
BRNO UNIVERSITY OF TECHNOLOGY
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ

FACULTY OF INFORMATION TECHNOLOGY
FAKULTA INFORMAČNÍCH TECHNOLOGIÍ

DEPARTMENT OF INTELLIGENT SYSTEMS
ÚSTAV INTELIGENTNÍCH SYSTÉMŮ

AUTOMATED GENERATION OF TESTS FOR GNOME
GUI APPLICATIONS USING AT-SPI METADATA
AUTOMATICKÉ GENEROVÁNÍ TESTŮ PRO GNOME GUI APLIKACE Z METADAT AT-SPI

MASTER’S THESIS
DIPLOMOVÁ PRÁCE

AUTHOR Bc. MARTIN KRAJŇÁK
AUTOR PRÁCE

SUPERVISOR prof. Ing. TOMÁŠ VOJNAR, Ph.D.
VEDOUCÍ PRÁCE

BRNO 2020

Brno University of Technology
Faculty of Information Technology

 Department of Intelligent Systems (DITS) Academic year 2019/2020
Master's Thesis Specification

Student: Krajňák Martin, Bc.
Programme: Information Technology Field of study: Information Technology Security
Title: Automated Generation of Tests for GNOME GUI Applications Using AT-

SPI Metadata
Category: Software analysis and testing
Assignment:

1. Get acquainted with assistive technologies providing accessibility for applications, in
particular with AT-SPI.

2. Study methods for automatic test generation.
3. Design a method for analysing metadata produced by the AT-SPI framework and

a method for automatic test generation based on this analysis.
4. Implement the proposed technique in a tool that will be able to generate tests for GNOME

applications.
5. Test the created tool on at least 5 open-source GNOME applications.
6. Analyse the obtained results, compare the obtained test coverage with existing test

suites, and discuss possible improvements of your tool for the future.
Recommended literature:

Dadeau, F., Peureux, F., Legeard, B., Tissot, R., Julliand, J., Masson, P.-A., Bouquet, F.:
Test Generation Using Symbolic Animation of Models. Model-Based Testing for
Embedded Systems. CRC Press, 2011.
Zander, J., Schieferdecker, I., Mosterman, P.J.: Model-Based Testing for Embedded
Systems. CRC Press, 2017.
Alexander, V., Benson, C., Cameron, B., Haneman, B., O'Briain, P., Snider, S.: GNOME
Accessibility Developers Guide. GNOME Documentation Project, 2008.
Laws, C., Haneman, B.: Accessible Document Navigation Using AT-SPI. Open A11y.org
Accessibility Group, 2008.

Requirements for the semestral defence:
The first two items and at least some work on the third item.

Detailed formal requirements can be found at https://www.fit.vut.cz/study/theses/
Supervisor: Vojnar Tomáš, prof. Ing., Ph.D.
Consultant: Pelka Tomáš, Ing., RedHatCZ
Head of Department: Hanáček Petr, doc. Dr. Ing.
Beginning of work: November 1, 2019
Submission deadline: May 20, 2020
Approval date: October 31, 2019

Powered by TCPDF (www.tcpdf.org)

Master's Thesis Specification/23191/2019/xkrajn02 Strana 1 z 1

Abstract
The goal of this work is the development of a tool capable of automatic test generation
for GUI applications in the GNOME desktop environment. The tests are generated using
metadata provided by the assistive technologies, specifically the AT-SPI. The proposed
test generator utilizes the given metadata to create a model of a tested application. The
model maps the event sequences that are applied on the tested application during the test
generation process. The generation process involves the detection of severe bugs in the
tested application. The results of the test generation process are automated test cases
suitable for regression testing. The functionality of the implemented test generator was
successfully verified by testing 5 open-source applications. The testing of applications
performed by the proposed tool has proven the ability to reveal new bugs.

Abstrakt
Cieľom tejto práce je vývoj nástroja na automatické generovanie testov pre aplikácie s
grafickým užívateľským rozhraním v prostredí GNOME. Na generovanie testov sú použité
metadáta asistenčných technológií, konrétne AT-SPI. Navrhnutý generátor testov využíva
dané metadáta na vytvorenie modelu testovanej aplikácie. Model mapuje sekvencie udalostí,
ktoré generátor vykoná na testovanej aplikácii počas generovania testov. Súčasťou pro-
cesu generovania je zároveň detekcia závažných chýb v testovaných aplikáciách. Výstupom
procesu generovania sú automatizované testy, ktoré sú vhodné na regresné testovanie.
Funkčnosť implementovaného generátora testov bola úspešne overená testovaním 5 apliká-
cií s otvoreným zdrojovým kódom. Počas testovania aplikácií navrhnutým nástrojom sa
preukázala schopnosť detekovať nové chyby.

Keywords
GUI testing, GNOME, AT-SPI, MBT, open-source application testing, test generation,
accessibility technologies, model based testing, black-box testing

Kľúčové slová
testovanie grafických uživateľských rozhraní, testovanie GUI, GNOME, AT-SPI, MBT,
testovanie aplikácií s otvorených zdrojovým kódom, generovanie testov, asistenčné tech-
nológie, testovanie na základe modelu, black-box testovanie

Reference
KRAJŇÁK, Martin. Automated Generation of Tests for GNOME GUI Applications Using
AT-SPI Metadata. Brno, 2020. Master’s thesis. Brno University of Technology, Faculty of
Information Technology. Supervisor prof. Ing. Tomáš Vojnar, Ph.D.

Rozšírený abstrakt
V dnešnej dobe väčšina sofvérových aplikácií využíva grafické užívateľské rozhranie (GUI).
Rozhranie využíva výhody grafického akcelerátora v počítači na zjednodušenie používania
softvéru. GUI aplikácie sú vyvýjané pomocou okien a ovládacích prvkov. Ovládací prvok
reprezentuje grafický element popisujúci určité správanie alebo funkcionalitu. Interakcia
používateľa s ovládacími prvkami generuje rôzne udalosti umožňujúce vykonávať úlohy
viacerými spôsobmi.

Aj napriek tomu, že grafické užívateľské rozhrania zlepšujú použiteľnosť a flexibilitu,
takisto predstavujú výzvu v testovaní softvéru, keďže testeri musia rozhodnúť, či skontrolujú
všetky sekvencie udalostí, alebo len ich časť. Úsilie vynaložené na testovanie GUI aplikácií
môže byť zmiernené automatizovaným testovaním softvéru. Aj keď sa za poslednú dekádu
nástroje na automatizovné testovanie zlepšili, manuálne testovanie je stále najpoužívanejšou
technikou v praxi. Automatizovaný proces testovania GUI aplikácií zabezpečí, že aplikácie
budú testované pravidelne a zrýchly sa nájdenie možných chýb. Automatizácia a CI-CD
systémy hrajú kľúčovú rolu v regresnom testovaní a to hlavne počas fázy vývoja, keď sa
softvér mení častejšie.

Testovanie GUI sofvéru zahŕňa vykonanie udalostí patriacich jednotlivým komponen-
tám GUI a monitorovanie zmien stavu programu. Testy navrhnuté pre GUI sa skladajú
zo sekvencií udalostí na vstupe a kontroly zmien stavu programu. Kontrolovať je možné
niekoľko indikátorov ako stav GUI, stav pamäte, chybové hlásenia, výstupy aplikácie, alebo
akýkoľvek iný indikátor stavu behu programu. GUI testy kontrolujú oveľa viac ako len
zdrojový kód súvisiaci len s GUI, keďže vykonané udalosti testujú aj časť zdrojových kódov
patriacich mimo GUI. V prípadoch kedy aplikácia nedisponuje iným ako GUI rozhraním je
testovanie pomocou GUI rozhrania jedinou možnou formou testovania aplikácie. Z týchto
dôvodov je testovanie GUI kritickou súčasťou pre vývoj akéhokoľvek sofvéru s GUI.

Veľkosť a zložitosť moderných grafických užívateľských rozhraní v počte komponent a
udalostí, ktoré na nich môžu byť vykonané, presahujú praktické limity analytických prís-
tupov k testovaniu. Počet možných testov pre GUI sa zvyšuje exponenciálne s počtom
udalostí a komponent v GUI aplikácii.

V tejto práci prezentujeme naše riešenie navrhnuté pre automatické generovanie testov
pre GUI aplikácie v prostredí GNOME. Generátor využíva metadáta asistenčných tech-
nológií na vytvorenie modelu, z ktorého sú testy odvodené. Generátor extrahuje z vytvoreného
modelu sekvencie udalostí, ktoré je možné na testovanej aplikácii vykonať. Generovanie
testov prebieha sekvenčným aplikovaním udalostí na testovanú aplikáciu. Udalosti sú
vykonávané pomocou asistenčných technológií, ktoré sú taktiež používané na monitorovanie
stavu aplikácie, ako aj rozširovanie modelu o novonájdené stavy v aplikácii počas testovania.
Počas generovania testov je zároveň aplikácia monitorovaná kvôli detekcii závažných chýb,
ktoré je generátor schopný identifikovať. Navrhnutý nástroj taktiež integruje technológiu
OCR, ktorá umožňuje čítanie textu z obrázkov. Táto technológia umožňuje dodatočnú
kontrolu stavu testovanej aplikácie.

Implementovaným nástrojom sme otestovali 5 aplikácií. Počas testovania sme dokázali
overiť funkcionalitu nami navrhnutého generátora testov, ktorý bol schopný odhaliť niekoľko
nových chýb v testovaných aplikáciách. Práca zároveň dokumentuje aj obmedzenia a ne-
dostatky, ktoré sa objavili pri testovaní pomocou navrhnutého nástroja. Testy vygenerované
našim nástrojom sú vhodné na automatizované testovanie a boli nasadené v prostredí
Desktop-CI používaným firmou Red Hat.

Automated Generation of Tests for GNOME GUI
Applications Using AT-SPI Metadata

Declaration
I hereby declare that this thesis project was prepared as an original work by the author
under the supervision of Mr. prof. Ing. Tomáš Vojnar, Ph.D. I have listed all the literary
sources, publications and other sources, which were used during the preparation of this
thesis.

. .
Martin Krajňák

June 3, 2020

Acknowledgements
I would like to thank prof. Ing. Tomáš Vojnar for the guidance provided during the writing
of this thesis. My thanks also belongs to Ing. Tomáš Pelka and the DesktopQE team from
Red Hat for helpful discussions and feedback dedicated to the implementation of this work.
At last, I would like to thank my friends and my family for their support during my studies.

Contents

1 Introduction 3

2 Testing Graphical User Interfaces 5
2.1 Random Input Testing . 5
2.2 Manual Testing . 5
2.3 Test Automation and CI/CD . 5
2.4 Black Box Testing . 6
2.5 White Box Testing . 6
2.6 Exploratory testing . 7
2.7 Record/Replay and Scripting Tools . 7
2.8 Random-Walk Tools . 8
2.9 Solutions Based on Image Recognition . 8
2.10 Model-Based Testing . 8

2.10.1 Existing Solutions . 8

3 AT-SPI Architecture 10
3.1 GNOME Accessibility Implementation Library (GAIL) 10
3.2 Libraries and Tools . 11

3.2.1 Library Pyatspi . 12
3.2.2 Dogtail . 12
3.2.3 Accerciser . 14

3.3 Covering Limitations of Accessibility and Verification 16
3.3.1 OpenCV and Image Matching Techniques 16
3.3.2 Optical Character Recognition . 17

3.4 Conclusion . 19

4 Design of the Proposed Test Generator 20
4.1 Model Extraction . 21
4.2 Test Environment . 22

4.2.1 Test Environment Setup . 23
4.2.2 Test Generator Configuration . 24
4.2.3 Flatpak Applications Setup . 25
4.2.4 Execution and Monitoring of an Application 28

4.3 Generating an Environment for the Test Execution 28
4.4 Test Case Generation . 30

4.4.1 Derivation of Event Sequences . 30
4.4.2 Execution of Event Sequences . 32
4.4.3 Model Expansion . 33

1

4.5 OCR Integration . 34
4.5.1 Screenshot Preprocessing and Optimizations 34
4.5.2 Implemented Steps . 36

4.6 Generated Test Cases . 36

5 Testing and Results 38
5.1 Coverage Evaluation . 38
5.2 GNOME Terminal . 40
5.3 GNOME Help . 41
5.4 LibreOffice StartCenter . 44
5.5 Evince . 46
5.6 Gedit . 48

6 Evaluation and Future Work 49
6.1 Code Coverage Evaluation . 49
6.2 Comparison with Existing Solutions and Test Suites 50
6.3 Recommended Usage and Future Work . 51

7 Conclusion 52

Bibliography 53

A Abbreviations 56

B Setup Instructions and User Manual 57

C Test Generator Bug Report 59

D Examples of Generated Test Cases 60

E Example of a Generated Project Environment File 62

F Event Flow Graphs 63

G Contents of the Attached Medium 67

2

Chapter 1

Introduction

Nowadays, the majority of software applications feature a graphical user interface (GUI).
The interface takes advantage of the computers’ graphics capabilities to make software easier
to use [25]. Graphical applications are developed using sets of windows and widgets. A
widget represents a graphical element describing certain behavior and functionality. User
interaction with widgets is generating various events allowing them to perform tasks in
different ways while achieving the same goal.

Despite the fact that GUIs improve usability and flexibility, they also represent a chal-
lenge for software testing as testers have to decide whether to check all sequences of events
or only a subset. The effort required to test the GUIs can be reduced with automated
software testing. Even though there was significant progress made in automated testing
tools over the last decade, manual testing is still the most common technique in practice.
However, with a proper automated GUI testing process, more test cases can be executed
regularly and more faults can be found within less time [13]. Automation and CI-CD sys-
tems play an essential role in regression testing, especially in the test development phase,
when software changes are more frequent. Generally, building GUI test cases involves se-
lecting sequences of events and describing the expected state of the program after the event
execution. An indicator of expected state can be a state of GUI, memory state, error log,
output log, etc.

The test cases designed for GUIs test much more than the code associated only with
GUI, as the events also execute underlying non-GUI code. In cases where an application
has only a GUI interface, the GUI testing is the only possible form of testing. The size and
complexity of modern GUIs, in terms of components and events that may be executed on
them, exceed the practical limits of analytical approaches to testing. The number of possible
test cases for GUI increases exponentially with the number of events and components in
GUI [14].

In this thesis, we present our solution designed to generate test cases for GUI appli-
cations in the GNOME environment. The implemented generator utilizes the metadata
provided by the assistive technologies to create a model of a GUI application from which
test cases are derived. Further, we discuss the results achieved by testing applications with
the implemented tool, the limitations discovered during the development, and the plans for
future work as well.

Structure of this thesis continues as follows. Chapter 2 describes GUI testing techniques
utilized by this work. Chapter 3 introduces the reader to the architecture of the accessibility
technology (AT-SPI) in the GNOME environment, followed by the description of available
tools and libraries. We also discuss the limitations that can occur when the AT-SPI is

3

used for testing as well as the technologies that might be used to cover those limitations,
namely the OpenCV library and the optical character recognition (OCR) engine Tesseract.
In chapter 4, we present the implementation of our test generator. Chapter 5 summarises
the results we achieved during the testing with our test generator. Chapter 6 contains the
evaluation of test coverage and offers the workflow recommendations for our tool. Chapter 7
concludes this thesis.

4

Chapter 2

Testing Graphical User Interfaces

Next several sections are dedicated to various testing techniques used to test GUIs. Vari-
ations of both manual and automated testing are discussed, followed by examples of tools
using them. Throughout this thesis, a tested application will be referred to as a system
under test (SUT).

2.1 Random Input Testing
The Random input testing technique is also referred to as stochastic testing or monkey
testing. The term monkey is mentioned in any form of automated testing performed without
any user bias. This method distinguishes 3 types of monkeys who are testing the application
by generating random sequences of events from both a keyboard and a mouse. Dumb
monkeys do not have any knowledge about the system, nor its state. They are not aware
which actions are legal or illegal. The downside is that they cannot recognize a failure
when they encounter one. Their only goal is to crash the SUT. Another group, referred to
as semi-smart monkeys, can recognize a bug when they see one. The last group are smart
monkeys, who have certain knowledge about the application they are testing, obtained from
a state table, or a model of SUT. On the other hand, smart monkeys are the most expensive
to develop. Despite the fact that a random testing tool has a weak coverage, Microsoft has
reported that 10-20 % bugs in their software were discovered by this method [16].

