
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ
BRNO UNIVERSITY OF TECHNOLOGY

FAKULTA INFORMAČNÍCH TECHNOLOGIÍ
ÚSTAV INTELIGENTNÍCH SYSTÉMŮ
FACULTY OF INFORMATION TECHNOLOGY
DEPARTMENT OF INTELLIGENT SYSTEMS

CREATION OF SPARSE ADAPTER FOR
THE CODE LISTENER INFRASTRUCTURE

DIPLOMOVÁ PRÁCE
MASTER’S THESIS

AUTOR PRÁCE Bc. JAN POKORNÝ
AUTHOR

BRNO 2012

VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ
BRNO UNIVERSITY OF TECHNOLOGY

FAKULTA INFORMAČNÍCH TECHNOLOGIÍ
FACULTY OF INFORMATION TECHNOLOGY

VYTVOŘENÍ SPARSE ADAPTÉRU PRO
INFRASTRUKTURU CODE LISTENER
CREATION OF SPARSE ADAPTER FOR THE CODE LISTENER INFRASTRUCTURE

DIPLOMOVÁ PRÁCE
MASTER’S THESIS

AUTOR PRÁCE Bc. JAN POKORNÝ
AUTHOR

VEDOUCÍ PRÁCE Ing. KAMIL DUDKA
SUPERVISOR

BRNO 2012

Abstrakt
Kontrola programu na výskyt chyb má nezpochybnitelný význam, obzvlášť ta založená
na formálních metodách. VeriFIT na FIT VUT k tomu používá vlastní infrastrukturu Code
Listener (CL) modulárně propojující tzv. přední stranu, typicky adaptér převádějící kód
zprostředkovaný jiným způsobem (jiným tzv. parserem), a zadní stranu typicky tvořenou
koncovým analyzátorem.

Cílem práce je poskytnout to prvé jako kompaktní alternativu k existujícímu zásuv-
nému modulu pro překladač G. Náš adaptér používá linearizovaný kód, jak jej zpro-
středkuje knihovna sparse pro statickou analýzu programů v C. Experimenty s jedním z
hlavních analyzátorů v rámci CL, nástrojem Predator, a příslušnou sadou testů, dosahuje
náš produkt – program clsp – úspěšnosti zhruba v 75% případů oproti onomu modulu pro
GCC. Další zlepšení jsou předmětem budoucího vývoje.

Abstract
Program checking is indisputably important, especially if originating in formal methods.
VeriFIT at FIT BUT uses custom Code Listener (CL) infrastructure modularly interconnecting
the front-end, typically a code parser adapter, and the back-end, typically an analyser.

Our aim is to offer a former as a compact alternative to existing G compiler plug-in.
This adapter uses linearized code mediated by sparse library for static analysis of programs
in C. According to the experiments with one of the main CL analysers, Predator tool and its
tests suite, our product – clsp program – is successful successful in roughly 75% of cases in
comparison with the GCC plug-in. Further improvements are expected.

Klíčová slova
analýza programu, statická analýza, knihovna sparse, infrastruktura Code Listener, lin-
earizovaný kód,

Keywords
program analysis, static analysis, sparse library, Code Listener infrastructure, linearized
code,

Citace
Jan Pokorný: Creation of Sparse Adapter for the Code Listener Infrastructure, diplomová
práce, Brno, FIT VUT v Brně, 2012

Rozšířený abstrakt
Kontrola správnosti programů, či úžeji formální verifikace, představuje důležité odvětví in-
formatiky pro svůj přínos na poli informatiky aplikované, kde spolehlivost či bezpečnost
programů může mít zásadní roli. Jejich statická analýza, jedna z forem těchto kontrol, se
obecně skládá ze tří částí: převedení zápisu programu do interní reprezentace kódu, samot-
ná analýza nad těmito daty a zprostředkování výsledků. VeriFIT, Výzkumná skupina au-
tomatizované analýzy a verifikace na FIT VUT, pro oddělení jádra analýzy využívá vlastní
infrastrukturu Code Listener (CL). Ta modulárně propojuje svou tzv. „přední stranu“ (front-
end) tvořenou producentem mezikódu (typicky adaptér z jeho původní formy, ne nutně
až z úrovně textového zápisu) v podobě, jak ji CL definuje, a „zadní stranu“ (back-end),
kterou představují jeho konzumenti, především koncové analyzátory (obecně tzv. listen-
ery). Tito konzumenti se mohou řetězit (např. normalizace před analyzátorem), případně
stát paralelně. Díky této architektuře lze zapojit libovolný zdroj produkující očekávaný
mezikód, tvořený programem, který rovněž zprostředkuje celou analýzu uživateli, před
libovolný analyzátor. Analyzovatelnou doménu stejně jako šíři analyzovaných vlastností
tak lze v unifikované podobě rozšiřovat formou znovupoužitelných komponent.

V současné době je k dispozici jediný takový adaptér, realizovaný jako zásuvný mod-
ul pro překladač G a orientovaný primárně na jazyk C. Přes svou univerzalitu a snad-
nou integraci do stávajících SW projektů využívajících tento překladač může být provádění
samotných analýz jeho prostřednictvím poněkud těžkopádné. Naším cílem je poskytnout
odlehčenou alternativu ve formě adaptéru založeného na knihovně sparse, která obstará
syntaktický rozklad programů zapsaných v C. Uživateli pak bezprostřední výstup zpřís-
tupní ve strukturované podobě reprezentující abstraktní syntaktický strom (obecně s větvením
symbol–příkaz–výraz, které z jazyka C vychází). Úroveň sémantických detailů (typová
informace), či, v případě definic funkcí, úroveň zpracování až na plně lineární kód (vyj-
ma nezbytného členění toku řízení) odrážející sémantický význam originálu, lze volitelně
prohlubovat poskytnutým rozhraním. Spolu s licenčními podmínkami (Open Software
License v1.1, přechodu na licenci „MIT“) ji to tak činí velmi vhodnou pro náš účel.

