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Abstract. The paper deals with sinusoidal oscillator em-
ploying two controlled second-generation negative-current 
conveyors and two capacitors. The proposed oscillator has 
a simple circuit configuration. Electronic (voltage) ad-
justing of the oscillation frequency and condition of oscil-
lation are possible. The presented circuit is verified in 
PSpice utilizing macro models of commercially available 
negative current conveyors. The circuit is also verified by 
experimental measurements. Important characteristics and 
drawbacks of the proposed circuit and influences of real 
active elements in the designed circuit are discussed in 
detail.  
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1. Introduction 
Many modern active functional blocks are available 

for application in analog technology and signal processing 
in the present time. This fact is discussed in paper [1] 
where the review and basic theory of the novel blocks are 
given. First applications of these blocks have been given in 
the literature, namely DBTA in [2], CFTA in [3] and 
others. An attention is now focused on the applications in 
current mode (CM) [4], in particular using the functional 
blocks with multi current outputs. There are some various 
modifications of the known circuit elements, namely the 
current conveyors (CC), the current feedback amplifiers 
(CFA) and the transconductors (OTA) with new names 
such as DO-CCCII [5 - 7], MO-CCII [8], CC-CFA [9], 
MO-OTA [10], or CDTA [11], [12], [13], CDBA [14] etc 
[1]. Because of their better frequency characteristics and 
features for electronic controlling, these blocks may be 
used in wide range of applications in the fields of filters, 
oscillators, high-speed communication systems, acoustic, 
measuring, control, sensor, and automotive electronics.  

Recently, many circuits and concepts of harmonic 
oscillators based on CC of second generation (CCII) [15 - 

31] and CFA [32 - 37] have been published. Many of these 
applications are not tunable [12, 13, 19, 22 and 23]. Others 
can be tuned by a single passive element, namely by 
a grounded resistor [15-18, 20, 27, 28, 30-32, 34-36, 38] or 
by a floating resistor [14, 21, 24, 31, 33-35, 37]. The 
grounded variable resistor can be simply implemented by 
a JFET [29, 34-35], by an OTA [39] or by a digital potenti-
ometer. However using of the floating element is quite 
complicated, as you can see for example in a special filter 
in [40]. In several works [25-27] biasing current (Ib), which 
drives the resistance Rx of the terminal X of the CC, is used 
for electronic control. Unfortunately the parameter (Ib or 
Rx) depends on the IC manufacturing deviations, supply 
voltage and also obviously on the temperature. Therefore it 
can cause some problems with precision in this application. 
Note that the manufacturing tolerances of the Rx can be 
tens of percent. 

Recently published circuits with the conveyors CCII 
are based on one active block only [21, 24, 31, 33, 36-38], 
complemented by four or five passive elements. Further-
more circuits with two active blocks, complemented by 
four or six passive elements [13-14, 17, 19-20, 22, 25-27, 
29, 32, 34, 36] and at the most with three CCII and eight 
passive elements [15-16, 19, 23, 28, 30, 34, 36] have been 
published. The positive-current conveyors or combination 
with negative ones are used in publications above. Note 
that the circuits mentioned above were mostly verified 
through simulations at audio frequencies only where the 
use of these new high-speed blocks is not substantiated. In 
audio band a classical VM approach, the standard opera-
tional amplifiers and digital potentiometers for tuning can 
be fully sufficient. This is not suitable at higher frequen-
cies, where parasitic capacitances and real parameters of 
the blocks play more significant role. Another weakness of 
the previous approaches can be inability of direct elec-
tronic controlling (except controlling Rx for CCII), compli-
cated implementation (too many blocks and elements), low 
level of the output signal [24-25] and high THD [26, 34-
35, 37]. 

In this paper very simple oscillator employing two 
negative conveyors CCII- is presented. Oscillation fre-
quency and condition of oscillation may be driven varying 
electronically controlled current gains B. A basic variant 
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includes four passive components (two R and two C). Also 
resistor-less variant with two capacitors only is given. 
Here, instead of the real resistor, the input resistance Rx of 
the conveyor terminal X (Fig. 1) is used. Note that the 
manufacturer guarantees the value of Rx in tolerance of 
±20% so this must be taken into account during the design 
of this simpler variant. The output signal can be taken from 
two internal nodes. However, to separate the load imped-
ance a voltage follower can be appropriately used. 