2.2 Manual Testing
High-level GUI and acceptance tests are often being performed manually. Those practices
are often inefficient, error-prone, and tedious. Test development tends to be delayed and
executed in a hurry during late development stages. Manual tests are pre-defined sets of
steps performed on a high level of system abstraction to validate the system against the
required specification. However, software is prone to changes, and therefore it needs to
be tested regularly against regressions. This leads to excessive costs, since testers have to
continuously re-execute test plans throughout development stages [4].

2.3 Test Automation and CI/CD
Automated testing solves the major weaknesses of manual testing. The process of automat-
ing software testing is similar to a software development process. The goal is to reduce the

5

need for human involvement in repetitive or redundant tasks. A list of tests that can be
automated include [1]:

∙ functional – testing that operations perform as expected,

∙ regression – testing that the behavior of the system has not changed,

∙ exception or negative – forcing error conditions on the system,

∙ stress – determining the absolute capacities of the application and operational infras-
tructure.

Implementation of test automation leads to practices like continuous integration (CI)
and continuous delivery (CD). Continuous testing goes beyond test automation and brings
testing as close to software development as possible.

Continuous integration is a coding philosophy and a set of practices that drives develop-
ment teams to implement small changes and check version control repositories frequently.
The majority of modern applications require code development using different platforms
and tools, thus the team needs a mechanism to integrate and validate changes. The goal
of the CI is to establish a consistent and automated way to build, package, and test ap-
plications. With consistency in the integration process in place, teams are more likely to
commit code and changes more frequently. This leads to better collaboration and software
quality.

Continuous delivery starts where continuous integration ends. CD automates the deliv-
ery of applications to selected infrastructure environments. Therefore it performs necessary
calls to predefined sets of services to ensure that applications are deployed.

The common goal for CI/CD is to deliver quality software and code to users. Continuous
testing is often implemented as a set of automated regression, performance, and other tests
that are executed in CI/CD pipelines. Automated testing frameworks help quality assurance
engineers to define, execute and automate various types of tests that can help development
teams know whether a software build passes or fails. Most CI/CD tools let developers kick
off a build on-demand, triggered by code commit in the version control repository, or on a
defined schedule.

Regression tests are an essential part of the CI/CD pipeline that directly informs de-
velopers about the effects of their changes on previously tested and stable functions of the
application [23].

2.4 Black Box Testing
The technique handles the software as a black box. A tester has no knowledge about
the implementation of the software. The design of the test cases is only based on the
specifications and requirements. Tests usually involve a set of both valid and invalid inputs
with predictable outputs. Black box testing plays a significant role in testing as it is
evaluating the overall functionality of the software [15].

2.5 White Box Testing
The design of test cases depends on the implementation of the software entity. White box
testing is focused on internal logic and structure of the code, testing the software from the

6

developer’s perspective. The design of test cases requires full knowledge about softwares’
sources, thus allowing one to possibly test every branch in the code. Test cases are usually
written as unit tests, system tests or integration tests. White box tests are suitable for
execution during the development and also when testing the finished product [15].

2.6 Exploratory testing
Exploratory testing is an approach to software testing that is often described as simultane-
ous learning, test design, and execution. It focuses on discovery and relies on the experience
of the tester to find defects that are not in the scope of other tests. The goal is to comple-
ment traditional testing to find million-dollar defects that are generally hidden behind the
defined workflow [20].

2.7 Record/Replay and Scripting Tools
To mitigate the mentioned concerns and increase the quality of software, automated test-
ing has been proposed as a solution. A considerable amount of work has been devoted to
high-level test automation, resulting in Record and Replay techniques. Tools are contin-
uously recording the coordinates and properties of GUI components during manual user
interaction. Obtained recordings can be played back to emulate user interaction and vali-
date the correct state of the system during regression testing. These techniques have also
certain limitations, which is typically sensitivity to GUI layout changes and code changes.
Those changes are forcing testers to repeat the recording processes, and therefore they cause
additional costs by maintaining automated tests [4].

An example of this category of tools is the open-source project GNU Xnee1. The project
consists of a library and two applications. Test automation is one of the several use cases
for this project. However, the project is limited to X11 display environments [10].

A similar approach for testing is presented by script-based frameworks. These frame-
works provide scripting languages to control the GUI. Instead of performing tests manually,
testers are writing scripts to automatically interact with the GUI. Scripts contain some
assertions to check whether the application executed a sequence of events correctly. A vio-
lation of assertions during the test results in a test case failure. These tools are widely used
across the industry. JFCUnit2 is a tool for testing Java Swing applications. Selenium3 is
a project with a range of tools and libraries that enables automation of web applications.
Robotium4 test automation framework allows to write automatic black-box tests for the UI
of Android applications. And finally, SOAtest5 that supports integration testing for web
applications by capturing user interactions directly in the browser without requiring any
scripting [14].

1https://xnee.wordpress.com/
2http://jfcunit.sourceforge.net/
3https://www.selenium.dev/documentation/en/
4https://github.com/RobotiumTech/robotium
5https://www.parasoft.com/soatest/web-ui-testing

7

https://xnee.wordpress.com/
http://jfcunit.sourceforge.net/
https://www.selenium.dev/documentation/en/
https://github.com/RobotiumTech/robotium
https://www.parasoft.com/soatest/web-ui-testing

2.8 Random-Walk Tools
Unlike the previously mentioned script-based and capture/replay tools, random-walk tools
do not generate test cases. They just randomly walk through the GUI and randomly
execute all events they encounter. These tools are easy to use and may find bugs by
using unexpected combinations of events. On the contrary, they can reveal only specific
tool-supported error events (e.g., crashes, timeouts, permission errors). Tools using this
technique are Android Monkey6 and GUIdancer7.

2.9 Solutions Based on Image Recognition
This category of solutions is often being referred to as Visual GUI Testing. It is an emerging
technique combining scripting languages with image recognition. The image recognition
allows us to test various systems regardless of their implementation, operating systems, or
even platforms. Tools are providing support for emulating user interaction with the bitmap
components (images, buttons) shown to a user on the screen. The biggest limitation of
solutions based on image recognition is that they are not suitable for highly animated
GUIs [4]. There is also a considerable amount of work required for test maintenance,
mostly caused by design changes of widgets throughout the development.

There are several examples of tools that use image recognition for testing, including
open-source tools Xpresser8 and Sikuli9. Xpresser is a python module that works with
a directory of images containing cropped images of widgets. Once the image matching
algorithm identifies a location of a cropped image on the screen, an intended action can be
performed on the given coordinates [11]. Xpresser is mostly used for building automated
test cases for the Linux distribution Ubuntu.

2.10 Model-Based Testing
Model-based testing (MBT) is a software testing technique where test cases are generated
from a model that describes functional aspects of the SUT. It allows one to check the
conformity between the implementation and the model of the SUT, with a more system-
atic and automatic approach in the testing process. The test generation phase is based
on an algorithm that traverses the model and produces test cases suitable for automatic
execution [26].

2.10.1 Existing Solutions

The TEMA toolset is an MBT framework developed for smartphone applications. Testers
have to manually create a two-tier model consisting of two state machines, called the action
and keyword machines. Those machines represent the GUI at design and implementation
levels. The method generates design-level test cases by traversing the action machine.
Afterward the keyword machine is used to transform design test cases into executable
ones [12].

6https://developer.android.com/studio/test/monkey
7https://testing.bredex.de/
8https://wiki.ubuntu.com/Xpresser
9http://www.sikulix.com/#home1

8

https://developer.android.com/studio/test/monkey
https://testing.bredex.de/
https://wiki.ubuntu.com/Xpresser
http://www.sikulix.com/#home1

Another approach was introduced in the GUITAR [14] framework for automated GUI
testing. GUITAR can be divided into the following steps:

1. GUI reverse engineering,

2. automated test case generation,

3. automated execution of test cases,

4. support for platform-specific customization,

5. support for addition of new algorithms as plugins,

6. support for integration into other test harnesses and quality assurance workflows.

The first step contains a reverse engineering process. A structural GUI model of an
application under test is extracted from the run-time state of the application. This process
involves automatic execution of an application, where the tool called Ripper is used to
discover as much as possible about the application. The application’s window and widgets
are discovered in a depth-first manner. The Ripper extracts properties of widgets such as
position, color, size, and enabled status, followed by information about events and results
of event execution. The depth-first traversal terminates when all GUI windows are covered.
The problem with this heuristic is that it would hypothetically contain an infinite number
of ways to interact with non-trivial GUI applications. At the end of the process, Ripper
stores the extracted structural information about the GUI to a data structure called GUI
Tree, in an XML format.

To complete the reverse engineering process, the tool called Graph Converter provides a
platform-independent framework to convert the GUI Tree model into a graph, representing
relationships between events in the GUI of the application. The result is an Event-flow
Graph (EFG) used for test case generation. An EFG is a directed graph representing all
possible event interactions on a GUI. Each node represents a GUI event. An edge from
a node v to a node w represents a follows relationship between v and w, indicating that
the event w can be performed immediately after the event v. An EFG is analogous to
a control-flow graph, in which vertices represent program statements and edges represent
execution flows between the statements.

In the third step, test cases are automatically generated based on the EFG. Therefore,
the GUI test generation problem is reduced to a problem of graph traversal, thus any graph
traversal algorithm can be used for test generation.

9

Chapter 3

AT-SPI Architecture

An accessibility is a technology that helps people with disabilities to participate in essential
life activities. An accessibility as a part of the GNOME desktop includes libraries and
development tools allowing users with disabilities to use other options of interaction with
the GNOME desktop environment. Those options include voice interfaces, screen readers,
and other alternative input devices [3].

Assistive technologies are receiving information from the Accessibility toolkit (ATK),
which offers built-in APIs for all GNOME widgets. ATK provides a set of interfaces that
are required to be implemented by GUI components. Therefore, assistive technologies
can automatically read most of the labels on screen without any extra efforts made by
developers. The interfaces are toolkit-independent, meaning that their implementation
could be written for many widgets, including widgets from frameworks such as GTK31 and
Qt2.

3.1 GNOME Accessibility Implementation Library (GAIL)
Nowadays, the majority of GNOME applications are written in the GTK3 framework. The
framework provides a dynamically loadable module named GAIL that implements the ATK
interfaces for all GTK3 widgets. Once the module is loaded at runtime, the application
is fully capable to cooperate with ATK without any further modifications. The GNOME
desktop does not load accessibility support libraries by default. They have to be enabled
by setting a special gsettings key, which can be achieved either by the dconf3 editor or
via the gsettings command-line utility using a terminal application (Listing 3.1).

gsettings set org.gnome.desktop.interface toolkit-accessibility true

Listing 3.1: Enabling accessibility via a gsettings command

Additional configurations may be required for applications written in other frameworks
such as QT or Java. Compared to the AT-SPI, implementations of other assistive technolo-
gies might be too application-specific or use various techniques like OS event snooping, etc.
In the GNOME Desktop, all information required by assistive technologies (AT) is passed
from the GNOME Accessibility Framework to a toolkit-independent Service Provider In-

1https://www.gtk.org/
2https://www.qt.io/
3https://wiki.gnome.org/Projects/dconf

10

https://www.gtk.org/
https://www.qt.io/
https://wiki.gnome.org/Projects/dconf

terface (SPI). The SPI is a key component for providing a stable and consistent API for
screen readers, magnifiers, etc. The accessibility support is relying on a per-toolkit imple-
mentation (GTK3, QT, Java) and its APIs exported through relevant bridges to unified
AT-SPI interface as described in Figure 3.1.

Figure 3.1: GNOME Accessibility Architecture overview[3]

A widget is accessible, if a developer uses any GTK3/GNOME widget and follows the
general accessibility guidelines4 with properly implemented ATK interfaces. A developer
can also create a custom widget. A custom widget is accessible when its implementation
is based on one of the stock GTK3/GNOME toolkit widgets. The default implementation
of the ATK interfaces might be altered by applications. Therefore, a developer can enrich
descriptions of widgets and improve the overall user experience in special cases, e.g. when
a widget is used for some less expected purposes or the default description is too general.
The ATK provides a set of functions to achieve this along with the ability to make any
custom component accessible5 [9].

3.2 Libraries and Tools
Currently, there are several tools available for exploration and debugging accessibility fea-
tures not only on the GNOME desktop.

4https://developer.gnome.org/accessibility-devel-guide/stable/gad-coding-
guidelines.html.en

5https://developer.gnome.org/accessibility-devel-guide/stable/gad-custom.html.en

11

https://developer.gnome.org/accessibility-devel-guide/stable/gad-coding-guidelines.html.en
https://developer.gnome.org/accessibility-devel-guide/stable/gad-coding-guidelines.html.en
https://developer.gnome.org/accessibility-devel-guide/stable/gad-custom.html.en

3.2.1 Library Pyatspi

The package pyatspi is a Python wrapper around the AT-SPI’s C implementation, which
loads the Accessibility typelib and imports the classes implementing AT-SPI interfaces [19].

AT-SPI exposes applications as a tree of widgets that are also accessible in Python
through pyatspi. On the top, the root element represents the whole GNOME desktop.
Every sub-element represents one running application on the GNOME desktop. Each ap-
plication has zero or more child elements, each child is distinguishable by its position in
the tree and several object properties. Some of these properties are encapsulated inside
the accessible object and their values must be obtained through corresponding methods,
so-called getters.

The library pyatspi is an open-source project available for most Linux distributions via
distro specific packaging services (package named python3-atspi) or is available to be
built from its sources6.

3.2.2 Dogtail

Dogtail is an open-source GUI test framework written in Python and implemented as a
library around the pyatspi. Several modules implement a higher level of API to simplify
work and interaction with the accessible objects during test development. Dogtail utilizes
attributes provided by pyatspi that are required for testing. A small set of attributes is
described in the following list:

∙ name – a string value, for most widgets contains a text identical with the text label
visible on the widget,

∙ role – a string value, specifies the widget type,

∙ childCount – an integer value, represents a number of sub-elements,

∙ actions – a dictionary that contains available actions which can be performed on a
widget by the ATK,

∙ visible – a boolean value, indicates that a widget is visible to the user,

∙ showing – a boolean value, a widget is rendered,

∙ text – a string value, mostly used in input fields or widgets containing plenty of text,

∙ description – a string value, contains a special widget description for users,

∙ position – an integer tuple, x, y coordinates on the screen (might be related to other,
component)

∙ size – an integer tuple, shows the height and width of the widget.

Additionally, the elements can be linked together in other useful ways (except the parent-
child relationship), where the input widgets (e.g.: text field, check box, combo box, etc.)
are linked with the elements that serve as their labels. These labels are making the input
widgets easier to identify or interact with. Other advantageous element properties e.g.
showing or visible are used to decide whether the element is hidden from the active screen

6https://gitlab.gnome.org/GNOME/pyatspi2

12

https://gitlab.gnome.org/GNOME/pyatspi2

area, thus it is not available for interaction. The roleName attribute allows a categorization
of widgets that is useful for identification of category-specific methods, e.g. selecting a radio
button value, selecting an option in combo boxes, or a click method performed on push
buttons.

The library contains methods that can generate user input events. The implementation
is focused in a module named rawinput that provides methods for generating mouse or
keyboard events.

The package dogtail also includes a GUI tool Sniff (AT-SPI Browser in Figure 3.2), sim-
ilar to the Accerciser application described in the next section. The tool offers less complex
functionality, containing a tree view of accessible objects with their basic attributes [7].