Výsledný adaptér je realizován jako program clsp a představuje spolu s dalším pro-
gramovým vybavením (soubory nutné pro sestavení programu vyjma explicitně zmíněných
závislosti, sada automatizovaných testů a další podpůrné skripty) realizační část této práce.
Dle požadavků umožňuje používat analyzátory Predator a Forester nezávisle na překladači
G, přičemž však zůstává plně kompatibilní s jejich sestavením právě coby kompletních
zásuvných modulů pro překladač. Hlavní výhodou je zjednodušení zacházení s těmito
nástroji a současně eliminace náhodných chyb, které mohou být zaneseny odlišným způ-
sobem sestavení. V souladu s infrastrukturou CL je program clsp uvolněn pod licencí
GPLv3 a za autoritativní se v době psaní této práce má repozitář jejího autora na adrese
<https://github.com/jpokorny/thesis/tree/master/clsp>.

Textová část ve formě následujícího obsahu nejprve zasadí práci do širšího kontextu a
stručně seznámí s přístupy k samočinné kontrole programů. Následně je prostor věnován
oběma bezprostředním styčným stranám – z větší části knihovně sparse (od obecných fak-
tů po úroveň linearizovaného kódu), dále pak infrastruktuře CL s přesahem ke dvěma
stěžejním analyzátorům, zmíněným Predator a Forester. Ty jsou pak také využívány pro
vyhodnocení použitelnosti námi implementovaného adaptéru clsp.

Jádro představuje kapitola pojednávající o procedurách převádějících reprezentaci pro-
gramu, jak nám ji knihovna sparseposkytuje, na posloupnost instrukcí a pomocných zpráv
předávaných rozhraní CL. Kromě přímočarých konverzí jsou rozebrány také složitější pří-

https://github.com/jpokorny/thesis/tree/master/clsp

pady, vynucené normalizace kódu, apod. Navazující kapitola uvádí některá okrajová tech-
nická řešení a poukazuje na vybrané implementační detaily. Před závěrečným shrnutím je
pozornost věnována experimentálním výsledkům a porovnání s výsledky dosahovanými
využitím zásuvného modulu pro G. Z těchto experimentů vyplývá, že v případě nástro-
je Predator clsp obstojí zhruba u 75% případů. Paměťové a časové nároky analyzátorů s
oběma adaptéry jsou srovnatelné a pokud se znatelněji rozcházely, většinou ve prospěch
clsp. Pravděpodobně to je dáno optimalizacemi, které sparse implicitně provádí.

Nutno dodat, že clsp k datu odevzdání představuje nástroj sice použitelný, nicméně
má-li být aktivně používán v rámci skupiny VeriFIT, popř. mimo ni, čeká jej další vývoj,
přinejmenším odchytávání chyb u okrajových případů. Ty se mohou vyskytnout poměrně
snadno, jelikož zpracování kódu poměrně komplexního jazyka, jakým C je, dokáže navodit
velké množství různých stavů, počítaje v to i interní závislosti zpracovávajících funkcí. S
tím také souvisí fakt, že jakkoli malá změna v programech typu překladač má často nelokál-
ní dopad, kdy zaráz ovlivní velké množství cest programem. Paralelně s tím se nedá čekat,
že by kterákoli z obou dotčených stran, sparse i CL, byla zakonzerovaná bez dalších změn.

Creation of Sparse Adapter for
the Code Listener Infrastructure

Prohlášení
Prohlašuji, že jsem tuto práci vypracoval samostatně pod vedením pana Ing. Kamila Dudky.
Uvedl jsem všechny zdroje, ze kterých jsem čerpal.

. .
Jan Pokorný

23. května 2012

© Jan Pokorný, 2012.
Tato práce vznikla jako školní dílo na Vysokém učení technickém v Brně, Fakultě informačních tech-
nologií. Práce je chráněna autorským zákonem a její užití bez udělení oprávnění autorem je nezákon-
né, s výjimkou zákonem definovaných případů.

Contents

List of Figures iii

List of Tables iv

List of Acronyms v

1 Introduction 1
1.1 Motivation . 1
1.2 Objective and Scope . 2
1.3 Outline . 3

2 Automated Approaches Towards Program Safety Checking 4
2.1 Program Analysis as Program Checks . 4
2.2 Basic Classification of Program Analyses . 5
2.3 Fundamentals . 5
2.4 Dynamic Analysis Approach . 7
2.5 Static Analysis Approach . 8
2.6 Examples of Practical Tools . 10
2.7 Comparison of Dynamic and Static Approach 12

3 sparse: static analysis tool and library 14
3.1 Overview of sparse . 14
3.2 Internal Reprezentation of Code Throughout the Phases 18
3.3 Memory Models and Intermediate Instruction Set 25

4 Code Listener, Predator and Forester 31
4.1 Code Listener Infrastructure . 31
4.2 Predator Analyser . 33
4.3 Forester Analyser . 34

