithms will not be discussed here as they are not of
any signi�cant importance for this work. Yet it is noteworthy that a WFST is not generally
determinizable, depending on the properties of the underlying semiring K and satisfaction
of the twins property [8]. These operations, especially determinization, have the usual great
impact on the practical usage of a WFST.

However, the fact that a WFST translates an input string to an output one, introduces
another important operation: composition. A WFST C = A◦B, composed of WFSTs A and
B, translates strings over ΣA into strings over ΓB in a way equivalent to �rst A operating
on the input string and then B operating on the output of A. Another way to view this, is
to see a WFST as a binary relation between strings. Then the relation composition arises
as a natural operation. However, this view is informal, because it does not take the weights
into account.

0

1a:b/0.1

2

b:a/0.2

c:a/0.3

3/0.6

a:a/0.4

b:b/0.5

(a)

0 1
b:c/0.3

2/0.7
a:b/0.4

a:b/0.6

(b)

(0,0) (1,1)
a:c/0.4

(1,2)
c:b/0.7

(3,2)/1.3a:b/0.8

c:b/0.9

a:b/1

(c)

Figure 2.3: Example of WFST composition, where the ⊗ operation is equivalent to sum (as
with log probabilities). The transducer 2.3c is composition of 2.3a and 2.3b. Node caption
of each state in the transducer 2.3c refers to the pair of states of the original transducers.
Example taken from [15]

The algorithm of composition is similar to constructing the intersection of FSAs. For

6

C = A ◦ B, a state of C represents a pair of an A state and a B state. A state of C is
initial, exactly when the corresponding states of A and B are both initial, and it is a �nal
state when the corresponding states of A and B are both �nal. For every pair of transitions
q1 → q2 in A and r1 → r2 in B, such that the output symbol of q1 → q2 matches the input
symbol of r1 → r2, there is a transition (q1, r1)→ (q2, r2) in C. The weight of this transition
is computed as w[q1 → q2]⊗ w[r1 → r2]. The weights of �nal states are the ⊗-products of
the weights of the corresponding �nal states in A and B.

An example of the WFST composition is given in �gure 2.3.

2.3 Creating a recognition network

Phones are not independent of each other in speech. They physically a�ect the preceding and
following phones, this e�ect is known as coarticulation [11], and from all possible sequences
of phones, only a small portion forms semantically valid units. In order to enhance speech
recognition accuracy, both issues must be addressed.

The former one is typically handled by considering context dependent phones, typically
triphones, as the target of acoustic modelling. The HMM parameters can then be esti-
mated to capture most of the co-articulation e�ect. To solve the latter issue, knowledge of
the spoken language (pronunciation, grammar, etc.) is needed. Using the WFST frame-
work, this knowledge is encoded as a WFST. Considering the unobserved part (the hidden
states) of the HMM to be a WFST as well, WFST composition can be used to put all these
components together. The result can then be thought of as a single big HMM, called recog-

nition network. The three typical components are the language model, the pronunciation
dictionary and the context dependency transducer.

The language model captures constraints put on words sequences. These constraints
may be given in form of a hand-crafted grammar or a statistical n-gram model. Gram-
mars are typical for domain-speci�c speech recognition, while statistical models are used for
general purpose speech recognition.

The statistical n-gram models are based on the Markov assumption, that the conditional
distribution of a word at a given position is dependent only on the n−1 previous words. The
n-gram models can be approximated as a WFST in a straight forward manner, where each
state represents a particular history, though their spatial complexity grows exponentially
with n. Sophisticated ways of pruning the n-gram models were developed with some form
of �nite state machine as the target, so there is no extra e�ort needed to put them into
work. An example of bigram (2-gram) model is given in �gure 2.4.

Regular and linear grammars can also be easily coded as WFSTs, and as will be shown
in chapter 3, a useful subset of context free grammars (CFG) as well. Furthermore, several
methods of approximation of arbitrary CFG have been developed (see [17]). This WFST is
usually referred to as G (for grammar) and its weights play an important role in decoding,
especially with statistical models.

There has also been a successful attempt to model probabilities of word sequences with
recurrent neural networks [16], however, this is a very di�erent technique and will not be
discussed further.

The pronunciation dictionary captures possible pronunciations of words, that is which
phone sequences form a given word. It is often referred to as lexicon. A typical lexicon is

7

alpha

bravo
bravo:bravo / p(bravo | alpha)

b
ε:ε / β(alpha)

ε:ε / β(bravo)

charlie

charlie:charlie / p(charlie | bravo)

alpha:alpha / p(alpha)

bravo:bravo / p(bravo) charlie:charlie / p(charlie)

Figure 2.4: Example of WFST corresponding to bigram a model. Each state represents a
history (one word for bigram), the `b' state is a backo� state. It represents no history and is
used for modeling probabilities of sequences which could not be reasonably trained, because
they were not seen in the training data or were too rare. In this example, the word sequence
�alpha charlie� was not seen often enough to estimate its probability, so it is modeled using
this state.

0

1d:ε

9

ey:ate

2ao:dog

5
aa:dollar

11
t:ε

3
g:ε

6
l:ε

4
#0:ε

7
er:ε

8
#0:ε

11
#0:ε

Figure 2.5: A simple lexicon representing the pronunciation of words `dog', `dollar' and `ate'.

represented as a tree structured WFST, as illustrated in �gure 2.5. Note however, that
it is generally not determinizable because of homophones3. To solve this problem, disam-
biguation symbols, typically of the form #k are introduced at the end of each word, so that
each phone sequence is unique. Also it may happen, that word boundaries would not be
clear in the phone sequences, so these disambiguation symbols are appended to all words.
These symbols are removed later in the process of creating the decoding graph. This WFST
is usually referred to as L (for lexicon). Weights may be used to capture probabilities of
di�erent pronunciation variants, otherwise those equal to 1 are used.