Figure 3.2: The Sniff utility (AT-SPI Browser), highlighting the Icon View area in the
Nautilus file manager

The module tree contains the most important class Node, instances of the class repre-
sent elements of the desktop user interface. All elements are gathered to the tree structure,
representing all applications starting with the root element (desktop). The class is imple-
mented as a mixin for Accessible and various Accessible interfaces and is an important unit
for its subclasses, namely Application, Root and Window. The Node class also implements
methods used for search of nodes in the tree based on certain criteria. A lambda expression
can be passed to methods findChild and findChildren as an argument named pred. The
lambda expression can contain any properties that uniquely identify nodes, including name,
roleName, showing and visible. The class also contains action methods that can be per-
formed on nodes without importing other action modules. Verification and identification
of shown nodes is easier thanks to the method named blink. Once the method is called
on a certain element, the element is highlighted on the screen for several seconds. This

13

functionality is also part of the Sniff tool where an element is highlighted after it is selected
in the displayed tree.

The module dump contains only one method with the same name. The method returns
a string describing the tree of nodes which is useful for python/ipython console debugging.

Finally, the module rawinput contains the implementation required for generating
events from both a keyboard and a mouse. More complex events simulating keyboard
shortcuts, mouse gestures, and drag and drop operations are implemented as well.

Testing dogtail has proven its availability for many Linux distributions through their
package repositories, specifically Fedora 32, Red Hat Enterprise Linux 8.2 and Manjaro
18 with GNOME 3.34 (Archlinux). It is also available as a Pypi Python package and
according to information in it’s official Gitlab repository, it should work not only for GTK3
applications but also for applications written in QT and KDE.

During the testing of dogtail, we revealed some minor problems which might occur with
test development. There are known cases in which the coordinates of a node were not
reported correctly. Most of the elements with the roleName value panel and list box are
missing their name values. Elements without the name value are much harder to identify,
although they might not be important for users, as they do not contain any visible text, nor
do they offer a way of interaction. The purpose of those elements is to serve as a wrapper
that groups other elements together in a tree.

However, there are elements that are available for user interaction but they are not
named (e.g. a refresh button in the Disk User Analyzer application7). Once an action
needs to be dispatched on such an element, the identification has to be done either through
a parent element or a sibling element. Additionally, the execution of a mouse event will
require an offset calculation to specify the correct element position on the screen.

Another discovered issue is a non-accessible menu which is included in the majority of
the GNOME applications. This issue is quite severe, therefore it was reported8 and resolved
by developers.

So to conclude this subsection, dogtail is a powerful tool for the development of auto-
mated test cases in the GNOME3 environment. On the other hand, it contains discussed
limitations and flaws. Those limitations do not need to come from dogtail itself, they are
either accessibility bugs or bugs in the GTK3 framework (non-accessible menu).

3.2.3 Accerciser

Accerciser is an interactive accessibility explorer developed in Python. It provides a well-
arranged graphical frontend for the AT-SPI library, hence it can inspect, examine and
interact with widgets. It also serves as a verification tool for developers, to check that
their applications are providing correct information to assistive technologies and automated
testing frameworks. Compared to Sniff, Accerciser’s interface (Figure 3.3) offers extended
features and functions. The default interface has three sections, a tree view with the
entire hierarchy of accessible objects and two optional plugin areas. The Accerciser has an
extensible, plugin-based architecture. Most of the features available by default are provided
by plugins discussed in the next several paragraphs.

The Interface Viewer plugin is an explorer of the AT-SPI interfaces provided by each
accessible widget of a target application. When a tree element is selected, its interfaces are
shown with a list of sensitive methods. The majority of methods are executable. The list

7https://wiki.gnome.org/Apps/DiskUsageAnalyzer
8https://bugzilla.redhat.com/1723836

14

https://wiki.gnome.org/Apps/DiskUsageAnalyzer
https://bugzilla.redhat.com/1723836

contains methods for interaction with an object and various methods for obtaining more
information about the object. Accerciser offers an exploration of the following interfaces:

∙ Accessible – shows the number of child widgets, description, states, relations, and
other attributes,

∙ Application – if implemented (not mandatory), it shows the application ID, toolkit
and version,

∙ Component – shows the element’s absolute position with respect to the desktop co-
ordinate system, the relative position with respect to the window coordinate system,
size, layer type, MDI-Z-order indicating the stacking order of the component and
alpha,

∙ Document – shows document attributes and locale information,

∙ Hypertext – shows a list with all element’s hypertext links, including name, URI, start
index and end index,

∙ Image – shows the element’s description, size, position and locale,

∙ Selection – shows all selectable child items of the selected item,

∙ Streamable Content – shows the selected element’s content type and its corresponding
URIs,

∙ Table – shows the element’s caption, rows, columns, number of selected rows, number
of selected columns, and for the selected cell, it shows it’s row’s and column’s header
extents,

∙ Text – shows the selected element’s text content, that can be editable with attributes
including the offset, justification and possibility to show CSS formatting as well,

∙ Value – shows the element’s value, minimum value, maximum value, minimal incre-
ment for a value.

The AT-SPI Validator plugin applies tests to verify the availability of accessibility for
a target application. The validator will generate a report of the selected item and all its
descendant widgets in the tree hierarchy.

The next plugin is the Event Monitor, which displays AT-SPI emitted events including
a filter for several different AT-SPI event classes. The plugin has the ability to monitor
only events originating from the selected application or a selected accessible (widget). Each
event record contains the source and the application.

The Quick Select plugin provides global hotkeys for quickly selecting accessible widgets
in the Accerciser’s Application Tree View, the selected widget is highlighted in the target
application.

The API Browser plugin shows interfaces, methods and attributes available on each
accessible widgets of a target application. By default, it shows only public methods and
properties. Private methods and properties are hidden until the checkbox Hide Private
Attributes is unchecked.

Finally, the plugin IPython Console provides a full, interactive Python shell. The console
has an immediate access to any selected accessible widgets of a target application. The
currently selected object in the tree view is available in the IPython Console under the
symbol acc. The plugin provides an easy way to test and debug code used in test cases.

15

Figure 3.3: Accerciser’s default configuration

3.3 Covering Limitations of Accessibility and Verification
As discussed in the aforementioned sections, the information provided by the AT-SPI is not
flawless. Therefore, the next couple of sections is dedicated to an exploration of technologies
that might be used to support the accessibility in such cases.

3.3.1 OpenCV and Image Matching Techniques

OpenCV or Open Source Computer Vision Library is a software library that provides
optimized algorithms for computer vision and machine learning. According to the official
OpenCV webpage [18], the library contains more than 2,500 algorithms and it is being
developed by a vast community of contributors around the world. The library is used
extensively by government institutions, research groups, and companies including Microsoft,
Google, IBM, etc. One of the biggest advantages is its native C++ implementation with
bindings making the library available in Python, Java, and Matlab, and the fact that
supports Linux, Android, Mac OSX, and Windows. Similarly to dogtail, OpenCV can be
installed easily via the Python3 package manager (pip), regardless of the Linux distribution.

OpenCV offers many algorithms, including image recognition that can be used to either
locate or verify the presence of an element on the screen. This approach would require to
have a set of images containing elements prepared in advance, then it can be used to find
the image location on the screenshot taken during a test run. Compared to verification of
the node via the AT-SPI only, this approach would also verify that the element is properly
rendered on the screen. An additional benefit is a possibility of verification of text format-

16

ting and colors. On the contrary, this process requires additional manual work where one
would need to capture images, label them, and associate them with certain test scenarios.
The number of elements displayed on the screen multiple times creates another parameter
that would require manual maintenance. The most common example of such cases are
buttons labeled either OK or Cancel as they are used in many applications.

Another possible approach is to use the shape recognition algorithm which can locate
shapes like circles, rectangles, and many other common shapes. From the development
perspective this would be easier to maintain, as there is no requirement for images prepared
in advance. Frequent application changes during the software development may also cause
that tests based on image matching can be easily outdated. This factor forces testers to
revisit test suites, therefore the efficiency of automated tests deteriorates. It can also help
with the widget location in cases where accessibility is reporting wrong coordinates. On
the other hand, locating the right widget in cases when several similarly shaped ones are
located on the screen at the same time will yield very inconsistent results.

3.3.2 Optical Character Recognition

The Optical Character Recognition (OCR) is a method of extracting text from images.
One of the available open-source tools is a tool called Tesseract.

Initially, Tesseract development started in 1985 at Hewlett Packard Laboratories but the
major breakthrough was achieved in 2006 when the project was open-sourced in cooperation
with the University of Nevada in Las Vegas. Since then, the project has been developed
under the sponsorship of Google [24].

Usability of Tesseract was increased in version 3.x, supporting a wide range of image
formats and gaining the ability to be used in a larger number of scripting languages. While
Tesseract 3.x is based on traditional computer vision algorithms; in the past few years,
methods based on Deep Learning have surpassed traditional machine learning techniques
by a vast margin, especially in terms of accuracy in several areas of Computer Vision.
Remarkable results were achieved in handwriting recognition. Tesseract has implemented a
recognition engine based on Long Short Term Memory (LTSM) which is a kind of Recurrent
Neural Network (RNN). While this kind of RNN is used to recognize texts of random length,
a Convolutional Neural Network is used just for recognition of a single character. Version 4
provides both a legacy OCR engine and a new LSTM engine which is enabled by default [8].

Tesseract can be used as a command-line tool, and its integration into software being
developed is possible via the Tesseract’s API available in Python3 or C++. Setting Tesser-
act up on Linux or other platforms may differ, but the process is accurately described in
the Tesseract’s wiki9, with the last resort solution – building it from its sources. The setup
process includes installation of the tesseract-ocr package itself, pytesseract Python3
bindings installable via the package manager pip, and the Tesseract’s language pack with
trained data for the English language (version 4.x supports 130 languages10).

The Tesseract’s OCR engine works best when used with images containing black text
on a white background in a common font. The text should be approximately horizontal
with the height of at least 20 pixels. With possibilities of image processing provided by
OpenCV, the image quality in some cases needs to be improved before applying text detec-

9https://github.com/tesseract-ocr/tesseract/wiki
10https://github.com/tesseract-ocr/tesseract/wiki/Data-Files#data-files-for-version-400-

november-29-2016

17

https://github.com/tesseract-ocr/tesseract/wiki
https://github.com/tesseract-ocr/tesseract/wiki/Data-Files#data-files-for-version-400-november-29-2016
https://github.com/tesseract-ocr/tesseract/wiki/Data-Files#data-files-for-version-400-november-29-2016

tion methods. The most common image preprocessing methods include inverting images,
rescaling, binarisation, noise removal, rotation, border removal, and page segmentation11.

The Tesseract’s API for Python3 is bundled in a module named pytesseract. The
module provides several methods, the most important ones for the purpose of this work be-
ing image_to_string and image_to_data. Both methods have one compulsory parameter
which is an image intended for text extraction. The image has to be in a certain format,
one of the options is to load the image through OpenCV’s imread method. Additional
parameters may be applied including the language, timeout, and engine configuration12.
The image_to_string method returns all recognized strings including all whitespaces and
other special characters. The image_to_data method provides additional metadata about
all recognized strings in a form of dictionary-like object. The returned dictionary contains
the following lists of properties:

∙ text – string value, may contain a string, special character, one word or line of text,

∙ left – integer value, specifies the number of pixels from the left side of the image,

∙ top – integer value, specifies the number of pixels from the top of the image,

∙ width – integer value, specifies the width of the recognized string,

∙ height – integer value, specifies the height of the recognized string,

∙ the rest are less important values for this work: level, page_num, block_num
par_num, line_num, word_num, conf.

Figure 3.4: Demonstration of the OCR engine detection for the string Documents in the
Nautilus File Manager window

Figure 3.4 contains a demonstration of the Tesseract engine capabilities. The task was
to locate the string Documents in the screenshot of the GNOME file manager application

11https://github.com/tesseract-ocr/tesseract/wiki/ImproveQuality
12https://pypi.org/project/pytesseract/

18

https://github.com/tesseract-ocr/tesseract/wiki/ImproveQuality
https://pypi.org/project/pytesseract/

Nautilus. The engine successfully found both strings located in the image and provided
coordinates and dimensions that were used by OpenCV to highlight the strings in the
image.

The demonstration has proven that the Tesseract’s OCR engine can be used as an
alternative tool for location or verification of widgets that contain text. This method also
verifies that the text content was properly rendered and is readable for the user. OCR
systems have limitations and work with a certain margin of error which is a fact that
also applies to Tesseract. Various applications can use different color schemes including
background colors and font colors, input fields, and labels. Highlighting elements to perform
actions on them can also lead to changes in color conditions. Image preprocessing methods
provided by OpenCV can aid in avoiding problems associated with those cases, namely
color inversion and binarisation. Those methods would supply the Tesseract’s engine with
an image containing black text and a white background for the evaluation.

3.4 Conclusion
This chapter has been dedicated to the accessibility technologies in the GNOME desktop
with a deeper look at implementation, libraries, and tools for debugging. Furthermore,
technologies that may be able to cover limitations and bugs in accessibility have been
evaluated as well. Both OpenCV and Tesseract may help with identification, location,
and verification of non-accessible elements in applications. A possible disadvantage is a
delay caused by taking and processing screenshots of applications that have to be taken at
the right time. The OpenCV’s image matching algorithm can reliably locate prearranged
images of icons, labels, or whole application windows on the screen. Considering a stable
application environment with a black text on a white background in most applications,
Tesseract can detect and reliably locate most of the text content on the screen. Other
cases can be covered by image preprocessing done again in OpenCV. Both technologies
are working with the actual application content rendered to users, possibly bringing an
additional level of verification. However, the goal of this work is to generate test cases
dynamically and preparation of a set of screenshots to verify a proper rendering of icons
would violate this effort. A solution for such a situation, would be to take screenshots
during the test generation process. However, an icon would need to be cropped out from
the screenshot, thus relying on the position of the icon reported by the AT-SPI. Therefore,
an integration of the Tesseract’s OCR is more beneficial for this project.

19

Chapter 4

Design of the Proposed Test
Generator

In this chapter, we present the design of our test generator. Section 4.1 explains reasons
behind the implementation of a custom representation of an application model. In Section
4.2, we discuss a setup and a configuration of the test environment required for the tested
applications. Section 4.3 describes the structure of the generated test cases. Then in Section
4.4, we describe the algorithm for test case generation. Finally, Section 4.5 addresses the
integration of the Tesseract’s OCR engine in our test generator.

A goal of this work is to develop a tool capable of generating automated test cases for
GUI applications. The proposed test generator works with AT-SPI metadata provided by
applications and converts them to test cases. The required metadata should be available
for a lot of applications, assuming they are developed in one of the common frameworks
(GTK3, QT). However, this tool is focused on testing of GUI applications developed for
the GNOME desktop1. A tool is developed in Python3, version 3.6.

Early	Testing/Development	Phase	 Test	Generation

AT-SPI
metadata

New	Application	/	Major	Application
Release Metadata	Extraction

Automated	Testing
+

Test	Case	Generation

Test	Case
Test	Case
Test	Case	<n> Review		and	AdjustmentsTester

Test	Case	Review

Automated
Testing

CI/CD

Figure 4.1: A workflow overview when testing with the proposed test generator

The GNOME applications are open source, and they are being developed by community
of enthusiasts around the GNOME project. Anyone from the community can fix bugs in
applications by sending a merge request with fixes, request a new feature, or propose newly
developed features. This development model does not contain a planning phase or a phase
where one can design an abstract model of an application, from which the test cases could
be derived. Therefore, our solution is based on deriving the model of a GUI application

1https://wiki.gnome.org/Apps

20

https://wiki.gnome.org/Apps

from the AT-SPI metadata. The extracted data about widgets and relationships between
them provide the foundation which gives the test generator the ability to interact with an
application. Therefore, the test generator can use the extracted information to perform
exploratory testing. The testing includes execution of scenarios (so-called event sequences),
monitoring the behavior of the SUT, and detection of certain errors and crashes of the SUT.
Test cases are generated as a by-product of this process.

Figure 4.1 describes an overview of the workflow when testing with the proposed test
generator. The beginning of the scenario starts with either a newly developed application
or a version of an application that contains major changes. The tool performs an initial
exploratory testing of the application based on the extracted model and exports those
scenarios in the form of behave test scenarios.