5 Adapter approaches and considerations 36
5.1 Types . 36
5.2 Operands . 37
5.3 Instructions . 38
5.4 Missing Information about Object Traversal 40

6 Implementation 42
6.1 Architecture . 42
6.2 Streams . 44

i

6.3 Debug Mode . 44
6.4 Internal Testsuite . 45

7 Conclusion 46
7.1 Program Checking Overview Study . 46
7.2 Implementation of the Adapter . 46
7.3 Outlook . 48

A Bibliography 49

B List of Appendices 58

List of Figures

1.1 Conceptual schema of the adapter as mediator between sparse library, Code
Listener infrastructure and the user. 3

3.1 Overview of sparse library in the context of use; each of x.c, y.c and z.c is
proceeded separately. 17

3.2 Example code (listing 3.2) in a form of abstract syntax tree (AST) after parsing
as displayed by test-inspect. 23

4.1 Overview of Code Listener infrastructure incl. our sparse adapter (adapted
from [101]). 32

6.1 Schema of clsp adapter and its two main layers (the middle one reprezents
the initialization and finalization). 42

iii

List of Tables

2.1 False positive and false negative errors araising from bad checker’s decision
about program’s safety property (adapted from [17]). 7

2.2 Comparison of dynamic and static approach towards program safety checking. 13

5.1 Mapping basic C types from sparse singletons (of type struct symbol/symbol.h)
to respective enum cl_type_e (code_listener.h) and adapter-local single-
tons (of type struct cl_type/code_listener.h). 37

5.2 Mapping sparse instructions to respective enum cl_insn_e and further to
enum cl_unop_e/enum cl_binop_e (code_listener.h) if applicable. 39

iv

List of Acronyms

3AC three-address code . 25
API application programming interface
AST abstract syntax tree . 15
BB basic block
CFG control flow graph. 8
CL Code Listener . 1
CSE common subexpression elimination . 20
FIT BUT Faculty of Information Technology at Brno University of Technology1 1
FOSS free and open-source software
Gcc GNU Compiler Collection2

GPL GNU General Public License
GPLv3 GNU General Public License, version 33

HW hardware
IDE integrated development environment
IR immediate representation (of computer program/its code).16
JIT just-in-time compilation . 8
LHS left-hand side . 28
OOP object-oriented programming programming paradigm
OSS open-source software . 5
PC personal computer
RHS right-hand side . 28
SSA static single assignment form (a form of immediate representation (IR)) 20
SW software . 3
VeriFIT Automated Analysis and Verification Research Group4 (at FIT BUT) 1

1<http://www.fit.vutbr.cz/>
2<http://gcc.gnu.org/>, formerly “GNU C Compiler”
3<http://www.gnu.org/licenses/gpl-3.0.html>
4<http://www.fit.vutbr.cz/research/groups/verifit/>

v

http://www.fit.vutbr.cz/
http://gcc.gnu.org/
http://www.gnu.org/licenses/gpl-3.0.html
http://www.fit.vutbr.cz/research/groups/verifit/

Chapter 1

Introduction

Initially, we set up the context of the work getting down to its motivation, objectives and
scope backed by a schematic overview. Then a structure of the thesis is outlined.
Our typographical conventions are simple:

• Important term, name of the technology, etc., is emphasised upon first use.

• Likewise upon first use, an abbreviation that may not be widely recognised is stated
in full. See also List of Acronyms on p. v.

1.1 Motivation

Today, presence of computer systems is ubiquitous ranging from simple things of daily use
such as a coffee maker, which can be “just” out of order in the worst case, to highly critical
systems. These are the ones used in automotive or airplane industry, medical equipment,
or generally anywhere if lives or valuable resources are at risk in case of malfunction.

Putting hardware failures and other external disasters aside now, the only fragile part
left is ultimately a computer program having the responsibility for system’s behaviour.
Even if this program is a music player a user is running on her PC (kind of said coffee
maker equivalent), the crashes are very undesirable and should rather be prevented. But as
computers are deterministic machines in principle1 and the whole program life-cycle, from
its normalized notation imposed by the programming language used to its final execution
on the same or another machine in the form of machine language instructions (or bytecode),
goes through various deterministic processes preserving semantic details, we can infer the
behavioural properties can be analyzed prior its run-time. This is promising as the errors to
occur during a proper execution can be detected early and the possible accident prevented.

This is exactly the subject of static analysis, one of the approaches to program check-
ing or, when done more rigorously, discipline of a formal verification2. This branch of
computer science attracts many research efforts, which is for apparent reasons as suggest-
ed above. Faculty of Information Technology at Brno University of Technology (FIT BUT)
also participates in this area with research conducted by Automated Analysis and Verifi-
cation Research Group (VeriFIT). As far as static analysis is concerned, their endeavour
to split the logic of analyzers from rather low-level means of gathering normalized nota-
tion of code resulted in Code Listener (CL) infrastructure. For now, we get along with the

1we consider conventional computers only, not a technology in research
2note that there is no strict boundary and the terms are often synonymous

1

notion of a simple API to send or receive code, as seen from code provider and analyzer
standpoints respectively.