The context dependency transducer is introduced for implementation purposes: As
mentioned earlier, the acoustic modeling HMM is usually trained to classify context depen-
dent phonemes, whereas the lexicon translates words into context independent phones. To
overcome the di�erence, the context dependency transducer is introduced. Assuming the
triphone model, this WFST can be constructed by creating a state for every pair of phones,
with transitions labeled by newly recognized input phones. Figure 2.6 shows an example

3words that are pronounced the same way, such as `read' and `red'

8

d_ao ao_g
ao/d_g:g

Figure 2.6: A single transition in a context dependency transducer. It depicts the situation,
where the triphone ao/d_g (`ao' preceded by `d' and followed by `g') is recognized and a
context-independent phone `g' is emitted.

transition. This WFST is usually referred to as C and has no information encoded in the
weights of transitions.

When we compose all these three components together, the resulting transducer C◦L◦G
maps context dependent phonemes to word sequences constrained by G.

0

1135:ao/d_g

4

138:ae/k_t

136:ε

2
136:ε

139:ε

5
139:ε

137:ε

3

137:ε

ε:ε

140:ε

6
140:ε

ε:ε

Figure 2.7: A example fragment of H transducer, with weights omitted for simplicity. Tri-
phones `ao/d_g' and `ae/k_t' are shown. The integer input labels refer to emitting proba-
bility density functions.

The HMM topology is a transducer corresponding to the HMM state sequences for sin-
gle context dependent phones. It translates output probability density functions to context
dependent phones. For phones, a three state structure is usually adopted (for instance in
the Kaldi toolkit [18]), as is illustrated in �gure 2.7. A more complex model, involving inner
loop, is usually used for silence, as it can contain di�erent non-speech sounds.

We can get the complete recognition graph as HCLG = H ◦ C ◦ L ◦ G. For practical

9

reasons, we want this transducer to be deterministic and minimal, so the usual recipe for
decoding graph construction is: δ(min(det(H ◦ det(C ◦ det(L ◦G))))) [15], where min and
det represent weighted minimization and determinization respectively. The operation δ
represents the �nal removal of disambiguation symbols, which is done by replacing them by
epsilons.

2.4 Decoding in such a network

As already stated in section 2.3, the HCLG recognition network can be considered to model
the structure of a big HMM. Therefore, the decoding is typically (e.g. in the Kaldi toolkit)
implemented as the token passing algorithm described in section 2.1.

For large vocabulary continuous speech recognition (LVCSR), the recognition network
can get very large (several millions of arcs), mainly because of the language model G. Then
various techniques of pruning are incorporated into the decoder in order to keep the process
of decoding reasonably fast. For example, tokens can be kept for further processing, only
if they have score close enough to the current best token. The idea is, that those, that are
much worse than the best, would not produce successful tokens in the next step, so there
would be no point in deriving lots of tokens from them, only to discard them right after.

For the batch processing of speech, speed is a su�cient property to optimize. However,
when recognizing on-line, real-time latency is of interest as well. Therefore a technique
has been implemented in the Kaldi toolkit to retrieve the results of recognition as soon as
possible, instead of processing the whole �le at once. The concept of the immortal token

is introduced. It is such a token, that all active tokens have been derived from it. Since
every token has a single parent, it is quite simple to check by backtracking, whether there is
some common ancestor of active tokens. When a new immortal token is found, recognized
sequence is retrieved by backtracking from the current immortal token to the previous one.

This way, the latency could be theoretically reduced to processing a single feature vector,
corresponding typically to 10 milliseconds, but in practice, the online decoder works with
batches in order of lower tens of feature vectors.

2.5 Recognition performance metric

In automatic speech recognition (ASR), word sequences are the target. Therefore a certain
kind of string distance is used. The most common metric is Word Error Rate (WER).
According to [11], the WER is de�ned as follows:

WER =
S +D + I

length of the correct transcription

where S is the number of substitutions, D is the number of deletions and I is the number of
insertions. The WER is typically given in percents, sometimes word accuracy = 1−WER
is used. Sometimes the word accuracy is de�ned not to consider insertions. The correct
evaluation of this metric requires solving maximum substring matching problem, which is
straight-forwardly solved by means of dynamic programming [11].

Another metric used is the sentence error rate(SER). The SER is de�ned simply as

SER =
E

#sentences

10

where E is the number of sequences, which were recognized incorrectly. We shall not discuss
what a sentence could mean in recognition of longer utterances. In this work, short phrases
will be recognized, where we can claim a sentence to be equal to an utterance.

11

Chapter 3

Turning context free grammars into

WFST speci�ed language models

As shown in section 2.4, the �nite state representation of a language model allows for e�cient
decoding. On the other hand, it is often more convenient to describe grammars in a more
�exible manner. We can consider the case when a grammar of a command and control
system requires the user to specify a time interval by giving two dates. Expressing this
grammar in a strictly �nite state manner requires having the subautomaton specifying the
date twice, which introduces undesirable redundancy. In this simple case, the redundancy
could be avoided by introducing some simple substitution mechanism.

Yet for general cases, possibly including cycles or indirect recursion, human inspection
is ine�cient and error-prone. Therefore, a tool has been developed to do this task automat-
ically. This chapter describes the design of this tool, of arbitrary name Grammator. Instead
of developing a new grammar speci�cation format, the Speech Recognition Grammar Spec-
i�cation [12] was used as the input format. The AT&T FSM format [3] was chosen as the
output, for it is the standard textual format1 of WFSTs used in Kaldi.

3.1 Speech Recognition Grammar Speci�cation

The W3C recommendation [12] de�nes the Speech Recognition Grammar (SRG) as a syntax
for grammar representation. Two speci�c forms are accepted: Augmented BNF syntax
(ABNF) and XML. For the current version of Grammator, only XML was taken as supported
format, however, these formats are semantically mappable. Further discussion of the SRG
will be with respect to its XML format. SRGs are de�ned with the expressive power of
context free grammars (CFG), so most of the e�ort here went into reducing it to the power
of (weighted) �nite state transducers (WFSTs).