From the testing perspective, the proposed tool combines several testing techniques. The
extracted AT-SPI metadata create a foundation for a simplified model of the application by
partially adapting the model-based testing technique. Since the test cases are derived from
the model without any knowledge about the implementation of the tested application, the
tool resides in the category of black-box testing. The knowledge about the SUT provided
by the model allows the tool to benefit from the approaches described in the random input
testing and random walk tools in a more deterministic way. The tool can be characterized
as a semi-smart tool as it can detect certain crashes of the SUT during the test generation
and immediately report them with a reproducer. The results of the test generation process
are test cases that may be adjusted and executed again. The tests are executable in the
CI/CD pipeline that can be triggered at any stage of the application development and
reports the results without manual retesting.

4.1 Model Extraction
In this section, we justify and present the implementation of a custom accessibility tree
that serves as a model of a tested application for our test generator.

Custom Model Justification The model extraction process relies on the AT-SPI meta-
data that is provided after the start of an application. As mentioned in Section 3.2.1, once
the application is running, a tree of widgets is exposed and available for interaction. The
provided representation of the tree itself is not suitable to be directly used as a model of
an application because the implementation contains several restrictions for the purposes of
this work.

The first restriction stems from nodes/widgets with no functionality nor a way of inter-
action for the user, e.g.: filler, separator, panel, etc. Theoretically, a copy of the tree could
be created with those nodes filtered out, although in that case the parent-child relation-
ship in the tree needs to be restored accordingly. However, this is not possible, since the
attributes children and parent in Atspi.Accessible object instances are read-only.

The accessibility tree also contains references to properties and methods which are
available only during the application runtime. If the application crashes or it is terminated,
the aforementioned methods and properties can not be accessed. Furthermore, the test
generator must start the execution of every test scenario (event sequence) from the default
state which is achieved by obtaining a fresh instance of a tested application.

Additionally, the custom implementation of the model allows us to track the progress of
the test generation process. The model consists of objects gathered in event sequences, each

21

object has its unique identity that lasts throughout the test generation process. This im-
plementation allows us to measure the event coverage and ensures that an already executed
event sequence is never repeated.

Model Implementation A solution for previously mentioned restrictions is a custom
implementation of the accessibility tree that also serves as a model of applications for
our test generator. Test case generation requires that a custom tree is derived from the
accessibility tree provided by the dogtail. The unusable nodes are filtered out, while the
parent-child relationships of the nodes are preserved. The custom tree can be used as a
model, that will map the possibilities of interactions available for users working with an
application. The model includes every node from the original tree with available actions
that are also executable by the AT-SPI.

Our development revealed that not all rendered widgets are properly labeled with actions
by AT-SPI. The affected nodes are the ones with role names page tab and list item.
The former has to be clicked to gain access to additional nodes, the latter can be placed
on the same level as a push button. Therefore, our generator relies on records in the file
roleNames.py where the role names of actionless nodes are enumerated. If a node is not
associated with any action, the default action for the node is click.

However, the model does not allow to execute the associated actions directly, as the
generation process requires one to run several instances of an application. The instances of
accessible objects and some of their properties are valid only for one application runtime.
Therefore, several important values are extracted in the process, making them available
even after the termination of an application instance. The properties name, roleName,
parent_name, parent_roleName are used as the unique identifier because some nodes
might share the same name and roleName (e.g. OK, push button). The properties give the
test generator the ability to match each node from the model to the current application
instance exposed by the accessibility layer. The implementation of the model is presented
in the class diagram in Figure 4.2.

Starting from the lowest level, an instance of the class GNode represents one node from
the tree. Several attributes are copied from the original dogtail.tree.Node instance,
including attributes storing the pieces of information about the parent node, the data
describing the state of the node, the list of children, and if available, the name of the
action method. The list of children is also composed of instances of the GNode class, so the
tree is recreated recursively. Therefore, the model can hold all information about tested
applications, without relying on their state. An instance of the GTree can represent either a
whole application or a smaller part of the application e.g.: a dialog or a menu. As discussed
previously, this offline model of the application tree also contains a lot of nodes without
the ability of interaction, which needs to be filtered out. Those nodes are identified by
the list of RoleNames that are gathered in the separate file rolenames.py. Finally, the
class TestTree serves as a wrapper that filters those nodes and preserves the parent-child
relationship. The result of this process is an instance of the TestTree object and it contains
only nodes required to generate test cases.

4.2 Test Environment
This section describes conditions that need to be achieved in the GNOME environment for
our test generator. Subsection 4.2.1 addresses phenomenons that can occur in the GNOME

22

GTree

+ app: Atspi.Accessible

+ root: GNode

+ dump_tree():

+ get_node_list(): list

GNode

+ parent: GNode

+ anode: Atspi.Acessible

+ name: string

+ roleName: string

+ parent_name: string

+ parent_roleName: string

+ showing: bool

+ visible: bool

+ sensitive: bool

+ action: string

+ action_method: function

+ next: list

+ get_nodes_as_list(): list

+ get_children(): list

+ perfom_action():

+ dump_node(indent): string
:

TestTree

+ test_sequencest(): list

1

0..*

1 1..*

Figure 4.2: The class diagram of the custom application tree that serves as an application
model for our test generator

Shell environment and need to be suppressed during the test generation. It also introduces
the qecore library designed to handle this kind of issues. Subsection 4.2.2 describes a method
and parameters used to configure our test generator for various applications. Subsection
4.2.3 offers a brief introduction to Flatpak applications, then explains why our test generator
needs to acquire support to test such applications as well as contributions to the qecore
library that were submitted and approved. Subsection 4.2.4 concludes this section with a
description of how applications are executed and monitored during the test generation.

4.2.1 Test Environment Setup

Our test generator is designed to test GUI applications that are developed to work in the
GNOME Shell environment. The environment contains various features2 like workspaces,
notifications, the application grid, the activities overview and menus. Some of these features
may change a state of the environment, and therefore negatively affect tested applications
during the test generation process. Execution of an action that brings the environment to
some of those states steals the focus from the tested application back to GNOME Shell, thus
blocking any further interaction. A notification might collide with the user interface of the
tested application and blocks the execution of an action during the test case. These factors
need to be avoided to ensure stability during the test generation and the test execution

2https://help.gnome.org/users/gnome-help/stable/shell-introduction.html.en

23

https://help.gnome.org/users/gnome-help/stable/shell-introduction.html.en

as well. The setup must also be able to recover the environment from potential test case
failures and will not influence the execution of the subsequent test cases.

The required setup for the test execution is implemented in the module qecore. The
module is designed for test automation of GNOME desktop applications and contains vari-
ous measures designed to avoid occurrences of unintentional environment events and focus
on a tested application. The module is bound to dogtail and it is intended to be used
with behave framework [17]. The module is actively developed by quality engineers from
Red Hat.

The test generation process relies on the environment setup provided by the qecore
module. However, the module is designed for the test execution and our test generator
utilizes different approaches for execution and monitoring of tested applications. For this
reason, we developed a custom subclass App based on the qecore’s Application class. The
relationship between classes is shown in Figure 4.3.

During the development of our test generator, we also contributed to the implementation
of the qecore module. We introduced a desktop_file_path property for the Application
class to solve the problems with location of .desktop files required to test LibreOffice
applications. We also submitted a couple of smaller fixes3,4. The mentioned proposals were
approved and merged.

1 libreoffice-startcenter:
2 a11y_app_name: soffice
3 app_process_name: soffice.bin
4 desktop_file_path: /usr/share/applications/libreoffice-startcenter.desktop
5 kill_command: "pkill soffice"
6 params: "--norestore" # required to avoid unwanted file restore dialogs
7 cleanup_cmds:
8 - "pkill soffice" # LO required a custom kill cmd
9 - "rm -rf .config/libreoffice/*"

10 packages:
11 - libreoffice
12 flatpak: False

Listing 4.1: An example of the apps.yaml entry for LibreOffice StartCenter

4.2.2 Test Generator Configuration

Assurance of compatibility with various applications across the GNOME ecosystem requires
that some metadata describing the tested application has to be provided before the test
generation process.

The metadata is gathered in a configuration file written in the YAML5 language. The
reasons behind choosing YAML is syntax simplicity and human readability in comparison
with JSON6 or XML7, followed by the reliable support in Python provided by the library
pyyaml [22].

3https://gitlab.com/dogtail/qecore/-/merge_requests/24
4https://gitlab.com/dogtail/qecore/-/merge_requests/26
5https://yaml.org/
6https://www.json.org/json-en.html
7https://www.w3.org/XML/

24

https://gitlab.com/dogtail/qecore/-/merge_requests/24
https://gitlab.com/dogtail/qecore/-/merge_requests/26
https://yaml.org/
https://www.json.org/json-en.html
https://www.w3.org/XML/

Our generator uses the configuration file apps.yaml where we store records about all
tested applications. An example for an application record can be seen in Listing 4.1.

An application record starts with a name of application on the top level. The application
name should be unique, as the name is used as a folder name of the generated project.
The metadata are stored as values with keys. A large group of keys matches the names
of App/Application class properties. Some of the items are not necessary for the test
generation, although they are required for the test execution. Required keys/values may
vary per tested application. The list of keys/values that can be defined for each application
includes:

∙ a11y_app_name – This is the only compulsory item. It defines a name of the applica-
tion in the accessibility tree. The value can be found in GUI tools Sniff or Accerciser
as previously discussed in Section 3.2.2. The value can match with the name of the
application.

∙ app_process_name – The value is required if the name of the application process
differs from the application name. The value is used during the cleanup in between
the executions to make sure that an instance of the application has been killed and a
next test will use a new one.

∙ desktop_file_path – This is required if default qecore’s method fails to find the
desktop file of an application. The desktop file contains useful data about applications,
including a command required to run an application from the command line.

∙ params – The value is required if the application needs to be run with custom com-
mand line parameters. All parameters should be entered in one string, separated with
a space. This also allow us to run an application with a test file.

∙ cleanup_cmds – The value may contain a list of commands that will be executed
after the generation of each test case. Executed commands should always restore an
application to its default settings. The commands are used during the execution of
generated test cases, at the end of every test case.

∙ packages – The value is required for execution in the CI environment, contains a list
of rpm8 packages required to be installed to both generate and execute tests.

∙ flatpak – The key/value is required if a tested application is a flatpak.

4.2.3 Flatpak Applications Setup

This subsection is dedicated to a brief introduction to Flatpak applications, followed by
explanation why Flatpaks needed to be integrated in our test generator. Further, we discuss
an effort that has been done to support Flatpak applications in our test generator.

Flatpak Desktop applications on Linux are being distributed through various distribution-
specific package managers. Flatpak9 is a technology for building and distributing desktop
applications on Linux that aims to solve the problem with a cross-platform distribution of

8https://rpm.org/
9https://flatpak.org/

25

https://rpm.org/
https://flatpak.org/

TestGen

+ test: list

+ test_number: list

+ tests: list

+ explored_paths: list

+ failed_scenarios: list

+ flatpak: bool

+ OCR: bool

+ shallow: bool

+ asser_app_contains_unique_nodes(): None

+ generate_project(cfg): None

+ export_node_graph(tests): None

+ init_tests(tests): None

+ generate_tests(tests): None

+ test_sequences(anode, parent): TestTree

+ get_tree_diff(before, after): list

+ filter_string(string): string

+ print_sequences(tests): None

+ retag(line, node): string

+ add_step(step_name, node): None

+ get_app_nodes(): list

+ focus_node(anode): None

+ execute_action(node, action_sleep): None

+ handle_last_nodes(node): None

+ handle_new_nodes(app_before, test): None

+ handle_new_apps(apps): None

+ generate_steps(scenario, test): None

+ generate_scenario(start): None

+ save_tests(filename, tests): None

+ load_tests(filename, tests): None

QECORE

Application

+

+

Flatpak

+

+

App

+ app_name: string

+ a11y_app_name: string

+ app_process_name: string

+ desktop_file_path: string

+ params: string

+ exec: string

+ proc: subprocess.Popen

+ log: _io.TextIOWrapper

+ main_window_name: string

+ start(): None

+ stop(): None

+ cleanup(): None

+ check_log(test_number): None

+ get_current_window(): None

FlatpakApp

+ app_name: string

+ proc: subprocess.Popen

+ main_window_name: string

+ log: _io.TextIOWrapper

+ cleanup_cmds: list

+ start(): None

+ stop(): None

+ cleanup(): None

+ check_log(test_number): None

1 1

1 1

TestTree

+ test_sequencest(): list

Figure 4.3: A class diagram providing an overview over the implemented test generator

packages on Linux. Applications, or so-called flatpaks, are delivered to users regardless of
the lifecycle of the underlying Linux distribution. The system implements a set of sand-
boxing technologies, to isolate Flatpaks from each other and the system, thus providing
security benefits to users [2].

The majority of GNOME applications are also available through flatpak. A dedi-
cated flatpak repository Nightly GNOME Apps contains the latest development versions
of GNOME applications. With flatpak, those applications are installed alongside their sta-
ble versions. This gives us the potential to test the application much sooner before it is
released to distributions. This is a benefit behind the integration of flatpak support to this

26

work. The main repository for flatpak applications called Flathub10 contains hundreds of
applications developed in various frameworks and programming languages. However, the
effort done by this work only supports applications developed in GTK3 as they obtain the
accessibility support by design.

Flatpak Integration There are several differences in the execution process between flat-
paks and non-flatpak applications. Every flatpak application has a unique name, e.g.:
org.gnome.gedit. A unique name is required for every operation executable through the
flatpak command-line utility. The utility not only serves as a package manager able to
install, remove, downgrade and update flatpaks, it also provides a sandbox to run flatpaks.
Those differences demand certain changes in the runtime used for the test execution and
the test generation.

Considering the test execution, the approach used in the qecore’s Application class
should be suitable for testing flatpaks. However, the initial testing emphasized the previ-
ously mentioned differences, and therefore we developed the subclass Flatpak that inherits
the methods from the Application class and reimplements some of them do address those
differences. The most important changes are:

∙ __init__ – the constructor performs a validity check on inserted flatpak ID, the
format requires two dots, e.g. org.gnome.gedit,

∙ start_via_command – runs a flatpak via only via command and with the flatpak
command-line utility, e.g. flatpak run <id>,

∙ kill_application – terminates a flatpak via command e.g. flatpak kill <id>,

∙ get_desktop_file_path – performs a recursive search for flatpak’s .desktop file in
two possible locations:

– ~/.local/share/flatpak/app/ – flatpak installed per-user
– /var/lib/flatpak/app/ – flatpak installed system-wide

∙ is_running – performs a check if a flatpak is running, this is again done with the
flatpak command-line utility (e.g. flatpak ps <id>) and the presence of an instance
in the accessibility tree

Additionally, the invocation of some of the inherited methods does not make sense for
flatpak applications. The invocation of those methods with an instance of the Flatpak
class raises an exception. The exception contains a message with an explanation that
the methods are not available for Flatpak objects. We proposed the developed module
Flatpak.py to the qecore project, the module was accepted11.

As discussed in Section 4.2.1, the qecore library is designed to handle the test execution.
Additionally, there are other requirements to handle Flatpaks during the test generation.
Therefore, we developed the subclass FlatpakApp that works on the test generator level
to fullfil those requirements. As described in the class diagram shown in Figure 4.3, the
FlatpakApp serves as a wrapper for the Flatpak class in the same manner as the App class
wraps the Application class. FlatpakApp and App are customized classes for the test
generator, while Flatpak and Application are used during the text execution.

10https://flathub.org/home
11https://gitlab.com/dogtail/qecore/-/blob/master/qecore/flatpak.py

27

https://flathub.org/home
https://gitlab.com/dogtail/qecore/-/blob/master/qecore/flatpak.py

4.2.4 Execution and Monitoring of an Application

This subsection describes the method used by our test generator to execute and monitor
tested applications. The implementation for the non-flatpak applications is encapsulated in
the class App. The class FlatpakApp achieves the same goals for the flatpak applications.

Execution The test generation process performs various actions available in an appli-
cation that might change settings or layout of the application. Therefore, every test case
must start from the same state which should satisfy the following conditions:

1. an application is not running, if so, force the application to stop;

2. reset the applications’ settings to the default state by performing a predefined custom
cleanup;

3. start a new instance of the application with the default settings;

4. make sure that application is ready for an interaction.