The current state of having several analyzers but the only code provider available for use
within the infrastructure leads us finally to our motivation. Implementing an alternative to
the existing G compiler plug-in, whereas the purposed domain of both so-called adapters
are programs in C3, will amongst others:

• provide more light-weight, yet more flexible analysis workflow,

• remove the inherent dependency of CL on G (which cannot be considered a uni-
versal part of common desktop environments, even in the FOSS world,4)

• offer the analyzers a different insight into the same original code and possibly benefit
learn which sort of code is better to proceed with either adapter,

• as an extension of a previous, a more robust analysis solution can be made combin-
ing both analyzers in a way in case of a failure or overly long computation with one
analyzer, the run can be terminated trying the other one,

• on the side of the analyzers, help to find weaknesses in possible overly strong as-
sumptions about what code sequences are valid, which may possibly lead to making
this more restricted yet on the CL API side, and

• possibly help to adjust CL API design (or contribute on possible redesign decissions).

1.2 Objective and Scope

The aim of implementing an adapter for CL infrastructure is tight with the requirement to
use library for static analysis of programs in C language called sparse. This language is
also the implementation one because it fits best between the C interfaces of sparse and CL.

Thus we will first study this library, evaluating it for our purpose. As it is an open
source project actively used by several others (notably a checker of the same name direct-
ly coexisting with this library) and has an responsive maintainer, we should not get into
a dead end if we eventually hit any limitation in our use case. As long as our modification
suggestions are not too invasive, we have a chance of having it applied, without a need to
maintain a parallel version. We will especially be interested in the form of its linearized
code, as this the base material we will be dealing with.

Similarly, we have to explore the other side we are interfacing with, including the two
prime analyzers from the CL suite: Predator and Forester. High-level view of adapter be-
tween these two other components in the context of use is captured in fig. 1.1.

Main part of our effort will be to realize the adapter, which means to find a way how
to map linearized code carrying the semantics along from sparse library on input to its
equivalent passed into CL on the output side. Surely there will be more tasks to get the
final product, but this is the absolute essence. Beside straightforward instruction coversion,
we will have to deal with more complicated cases such as those when non-local character
of a conversion arises. This should be brought into the stage we are getting sensible results
with the test suites coming with each of the analyzer.

3depending on CL, the G plug-in can eventually handle C++ or other G-supported languages
4other matured compilers exist, such as Clang/LLVM <http://clang.llvm.org>

2

http://clang.llvm.org

Figure 1.1: Conceptual schema of the adapter as mediator between sparse library, Code
Listener infrastructure and the user.

Once this is reached, we can start evaluating our tool against the existing G plug-in.
This early feedback from the tests will be valuable for further fine-tuning iterations. Then
we are ready to make a final conclusion about the success of our adapter.

As with many other software (SW) projects, there are many factors that cannot be fore-
seen. But as mentioned, we have a chance of getting required changes up to sparse project,
and also main CL maintainer5 expressed the possibility of reasonable modifications when
unavoidable issues come up on this side. Thus, the baseline is perceived with optimistism.

1.3 Outline

Chapter 2 is dedicated to briefly introduce common approaches to automated program
checking together with some practical widely deployed tools, especially those following
the same direction as the whole CL infrastructure, i.e., being FOSS and oriented on rather
low-level imperative languages like C (which are naturally highly error-prone).

Chapter 3 discusses sparse, particularly from a library perspective. Top-level introduction
progresses down to linearized code level.

Chapter 4 briefly introduces CL infrastructure, its interface we will use and its flagship
analyzers, Predator and Forester.

Chapter 5 presents the approaches to our core task, that is, how we do the non-trivial
conversion between linearized code as provided by sparse into the form required by CL.

Chapter 6 talks about the rest of notable technical solutions incorporated into our adapter
and shortly mentions selected implementation details.

Chapter 7 summarizes the thesis. In retrospect, we cover troublesome moments and how
we coped with them, states the current status and our backlog that did not fit into limited
project constraints, and further suggest future development.

5supervisor of this thesis

3

Chapter 2

Automated Approaches Towards
Program Safety Checking

There’s always one more bug.

(known as “Lubarsky’s Law of
Cybernetic Entomology”)

We could have used the title “(automatic) program analysis (of computer programs)”
but we are to explain why we avoided it and to further specify a narrow scope of our interest
in the terms of program checking.

Next, we present a general program analysis classification, make a short stop to explain
basic principles and terms, and then briefly return to particular categories of analyses. We
also make an overview of common tools representing them. Finally, we attempt to find
common and different attributes of these two complementary approaches.

2.1 Program Analysis as Program Checks

The most general definition of program analysis is an extraction of purpose-specific in-
formation from the software system [1]. Such analysis can be as simple as counting non-
comment lines, sampling other code metrics, or proceeding the in-code comments, through
run-time evaluation of a program’s behaviour to a highly sophisticated proving of its prop-
erties.

As the name of the chapter suggests, we are only interested in program analyses in
the sense of the latter two examples, more specifically analyses ensuring particular prop-
erties of a program regarding bugs (programming errors). We will only consider checks
outside the scope of a common compiler/interpreter as these impose the elementary pro-
gram validity1, and common assertions and other primarily manual tasks are likewise out
of discussion.

For almost any reasonable programming language, there exists a variety of “bug-finding
tools” providing best-effort (best-guess) quantitative results rather than qualified claims
about the program [3]. As we show later (2.3.1), only sound analyses offer such guarantees.

1which makes them another example of program analysers; this base assumption is pointedly captured in
Figure 1 in the Splint manual [2]

4

Both techniques to check programs are especially important in the current trend of
open-source software (OSS) being massively adopted by the industry [4, 5], whereas the
amount of such code effectively prevents from thorough manual review. Further text con-
centrates on such kind of analyses and we refer to tools performing them collectively as
“checkers.” We take a simplest form capable of defect dection, so-called “style-checkers”,
into account, but it is minor for us.