Within the SRGS, a grammar (always the root element) is given as a set of rules. There
is no theoretical limit on the number of rules, and they can be de�ned with either global
or document-only scope. A rule is an analogy of a nonterminal symbol in the formal CFG
and the speci�es its root rule (likewise to the starting nonterminal of a formal grammar).
Content of the <rule> element is its expansion, which is in general a string of items. Items
can be explicitly speci�ed using the <item> element or implicitly as sequence of words.

1for most of the WFST operations, Kaldi uses the OpenFST toolkit [4], which in turn uses the AT&T
format.

12

When de�ned explicitly, repetition can be speci�ed, of either given, or possibly in�nite
number of times. Furthermore a <one-of> element can be used to list several alternatives.

Finally the <ruleref> element is used to reference to another rule, meaning the ex-
pansion of the referenced rule shall be inserted into the spot where it occurs. Except for
user-de�ned rules, special ones are already prede�ned. These special rules match either any
utterance, nothing, or a zero-length utterance. This will be further discussed in section 3.4.

There are two di�erent �avours of weights in the SRGS. At �rst, alternatives in the
<one-of> element can be assigned weights, which have no exact interpretation speci�ed, only
1 is speci�ed as the neutral weight, with greater weight making the alternative more likely.
Also any repetition can have a �repeat� probability speci�ed. These are to be interpreted
as the probability, that the item will be repeated yet another time, independently of the
number of repetitions so far, except for the total number of repetitions has to stay in the
given bounds.

There are tokens de�ned in SRGS, which are supposed to carry some semantic inter-
pretation, however there is neither a natural expression of these in WFST, nor use for such
feature in our current system, so tokens are ignored when forming an equivalent grammar.

As will be shown in chapter 4, not the full power of a CFG is necessary for all applications.
So a design decision was made, that only those grammars will be supported, that do not
exceed the power of regular languages. Another possibility was to approximate a CFG by
either its subset or superset as discussed in [17], but there was no use case for it in this
project, so it has been left as an option for further work.

3.2 Transformation into Context Free Grammar

Even though the SRGS has the expressive power of a CFG, it introduces several convenience
features, that make the process of loading it as a CFG not straight forward. Therefore, this
process will be described brie�y. At this level, each rule can be turned into a nonterminal
independently of others, which is not the case with the following transformation into WFST.

At �rst, we consider rules with no repetitions, i.e. such rules, that can only expand into
a �nite number of strings (over the total alphabet). We could either list all these strings
and then simply turn them into right-hand sides of rules in the resulting grammar, which
would keep the number of nonterminals the same, but at the cost of increasing number of
expansions. The number of right-hand sides per nonterminal would then follow O(NK),
where N is (an average) number of options per <one-of> element in the rule and K is
number of these elements in the rule expansion. The other option is to introduce a synthetic
nonterminal for each <one-of> element, encapsulating all the options in it. This way, the
number of nonterminals is increased by O(K), but the total number of rules in the grammar
does not exceed O(NK). The structure of the original SRGS is also better re�ected in the
grammar this way, so this method was implemented in the Grammator. The di�erence is
illustrated on a simple example in table 3.1 (page 14).

In case a limited number of repetitions is speci�ed, we de�ne a rule for each number of
repetitions. If the number of repetitions is unbounded, �rst, a chain of repetitions corre-
sponding to the lower bound is put at the begining of the rule. Then, a new nonterminal is
introduced which handles the possibly in�nite recursion. An example is shown in the table
3.2 (page 14).

Considering the special rules, each is handled separately. The �garbage� rule, matching
any utterance, is not supported, because no use has been found for it and, more importantly,
it would inevitably introduce nondeterminism in decoding, since there would be no way to

13

Table 3.1: Demonstration of two possible transformations of a SRGS rule with alternatives
into equivalent formal CFG rules. In the Grammator, the one in the third column is applied
for its better space complexity and structure, that follows the original SRGS more closely.

<rule id="A"> A → aKx A → A-1 A-2 A-3
<one-of> A → aKy A-1 → a
<item>a</item> A → bKx A-1 → b
<item>b</item> A → bKy A-2 → K

</one-of> A → aLx A-2 → L
<one-of> A → aLy A-3 → x
<ruleref uri="#K"/> A → bLx A-3 → y
<ruleref uri="#L"/> A → bLy

</one-of>

<one-of>

<item>x</item>

<item>y</item>

</one-of>

</rule>

Table 3.2: Transformation of an item with unbounded repetition into a CFG.

<rule id="A"> A → xxA'
<item repeat="2-"> A' → x
x A' → ε
</item>

</rule>

tell before processing whole utterance, whether the recognized word is a grammar sequence
or should still be captured as garbage. For the on-line decoding (see the use case in chapter
4), this would be even worse, because we want to display recognized words as soon as
possible. The �void� rule, which does not match anything, is expressed as a nonterminal
with a single expansion rule A → A, that is an in�nite recursion, which clearly matches
nothing. Finally, the �null� rule, which stands for an empty utterance, is simply skipped
when constructing the grammar.

Both the weights of alternatives and repeat probabilities are re�ected in the grammar.
To achieve this, each production rule of the grammar has a weight associated. In order
to keep the transducer stochastic and avoid mixing weights and probabilities, weights are
normalized to sum up to one for each nonterminal.