Monitoring Several indicators can be monitored while the application is being tested.
The most essential one is to be able to safely determine if the application is running at the
moment or not. This can be done either by examination of the pid (process id) belonging
to the application process or by relying on AT-SPI. If the application tree is not available,
it can be certainly assumed that the application instance is not running. This statement
also applies vice versa, so an assertion that an application has started is achievable in the
same way. The implementation takes advantage of dogtail’s Tree.Node.Applications()
call, returning a list of applications currently exposed to the accessibility bus.

Furthermore, it is also necessary to perform certain checks during the time an application
is being interacted with. Therefore, every tested application will be run as a sub-process,
which enables us to capture the output generated by tested applications to standard streams
(stdout, stderr). Once an application has been terminated, it also allows us to check the
return codes. The implementation relies on the Python’s standard library subprocess.

The output generated to the standard stream is checked for errors defined in the des-
ignated configuration file. In case of error throughout the generation process, an error
message is printed immediately to warn about the possible bug in tested applications. The
warning contains the number identifying the test in which the error occurred, a full error
message, and a return code. All other captured messages, e.g., warnings or deprecation
messages from the GTK framework are saved to one log file, in a folder where the tests
are generated. The messages are being appended, so the log file can be checked at any
time during the generation process. Every line contains the test number, so it can be easily
determined when the message occurred and match it with the reproducer from the given
test case.

4.3 Generating an Environment for the Test Execution
This section describes an output of our test generator along with description of individual
files that are required for execution of generated test cases. The input of the test generator
is provided by the application metadata located in apps.yaml. The output is a project
structure containing generated test cases and other files required for the test execution.

28

Initially, the test generator checks the availability of the entry for a tested application
in the configuration file apps.yaml. Subsequently, it creates a sub-folder with the name
of the application where generated content will be placed. Predefined source files with
the implementation of steps (used by behave framework) are copied to the folder structure
along with scripts and other files that are necessary for the test execution. Figure 4.4
demonstrates the structure generated for the application GNOME Terminal.

gnome-terminal
features

generated.feature
environment.py
steps

ocr_steps.py
steps.py

gnome-terminal.log
mapper.yaml
requirements.txt
runtesh.sh
cleanup.sh

Figure 4.4: The generated project structure for the application GNOME Terminal

The sub-folder named features contains files with the behave test cases. Test cases
generated by the test generator are in the file generated.feature. The file contains a
single so-called Feature that contains all generated test cases. Test cases are composed of
a tag, a brief description of the test case, and so-called steps. The tag is a unique identifier
of the test case and thus allows single test case execution, if required. The description
should briefly define what should be done with the SUT, when the test case is executed.
The steps are one-line statements, each of them describes either an execution of an action
or an assertion described in a human-readable language. Successful execution of all steps
evaluates the test case as passed. Otherwise, the result of the test case is a fail.

The file environment.py contains the setup required for the test execution (see Ap-
pendix E). It contains 3 functions used by the behave framework to set up or restore the
required environment during the test execution.

The before_all function is run once before the execution of the test cases. It initiates
the GNOME environment setup from the qecore library and creates an instance of either
the Flatpak or the Application class. The type of the application and the parameters for
the class instance are extracted from the entry in the configuration file apps.yaml.

The before_scenario function is executed before every test case (scenario). It contains
an invocation of the method from the qecore that should set the testing environment to
the default state and other preparations for the testing. Additionally, it executes the
cleanup.sh script with a custom per-application cleanup defined in apps.yaml (discussed
in Section 4.2.2).

The after_scenario function is called after the execution of every test case, regardless
of its results. The result is then submitted to the generated test report.

The folder steps contains source files with the implementation of the steps used in
the behave scenarios. The implementation of steps is divided into two files. The module
ocr_steps.py contains only one behave step which encapsulates the implementation and
optimization used for the verification of the string on the screen. The module steps.py

29

contains general implementation of steps. The steps are functions implemented in Python
with the step decorator from the behave framework. The decorators serve as a wrapper to
call the Python functions from the .feature files. So in the case of this project, the steps
written in the test cases are function calls, the functions are defined in these modules. The
definition of the @step decorator (Listing 4.2) contains variables, thus allowing us to keep
the code base as minimal as possible.

1 @step(’State: "{roleName}" "{name}" "{prop}" is "{state}"’)
2 def assert_state(ctx, name, roleName, prop, state):
3 node =ctx.app.instance.child(name, roleName)
4 focus_node(node)
5 assert hasattr(node, prop), f’Obj: {node} is missing attribute {prop}’
6 prop_value =f’{getattr(node, prop)}’
7 assert state ==prop_value, f’Expected: {state}, Got: {prop_value}’

Listing 4.2: The implementation of the step that is used to perform an assertion on any of
the properties belonging to an accessible node

The file gnome-terminal.log aggregates log messages produced by a tested application
throughout the test generation process. The log file name is derived from the application
name defined in the apps.yaml file. The mapper.yaml file contains a list of test cases with
other data required for the CI execution. The file requirements.py contains all Python
dependencies that need to be installed to execute the test cases. Finally, the runtest.sh
is a wrapper script for execution of test cases.

4.4 Test Case Generation
In this section, we describe the test generation process. The Subsection 4.4.1 describes the
extraction of event sequences from the model of an application. Subsection 4.4.2 describes
the execution of the extracted event sequences. In Subsection 4.4.3, we discuss the node
expansion process performed by the test generator during the test generation.

The implementation of the test generator is encapsulated in the class TestGen (class
diagram in Figure 4.3). The behavior of the generator can be also influenced by several
command-line arguments that will be described later in this work. Based on the parameters
(flatpak item in apps.yaml), the instance of either the App or the FlatpakApp is created.

The generator then creates a copy of the default project structure and injects the files
inside the project structure with values that correspond to the application that is going to
be tested (Figure 4.4). Namely, the files environment.py, mapper.yaml, and cleanup.sh
contain special placeholders (tags) that are replaced by values defined in apps.yaml. Just
note that no Python code is being generated during the process. The default project already
contains all the predefined behave steps required to execute generated test cases. The next
sections are dedicated to the details of the generation algorithm. Algorithm 4.1 contains a
shorter version written in a pseudocode.

4.4.1 Derivation of Event Sequences

This subsection describes how our test generator extracts event sequences and explains lines
1–4 from Algorithm 4.1.

The generator begins with a first start of a tested application and extracts the AT-SPI
tree of the application instance through the dogtail. Then, a writable copy of the tree is

30

Algorithm 4.1: Test generation algorithm pseudocode
Data: Running application exposed to the accessibility bus, apps.yaml
Result: Test Cases

1 start the application;
2 scan the application tree, generate the test tree;
3 derive the event sequences;
4 terminate the application;
5 foreach 𝑒𝑣𝑒𝑛𝑡_𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑒 in 𝑒𝑣𝑒𝑛𝑡_𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑒𝑠 do
6 application cleanup, if required;
7 start the application;
8 foreach 𝑎𝑐𝑡𝑖𝑜𝑛 in 𝑒𝑣𝑒𝑛𝑡_𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑒 do
9 save the state before the action is executed;

10 execute the 𝑎𝑐𝑡𝑖𝑜𝑛;
11 add the action step to the test case;
12 if application is not running then
13 check return code and the logs;
14 if application crashed then
15 print reproducer and log;
16 else
17 add the quit assertion to the test case;
18 end
19 else
20 evaluate the tree changes through the symmetric difference;
21 if action started new application then
22 generate the assertion;
23 else if action generated new window/s then
24 foreach 𝑤𝑖𝑛𝑑𝑜𝑤 in 𝑤𝑖𝑛𝑑𝑜𝑤𝑠 do
25 append new event sequences for the 𝑤𝑖𝑛𝑑𝑜𝑤;
26 end
27 else
28 append new event sequences for the remaining nodes;
29 end
30 end
31 end
32 end

created through the GTree instance. The action-less nodes are then removed by creating a
new instance of the TestTree class.

Event Sequence The core of our test cases is derived from the TestTree through the
class method named test_sequences. The method returns a list12 of event sequences. An
event sequence contains a list of nodes associated with actions that will be executed for
every test case. Listing 4.4.1 shows an output produced by the print_sequences method
used for debugging. For each GNode instance, we print a name, a roleName and an action
separated by =>.

12https://docs.python.org/3/tutorial/datastructures.html

31

https://docs.python.org/3/tutorial/datastructures.html

1 LibreOffice:frame: => File:menu:click => New:menu:click => Text
Document:menu item:click

Listing 4.3: An example of the event sequence extracted from LibreOffice StartCenter.

The test_sequences method iterates through the list of leaves and calculates the path
from a leaf to the root of the tree. The result is a list of paths or as mentioned earlier a
list of event sequences.

An event sequence does not represent a whole test case. The whole test case is created
by applying the event sequence on the live instance of the application. While applying
the event sequence, the generator appends assertions steps and OCR checks. The checks
are generated either before or after the execution of actions and they will be used as a
verification in a generated test case to confirm that the application reached the intended
state. An event sequence can be used multiple times or it can be extended, if the generator
discovers that the applied sequence led to a discovery of new nodes. Those new nodes are
evaluated and the generator creates new event sequences, each of those sequences start with
a sequence that led to their discovery.

4.4.2 Execution of Event Sequences

In this subsection, we describe how we used the extracted event sequence to create a test
case. From this point the generator works with 3 instances of the tree: the currently running
application instance obtained through dogtail, the instance of the class Gtree, the instance
of the class TestTree or so-called model used to derive the tests.

The test generator then starts to iterate over the extracted event sequences, monitors
the application, executes actions, and generates steps and assertions that are then put
together in behave scenarios. The implementation of the steps used in generated test cases
is discussed in Section 4.2.

Every iteration of the event sequences (see line 5 in Algorithm 4.1) works with a newly
started instance of the application, so every scenario begins with a step that starts the
application. The step internally contains an assertion to make sure that the application
has started and is ready for the interaction. The generator stores a shallow copy of the
list containing the applications that are currently available through AT-SPI. It also saves
a copy of the currently available nodes in the tested application.

The generator selects the first node from the sequence and locates the node within the
currently running instance of the application. In case that application contains too many
nodes (widgets), some of them might be hidden. The generator tries to avoid that by using
grabFocus method on the node. The method does not work for menus, where the select
method has to be used instead. Additionally, the node.sensitive property is checked. If
the value of the property is False, the generator prints a warning as the value indicates
that the action might not be executable in the current state. Then the action associated
with the node is executed. If the execution of the action was successful, the event coverage
is increased and a step with the description of the node and executed action is added to
the test scenario. The execution of the action is followed by several checks performed on
the current instance.

Initially, the generator checks whether the application is still running by retrieving the
application instance from the accessibility tree. If the application instance is no longer
present, there are two possibilities. The application was intentionally terminated by the
executed action or the application crashed. The decision is made by the examination of

32

the generated logs (stderr, stdout) and the value of the return code retrieved after the
termination.

If the application was terminated with the return code value of 0, the test generator
appends a new step to the test case. The step contains an assertion that the application is
no longer running (Quit/Exit button).

If the return code does not contain the value 0, the generator raises the error, prints
the reproducer, the return code value, and the content of the obtained logs. The generator
proceeds to the next test case.

In some cases, the occurrence of an error does not mean that the application crashes.
Therefore, the generator checks the log for known errors after every executed action re-
gardless of the state of the application. The list of the messages that are being checked is
stored in the file errors.py. A new error message can be appended to the list at any time.
The list currently contains messages that previously occurred in bugs related to GNOME
applications.

4.4.3 Model Expansion

This subsection provides a description of the model expansion during the test generation
process. The description contains an explanation how our test generator scans an appli-
cation for new nodes (widgets) as well as creation of test cases for these nodes. We also
explain the remaining part of the Algorithm 4.1 that starts from line 20.

Successful execution of the action, followed by no errors detected in the log and ap-
plication still being run, indicates that the action could have changed the state of the
application.

Initially, the generator checks whether the action triggered the execution of a new
application. The detection is achieved through the symmetrical difference computed on
two sets. The first one contains the list nodes representing running applications before
the action was executed, the second one holds the list of applications available after the
execution. Both lists are shallow copies, so the generator does not need to compare an entire
tree for each application. If that is a case, the generator appends the assertion implying
that the applied sequence led to the start of a new application. The test generator does
not expand the nodes of a newly spawned application to the current test tree as they do
not belong to the application that is currently being tested. This solution has limitations,
an application that is not exposed to the accessibility bus will not be detected.

If the previously described effort failed, the generator proceeds to search for the changes
within the tree of the tested application. The implementation takes advantage of the method
get_node_list from the class GTree. The method returns all nodes from the tree instance
in one list. The list is converted to a set, and similarly to the process of detection of a new
application, it calculates the symmetric difference between sets captured before and after
the executed action.

The generator distinguishes between several roles of the discovered nodes. The appear-
ance of a new window or a dialog causes the generation of an assertion to the current test
case. Regardless of a role, the generator creates a TestTree instance with new nodes (a
subtree) and retrieves event sequences derived from the subtree. The new event sequences
are prepended with the sequence that led to their discovery and then added to the list of
the event sequences that will be executed in the next iterations.

The expansion during the test case generation can significantly increase the execution
time. The test generator implements an option --shallow that disables the expansion and

33

generates test cases only from the model obtained after the start of the application. The
option gives testers the ability to obtain fundamental test cases that can be reviewed and
updated in a shorter time.

4.5 OCR Integration
In this section, we present the integration of Tesseract’s OCR engine in our work. Subsec-
tion 4.5.1 is dedicated to the implementation of image preprocessing methods in our test
generator. Subsection 4.5.2 described integration of the OCR in executable test cases.

The main goal of the OCR integration in this work is to provide an additional level of
verification of string values presented by applications and thus not rely purely on AT-SPI.
However, the integration of OCR into the generated test cases has to be reliable to avoid
false-positive test results. For the reasons mentioned in Section 3.4, the implementation has
to contain image preprocessing optimizations and configuration to achieve stable results.
Tesseract offers several options that allow to optimize string detection and text analysis.
One of them is the definition of the recognized language. It is assumed that most of the
tested applications will use the English language and therefore, the dataset trained for the
English language is used.

4.5.1 Screenshot Preprocessing and Optimizations

In this subsection, we discuss the implemented optimizations that were required to achieve
reliable results with the Tesseract’s OCR engine in our test generator.

As discussed in 3.3.2, Tesseract is less prone to errors when operating with images
containing black text on a white background. Therefore, we used a thresholding method
to convert screenshots to binary colors (black and white). However, some applications
use darker color themes or contain parts with different color schemes. If we used the
thresholding method with such application it would provide us with an opposite result.
Therefore, our solution always extracts strings from two images. The first one is a binarized
copy of the original image, the second one is a copy of the binarized image with inverted
colors. This ensures that the Tesseract’s OCR engine has the best possible conditions to
obtain the string from the screen. Given that the string is present on the screen, it should be
found regardless of a theme set in an application. A demonstration of the image conversions

Figure 4.5: Steps of image preprocessing for the OCR, from the top: the original image,
the binarized image, the inverted binarized image

34

is shown in Figure 4.5, containing 3 images, ordered from the top: the original image, the
binarized image, and the inverted binarized image.

1 s
2 ALY
3 O BTEE T
4 ERM
5 test@localhost:
6 8
7 Edit View Search Terminal Help
8 [test@localhost ~1$ Hello world![]

Listing 4.4: Text extracted from the original image in Figure 4.5 without optimizations

Listing 4.4 demonstrates the results obtained from the original image without any opti-
mizations. The Tesseract’s OCR engine manages to extract certain strings from the screen,
although the results are not reliable and thus may lead to false-positive reports during the
test execution. Further experiments have shown additional issues with text formatting as
well as difficulties with recognition of similarly looking letters. An example can be seen on
line 8 (see Listing 4.4), where character] was misinterpreted as character 1. These issues
were suppressed by upscaling the resolution of the original image from 1,024 x 768 pixels
to 3,200 x 2,400 pixels.