2.2 Basic Classification of Program Analyses

Basic categories of program analyses are following [6–8]:

Dynamic analysis means the code is performed the same way as in the standard execution
and usually under some kind of instrumentation; sometimes dubbed as online analysis.

Static analysis is a technique of reasoning about the code (inherently representing all pos-
sible executions), available statically all-at-once; sometimes dubbed as offline analysis.

Hybrid analysis is a synergy of the two former, used, e.g., in a way that static analysis
serves to optimize run-time analysis, or empowers static analysis whenever possible
switching to dynamic when necessary [9].

A secondary classification cares about the form of code being analysed [7]:

Source analysis operates on an original program notation, hence it may, e.g., report very
exact position of particular language construct, which is usually less precise with bina-
ries (if available at all).

Binary analysis only requires the executable form, so it can be applied even on the pro-
grams with unknown/unpublished source code, but this is not the only use case.

Some other categories specific to static analyses are stated in sec. 2.5.2.

After presenting some basics, we return closer to dynamic and static analysis and then
name example checkers for all three main approaches. With the other division, we state
the class directly when suitable.

2.3 Fundamentals

The ultimate problem the analyses of our interest solve can be formulated as: “Is the program
P (or its single execution in dynamic checking) free of particular class of defects?” This is an
instance of general reasoning about program’s properties as done by general analyses. In
further text, we will consider “defects” in a sense of “particular class of defects.”

This being stated, we determined to investigate solely a safety property of a program.
That is to say, we want to know “bad thing” (defects) will not happen, which is weaker than
liveness property denoting “good thing” will eventually hapen (e.g., the program always
terminates) [10, 11]. Thus, instead of total correctness (the program terminates and the run is
free of defects) we are being left with partial correctness which we would like the analyses to
decide – something which is not always reachable (see 2.5). Liveness analysis is still rather
exclusively a subject of a research [12].

5

Once the analysis terminates (if at all), the answer may be Y or N accompanied with
alarm(s) for the discovered defect (with detailed diagnostics when possible), or exception-
ally U2 .

These results need to be interpreted according to the level of assurance the analysis pro-
vides3 . For this, some theory is explained first, and the interpretation is left for sec. 2.3.3.

2.3.1 Soundness of Analysis

Intuitively, the soundness expresses that anything formally provable must be true [13]. We
will concisely explain it in the analysis context.

Solving said decision problem can be seen as an effort to reject default expectation “P
is defect-free,” that is, to find any occurrence of a defect of particular class. For analysis to
be sound, any real defect occurrence shall not be missed in any possible program4 and if P
is evaluated as defect-free5, it is indeed defect-free, that is, no errors of that class will arise
at run-time. This fulfills the initial notion of soundness and offers very desired guarantee
in context of program checking. Conservative or safe are sometimes used as synonyms to
“sound” [14].

Complementary, if complete analysis evaluates P as defective, it is indeed defective. But
admittedly, this is less suitable for a the program checking purpose due to possible unre-
ported real bugs ought to be found6.

Sound/complete analyses verifies the absence/presence of such class of defects, in a sense
of Valmari’s permissive interpretation of a verification technique [11].

Stronger requirement – analysis both sound and complete – may be impossible as ex-
plained later in the context of static analysis (2.5). As per Valmari, assuredly terminating
complete analysis (without U answer) conforms to a strict interpretation of veri-
fication, which makes it a verification algorithm. As an extension, if the analysis is strictly
sound, that is, not complete due to some conservative approximations [15] – it may indicate
false alarms (safety violations) requiring manual inspection, yet no real defect is missed.

Dynamic analysis is unsound in principle, as it cannot see all executions [16].

2.3.2 False Positive and False Negative

“Default expectation” and “false alarm” might resemble something familiar – statistical
test theory [17].

In this view, analysis starts with null hypothesis H0 supposing P is defect-free and tries
to reject it. Two types of errors may occur if the decision does not match the real state.
Table 2.1 depicts this. As we can see, false alarm corresponds to a false positive (error). In
case a real defect is missed, we get a false negative (error). Both terms are common in this
context [18].

Sound analysis only ensures no false negative may occur, but false positives are pos-
sible. Naturally, less false positives, the more useful the results are. Analysis generating
false negatives is not sound and rather a mere bug-finding technique as specified at the
beginning of the chapter.

2due to, e.g., lack of resources
3and even then some discretion is needed
4we expect the program is otherwise valid, as already declared
5i.e., in a limited sense, proves it
6the most trivial complete checker is a one that marks each program as defect-free

6

Decision vs. Reality H0 is true H0 is false

Error(s) found → reject H0 (N) False positive(s) AccurateType I error

No defect found → accept H0 (Y) Accurate False negative
Type II error

Table 2.1: False positive and false negative errors araising from bad checker’s decision about
program’s safety property (adapted from [17]).

2.3.3 How To Interpret Result of Analysis

Unsound analysis cannot offer any guarantee, result is a biased approximation. In practical
use, these checkers produce good enough results and there are many success stories with
bug-finding techniques (e.g., [19]).

If the analysis is (assuredly) sound, possible outcomes are:
• no error found (Y) – no such error does exist, or
• error(s) found (N) – the reported errors may or may not be real, manual inspection

(according to reported diagnostics) o distinguish false positives is needed.