On the other hand, the disadvantage of this circuit is 
that one working capacitor is floating and the oscillation 
frequency may be driven only in a limited range. Despite 
this, implementation of the proposed circuit is simpler 
comparing to previous oscillators discussed above. More 
current outputs are not required and a classical three-port 
CC is sufficient.  

 

a)         b) 

Fig. 1.  Principle of adjustable CCII-: a) Symbol,  b) model. 

2. Three-Port Current Conveyor with 
Adjustable Current Gain 
The principle of this block is clear from Fig. 1. The 

negative three-port current conveyor CCII- with adjustable 
current gain has the symbol shown in Fig. 1a, where the 
port variables are denoted. This block can be described in a 
classical way [1]. The important relations are written in this 
figure, too. There is current input X, voltage input Y and 
current output Z. Compared to common types of the CCII 
(e.g. AD 844 [41]) this conveyor has the possibility of 
electronic controlling of the current gain B. 

For design and verification, commercially available 
CCII- (obsolete but sufficient for experiments) was used. 
There is not a problem for layout designer to create similar 
element in CMOS or bipolar technology if necessary. This 
device is commercially available as EL 2082 as two-quad-
rant current-mode multiplier [42]. The gain control input is 
calibrated to 1 mA/ mA signal gain (B) for 1 V of control 
voltage Vg (see [42]), else B = f(Vg) and simplification is 
valid approximately (example: Vg = 2 V means that exactly 
B = 1.9). Features of this block are evident from following 
figures obtained through simulations in PSpice. Magnitude 
responses of the current gain B(f) are given in Fig. 2. The 
bandwidth (-3 dB) is 158 MHz for B0 = 1 = 0 dB. Varying 
of B = B(f, Vg) by driving voltage Vg is also shown in 
Fig. 2. 
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Fig. 2.  Magnitude response as a function of driving voltage  

B = B(f, Vg). 

Input-output characteristics for several values of the 
driving  voltage Iz = f (Ix, Vg) are shown in Fig. 3. 

           I_I1

-5.0mA 0A 5.0mA
I(R1)

-10mA

0A

10mA

0.1 V

0.5 V

1 V

1.5 V

Vg = 2 V

 
Fig. 3.  Input-output current characteristics Iz = f (Ix, Vg). 

3. Proposed Oscillator 
The proposed tunable oscillator employing two nega-

tive conveyors CCII- is shown in Fig. 4. The basic variant 
(Fig. 4a) has four passive elements, two R and two C. In 
Fig. 4b, the resistor-less version is shown, using the input 
X resistance (Rx in Fig. 1) of the real conveyor. 

The circuit from Fig. 4 has the characteristic equation 
of the second-order general form  

 001
2

2  asasa .  (1) 

By symbolical nodal analysis, using the computer tool 
SNAP and setting of det Y = 0, the following characteristic 
equation is obtained 
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From the characteristic equation (2) we can determine the 
oscillation condition in the following form 
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 11 gVB  ,  (4) 

and also the formula for the frequency of oscillations  
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Fig. 4.  Adjustable oscillator based on two CCII-: 
a) basic variant,   b) resistor-less variant. 

The sensitivities of the oscillation frequency (5) to the 
passive components and parameters of the CC’s were 
found, namely 
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From (3) and (5) it is clear that B1 is not suitable for 
0 control because it is also in the condition of oscillation 
(3). However, B2 is only in (5) therefore it can be theoreti-
cally suitable for 0 control. The resistance R1 in formulas 
above (also R2 by analogy) is given by the sum 
R1 = R1ext+ Rx1. External working resistor R1ext must be 
added to Rx1, which is the input of the current port X. Note 
that these virtual resistances (Rx1, Rx2) (without R1ext, R2 ext) 
are considered only in the resistor-less version (Fig. 4b). 
However, this utilization can be problematic due to the 
reason (Rx) discussed in the introductory section. The 
product B1B2 above (respective Vg1Vg2) must be in range 
0 ≤ B1B2 < 1, which is a defining condition for the 
operation of this circuit as an oscillator. Equation (8) 

shows that sensitivities of oscillation frequency on 
parameters of active elements (current gain B) are quite 
high for B1B2→ 1 (Fig. 5) or B2→ 0.5 whereas B1= 2 
respectively (see sections 4 and 5). 
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Fig. 5. Detailed analysis of sensitivity (8) of oscillation 

frequency on product B1B2.  