1 Activities
2 Terminal ~
3 a4
4 v
5 May 27 16:13:56 @
6 test@localhost:~
7 File Edit View Search Terminal Help
8 [test@localhost ~]$ Hello World![}

Listing 4.5: Text extracted from Figure 4.5 with all implemented optimizations

Listing 4.5 shows results achieved with image preprocessing methods. When compared
to the results shown on Listing 4.4, it proves an increase of the efficiency achieved with the
implemented optimization. The result contains all important strings shown on the screen.
Additionally, the OCR engine reports some random characters which are probably caused
by a misinterpretation of a group of smaller icons in the picture. The image upscaling
is achieved through the Pillow13 library, the image conversions are implemented through
methods from the OpenCV library.

The time consumed by taking screenshots during the generation process is significant.
Therefore, the developed tool has the ability to disable the generation of the OCR steps
during the generation of test cases through the command line parameter --disable-OCR. If
the generated test cases already contain steps performing OCR checks and are intended to
be executed without them, the tests can be executed with the shell variable OCR=False. The
defined variable will cause skipping of the OCR checks, although they will still be shown
in the test logs as executed. This is caused by the limitation of the behave framework as

13https://pypi.org/project/Pillow/

35

https://pypi.org/project/Pillow/

1 @1_Spreadsheet
2 Scenario: libreoffice-startcenter: Spreadsheet
3 * Start: "libreoffice-startcenter" via command "libreoffice --norestore"

in session
4 * Action: "click" "File" "menu"
5 * Action: "click" "New" "menu"
6 * State: "menu item" "Spreadsheet" "showing" is "True"
7 * OCR: "Spreadsheet" is shown on the screen
8 * Action: "click" "Spreadsheet" "menu item"
9 * State: "frame" "Untitled 1 - LibreOffice Calc" is shown

10 * OCR: "Untitled 1 - LibreOffice Calc" is shown on the screen

Listing 4.6: A test case demonstrating the integration of OCR into test cases

it only allows one to skip whole test scenarios. Tests executed with the variable set to skip
the OCR steps will contain a warning message.

4.5.2 Implemented Steps

This subsection demonstrates a behave step that was implemented to achieve the OCR
integration in our tests.

The results obtained from experiments with the OCR were implemented to a single
behave step. The step contains a string variable that should be found on the screen at a
specific moment during the test execution. The process involves taking a screenshot via the
gnome-screenshot utility. It continues with the aforementioned image preprocessing and
extraction of the text from two variants of images. Finally, an assertion is made to confirm
the presence of the string on the screen.

Listing 4.6 contains a test case generated for LibreOffice StartCenter with two OCR
steps. During the test, the OCR engine confirms the presence of the string Spreadsheet
on line 7. Another OCR step is on line 10, where the OCR confirms a presence of the
window title Untitled 1 - LibreOffice Calc on the screen.

OCR steps are not added to test cases automatically. Our test generator may encounter
strings that contain various characters and have various length. An OCR step is generated
to a test case only if the test generator performs a successful OCR check on a given string.
Failed OCR checks are reported immediately during the test generation process. The
OCR check performed in advance by the test generator and the optimizations discussed in
Subsection 4.5.1 should prevent an occurence of false-positive results in test cases caused
by the OCR.

4.6 Generated Test Cases
In this section, we describe the behave test cases that are generated by our test generator
as well as logs that are generated during the test runs.

The result of the generation process is available in a folder structure named after a test
application and contains generated test cases, configuration files, and scripts for execution
in the CI environment. Generated behave test scenarios are located in the file named
generated.feature. The file contains all the test cases divided into so-called scenarios.

36

Each scenario (see Listing 4.6) has a unique name starting with character @ that allows
single test execution if required. All tests are executable by issuing a command behave in
the generated project folder. The tests are also respecting the cleanup commands which are
set in apps.yaml. The cleanup is always executed after the finish of the test, regardless of
the result of the executed tests. Execution of behave either prints steps from a test scenario
to standard output or can generate an HTML log for every scenario (see Figure 4.6). This
log format is more suitable for examination of the results executed in the CI environment
accessible through the web interface. Furthermore, the qecore library embeds data collected
during the test runs to the behave reports of failed test cases. Therefore, the reports contains
videos captured during the test runs, screenshots taken in a moment when a test case failed
and additional logs. The additional data helps with identification of potential flaws in tests
and false-positive results.

Figure 4.6: An example of the test report generated by the behave framework during the
execution of the tests generated for LibreOffice StartCenter

37

Chapter 5

Testing and Results

In this chapter, we discuss the results of our test generator. Section 5.1 describes the cov-
erage measurement techniques we obtained for the test cases created by our test generator.
In Sections 5.2 – 5.6 we present 5 open-source GUI applications as well as the results that
were achieved when we tested them with our test generator.

All performed testing was done on virtual machines preloaded with distributions Red
Hat Enterprise Linux 8.2/8.3. Virtual machines were assigned with 4 GiB of RAM and
two logical CPU cores (Intel(R) Core(TM) i5-9600K CPU @ 3.70GHz). The execution of
the test generator on production workstations should be avoided as the performed actions
may potentially lead to alteration of the system or a data loss. The same approach applies
to the generated test cases.

5.1 Coverage Evaluation
This section is dedicated to the coverage measuring techniques that were implemented
within our test generator, namely a model coverage and an event coverage. Further, we
discuss the code coverage analysis performed with the gcov tool.

Event Coverage The event coverage measures the number of executed events on a tested
application during the test generation. It is a common technique used in GUI testing [14].
An execution of an event is counted as successful one, if the event was executed by the
accessibility layer without any errors. The event coverage approach implemented by our test
generator also has a disadvantage. The event coverage report contains only events reported
by the accessibility technology, other events like drag and drop, keyboard shortcuts and
mouse scrolling are not included.

Model Coverage Another coverage measurement performed by our test generator is the
model coverage. The coverage is measured as the number of nodes (widgets) involved in
test cases from the overall number of nodes included in the model.

As discussed in Section 4.1, the model contains only nodes that offer an action that
can be executed by users. It is expected that this coverage will always cover 100 % of the
nodes. However, with applications that contain a richer GUI, some of the nodes might be
hidden or the generator will not be able to derive an event sequence that will be able to
access those nodes. This especially applies to cases when the generator will be used on a
new application that contains some special layout or an action on the given node which

38

could not be executed by the accessibility technology. In such cases, our generator skips
the whole test case, generates an error message, and proceeds to the next test case.

Nodes that are not covered by tests, along with event sequences that are involved, are
printed in a report after the test generator finishes. The nodes or event sequences reported
as failed must be evaluated manually with several possible outcomes:

1. a node is not available for interaction

2. a bug in a tested application,

3. a bug in the accessibility technology (e.g. incorrectly reported coordinates),

4. an imperfection or a bug in the test generator,

5. the tested application is affected by the previous test case (change in the settings/lay-
out), and additional cleanup must be added to apps.yaml.

Both the event coverage and the model coverage are evaluated in the end of the test
generation process. The measurements are a part of a final test generator report. The
report also contains a list of unexecuted event sequences. The list can be used to retest
test cases that were not sucessfully tested by our test generator.

Code Coverage We also obtained code coverage measurements from tests runs generated
by our test generator. The code coverage measurements were obtained with the gcov tool
that comes as a part of the GNU development tools. The purpose of the tool is to perform
the code coverage analysis and to find dead or unexecuted code. Coverage-driven testing
can be characterized by the following steps:

1. Find the areas of a program not exercised by test suite.

2. Create additional test cases to exercise so far not exercised code, thereby increasing
code coverage.

3. Determine a quantitative measure of code coverage, which is an indirect measure of
quality.

To obtain a measurement of the code coverage, it is required to compile the application
with gcc/g++ and two extra parameters -fprofile-arcs and -ftestcoverage. Running
the compiled binary with the gcov tool yields a percentage of the executed code located in
source files. Measurements can be obtained for any software written in C/C++ [6].

To obtain measurements, tests must be executed with a custom binary, compiled with
the mentioned parameters. Once the custom binary is executed, files with extensions .gcda
and .gcno should appear in the directory where the binary is located. Measurements
are aggregated throughout the test execution and the code coverage is reported to the
special files with the mentioned extensions. Then, the lcov tool is used to aggregate the
measurements and generate a report in two steps (Listing 5.1). The first command takes
the.gcda and .gcno files and generates a .info file with coverage information. The second
command takes the info file and generates a detailed HTML report. The report contains
every source file (.c file) along with the percentage of covered functions and lines.

39

1 $ lcov -c -d . -o app.info
2 $ genhtml -o lcov_report -s --legend app.info --ignore-errors

Listing 5.1: Shell commands used to generate an HTML report with the lcov tool

5.2 GNOME Terminal
GNOME Terminal (Figure 5.1) is one of the most important applications from the GNOME
application stack. The application serves as a terminal emulator for accessing a UNIX shell
environment. The application can be used to run programs available on the system1.

Figure 5.1: GNOME Terminal application UI

Setup and Cleanup

A large part of test cases generated for GNOME Terminal performs some changes of settings
either via the Preferences dialog or through menus located at the top of the window.
Preferences can change various aspects of the application, including the text encoding,
layout of widgets, and color schemes. Those changes need to be set back to default values to
make sure that test cases will not affect subsequent test cases. In Terminal, this is achieved
through 2 cleanup commands (see Listing 5.2) that are executed at the end of every test case.
Testing was performed with the rpm package gnome-terminal-3.28.3-1.el8.x86_64.

1 dconf reset /org/gtk/Settings/Debug/enable-inspector-keybinding
2 dconf reset -f /org/gnome/terminal/legacy/

Listing 5.2: The cleanup commands required to reset GNOME Terminal to its default
settings

1https://help.gnome.org/users/gnome-terminal/stable/introduction.html.en

40

https://help.gnome.org/users/gnome-terminal/stable/introduction.html.en

Test Generation and Results

Listing 5.3 contains the final test generator report and summarizes the testing performed on
Terminal. The developed test generator was able to generate 485 test cases while covering
1,700 events in the application. Tests are covering menus, several smaller dialogs, and a
Preferences window.

1 Test Generator Report for Component: Terminal
2 Covered Events: 1700/1702 (99.88 %)
3 Number of Covered Nodes: 516
4 Number of Generated Test Cases: 485
5 Nodes without the Coverage:
6 Edit:menu:click => Preferences:menu item:click => :list item:
7 => Menu:toggle button:click
8 No errors found!
9 Generation Time: 1:53:52.676497s

Listing 5.3: Final test generator report for GNOME Terminal

5.3 GNOME Help
GNOME Help (Yelp) is a help viewer for GNOME2. The application natively renders doc-
uments in various formats including HTML documents. The UI (see Figure 5.2) of the
application is filled with links to navigate between documents.

Figure 5.2: GNOME Help (Yelp) application UI

Test Generation and Results

Listing 5.4 contains the final report and summarizes the testing performed on GNOME
Help. The developed test generator was able to generate 2,412 test cases while covering the

2https://wiki.gnome.org/Apps/Yelp

41

https://wiki.gnome.org/Apps/Yelp

4,690 events in the application. The application did not require any individual setup, the
testing was performed with the rpm package yelp-3.28.1-3.el8.x86_64.

1 Test Generator Report for Component: Help
2 Covered Events: 4690/4696 (99.87%)
3 Number of Covered Nodes: 2415
4 Number of Generated Test Cases: 2412
5 Nodes without the Coverage:
6 GNOME Help:frame: => Digital cameras:link:jump
7 => More Information:heading:Click
8 ...
9 Generation Time: 4:57:13.370368s

Listing 5.4: The final test generator report for GNOME Help

The report also contains 6 failed event sequences. The reason behind these failures
is partially the way we implemented our test generator. As discussed in Section 4.1, we
introduced the file rolenames.py where we enumerated all role names for nodes without
an action. The mentioned failures contain node with the role name heading. Since the
majority of headings are assigned with an action called jump, the role name heading is not
blacklisted in the file rolenames.py. However, there are nodes with the role name heading
that are assigned with an empty action (an empty string). This is how the accessibility
system labels links in Help that are not available for interaction. Our test generator handles
a node with an empty action by replacing the empty action with a default one – Click. Since
the default action is not the one assigned to a node, its execution might fail which is what
most probably happened in the failed event sequences.

The second part of the report is dedicated to captured error messages. Overall, there
were 42 warnings about occurrences of error messages during the test generation along with
their reproducers. The examination has revealed that error messages were found in test
cases where an external link leads to a web page. External links are not handled by the Help
application, they are forwarded to a default web browser for the GNOME session. In our
case, the default web browser was Firefox. A manual application of reported reproducers
has shown, that the captured error messages were not originated from the Help process,
but they were generated by the Firefox process. Initially, we were not able to reproduce
the issue because the messages did not appear until the Firefox window was closed. To
support the claim that the error messages are caused by the bug in Firefox, we successfully
reproduced the same issue with the LibreOffice StartCenter, where our test generator found
the same error messages in a different test scenario. Our findings were submitted in a bug
report3.

GNOME HELP also offered a good demonstration of how nodes are expanded during
the test generation. To visualize the node expansion performed by our test generator during
the testing, we integrated an automatic generation of event flow graphs implemented by
the networkx library written in Python3. An initial graph is generated after the scan of
the SUT performed in the beginning of testing. A final graph is generated at the end of
the test generation process. All graphs that were generated during the testing with our
generator are available in Appendix F.

3https://bugzilla.redhat.com/show_bug.cgi?id=1837978

42

https://bugzilla.redhat.com/show_bug.cgi?id=1837978

Figure 5.3: The initial event flow graph of event sequences for GNOME Help

Figure 5.4: The expanded event flow graph of event sequences for GNOME Help

43

Initially, the generator scans the tree for the available nodes and builds a model from
78 available nodes (widgets) and derives 96 event sequences (Figure 5.3). The Generator
proceeds with the application of event sequences and continuously expands the model to
the final number of 2,415 nodes and 4,696 event sequences (Figure 5.4). The expanded
graph shows which event lead to the discovery of new nodes associated with an action that
can be executed by the accessibility system. When compared to manual testing, the effort
required to achieve this coverage would be very tedious and time-consuming.

5.4 LibreOffice StartCenter
In this section, we describe results achieved by our test generator when we tested LibreOf-
fice applications. Moreover, we discuss the alterations that were required to be implement
within our test generator due to issues caused by the accessibility layer. LibreOffice Start-
Center (Figure 5.5) is a document management application, it connects 7 other applications
from the document suite. Each application can open and edit a different format of docu-
ments4. LibreOffice is not a part of the GNOME application stack, although it is being
shipped as a default document suite in a lot of Linux distributions and has the required
accessibility layer support.

Figure 5.5: LibreOffice StartCenter UI

Required Implementation Changes and Limitations

During the testing of LibreOffice StartCenter we encountered issues with LibreOffice Calc
which forced us to implement application-specific changes to our test generator.

Tests generated for LibreOffice StartCenter are executing all applications from the Libre-
Office suite. LibreOffice Calc is a spreadsheet editor that contains theoretically an infinite
number of editable cells that are created on demand. Therefore, the application cannot
be recursively explored for new nodes. A recursive search causes that the application will
generate new cells until the RAM on a virtual machine is depleted. The virtual machine is

4https://help.libreoffice.org/3.3/Common/Start_Center

44

https://help.libreoffice.org/3.3/Common/Start_Center

1 Test Generator Report for Component: LibreOffice StartCenter
2 Covered Events: 7795/7853 (99.26 %)
3 Number of Covered Nodes: 2516
4 Number of Generated Test Cases: 2315
5 Nodes without the Coverage:
6 ...
7 Generation Time: 11:48:49.071478s

Listing 5.6: The final test generator report for LibreOffice StartCenter

unresponsive and even refuses to execute commands through a remote shell. Therefore, the
implementation of the test generator was altered to avoid the execution of recursive search
querries on LibreOffice Calc.

Another accessibility-related issue has started to occur when the test generation process
reached certain types of dialogs (a letter wizard, a fax wizard, etc.). The behavior was quite
similar to the previous issue, the test generator hanged on a recursive search query for a
while and then failed with the error message shown in Listing 5.5.