Conversely, complete analysis can conceal real defects (the outcome is false negative),
but false positive will occur.

2.4 Dynamic Analysis Approach

As anticipated, this kind of program checking requires a direct execution of a program, that
is, the analysis works along its run consisting of a sequence of concrete states, and yields
only specific results that may not generalize. This is a case of tools like profilers, program
tracers or – class of our interest – dynamic checkers.

Dynamic analysis of software originates in traditional HW approach to equipment
monitoring, which “uses the insertion of ‘probes’ or instrumentation into the device being
monitored” [20]. As per cited article, first attempts of automated dynamic checking dates
back to 1967. The initial motivation was to find out the tests coverage. To be noted that
good coverage is a key concern also for dynamic program checking as representative test
cases should cover reasonable amount of the behaviours. The same source discusses also
a technique of providing additional information about the program in a form of annotations,
something which is an optional or required part of some analysis even nowadays7.

Nowadays, the advanced software tools for dynamic analysis often operate directly on
compiled binary files, whereas a run-time of the analysed program underlays a control
of the instrumentation tool. Such kind of indirection or even virtualization is assumed to
be non-intrusive towards the analysed program, and as per Nethercote [7], its semantics
shall not be actively modified8. Therefore, these tools serves primarily to detect the error
and provide a feedback what goes wrong rather then to actively prevent it. This way, the
tool can gain almost complete insights into execution of analysed program, which are of-
ten exported into client modules performing purpose-specific analyses. Freely available
Valgrind, DynamoRIO, and Pin9 are examples of such frameworks and share also other

7cf. annotations used by sparse (ch. 3)
8note a thin border between legitimate dynamic analysis tool and malware
9<http://valgrind.org/>, <http://www.dynamorio.org/>, <http://www.pintool.org/> respectively

7

http://valgrind.org/
http://www.dynamorio.org/
http://www.pintool.org/

common characteristics such as utilization of just-in-time compilation (JIT). Some check-
ers built upon them are shown later in sec. 2.6.1.

2.5 Static Analysis Approach

The origin of general static analysis dates back to construction of first compilers. In 1959, the
need for automated reasoning about the program structure was expressed10 together with
suggestion of its internal reprezentation for this purpose and introduction of dominance in
control flow graph11 [21]. The initial phase of the compilers, parsing the source code12, is
common also to general static analyses, but they fulfill their specific purpose. They usually
operate on the source files, but static binary analyses also exist, especially for checking if it
is safe to execute given binary whatsoever [22].

Compared to dynamic analyses, static ones provide a program evaluation from a glob-
al perspective, but with time–accuracy trade-off. Unfortunately, a major setback prevents
static analyses from accurate summary results – any interesting question about the be-
haviour of a program is undecidable, which stems from Rice’s theorem [15] and was demon-
strated, e.g., on an example of alias analysis13 [23]. In practice, it means the checker may
not terminate or produce inaccurate results.

2.5.1 Sound Static Analyses

Nevertheless, static analyses can be sound and these usually rely on these approaches [24]:

Model checking examines every possible state of the program to determine if the property
(expressed as temporal logic formula) is satisfied, which does not scale well despite
various optimization techniques.

Theorem proving solves the problem formalized in a suitable logic trying to prove the
formula, which however requires manual assitance.

Abstract interpretation overapproximates the program’s behavior with respect to the ex-
amined property, that is, rather than operating in concrete domain burdened by said
drawback, it uses abstract domain in a way that local results, when obtained proper-
ly, apply back to the original program [25]. Its large-scale deployment is attributed to
a crash of Ariane 5 rocket in 1996 due to a software defect demonstrating a need to
formally verify critical SW [26].

These are complemented by other formal systems such as a separation logic , an extension
of Hoare logic [27, 28].

2.5.2 Main Categories of Analyses

Before getting to the main hierarchy, we state the basic levels of preciseness of internal
program structure (typically in a form of control flow graph (CFG)) examination done (or
required) by the analyses. This is called analysis sensitivity and the categories are not strictly
disjoint (especially context sensitivity is directly orthogonal to the others) [15, 29–33]:

10explictly demonstrating a possibility to detect potential programming errors
11more on them in sec. 3.2.3
12object/machine code in case of binary analysis
13see 2.5.2

8

Flow sensitivity means the analysis where a property, when examined at some specif-
ic point of a program, may depend on preceeding or following statements within in-
traprocedural scope. In order words, analysis is sensitive to the order of statements
within the scope and the result may change when this order is permuted.

Path sensitivity, in the same sense as previous, is sensitive to evaluation of predicates at
conditional branches, providing generally different solutions for different paths exam-
ined.

Context sensitivity takes into account the interprocedural dimension and hence the calling
context. Different solutions are computed for different chains of callers, working with
a call history to propagate information back. This information is usually obtained by
a flow sensitive approach.

A brief top-level classification of general static code analyses may look like this:

Data-flow analysis is, in a broad term, a technique determining possible values at particu-
lar points of the program by iterative propagation of this information to the dependant
locations (by means of solving data-flow equations) until a fixpoint is reached [33]. It is
inherently flow-sensitive, though path-sensitive approaches exist [34].

• Classical analyses, such as liveness of variables14 [29].

• Pointer analysis examines sets of objects a variable of pointer type may point to at run-
time (“points-to” relationship), including special cases of alias analysis questioning
possible equality of two pointers and shape analysis operating on the level of heap-
allocated linked data structures such as linked lists [36, 37].