3.3 Deciding on the power of the grammar

Since only a subset of CFGs can be equivalently expressed as a WFST, the given grammar
must �rst be tested to determine, if it can be transformed. To decide whether a given
grammar can be expressed in terms of WFST, we �rst consider the close-to-exact answer.
Recall that a CFG is de�ned as a 4-tuple:

(N,T, P, S)

14

where:
N is a �nite set of nonterminal symbols
T is a �nite set of terminal symbols, T ∩N = ∅
P ⊆ N × (N ∪ T)∗ is the set of rules of the form A→ u
S ∈ N is the initial nonterminal

We also de�ne the relation of one derivation step uAv ⇒ uxv, for strings u, v, x over the
total alphabet N ∪ T and any nonterminal A such, that A → x ∈ P . Then its transitive-
re�exive closure x ⇒∗ y represents that the string y can be derived from x in an arbitrary
number of steps.

De�nition 1. A context free grammar G is self-embedding when there is a nonterminal A
such, that A⇒∗ uAv for some non-empty strings u, v.

It has been proven (see [6]), that if a CFG is not self-embedding, an equivalent �nite
automaton can be found. It has also been shown, that some of the self-embedding CFGs do
not exceed the expressive power of �nite automata (see [5]). However, these are not taken
into account so far, as they would greatly broaden the scope of this work without an actual
need for it.

An even stronger restriction is put on the CFG to be processed by the tool. Grammator
allows no nonterminal symbol A, such that A ⇒∗ uAv, for a non-empty string v. This
e�ectively means banning left recursion, which is a natural condition in formal language
processing, because a (common and e�cient) top-down parser cannot process it [14]. A
similar decision has been made in Microsoft's tool Whisper [11] and an example in chapter
4 demonstrates, that this does not decrease the practical value of Grammator.

To test whether a given CFG is neither self-embedding nor left-recursive, I have intro-
duced a relation Q ⊆ N ×N :

Q = {(A,B) | A→ uBv ∈ P, u, v ∈ (N ∪ T)∗, v 6= ε}

This relation captures which nonterminals B may appear at any-but-last position in a
sentence. Armed with this knowledge, we ask whether this B can ever turn into an A,
which would violate the requirements. To express this possibility, I have introduced another
relation D+ ⊆ N ×N :

D+ = {(A,B) | A⇒+ uBv, u, v ∈ (N ∪ T)∗}

Constructing this set directly is generally impossible, because it is de�ned using the possibly
in�nite relation ⇒+. So we �rst de�ne relation D = {(A,B) | A → uBv ∈ P} and then
take D+ as its transitive closure.

Then the composition D+ ◦Q represents, for a given (A,B) ∈ D+ ◦Q, that a such string
can be derived from A in an arbitrary number of steps, that B occurs in it, but not at the
last position. Therefore, the requirement of a grammar being neither self-embedding nor
left recursive is equivalent to this relation being anti-re�exive.

De�nition 2. A context free grammar G is Grammator-compliant when the relation D+◦Q
is anti-re�exive.

3.4 Construction of Weighted Finite State Transducers from

Weighted Context Free Grammars

After a grammar is checked to meet the requirements, a WFST is constructed from it. At
�rst, an intuition to this process will be given on a simple example. Consider a grammar

15

S with N = {E,O, F}, T = {a, b,+,−}, starting nonterminal E and rules: E → OFO,
O → a, O → b, F → − and F → +. Although it is a CFG from the formal point of view,
it does not exploit the expressive power of a CFG� an equivalent �nite state automaton
is shown in �gure 3.1. However, the construction of such automaton is considerably less
straight forward than in the case of constructing it from a right- or left-linear grammar.

0 1
a

b
2

+

-
3

a

b

Figure 3.1: A simple FST corresponding to {a,b}{+,-}{a,b}

With a right-linear grammar2, fragments of the WFST can be constructed for each
nonterminal independently and then interconnected according to the nonterminal at the
end of the right-hand side of each rule. This is not the case with (Grammator-compliant)
CFGs. Considering the nonterminal O from grammar S, we can see, that it is instantiated
in two distinct parts of the corresponding FST� the �rst in transition 0 → 1, the second
in transition 2 → 3. To properly construct each of these fragments, more information is
needed than only the sequence of symbols in the right-hand side of the rule.

Putting aside issues of recursion for a while, we can construct a fragment of WFST
corresponding to a given nonterminal easily, but it has to be plugged into the parent WFST.
To achieve this, each of these fragments has a well de�ned entry- and exit-point. This
way, the WFST can be constructed �on-the-�y� recursively, beginning with the starting
nonterminal and constructing the WFST fragments as needed. Then, the �parent� fragment
construction is responsible for correctly connecting to these endpoints.

Recursion in the grammar has to be handled with care. Firstly, consider that we keep
a global stack of nonterminals, which are currently being synthesised and already have a
de�ned entry point. We add their symbol to the stack when beginning their construction
and remove it when the construction of the particular WFST fragment is done. Upon �nding
a nonterminal A at the end of the right-hand side r of the currently processed rule, we could
consult this stack. If A was there, we would handle the recursion by simply connecting
the end of r to the entry point of A (otherwise we just construct a new WFST fragment
corresponding to A).

However, this method allows invalid result for cases, when r is not the rightmost part
of the derivation of A. E.g. consider a grammar, where there are rules of type A → uBv,
A → x and B → A. Then the method explained above would connect the beginning
of B to the already constructed entry point of the A. Even though this is clearly not
correct, because it allows accepting a (sub)string ux, it is not an actual problem, because
a Grammator-compliant grammar can not exhibit such behaviour � this is an example of
self-embedding.

2Left linear will not be discussed further as they introduce left recursion, however their behaviour is
similar.

16

S → aAa
S → c
A→ bA
A→ a
A→ cB
B → B

(a) (b)

Figure 3.2: An example of WFST 3.2b constructed from a grammar 3.2a. This example does
not precisely follow algorithm 1, some ε-transtitions are omitted for clarity. The rule S →
aAa is implemented by the upper part of the WFST, the big rectangle represents a WFST-
fragment corresponding to A. For the construction of the WFST fragment corresponding to
S, A-0 and A-2 are the entry- and exit-points respectively. Within it, the recursive part of
the rule A→ bA is implemented by the transitions A-1→ A-0, because A-0 is now available
as the entry-point for the currently being synthesized nonterminal A. The fragment of
WFST corresponding to the nonterminal B demonstrates the situation, where the special
rule �void� was given in the speci�cation and thus no utterances shall be recognized with it.