1 Failed to handle new nodes atspi_error:The application no longer exists (0)

Listing 5.5: The accessibility layer error that prevents the generator from node expansion
when testing LibreOffice StartCenter

The investigation has shown the application spawns 2 windows, the first one is the
previously mentioned dialog, the second one is a generic LibreOffice window that contains
only menus. The blank window probably spawned because those wizard dialogs are not
standalone applications, they belong to other applications from the LibreOffice suite. This
claim is supported by the fact that the blank window only lasts as long as the dialog is
opened. The blank window contains widgets but they are not available for interaction as the
focus can only be placed on the dialog window in the front. Therefore, the blank window is
an issue from the implementation perspective of the generator as it tries to perform node
expansion on a window that never becomes available. Since the accessibility system throws
the mentioned error, it is handled as an exception and the generator continues without
expansion to a next test case. The cancellation of the node expansion process also means
that widgets from the affected dialog window are not tested by our generator.

Testing and Results

Testing LibreOffice required some setup in the apps.yaml file. The application instance
has to be started with the --norestore parameter to avoid the restoration of unsaved
documents from previous sessions. Furthermore, the user configurations files located in
~/.config/libreoffice/ are removed during the cleanup process. After the previously
discussed implementation changes, the generator has been able to perform a full run on the
application and produces a test report that is partially shown in Listing 5.6. A subset of
tests generated for LibreOffice Calc is shown in Appendix D.

The report shows that the achieved event coverage was not as successful as with the
previous components. The majority of the failed sequences contained nodes that have the
action available, but the action could not be executed at a given time.

45

The report also contained several crashes and errors. A couple of those errors confirmed
the Firefox issue mentioned in Subsection 5.3 that we reported. Furthermore, another
severe issue was discovered by our solution when the StartCenter crashed after clicking
on the Help button. We submitted a bug report5 for the issue and it has been fixed by
developers.

The remaining group of crashes was caused by quite an interesting phenomenon. The
test generator reported 6 crashes that appeared to be quite similar. Each of those crashes
was triggered by an event associated with a button that was not available for an interaction.
A manual application of the reproducers was not possible because the event can only be
sent through the accessibility system. Nevertheless, this proves that the proposed test
generator can reveal this kind of flaws in GUI software. The testing was performed with
the libreoffice-core-6.3.6.2-1.el8.x86_64 rpm.

5.5 Evince
This section introduces us to a document viewer application Evince6, along with the results
that we achieved by testing the application with our test generator.

Figure 5.6: Evince document viewer UI

Testing and Results

Initially, we tested a blank Evince instance without a test file. However, results have shown
that a lot of widgets are not available, or are disabled. Therefore, we decided to add a
test file in the .pdf format as shown in Figure 5.6. A name and a path of the test file is
configurable via the apps.yaml file. The test file is used during the test case generation
process as well as the test case execution process. An inclusion of the test file has unlocked
the majority of disabled widgets and allowed us to use the full potential of our test generator.

5https://bugzilla.redhat.com/show_bug.cgi?id=1819798
6https://wiki.gnome.org/Apps/Evince

46

https://bugzilla.redhat.com/show_bug.cgi?id=1819798
https://wiki.gnome.org/Apps/Evince

1 Test Generator Report for Component: Document Viewer
2 Covered Events: 373/398 (93.71 %)
3 Number of Covered Nodes: 217
4 Number of Generated Test Cases: 189
5 Nodes without the Coverage:
6 ...
7 Generation time: 0:29:20.398814s

Listing 5.7: Final test generator report for Evince

Listing 5.7 contains the final test generator report. The report section that starts on
line 5 contains a list of unexecuted event sequences. The manual reproduction of sequences
has shown that the reported event sequences lead to widgets that were not available for an
interaction. In two cases, our test generator crashed the application by executing an action
on an unavailable widget through the accessibility layer. This is the same issue that we
encountered when we tested LibreOffice StartCenter (see Subsection 5.4).

Figure 5.7: Gedit text editor UI

Our test generator revealed an unknown issue with the Gtk-CRITICAL error message.
We were able to report the issue from the reproducer provided by our test generator (see
Appendix C) and we created a bug report7. The issue occurs in a test case when a document
is being opened in the Presentation Mode. The error message is not that severe, however this
kind of messages are printed when a critical failure occurs within the application and there
are numerous bug reports for the GNOME applications for similar issues. Furthermore,
the issues like the one we reported are harder to find, because they can be only detected
by checking the stderr of a GUI application.

Since the RHEL 8.3 distribution contains an older version of the application that we
tested (gedit-3.28.1-3.el8.x86_64), we also decided to test a newer flatpak version of the

7https://bugzilla.redhat.com/show_bug.cgi?id=1842017

47

https://bugzilla.redhat.com/show_bug.cgi?id=1842017

application (org.gnome.Evince, Version:3.36.1). The testing was performed without
confirmation of the bug in the newest version. By testing the flatpak version of Evince we
confirmed the compatibility of our test generator with flatpak applications.

5.6 Gedit
This section presents the results achieved with our test generator when testing Gedit ap-
plication (see Figure 5.7), which is a text editor of the GNOME desktop environment8.

Testing and Results

After the issues we experienced with testing Evince without a test file, we included one
for Gedit tests from the beginning. The achieved results are summarized in the final test
generator report shown in Listing 5.8. The report contains a lot of unexecuted event
sequences that are not displayed in the listing. The issues were quite similar to issues
that occured with applications we tested before. Our generator failed to derive an event
sequence for a group of widgets in a Print dialog and a Preferences dialog.

Furthermore, the report contained 9 occurrences of the Gtk-CRITICAL error. However,
when we applied reproducers from the report manually, the errors did not appear. The
errors could only be achieved by execution of actions through the accessibility system.
During the investigation, we found out that all 9 test cases have one common denominator,
which is a so-called hamburger menu shown in Figure 5.7. We examined the menu through
the Sniff utility to discover that the accessibility system reports a wrong hierarchy of
widgets associated with this menu. The menu button is in this case an end node, which
means that this is where the event sequence derived for the menu ends. Since the group
of widgets associated with this menu is reported by the accessibility layer on a wrong
place, our test generator derives a group of event sequences for them without an important
middle step – opening a menu. Therefore, the reported errors are not bugs, as the generator
triggers an event on a node which is not present on the screen. In conclusion, this is another
discovered imperfection of the accessibility system.

1 Test Generator Report for Component: Text Editor
2 Covered Events: 1200/1301 (92.23 %)
3 Number of Covered Nodes: 643
4 Number of Generated Test Cases: 565
5 Nodes without the coverage:
6 ...
7 Generation time: 2:48:58.877205

Listing 5.8: The final test generator report for Gedit

8https://wiki.gnome.org/Apps/Gedit

48

https://wiki.gnome.org/Apps/Gedit

Chapter 6

Evaluation and Future Work

This chapter presents an overall evaluation of our test generator. Section 6.1 discusses the
results of a code coverage analysis. In Section 6, we compare the proposed test generator
to existing test suites for the GNOME aplications. Section 6.3 describes a recommended
workflow for our test generator and concludes this chapter with plans for a future work.

As discussed in Chapter 4, the approach to application testing done by this work com-
bines several testing techniques and takes advantage of existing testing frameworks and
libraries. We are not aware of any currently available solutions designed to generate test
cases from the AT-SPI metadata in the GNOME environment. The closest related solutions
were described in Subsection 2.10.1. However, that solution is designed for applications with
different development cycles, where a model is being developed before a prototype of the
application is available. Other solutions (e.g. references [21],[5]) rely on static analysis and
build a model from the byte code of the GUI applications written in Java.

6.1 Code Coverage Evaluation
In this section, we compare our test generator to another GUI test generator based on static
analysis. Further, we compare the tests generated by our test generator to the tests written
with the script based tools.

Our test generation tool works on black-box testing principles. However, we were able
to perform a code coverage analysis for Evince, Gedit, and Terminal to evaluate the amount
of source code covered by our solution. To put the results of our code coverage analysis in
perspective with similar tools, we compared our results to results acquired by a solution
introduced by Artl et al. [5]. However, their solution targets a different platform and it
also takes advantage of white-box testing principles. Table 6.1 compares the amount of
coverage achieved by our test generator with a range of coverage acquired by their solution
on 4 open-source applications written in Java. The code coverage achieved with our test
generator did not reach the same results, however there are several factors that must be
considered in evaluation.

The analysis performed on the tests generated for Terminal has shown that several parts
of the GUI code were not executed by the tests. A gcov code coverage report provides a
detailed analysis of source code. An examination of data provided by the analysis identified
a set of functions designed to handle keyboard shortcuts that are not covered by our tests.
It is also expected that a large portion of source code is related to non-GUI operations
which are not covered by our test cases at all.

49

Our Solution Solution [5]
Application Evince Gedit Terminal Selected Java Applications

Lines Coverage (%) 22.4 37.2 33.2 54-62
Functions Coverage (%) 33.6 46 41.0 —
Branches Coverage (%) 16.0 23.7 20.8 26-37

Table 6.1: Coverage results achieved with our test generator based on AT-SPI metadata
(black-box approach) compared to the test generation tool [5] with a white-box approach

Furthermore, we performed the code coverage analysis of tests generated for Evince
twice. Our findings have shown, that by including a .pdf test file, we raised lines coverage
in Evince by 11.4 %, functions coverage by 15.6 %, and branches coverage by 5.9 %. With
consideration that Evince supports 8 other document formats, we could possibly grow the
code coverage by including more test files. The similar approach may be applied in Gedit
as it supports syntax highlighting for various programming languages.

6.2 Comparison with Existing Solutions and Test Suites
When it comes to solutions used for test automation for GNOME applications, several
Record-and-Replay tools were described in Section 2.7. The proposed solution utilizes
dogtail combined with the behave framework, so the generated test cases are executable
even after the generation process is finished.

Scripted test cases are written by humans (quality engineers). Their goal is either to
automate scenarios that cover key features in applications or to create scenarios based on
previously discovered bugs and defects. However, the proposed test generator is a semi-
smart tool. Errors and crashes that occur during the generation process are recognized
and reported with a reproducer. The potential problem is with the semantics of the test
cases. The test generator can apply a sequence of actions to the application, although
it cannot decide whether the outcome is expected. Therefore, the proposed tool should
aid testers with development of test automation right after the executable version of an
application is available. The main advantage is in the exploratory testing performed during
the test generation. The test generator can sequentially execute available events (event
sequences), detect errors and crashes, and thus help testers to avoid drawbacks of manual
testing. A report from the test generation process will also point out the widgets that
were not covered by the exploratory testing and therefore they are not covered by the test
cases. An additional benefit is provided by the fairly quick availability of the working test
automation. Testers can push either all or a subset of test cases in the CI environment.
Any test case can be reviewed and updated, new test cases could be written with available
behave steps or a new step definition can be added. Generated test cases can be merged
with test automation available from the previous versions, if it is not too obsolete.

In conclusion, generated test cases are not comparable with the currently available test
automation developed by testers with the script-based tools. The goal of generated test
cases is to cover as many events in applications as possible, whereas the currently available
test suites are focused on automation of the most essential tasks performed by users in
which bugs and defects occurred in the past. This comparison does not include unit tests
or any other white-box tests performed on the library level.

50

The test generator itself is a piece of software as well. It is designed to work with as
many applications as possible, therefore, the implementation is as general as possible. If a
tested application reveals flaws within the test generator, the adjustments must maintain
the general approach to ensure that the generation process for other applications will not be
affected. Therefore, if the adjustment is too application-specific, the effort that needs to be
done to include the adjustment in the test generator should not be greater than developing
a custom test case.

6.3 Recommended Usage and Future Work
In Chapter 4, we introduced a recommended workflow with our test generator (Figure 4.1).
The workflow contains a review of generated test cases that could be in some cases as
time consuming as manual testing. When we tested LibreOffice StartCenter or GNOME
Help, the amount of time required for test generation went up to 12 hours. Therefore, we
introduced the command-line option --shallow that prevents the test generator from the
expansion of newly discovered nodes. The option provides the ability to obtain the most
essential test automation for an application in a reasonable time (up to 10 minutes), and
with the reasonable amount of test cases (up to 100). This so-called shallow automation
could be quickly reviewed and pushed to a CI environment to perform regression testing
when a new version of an application is built. Then, a non-shallow run can be performed
to let our generator go through all extracted scenarios and report reproducers for potential
issues.

Furthermore, another option could be implemented to restrict the depth of executed
event sequences. However, the option can lead to generation of unreasonable test cases,
e.g. opening a menu without clicking on menu items, triggering a dialog without clicking a
button, etc.

Lastly, we could narrow an amount of generated test cases by definition of a window, a
dialog, or a menu we want to test. The implementation of this feature would require us to
handle an additional input, specifically a name and a roleName of a widget as well as an
event sequence that is required to navigate to the widget.

51

Chapter 7

Conclusion

In this thesis, we presented our test generator for GNOME GUI applications. The gener-
ator utilizes the metadata of accessibility technologies to create an abstract model of an
application. The model is then used for identification of event sequences that are executed
on a tested application. The extracted event sequences are applied on a live instance of the
tested application. The state of the application is monitored for severe issues that could
appear during the interaction with the application. Additionally, the generator can discover
widgets that appear during the testing and include them to the model. The generator also
creates additional assertions based on metadata from the accessibility layer as well as as-
sertions that are performed by the OCR engine Tesseract. The event sequences along with
assertions are put together in a set of executable test cases written in a behave framework.
The generated test cases are suitable for regression testing performed by the CI pipeline.

Futhermore, we used our solution to test 5 GNOME GUI applications. For 2 of those
applications, we extended the testing on their flatpak versions. The testing performed with
our test generator has proven the ability to identify unknown bugs in multiple applications
which were reported to developers. We also verified the deployment of the tests generated
by our solution by performing several successful test runs with a selected group of tests
(shallow tests) in the Desktop-CI environment used by Red Hat.

We have also described the limitations caused by the accessibility layer that we encoun-
tered during the testing. These limitations partially changed our approach to keep the
implementation as general as possible and forced us to integrate some application-specific
changes in our solution. The majority of issues we encountered with the accessibility in
GTK3 applications need to be fixed within the affected applications. However, the accessi-
bility bugs are usually not a priority, unless they are critical.

A plan for future work includes the integration of new parameters that would allow
us to test only a selected part of the application. The evaluation of code coverage results
achieved by our test generator has shown, that we can possibly increase the level of the
code coverage by including more test files supported by applications. Therefore, we might
implement a mechanism that will exchange multiple files during the test generation.

52

Bibliography

[1] Automated Testing Advantages, Disadvantages and Guidelines [online]. 2005 [cit.
2020-04-25]. Available at: http://www.exforsys.com/tutorials/testing/automated-
testing-advantages-disadvantages-and-guidelines.html.

[2] Flatpak [online]. 2020-03-16 [cit. 2020-04-20]. Available at:
https://wiki.debian.org/FlatPak.

[3] Alexander, V., Benson, C., Cameron, B., Haneman, B., O’Briain, P. et al.
GNOME Accessibility Developers Guide [online]. GNOME Documentation Project,
2008 [cit. 2019-6-11]. Available at:
https://developer.gnome.org/accessibility-devel-guide/stable/index.html.en.

[4] Alégroth, F. R. R. L. Visual GUI testing in practice: challenges, problemsand
limitations. Empirical Software Engineering. New York: Springer US. 2015, vol. 20,
no. 3, p. 694–744. ISSN 1382-3256.

[5] Arlt, S., Podelski, A., Bertolini, C., Schaf, M., Banerjee, I. et al. Lightweight
Static Analysis for GUI Testing. In: 2012 IEEE 23rd International Symposium on
Software Reliability Engineering. IEEE, 2012, p. 301–310. ISBN 9781467346382.

[6] Best, S. Analyzing Code Coverage with gcov [online]. 2019-03-09 [cit. 2020-01-16].
Available at:
https://www.linuxtoday.com/blog/analyzing-code-coverage-with-gcov.html.