• Taint analysis15 serves to determine propagation of tainted data, that is, values that
could get into program from possibly malicious users [39, 40].

Control-flow analysis keeps track of paths within the program. It is usually inherent for
any other analysis and moreover, it can be used to (conservatively) approximate CFG
in case of interprocedural (see bellow) analysis with higher-order functions [15, 41].

More specialized analyses, such as (control-flow accenting) class hierarchy analysis to im-
prove performance in OOP languages [42].

2.5.3 Scope of Analysis and Incompleteness Concerns

Static analyses can be categorized also according to an isolated unit of their operation [31]:

Local/regional limits the analysis on a single/several interconnected blocks of statements.
Intraprocedural operates on a single function (procedure).
Interprocedural (global) analyses a whole program with respect to the function calls. Be-

comes complex16 when applied to languages with constructs like function pointers [43]
or higher-order functions [44], and procedure-inlining in order to yield intraprocedural
analysis is not always possible [45]. This makes precise interprocedural analysis prov-
ably harder [46].

14a variable is live if it holds a value that may be needed in the future [35]
15taint analysis may be dynamic as well [38]
16control-flow analysis may be needed (see previous categorization) to approximate control flow graph [15]

9

Further step – static analysis reasoning about a whole program + SW environment17 con-
text – is impractical due to a need to specify this whole so-called open system [29]. Sound
analysis has to treat any incomplete or missing information with overapproximation of
possible states (e.g., by supposing arbitrary argument to function call or arbitrary return
value), which may be another source of false positives [14]. General technique to overcome
these limitations, not present in dynamic analyses, is leveraging a composition of predi-
cates (“procedure summaries”,18 [45] further elaborated in a work on bi-abduction [47]).

Interprocedural analysis is desirable for in-depth checking, although, for instance, search
for defect pattern can be limited by the function boundaries.

2.6 Examples of Practical Tools

We follow the same order used for introduction of the analyses: dynamic, then static. Ad-
ditionally, some examples of hybrid checker are also provided.

2.6.1 Dynamic Analysis Tools

Following overview lists some checkers together with so-called dynamic binary instrumen-
tation frameworks behind them [48]:

Memory error detectors focus on problems with memory handling, particularly in regards
to heap allocations.

• Memcheck/Valgrind, often seen as synonymous to Valgrind, is a default and the most
popular of Valgrind’s tools. It can discover faulty memory accesses, using uninitial-
ized memory, heap allocation flaws (e.g., memory leaks), and some other less gener-
al defects [49]. All at the expense of slowing program down approximately by factor
of 20.

• SGCheck/Valgrind, an experimental stack and global array overrun detector, is a com-
plement to Memcheck. Works with a heuristic that a single stack/global array ac-
cessing instruction will likely to access exclusively the same array.

• Dr. Memory/DynamoRIO is a tool similar to Memcheck, whereas it has been recently
claimed to be as twice as fast and to produce less false positives in connection with
C++ data layouts [50].

Thread error detectors aim at errors arising from interleaved run of an multi-threaded
programs.

• Helgrind/Valgrind detects potential deadlocks, data races and POSIX threads API mis-
use.

• DRD/Valgrind detects data races, lock contention and POSIX threads API misuse.

• ThreadSanitizer/Valgrind+Pin is a data race detector outside the native Valgrind suite
and was used for finding races in Chromium browser [51]. Variant for Windows is
based on Pin.

17components, libraries and operating system
18may be similar to the a notion of “contracts” <http://hal.inria.fr/inria-00546657>

10

http://hal.inria.fr/inria-00546657

Attack detectors, despite being on the border of our interest, may deserve being stated
here19 .

• TaintCheck/Valgrind is designed to performedi taint analysis at run-time [38]. It is not
publicly available, however some recent alternatives exist, such as Taintgrind20.

2.6.2 Examples of Static Analysis Tools

As concluded by [14], most of commercial static analysis checkers are not sound. The ex-
ceptions are, e.g., MathWorks Polyspace [52] and Monoidics INFER [53], but as pointed
out by [54], there are some controversial aspects in this area. We will limit the overview to
some FOSS examples similarly as we did with dynamic ones.

A few of the following projects are especially important to us (mark in bold) and for the
same reason we include infrastructures making easier to build such analysers:
Frameworks for static analyses facilitate creation of new analysers.

• Many FOSS compilers (or their cores) are modular systems (infrastructures) allowing
for custom analyses, such as G [55], LLVM [56] or Rose [57].

• Frama-C is a modular framework for C code analyses written in OCaml (and built on
top of CIL [58] that could be stated here on its own [59]) and available with a few
basic plug-ins, some of which are designed for verification (e.g., Value analysis tool
uses abstract interpretation) [60].

• Saturn brings some new ideas such as each function being analysed separately relying
on procedure summaries (2.5.3) and the analyses being defined in a logic program-
ming language [61]. As Frama-C, it utilizes CIL.

• S is a modular framework for finding bugs in C/C++ programs on static anal-
ysis basis [62]. One of the internal checkers, AutomatonChecker, allows modelling
properties or patterns to be detected.

• Code Listener is introduced in chapter 4.

Defect pattern oriented checkers is the most common category of checkers21.

• Splint22 is a modern version of a pioneering tool in this area called Lint that was
focused on anomalies in C code [64]. Splint is similar in the regard but also focuses
on security vulnerabilities and includes more exhaustive checks that in turn requires
code annotations [2]. Internal checks can be extended with custom ones.