However, a slight change to the algorithm has been introduced anyway. For implemen-
tation purity, the stack structure of nonterminals being currently synthesized is not global.
When a nonterminal is derived as the rightmost symbol, the procedure of constructing the
corresponding WFST fragment is given the full stack of nonterminals currently synthesised
as before. In the other case, the nonterminal-handling procedure could not use those non-
terminals anyway, so an empty set is passed.

More formally, this process can be described by a function (algorithm 1, page 18) that
constructs a WFST fragment from a single nonterminal. A non-formal commented example
is given in the �gure 3.2.

In order to start the construction of the whole grammar, an empty stack of nonterminals
usable for recursion and an empty state are passed as arguments to the function constructing
the starting nonterminal of the grammar. This pre-constructed state then becomes the initial
state of the WFST. The only �nal state is the exit point of the starting nonterminal.

3.5 Implementation and output format

The Grammator tool implements the above described principles in a straight forward way.
The computation is organized in a simple object-oriented schema, with a separate class
responsible for each of the models involved.

At �rst, there is the class XMLTree, which keeps the XML tree representation of the
SRGS. To read it from an XML �le, it uses the standard ElementTree module. This class

17

Algorithm 1 Synthesize a WFST fragment corresponding to the given nonterminal
Require:

• A is a nonterminal of a Grammator-compliant input grammar G
• nonterm_stack is a set of currently being synthesized WFST fragments
• predecessor is the entry point of the resulting fragment
• the function connect(src, dst, lab, w) creates an arc from state src to state dst with
label lab and weight w

Ensure:
• an equivalent WFST fragment is constructed for the nonterminal A
• its entry point is the given predeccesor state
• the reference to the exit point of the fragment is returned

1: function makeFragmentWFST(A, nonterm_stack, predecessor)
2: exit_point ← newState()
3: for all s ∈ rhs(A) do
4: last ← newState()
5: connect(predecessor, last, ε, weight(s)) // here weights get in
6: for all elem ∈ s do
7: if nonterminal(elem) then
8: if elem ∈ nonterm_stack then // recursion
9: // connect to the entry point of elem on stack
10: connect(last, entryState(�nd(elem, nonterm_stack)), ε, 1)
11: last ← nullState()
12: else // not a recursion, construct new fragment
13: if lastElement(elem, s) then
14: pn ← nonterm_stack ∪ {A}
15: else

16: pn ← ∅
17: end if

18: last ← makeFragmentWFST(elem, pn, last)
19: end if

20: else // terminal symbol
21: ns ← newState()
22: connect(last, ns, elem, 1)
23: last ← ns
24: end if

25: end for

26: if last 6= nullState() then
27: connect(last, exit_point, ε, 1)
28: end if

29: end for

30: return exit_point

31: end function

18

is responsible for transforming the tree into an equivalent CFG, which is represented by the
class Grammar. This class is mainly responsible for providing various tests, such as whether
it is complete (no symbols referenced in the rules are missing), whether it is right-linear and
�nally whether it is Grammator-compliant. The �nal representation in Grammator is the
WFST, which is captured by the class GeneralFST. It knows how to construct itself from a
Grammar object and in turn to output itself to the AT&T syntax.

The AT&T syntax of �nite state machines is quite simple. Each state is identi�ed by a
non-negative integer. Terminal symbols are identi�ed by non-negative integers as well, but
the number 0 is reserved for the empty symbol (ε). For every arc in the WFSTs, there is a
line of the form:

S D I O C

where S refers to the source state, D to the destination state, I is the number (integer) of
the input symbol of the arc and O is the number (integer) of the output symbol. C is a
�oating point number representing the arc cost. The source state of the �rst arc in the FSM
description is, by convention [3], the initial state of the WFST. Finally, each �nal state is
speci�ed by a line

S C

where S is the number of the �nal state and C is the cost of accepting the string in this
state. The mapping of symbols (typically words for language modeling) to numbers is kept
in a separate �le, referred to as symbol table.

Since the task of the Grammator is inherently o�-line (related to the decoding) and
therefore has loose requirements on speed, it was implemented in the Python scripting
language.

19

Chapter 4

Use Case: The A-PiMod project

The techniques described in chapter 3 were applied in the A-PiMod project. The A-PiMod
project (Applying Pilot Model for Safer Aircraft) [2] is a European Committee-funded
project aimed at increasing the safety of �ight by observing the crew state and properly
responding to it, by means of task distribution between the crew and advanced automation
systems.

One of the target modalities of Human-Machine interaction in this project is speech. For
the �rst part of the project, the partial goal is to have a recognizer of grammar constrained
phrases for voice control of the cockpit. Other partner in the project, Honeywell CZ, is
responsible for the grammar itself, I have developed a methodology for using such grammar
as the language model in speech recognition.

The application of the developed techniques in the A-PiMod project requires a lot of
e�ort in integration, but only the speech recognition part itself is described in this thesis
for brevity.

For completeness, the structure of the used acoustic models is brie�y described in section
4.3. The applied techniques are not described in this thesis, so the reader is encouraged to
study them in relevant the literature. The Gaussian Mixture Model is a generative statistical
model well described in [7]. The Linear Discriminant Analysis can be interpreted in several
ways, but it is usually understood as a linear projection of the data into a subspace of given
dimension, where the classes are best separated. It is also described in [7]. The Cepstral
Mean and Variance Normalization is a simple method for increasing the robustness of the
features, �rst presented in [19].