4. Design Assumptions 
The values of the capacitors are chosen C1= C2 = 

= 470 pF, and the external resistors R1ext = R2ext = 100 Ω. 
Then considering the virtual resistances Rx = 95 Ω the total 
values result in R1 = R2 = 195 Ω. The current gain B1 is 
chosen B1 = 2 (then Vg1 ≈ 2 V) and B2 will be changed tak-
ing into account the oscillation condition above. The ex-
pected value of the oscillation frequency estimated by (5) 
is f0 = 1.737 MHz (B2 = 0).   

5. Experimental Verification 
To verify the proposed oscillator the simulations in 

PSpice using an adequate model of the real CCII- have 
been carried out. Fig. 6 shows the time waveforms of the 
output signals in both nodes denoted in circuit diagram 
(Fig. 4).  

           Time

74.00us 74.40us 74.80us 75.20us 75.60us73.70us
V(out1) V(out2)

-1.0V

0V

1.0V

 
Fig. 6.  Time waveforms of the output signals (for Vg1 = 2 V, 

Vg2 = 0 V), given by simulation (transient analysis in 
PSpice). 

Spectrum of the output signal resulting from the simulation 
using PSpice is given in Fig. 7. 
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           Frequency
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Fig. 7.  Spectrum of the output signal. 

The simulations were supplemented by adequate labo-
ratory measurements, as shown in Fig. 8 and Fig. 9. These 
results are confirmation of the theoretical and designed 
assumptions and also symbolical analysis given above. 

 
Fig. 8. Measured output signals (larger is VOUT1, smaller is 

VOUT2 for Vg1 = 2 V, Vg2 = 0 V)  

 
Fig. 9.  Measured spectrum of the output signal. 

For start of the oscillations it was necessary to change 
the value of the R1 to 67 Ω, which caused changing of the 
expected theoretical value of the oscillation frequency (f0) 
to 1.9 MHz (instead of 1.7 MHz). The parasitic properties 
of active elements (Rx and their different values given by 

manufacturing tolerance) causes that condition of oscilla-
tion is not fulfilled. Although the influence of parasitic real 
features is discussed in the next chapter in detail, let's 
mention, that with regard to the parasitic features of the 
active blocks, the oscillation frequency is changed to 
1.8 MHz, which was confirmed with the simulation by the 
macro models from [42]. The value of the f0 measured in 
laboratory was still about 50 kHz lower (1.75 MHz). 

The dependence of the oscillation frequency f0 on the 
control voltage Vg2 is shown in Fig 10, namely ideal theo-
retical, PSpice simulation, Matlab (version 7.6.0) calcula-
tion and measured, too. The measurement of the output 
voltages (VOUT1 and VOUT2) versus the oscillation frequency 
(f0) is resulting in the Fig 11. Similarly, the measuring of 
dependence of the THD on the oscillation frequency f0 is 
given in Fig 12. 
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Fig. 10. Oscillation frequency versus control voltage. 
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Fig. 11. Output voltages vs. oscillation frequency (measured). 

The maximal tunable frequency range is from 0.32 to 
1.75 MHz (Vg2 from 0 to 0.48 V). Nevertheless, we can see 
(Fig. 11 and Fig. 12) that for the minimal THD it is accept-
able to work with the control voltage Vg2 from 0 to about 
0.3 V (THD is below 1%). It reduces tuning to half range 
(approximately from 1 MHz to 1.75 MHz). There lower 
THD was achieved due to the internal nonlinearity of used 
active elements. In a wider range, it is necessary to add 
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a circuit for amplitude stabilization. The first approach 
contained CC1 with a fixed gain. Practically, in this case 
we can obtain an invariable output magnitude in the total 
range of f0 but THD is incredible and output waveform 
even limited. The CC1 with an adjustable gain is better for 
direct controlling of the condition of oscillation but it 
affects a little bit also oscillation frequency (5) and output 
magnitude. It is appropriate for external amplitude stabili-
zation. For keeping output amplitudes in less invariable 
level (Fig. 11) it was necessary to set Vg1 in every meas-
ured point (only very small change, see Tab. 1), but THD 
increased when Vg2 was above 0.3 V. In other case (Vg1 
was fixed) the amplitudes varied for example from 0.5 to 1 
Vp-p (VOUT2) but THD was still under 1%. In the rest of 
theoretical range (approximately from 0.35 to 0.5 V) it is 
important to set Vg1 in each next measured point otherwise 
THD is very high. These corresponding results are in 
Tab. 1.  
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Fig. 12.  THD versus oscillation frequency (measured). 
 