[7] Cerza, Z., Rousseau, E., Malcolm, D. and Humpa, V. Package dogtail [online].
Red Hat, Inc., 2014 [cit. 2019-12-20]. Available at:
https://fedorapeople.org/~vhumpa/dogtail/epydoc/.

[8] Chandel, V. S. Deep Learning based Text Recognition (OCR) using Tesseract and
OpenCV [online]. Big Vision LLC, 2018 [cit. 2019-12-26]. Available at:
https://www.learnopencv.com/deep-learning-based-text-recognition-ocr-using-
tesseract-and-opencv/.

[9] Diggs, J. GTK+ and ATK - A Foundation for GNOME Accessibility [online].
GNOME Documentation Project, 2011 [cit. 2019-6-11]. Available at:
https://wiki.gnome.org/Accessibility/Documentation/GNOME2/AtkGuide/Gtk.

[10] Free Software Foundation, Inc. Introduction to GNU Xnee [online]. 2012 [cit.
2020-01-16]. Available at: https://xnee.wordpress.com/.

[11] Gagnon, C. Xpresser [online]. 2012-12-22 [cit. 2020-01-16]. Available at:
https://wiki.ubuntu.com/Xpresser.

53

http://www.exforsys.com/tutorials/testing/automated-testing-advantages-disadvantages-and-guidelines.html
http://www.exforsys.com/tutorials/testing/automated-testing-advantages-disadvantages-and-guidelines.html
https://wiki.debian.org/FlatPak
https://developer.gnome.org/accessibility-devel-guide/stable/index.html.en
https://www.linuxtoday.com/blog/analyzing-code-coverage-with-gcov.html
https://fedorapeople.org/~vhumpa/dogtail/epydoc/
https://www.learnopencv.com/deep-learning-based-text-recognition-ocr-using-tesseract-and-opencv/
https://www.learnopencv.com/deep-learning-based-text-recognition-ocr-using-tesseract-and-opencv/
https://wiki.gnome.org/Accessibility/Documentation/GNOME2/AtkGuide/Gtk
https://xnee.wordpress.com/
https://wiki.ubuntu.com/Xpresser

[12] Jaaskelainen, A., Katara, M., Kervinen, A., Maunumaa, M., Paakkonen, T.
et al. Automatic GUI test generation for smartphone applications - an evaluation.
In: 2009 31st International Conference on Software Engineering - Companion
Volume. IEEE, 2009, p. 112–122. ISBN 9781424434954.

[13] Moreira, P. A. C. N. M. M. A. Pattern-based GUI testing: Bridging the gap
between design and quality assurance. Software Testing, Verification and Reliability.
2017, vol. 27, no. 3, p. n/a–n/a. ISSN 0960-0833.

[14] Nguyen, R. B. B. I. and Memon, A. GUITAR: an innovative tool for automated
testing of GUI-driven software. Automated Software Engineering. Boston: Springer
US. 2014, vol. 21, no. 1, p. 65–105. ISSN 0928-8910.

[15] Nidhra, S. Black Box and White Box Testing Techniques - A Literature Review.
International Journal of Embedded Systems and Applications. june 2012, vol. 2,
p. 29–50.

[16] Nyman, N. In Defense of Monkey Testing. Software Testing and Quality Engineering
Magazine. 2000-01, p. 18–21.

[17] Odehnal, M. Automation of Desktop Applications [online]. 2020 [cit. 2020-04-20].
Available at: https://dogtail.gitlab.io/qecore/doc_basic_automation.html.

[18] OpenCV team. About Open Source Computer Vision Library [online]. OpenCV,
2019 [cit. 2019-12-26]. Available at: https://opencv.org/about/.

[19] Parente, P. Package pyatspi [online]. IBM Corporation, 2007 [cit. 2019-12-8].
Available at: https://people.gnome.org/~parente/pyatspi/doc/.

[20] Parmar, D. Exploratory testing [online]. [cit. 2020-04-20]. Available at: https:
//www.atlassian.com/continuous-delivery/software-testing/exploratory-testing.

[21] Reis, J. and Mota, A. Aiding exploratory testing with pruned GUI models.
Information Processing Letters. Elsevier B.V. 2018, vol. 133, p. 49–55. ISSN
0020-0190.

[22] Russo, J. D. 5 Reasons To Use YAML Files In Your Machine Learning Projects
[online]. towardsdatascience.com, 2019 [cit. 2020-4-21]. Available at:
https://towardsdatascience.com/5-reasons-to-use-yaml-files-in-your-machine-
learning-projects-d4c7b9650f27.

[23] Sacolick, I. What is CI/CD? Continuous integration and continuous delivery
explained. InfoWorld.com. May 10 2018. Copyright - Copyright Infoworld Media
Group May 10, 2018; Last updated - 2020-03-30.

[24] Vincent, L. Announcing Tesseract OCR [online]. Google Developers Blog, 2006 [cit.
2019-12-26]. Available at:
http://googlecode.blogspot.com/2006/08/announcing-tesseract-ocr.html.

[25] Yuan, X., Cohen, M. B. and Memon, A. M. GUI Interaction Testing:
Incorporating Event Context. IEEE Transactions on Software Engineering. July
2011, vol. 37, no. 4, p. 559–574. ISSN 2326-3881.

54

https://dogtail.gitlab.io/qecore/doc_basic_automation.html
https://opencv.org/about/
https://people.gnome.org/~parente/pyatspi/doc/
https://www.atlassian.com/continuous-delivery/software-testing/exploratory-testing
https://www.atlassian.com/continuous-delivery/software-testing/exploratory-testing
https://towardsdatascience.com/5-reasons-to-use-yaml-files-in-your-machine-learning-projects-d4c7b9650f27
https://towardsdatascience.com/5-reasons-to-use-yaml-files-in-your-machine-learning-projects-d4c7b9650f27
http://googlecode.blogspot.com/2006/08/announcing-tesseract-ocr.html

[26] Zander, J., Schieferdecker, I. and Mosterman, P. J. Model-Based Testing for
Embedded Systems. CRC Press, 2011. ISBN 9781439818473.

55

Appendix A

Abbreviations

ATK Accessibility Toolkit
AT-SPI Assistive Technology Service Provider Interface
CI Continuous Integration
CD Continuous Delivery
GAIL GNOME Accessibility Implementation Library
GCC GNU Compiler Collection
GCOV GNU Coverage Testing Tool
GNU GNU’s Not Unix
GNOME GNU Network Object Model Environment
GTK The GNOME Toolkit
GUI Graphical user interface
LTSM Long Short Term Memory
RHEL Red Hat Enterprise Linux
pid process identification number
rpm RPM package manager
RRN Recurrent Neural Network
OCR Optical Image Recognition
OpenCV Open Source Computer Vision Library
UI User Interface

56

Appendix B

Setup Instructions and User
Manual

Testing with our test generator requires the following setup:

1. Open a terminal,

2. Copy the contents of the attached medium or clone a git repository by executing
$ git clone https://github.com/mkrajnak/testextractor

3. Based on the underlying Linux distribution (Fedora or RHEL), install the dependen-
cies located in the install folder:
$ cd install && sudo dnf -y install ./*.rpm

4. Enable the AT-SPI:
$ gsettings set org.gnome.desktop.interface toolkit-accessibility true

5. Setup Tesseract (requires external software repositories):
$ dnf config-manager –add-repo
https://download.opensuse.org/repositories/home:
/Alexander_Pozdnyakov/CentOS_8/
$ rpm –import https://build.opensuse.org/projects/home:
Alexander_Pozdnyakov/public_key
$ dnf -y install tesseract

6. In the testextractor directory, create a virtual environment and install the Python3
dependencies:
$ python3 -m venv .venv
$ source .venv/bin/activate
$ pip install -r requirements.txt

7. Intruction to use the test generator are shown Listing B.1.

57

1 Usage: testgen.py [OPTIONS]
2
3 Accessibility test generation tool for GTK+ applications
4
5 Options:
6 --app TEXT Name of the application entry in apps.yaml
7 (compulsory)
8 --generate-project-only Generates only the project folder for --app
9 --disable-ocr Disables OCR

10 --shallow Disables the model expansion (test only nodes
11 available after start)
12 --verbose Enables verbose logging
13 --test INTEGER Regenerates only defined test, expected to be used
14 with --shallow
15 --help Show this message and exit.

Listing B.1: output of ./testgen.py --help

58

Appendix C

Test Generator Bug Report

1 ...
2 WARNING:
3 TEST:0 contains CRITICAL:
4
5 (evince:15299): glib-critical **: 02:20:18.264: g_variant_new_string:

assertion ’string != null’ failed
6 Steps to Reproduce:
7 * Start: "evince" via command "evince test_files/gnome-documents-

getting-started.pdf" in session
8 * State: "check box" "Presentation" "showing" is "False"
9 * Action: "click" "Presentation" "check box"

10 ...

Listing C.1: A demonstration of the bug found by our test generator

59

Appendix D

Examples of Generated Test Cases

1 Feature: libreoffice-startcenter tests
2 ...
3 @10_MasterDocument
4 Scenario: libreoffice-startcenter: Master Document
5 * Start: "libreoffice-startcenter" via command "libreoffice --

norestore" in session
6 * Action: "click" "File" "menu"
7 * Action: "click" "New" "menu"
8 * State: "menu item" "Master Document" "showing" is "True"
9 * Action: "click" "Master Document" "menu item"

10 * State: "frame" "Navigator" is shown
11 * OCR: "Navigator" is shown on the screen
12
13 @11_Templates
14 Scenario: libreoffice-startcenter: Templates...
15 * Start: "libreoffice-startcenter" via command "libreoffice --

norestore" in session
16 * Action: "click" "File" "menu"
17 * Action: "click" "New" "menu"
18 * State: "menu item" "Templates..." "showing" is "True"
19 * Action: "click" "Templates..." "menu item"
20 * State: "dialog" "Templates" is shown
21 * OCR: "Templates" is shown on the screen
22
23 @12_Open
24 Scenario: libreoffice-startcenter: Open...
25 * Start: "libreoffice-startcenter" via command "libreoffice --

norestore" in session
26 * Action: "click" "File" "menu"
27 * State: "menu item" "Open..." "showing" is "True"
28 * Action: "click" "Open..." "menu item"
29 * State: "file chooser" "Open" is shown
30 * OCR: "Open" is shown on the screen
31

60

32 @13_OpenRemote
33 Scenario: libreoffice-startcenter: Open Remote...
34 * Start: "libreoffice-startcenter" via command "libreoffice --

norestore" in session
35 * Action: "click" "File" "menu"
36 * State: "menu item" "Open Remote..." "showing" is "True"
37 * Action: "click" "Open Remote..." "menu item"
38 * State: "frame" "Remote Files" is shown
39 * OCR: "Remote Files" is shown on the screen
40 * State: "dialog" "Remote Files" is shown
41 * OCR: "Remote Files" is shown on the screen
42
43 @14_NoDocuments
44 Scenario: libreoffice-startcenter: No Documents
45 * Start: "libreoffice-startcenter" via command "libreoffice --

norestore" in session
46 * Action: "click" "File" "menu"
47 * Action: "click" "Recent Documents" "menu"
48 * State: "menu item" "No Documents" "showing" is "True"
49 * Action: "click" "No Documents" "menu item"
50
51 @15_Letter
52 Scenario: libreoffice-startcenter: Letter...
53 * Start: "libreoffice-startcenter" via command "libreoffice --

norestore" in session
54 * Action: "click" "File" "menu"
55 * Action: "click" "Wizards" "menu"
56 * State: "menu item" "Letter..." "showing" is "True"
57 * Action: "click" "Letter..." "menu item"
58 * State: "dialog" "Letter Wizard" is shown
59 * OCR: "Letter Wizard" is shown on the screen
60
61 @16_Fax
62 Scenario: libreoffice-startcenter: Fax...
63 * Start: "libreoffice-startcenter" via command "libreoffice --

norestore" in session
64 * Action: "click" "File" "menu"
65 * Action: "click" "Wizards" "menu"
66 * State: "menu item" "Fax..." "showing" is "True"
67 * Action: "click" "Fax..." "menu item"
68 * State: "frame" "<Empty>" is shown

Listing D.1: Test cases generated for LibreOffice StartCenter

61

Appendix E

Example of a Generated Project
Environment File

1 #!/usr/bin/env python3
2 import sys
3 import traceback
4 from os import system
5
6 from qecore.sandbox import TestSandbox
7
8 def before_all(ctx):
9 try:

10 ctx.sandbox =TestSandbox("libreoffice-startcenter")
11 ctx.app =ctx.sandbox.get_application("libreoffice-startcenter"
12 , a11y_app_name="soffice"
13 , app_process_name="soffice.bin"
14 , desktop_file_path="/usr/share/applications/libreoffice-startcenter.desktop")
15 except Exception as e:
16 print(f"Environment error: before_all: {e}")
17 traceback.print_exc(file=sys.stdout)
18 sys.exit(1)
19
20 def before_scenario(ctx, scenario):
21 try:
22 system("bash cleanup.sh")
23 # TODO: Add a custom cleanup before runnnig the test
24 ctx.sandbox.before_scenario(ctx, scenario)
25 except Exception as e:
26 print(f"Environment error: before_scenario: {e}")
27 traceback.print_exc(file=sys.stdout)
28 sys.exit(1)
29
30 def after_scenario(ctx, scenario):
31 try:
32 ctx.sandbox.after_scenario(ctx, scenario)
33 except Exception as e:
34 print(f"Environment error: after_scenario: {e}")
35 traceback.print_exc(file=sys.stdout)

Listing E.1: The environment.py file generated by our test generator for LibreOffice
StartCenter

62

Appendix F

Event Flow Graphs

Figure F.1: Initial event flow graph for GNOME Terminal

Figure F.2: Expanded event flow graph for GNOME Terminal

63

Figure F.3: Initial event flow graph after the start of LibreOffice StartCenter

Figure F.4: Final event flow graph of LibreOffice StartCenter

64

Figure F.5: Initial event flow graph obtained after the start of Evince

Figure F.6: Final event flow graph of Evince

65

Figure F.7: Initial event flow graph obtained after the start of Gedit

Figure F.8: Final event flow graph of Gedit

66

Appendix G

Contents of the Attached Medium

/
CI_test_runs – logs from performed CI test runs
coverage – the gcov code coverage reports for 3 of test components
examples – examples of generated test cases for tested components
install – required dependencies
testextractor – source files of our test generator
text – sources of this thesis
xkrajn02.pdf – final version of this thesis

67

	Introduction
	Testing Graphical User Interfaces
	Random Input Testing
	Manual Testing
	Test Automation and CI/CD
	Black Box Testing
	White Box Testing
	Exploratory testing
	Record/Replay and Scripting Tools
	Random-Walk Tools
	Solutions Based on Image Recognition
	Model-Based Testing
	Existing Solutions

	AT-SPI Architecture
	GNOME Accessibility Implementation Library (GAIL)
	Libraries and Tools
	Library Pyatspi
	Dogtail
	Accerciser

	Covering Limitations of Accessibility and Verification
	OpenCV and Image Matching Techniques
	Optical Character Recognition

	Conclusion

	Design of the Proposed Test Generator
	Model Extraction
	Test Environment
	Test Environment Setup
	Test Generator Configuration
	Flatpak Applications Setup
	Execution and Monitoring of an Application

	Generating an Environment for the Test Execution
	Test Case Generation
	Derivation of Event Sequences
	Execution of Event Sequences
	Model Expansion

	OCR Integration
	Screenshot Preprocessing and Optimizations
	Implemented Steps

	Generated Test Cases

	Testing and Results
	Coverage Evaluation
	GNOME Terminal
	GNOME Help
	LibreOffice StartCenter
	Evince
	Gedit

	Evaluation and Future Work
	Code Coverage Evaluation
	Comparison with Existing Solutions and Test Suites
	Recommended Usage and Future Work

	Conclusion
	Bibliography
	Abbreviations
	Setup Instructions and User Manual
	Test Generator Bug Report
	Examples of Generated Test Cases
	Example of a Generated Project Environment File
	Event Flow Graphs
	Contents of the Attached Medium