4.1 Input grammar

Due to the nature of the project, there are several separate grammars involved. The gram-
mar to be used for recognition is to be given by the interaction context (IC). Even though
the on-line change of the IC is not implemented so far, support is prepared for them. The
challenge is, that the voice control in each IC is given by two parts: Global rules, which
hold valid for any IC, but refer to di�erent objects according to the IC (an example is given
in table 4.1) and local rules, which refer directly to objects in the particular IC (an example
is given in table 4.2).

The root element of the grammar is named <input> and refers to one or more of the
global rules, as well as several local rules, thus it is a part of the local de�nition of the
grammar. Even though the Speech Recognition Grammar Speci�cation (SRGS) allows

20

cross-�le reference, for global rules, that refer di�erent objects according to the IC, some
kind of back-reference would be needed, where the rule would be aware of which grammar
(IC) invoked it, so that the right objects could be picked in the global rules.

Table 4.1: Example of the global show rule in the A-PiMod project. There are also global

get, global set and global hide rules of similar structure. The rules showable object, showable
object with parameter required and parameter are given by the interaction context.

<rule id="global_show">

SHOW

<one-of>

<item><ruleref uri="showable_object"/></item>

<item><ruleref uri="showable_object_with_parameter_required"/>

<ruleref uri="parameter"/></item>

</one-of>

</rule>

Such behaviour is not de�ned by SRGS, so in order to avoid redundancy, the follow-
ing approach has been taken: Global rules are stored in a separate XML-fragment, which
contains the header and global rules de�nition, while the fragment corresponding to the IC
does not include the XML header, but is properly ended with the </grammar> tag. Before
processing them by Grammator, these two parts are concatenated into a valid XML �le
describing possible phrases in the given IC.

Another possibility would be broaden the SRGS in such a way, that some part of rule
reference would become parametric. However, this would prevent grammars in such format
from being processed by some other tool expecting the SRGS format.

Table 4.2: Example of local rules in the A-PiMod grammar. It is taken from the Interaction
Context �Cross Dialog�. The rule number de�nes possible altitudes by enumeration.

<rule id="set_altitude">

SET ALTITUDE <ruleref uri="#altitude_settings"/>

</rule>

<rule id="altitude_settings">

<one-of>

<item>ON</item>

<item>OFF</item>

<item>AT OR BELOW<ruleref uri="#number"/></item>

<item>AT<ruleref uri="#number"/></item>

<item>AT OR ABOVE<ruleref uri="#number"/></item>

</one-of>

</rule>

Once the weighted �nite state transducer equivalent to the given grammar has been
constructed, it can be used as a language model like any other. This way, the obtained
language model can be relatively easily combined with custom acoustic models to create the
desired system, and then, using the same acoustic model, compared to statistical language
models.

21

4.2 Overview of relevant parts of the Kaldi toolkit

Kaldi [18] is a speech recognition toolkit aimed at researchers. Its core consists of object-
oriented code in C++, which implements most of the state-of-the-art techniques used in
speech recognition. As the basic access to this technology, simple command-line applications
are developed, that conduct single operations, such as �perform this linear transform on these
features� or �given these acoustic scores and this recognition network, decode�. These tools
have been developed with pipelines in mind, so using a shell script to build a system is
a natural choice. However, it is possible to avoid using these applications and compile a
bigger one. This is the case with the A-PiMod project, where, unlike in research, real-time
processing is important, so the whole recognizer is compiled into one application.

The Kaldi project not only provides recognizer technology, but comes also with utilities
and recipes for building systems on widely available corpora. The Kaldi recipe for con-
structing recognition networks is among these. It is a bit di�erent from the classical one
described in section 2.3: The �nal recognition network is (following the notation of chapter
2) constructed as:

HCLG = α(min(δ(H ′ ◦min(det(C ◦min(det(L ◦G)))))))

where the transducer H ′ is similar to the HMM topology introduced in section 2.3, but
without the self-loops. The �nal α operation adds the self-loops. Without the self-loops,
the composition of the CLG transducer with the HMM topology puts lesser requirements
on the computing system, especially the memory.

There is also an implementation of an on-line recognizer in Kaldi. Its structure is
captured in �gure 4.1. The online audio source can be implemented in di�erent ways to
support various inputs, such as from pre-recorded wav�les, an input audio device or a TCP
socket. It outputs raw audio samples. These are then processed by a pipeline of feature
processing blocks. In the current systems, the �rst block segments the audio into frames
and computes either Mel-Frequency Cepstral Coe�cients (MFCC) [9] of Perceptual Linear
Prediction (PLP) [10] coe�cients. Furthermore, implementation is provided for on-line
cepstral mean normalization, computation of delta and delta-delta features and application
of linear transformation.

Figure 4.1: Block schematic of the on-line recognizer in Kaldi. The blocks named �online
feature input� perform various feature transformations, such as adding the delta coe�cients
or applying linear transformations.

On top of this feature-processing pipeline is �online decodable�. Decodable is an impor-
tant abstraction in Kaldi. An object of this type provides acoustic scores to the decoder.

22

More precisely, it produces the log-likelihood for a given frame under a given distribution.
This way, it encapsulates the interaction of the acoustic model with the features, allowing
the decoder to work completely unaware of the type of the acoustic model. When the de-
coding is online, the decodable can not provide log-likelihoods for any frame of the speech
recording, but only for the current frame and for a short history before it � in the default
setup for last 27 frames.

4.3 Acoustic models used for recognition

The voice part of the human-machine interface in the A-PiMod project is designed to accept
English speech. However, the pilots are generally not native English speakers, so English of
various accents needs to be properly recognized. Therefore, it was reasonable to search for an
acoustic model trained on non-native English. One such model was trained at Speech@FIT
by Kate°ina �molíková on data obtained during the AMI/AMIDA project. The data corpus
is distributed with the project [1].