f0  
[MHz] 

Vg1  
[V] 

Vg2  
[V] 

Separation 
of higher 
harmonics 

[dB] 

THD  
[%] 

0.32 2.06 0.48 20 9.9 
0.51 2.05 0.45 30 2.1 
0.77 2.02 0.40 35 1.8 
0.91 2.01 0.35 38 1.3 
1.10 1.98 0.30 45 0.6 
1.36 1.97 0.20 47 0.5 
1.60 1.95 0.10 48 0.4 
1.68 1.94 0.05 51 0.3 
1.75 1.93 0 50 0.3 

Tab. 1.  Values of Vg1 and Vg2 and THD for different measured 
oscillation frequencies. 

6. Parasitic Influences 
In Fig. 13 the suitable model of the real CCII- which 

includes the most important parasitic parameters is given. 
Then using this model (Fig. 13) the circuit diagram from 
Fig. 4 can be supplemented as shown in Fig. 14 to include 
all parasitic influences of the practical oscillator. Elements 

with crosshatch pattern are representing parasitic influ-
ences. 

 
Fig. 13.  Important parasitic influences of CCII-. 

 
Fig. 14.  Important parasitic influences in the proposed oscil-

lator. 

This circuit (Fig. 14) has the characteristic equation in 
the polynomial form (1) with the coefficients in symbolical 
form as follows: 
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In formulas (10) and (11) the following symbols 
represent the parasitic influences: 

  %2095/1 111111 extxxextss RRRRGR , (12) 

  %2095/1 222222 extxxextss RRRRGR , (13) 
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Analyzing the equations above, one can see that the 
influence of the resistance Rp = 1/Gp begins to show 
symptom in slight increasing of the oscillation frequency f0  
for Rp less than 50 kΩ (but the employed blocks allow to 
achieve several higher values). Note that the influence of 
the Rp1 is only slightly larger than Rp2. On the other hand 
the capacitances Cp play more significant role. Only small 
change of the capacitance results in a significant change of 
f0 (e.g. for both Cp = 5 pF it is over 20 kHz). The influence 
of the Cp2 is greater than Cp1 due to their values, approxi-
mately Cp1 = 5 pF and Cp2 = 7 pF. This is due to the fact 
that the parasitic capacitance Cy plays also role but not in 
CC1 (port Y is grounded). Furthermore inequality of the 
input resistances of the current ports Rx1 ≠ Rx2 plays a sig-
nificant role, too. Their values are determined by tech-
nology and have high production tolerance. 

The results obtained by direct analysis of the model 
(Fig 14) respecting essential parasitic influences in the real 
oscillator are in a very good accordance with the computer 
simulations and obtained experimental results. Due to the 
relatively high tolerance of the resistances Rx, the differ-
ence between the theoretically assumed value and the 
measurement is greater than the difference between the 
computer simulation and the direct analysis of the model 
above. 

7. Conclusion 
In this paper very simple electronically adjustable 

oscillator employing only two active devices (CCII-) and in 
the extreme only two passive elements (capacitors) was 
presented. It allows electronic tuning of the oscillation 
frequency and condition of oscillation by DC driving volt-
age. It was practically tested from 320 kHz to 1.75 MHz. 
Under certain conditions (limited range), the harmonic 
distortion can be achieved below 1% and the separation of 
the higher harmonics more then 50 dB. However there are 
some drawbacks of this solution. The equation for oscilla-
tion frequency (5) is not very suitable and therefore tuning 
is possible only in a limited range. The topic of future work 
will be focused on removing of this drawback. The circuit 
was verified without the circuit for amplitude stabilization 
(only by nonlinear limitation of used active elements). 
Therefore practically available range of tuning with 
achievable low THD is restricted. For invariable level of 
output signal very small changes of B1 are necessary. The 
first conception of the oscillator where CC1 has a fixed 
gain is not suitable because the control of the condition of 
oscillation is not possible. Operation of the proposed 
oscillator was verified through simulations and measure-
ments of the real circuit in the frequency range of units 
MHz. Also important parasitic effects in this circuit were 

discussed in detail. The oscillator was analyzed symboli-
cally, tested by computer simulations and by laboratory 
experiments. This allows a comprehensive view of the 
behavior of this circuit. The designed circuit will be used 
for education purposes in courses dealing with electroni-
cally adjustable active elements and their applications. 
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