With respect to the speech recognizer scheme (2.1), the audio input is processed in
the following way: At �rst, the speech is segmented into frames and PLP coe�cients are
computed for each of these. The cepstral mean and variance normalization (CMVN) is then
applied on these feature vectors. Further on, nine feature vectors are spliced together and a
linear transformation � the Linear Discriminant Analysis � is applied. The features obtained
this way form the sample space of the Gaussian Mixture Model (GMM), which is applied
as the acoustic model. For computational reasons, their covariance matrix is limited to a
diagonal one. The block schematic of this computation is given in �gure 4.2.

Figure 4.2: Block schematic of feature extraction used in the AMIDA-system.

Since the AMIDA-system was available at Speech@FIT, I could simply change the gram-
mar model (WFST G) to the one corresponding to the desired Interaction Context and
recompile the network HCLG. Therefore, the network is fully compatible with the corre-
sponding acoustic model and can be directly used for recognition.

4.4 Baseline language model

Since only the language model was changed, I could compare my system to other ones with
the same acoustic model. However, a reasonable language model had to be chosen. As this
thesis presents a grammar-based language model in contrast to n-gram language models,
the n-gram language model was a natural choice. Because the AMIDA project was aimed
at automatic speech recognition of meetings, it should be suitable for short utterances. It
also covers a very wide vocabulary, so it can be expected to understand control words as
well.

To improve this baseline model, I have taken a model created by Kate°ina �molíková
at Speech@FIT. It is the basic AMIDA language model interpolated with a bigram model
trained on approx. 1300 utterances of average length of ten words, capturing cockpit-ATC1

1Air Tra�c Control (ATC) is the common name for the service provided by the ground personnel of an
airport to prevent collision in the air. The ATC Tower (ATCT) is the communication point for this service.

23

communication. Later in this chapter, this model is referred to as the airspeak model.
The resulting recognition network is very large: the size of the �le containing the binary

representation of the HCLG is approx. 1 GB. Because OpenFST does not support memory-
mapped �les, this imposes quite high memory requirements. Also, loading the model can
take several seconds. However, should this model prove successful, it would be su�cient
for any Interaction Context, so no need would arise to switch the recognition network when
changing the IC.

4.5 Experiments and results

For the experiments the Main Screen was used, which is the currently largest Interaction
Context de�ned. Thirty-three random phrases were generated from it, using the OpenFST
tool fstrandgen. Then three speakers read them aloud. One of them was a male Czech,
one a male German and the last one a female Russian. This way we can expect the test set
not to be a�ected by a particular accent.

These utterances were recorded in a silent environment. Since pilots are used to push-to-
talk devices, I have trimmed the utterances manually, so that approximately half a second of
silence precedes and follows the speech. This has been claimed to be a reasonable robustness
requirement by the Honeywell partners. The advantage of this approach is, that no Voice
Activity Detection needs to be run on the data.

As the basic metric, word error rate has been evaluated, as is captured in table 4.3. The

Table 4.3: Word error rate using di�erent systems. Each column represents recordings from
one speaker, the speaker is labeled as <nationality>_<gender>. The �rst row (airspeak)
is the baseline system using the n-gram model.

System CZ_M DE_M RU_F

airspeak 83% 68% 65%
grammar 14% 9.0% 5.0%

sentence error rate has been evaluated as well, results are in the table 4.4. The SER can be
considered the more important metric for the use-case, because the recognized sentence is
to be used as the unit for further processing.

To understand how it is possible, that for the grammar based system the WER is
consistently higher than the SER, we must take into account, that a single miss on the
sentence level typically means, that most of the words were recognized incorrectly. And
since simpler and shorter sentences were recognized better, this results in a higher ratio of
words mis-recognized.

Table 4.4: Sentence error rate using di�erent systems. Each column represents record-
ings from one speaker, the speaker is labeled as <nationality>_<gender>. The �rst row
(airspeak) is the baseline system using n-gram model.

System CZ_M DE_M RU_F

airspeak 73% 79% 82%
grammar 12% 6.1% 3.0%

24

We can see, that the recognizer using the IC grammar outperforms the one based on
trigram language model by far. This is no surprise, as the grammar represents the actual
distribution, from which the sentences were drawn, while the trigram model is only a very
general approximation. To check, whether the system based on the airspeak language model
does work at all, we can have a look at some of its erroneous outputs. Three examples are
given in table 4.5. We can consider the recognized output to be quite similar to the true
transcription in terms of acoustics, so the system seems to operate properly to some extent.

Another reason, why this language model performs so poorly, is quite likely the structure
of the phrases. The training corpus for AMIDA contains spontaneous speech, which was
often grammatically incorrect and was often interrupted during the meetings, yet it was very
much following the usual structure of English sentences. On the other hand, the phrases in
A-PiMod ICs do not depend on any context, which could be exploited by the recognizer,
and follow a simple imperative schema �<do> <something>�.

Table 4.5: Example of the kind of errors made by the airspeak-AMIDA system on utterances
from the Czech male speaker. It can be seen, that the recognized phrases are somewhat
acoustically close to the true ones.

True transcription airspeak-amida system output

SHOW CONTEXT MENU SHOW QUOTED MEMO
FULL SCREEN WHO SCREAM OH
HIDE CROSS WHY TO CRUISE

25

Chapter 5

Conclusion

In this Bachelor Project, I have developed a tool called Grammator used for the trans-
formation of a substantial subset of Context Free Grammars into Weighted Finite State
Transducers, for purposes of language modeling in speech recognition. This thesis describes
the design of this tool, as well as the theoretical background of the use of Weighted Finite
State Transducers in speech recognition.

To test the language model obtained this way, an example task from the A-PiMod
project was used. Using the Grammator, I have built a language model for a particular
cockpit situation. Then, I combined this model together with an acoustic model from a
system trained on non-native English. Finally, this system was compared with a system
using a general purpose English trigram language model. The results were greatly in favor
of the language model derived from the grammar. However, these experiments are rather a
preliminary proof of concept than a full result.

The outcome of this project will be further used in the A-PiMod project. The Gram-
mator tool is used as one of the core elements in the creation of a system for a given cockpit
situation. Should the need arise, the tool can be enhanced by methods for constructing
WFSTs that approximate even such CFGs, which can not be transformed directly, because
their expressive power exceed the �nite state automata.

Further e�ort will be invested in the recognition of grammar fragments, so that other
modalities can provide some input into the decoder. The ultimate goal in this direction is
to allow arbitrary interleaving of modalities in the input to the system, e.g. the pilot could
say �set� command, then pick some object via a touchscreen and then say a requested value
of some parameter.

The long term vision includes an online decoder operating directly on the grammar,
which would allow arbitrary CFG to be used as the language model. Also a solid detection
of out-of-grammar utterances would be a useful extension to the recognition system.

26

Bibliography

[1] AMI meeting corpus. https://www.idiap.ch/dataset/ami, 2010.

[2] A-PiMod: Applying pilot models for safer aircraft.
http://www.apimod.eu/Default.aspx, 2013.

[3] Cyril Allauzen, Mehryar Mohri, Fernando Pereira, and Michael Riley. The AT&T
FSM format. http://www2.research.att.com/~fsmtools/fsm/man4/fsm.5.html.
Version 4.0.

[4] Cyril Allauzen, Michael Riley, Johan Schalkwyk, Wojciech Skut, and Mehryar Mohri.
OpenFst: A general and e�cient weighted �nite-state transducer library. In
Proceedings of the Ninth International Conference on Implementation and Application

of Automata, (CIAA 2007), volume 4783 of Lecture Notes in Computer Science, pages
11�23. Springer, 2007. http://www.openfst.org.

[5] Stefan Andrei, Wei-Ngan Chin, and Salvador Valerio Cavadini. Self-embedded
context-free grammars with regular counterparts. Acta Informatica, 40(5):349�365,
2004.

[6] Noam Chomsky. On certain formal properties of grammars. Information and Control,
2(2):137�167, June 1959.

[7] Christopher M. Bishop. Pattern Recognition and Machine Learning. Springer-Verlag
New York, Inc., Secaucus, NJ, USA, 2006. ISBN 0-387-31073-8.

[8] Cyril Allauzen and Mehryar Mohri. E�cient algorithms for testing the twins
property. Journal of Automata, Languages and Combinatorics, 8(2):117�144, 2003.

[9] Steven B. Davis and Paul Mermelstein. Readings in speech recognition. pages 65�74.
Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, 1990.

[10] Hynek He°manský. Perceptual linear predictive (PLP) analysis of speech. J. Acoust.
Soc. Am., 57(4):1738�52, April 1990.

[11] Xuedong Huang, Alex Acero, and Hsiao-Wuen Hon. Spoken Language Processing: A

Guide to Theory, Algorithm, and System Development. Prentice Hall PTR, Upper
Saddle River, NJ, USA, 1st edition, 2001.

[12] Andrew Hunt and Scott McGlashan. Speech recognition grammar speci�cation
version 1.0. W3C recommendation, W3C, March 2004.
http://www.w3.org/TR/2004/REC-speech-grammar-20040316/.

27

https://www.idiap.ch/dataset/ami
http://www.apimod.eu/Default.aspx
http://www2.research.att.com/~fsmtools/fsm/man4/fsm.5.html
http://www.openfst.org
http://www.w3.org/TR/2004/REC-speech-grammar-20040316/

[13] Lawrence R. Rabiner. A tutorial on hidden markov models and selected applications
in speech recognition. In Proceedings of the IEEE, volume 77, 1989.

[14] A. Meduna. Elements of Compiler Design. Computer science. Computer engineering.
Computing. Taylor & Francis, 2007.

[15] Mehryar Mohri and Fernando Pereira and Michael Riley. Speech recognition with
weighted �nite-state transducers. In Springer Handbook on Speech Processing and

Speech Communication, chapter 28. Springer-Verlag New York, Inc., 2008.

[16] Tomá² Mikolov. Statistical Language Models Based on Neural Networks. PhD thesis,
Brno University of Technology, 2012.

[17] Mark-Jan Nederhof. Practical experiments with regular approximation of context-free
languages. Computational Linguistics, 26(1):17�44, March 2000.

[18] Daniel Povey, Arnab Ghoshal, Gilles Boulianne, Lukas Burget, Ondrej Glembek,
Nagendra Goel, Mirko Hannemann, Petr Motlicek, Yanmin Qian, Petr Schwarz, Jan
Silovsky, Georg Stemmer, and Karel Vesely. The kaldi speech recognition toolkit. In
IEEE 2011 Workshop on Automatic Speech Recognition and Understanding. IEEE
Signal Processing Society, December 2011. IEEE Catalog No.: CFP11SRW-USB.

[19] Olli Viikki and Kari Laurila. Cepstral domain segmental feature vector normalization
for noise robust speech recognition. Speech Communication, 25(1-3):133�147, August
1998.

28

	Introduction
	Speech recognition with Weighted Finite State Transducers
	Hidden Markov Models as models for sequence matching
	Weighted Finite State Transducers
	Creating a recognition network
	Decoding in such a network
	Recognition performance metric

	Turning context free grammars into WFST specified language models
	Speech Recognition Grammar Specification
	Transformation into Context Free Grammar
	Deciding on the power of the grammar
	Construction of Weighted Finite State Transducers from Weighted Context Free Grammars
	Implementation and output format

	Use Case: The A-PiMod project
	Input grammar
	Overview of relevant parts of the Kaldi toolkit
	Acoustic models used for recognition
	Baseline language model
	Experiments and results

	Conclusion