• Cppcheck targets C/C++ programs with a large set of built-in rules that in many cases
overlaps with Splint but also targets specific technologies (STL, Boost library) and
new ones can be added as regular expressions or C++ methods [65].

• Compass is a sample analyser in Rose infrastructure. Checks C/C++/Fortran code
and is similar to previous two [66]. Additional checker enforcing CERT C Secure Cod-
ing rules exists [67].

19at least, in the light of a summary comparing static and dynamic approaches (2.7)
20<http://www.cl.cam.ac.uk/~wmk26/taintgrind/>
21we can refer interested reader to a detailed study [63]
22Specification Lint/Secure Programming Lint

11

http://www.cl.cam.ac.uk/~wmk26/taintgrind/

Checkers based on formal methods usually produce sound results. Some others are listed
as hybrid analysis examples (2.6.3).
• B23 is an example of a model checker. It can verify temporal safety properties of

C programs [68]. The simplest example is a reachability of the state/label explicitly
marked in the code in which BLAST is able to produce an example of program’s input
to reach it if any such exists [69].

• c-semantics is an executable formal semantics of C capable of discovering undefined
behaviour contained in a C program – something usually not thoroughly covered by
other checkers, yet dangerous [70].

• Predator and Forester have dedicated space in the chapter about CL as they take part
in this infrastructure (4.2 and 4.3 respectively).

Purpose-specific checkers are dedicated to particular task(s) not matching mainstream use
cases.
• cpychecker/GCC Python Plugin is an example of G plug-in. It can be used to check the

C source of CPython extension modules for common coding errors such as incorrect
object references handling [71].

• S24 is an example of Frama-C plug-in and also of a taint analysis [40] (2.5.2).

• sparse, primarily a Linux kernel checker, is studied together with underlying library
in the chapter 3.

2.6.3 Examples of Hybrid Analysis Tools

These tools usually come from academic spheres:
• CCured serves to infere that pointers in C programs are type-safe leaving some por-

tion to be checked at run-time by the means of added instrumentation [72]. Was also
successfully combined with BLAST [68].

• DSD-Crasher, tool to analyze Java programs, uses quite an unique dynamic–static–dynamic
method to achieve results without false positives [73].

2.7 Comparison of Dynamic and Static Approach

The properties of the two branches of checkers are compared in table 2.2. We can see, the
two approaches, at least partially, overlaps at the defects they are able to find. This is what
one might expect25 and what promises either way for checking for particular defects.

In fact, the hybrid checking may become a univeral solution offering detailed precise-
ness–time trade-off tuning.

On a general analysis level, this tighter cooperation between the two principially differ-
ent approaches is a subject of research26 and furthermore utilized in the real engineering
tasks [75].

23Berkeley Lazy Abstraction Software verification Tool
24Static Taint Analysis for C
25cf. introductory note about deterministic relation between program (especially its semantics) in its source

form and as an executed binary (1.1)
26e.g., [9] and examples in sec. 2.6.3

12

Point of view Dynamic Static
Applicable at … run-time compile-time

Analysed executions single/set of test cases “all possible” (in an ideal case)
Time to analyse program run + a. overhead (0,∞) (generally slower)

Results
precise (unless sacrificed for approximate and maybe sound
performance or other reasons) (false positives/negatives or
but cannot be generalized f.p./defect absence guarantee)

Some shared generalized classes of covered defects (safety properties they check)
memory e.g., Memcheck e.g., Splint (basic cases)
thread e.g., Helgrind e.g., (extended) B [74]

malicious input e.g., Taintgrind e.g., S

Table 2.2: Comparison of dynamic and static approach towards program safety checking.

13

Chapter 3

sparse: static analysis tool and library

sparse is usually recognized as a Linux kernel checker, but as we show, thanks to a con-
venient separation of rather specific checks from general parsing library of the same name
the checker utilizes (as its prime user), this library is interesting as well. With “sparse” we
refer to a whole project but depending on the context, it may mean specifically the program
or the library (we state it properly when it would be ambigous).

At first, we shortly look at its origin up to the current state, and then slowly progress
through various phases of program’s code processing from the level of tokens to linearized
code.

3.1 Overview of sparse

As project’s README puts it [76]:

Sparse is a semantic parser of [C] source files: it’s neither a compiler (although it
could be used as a front-end for one) nor is it a preprocessor (although it contains as
a part of it a preprocessing phase).

We could put more direct quotes from README, FAQ and perhaps Documentation/data-
structures.txt files (being a part of the code repository1 and the distribution packages2,
further summarily “a project tree”), but we rather try to provide compacted knowledge
based partly on them, but much more on our comprehension of the codebase3 we got
when actively working with this library. Admittedly, there is not much more resources that
would provide us with facts and support our, maybe partly imprecise, grasp of sparse. The
exceptions are, apart from those explicitly mentioned, official homepage [77], and pieces
of information scattered in the commit logs and within the mailing list (e.g., [78]).

3.1.1 Origin and License Concerns

According to the commit log, first commit, done by its original author Linus Torvalds, dates
back to March 2003. It expresses a motivation to write a semantic parser more light-weight
than G or at least to try so.

1currently, git://git.kernel.org/pub/scm/devel/sparse/sparse.git
2<http://www.kernel.org/pub/software/devel/sparse/dist/>
3which is another form of program hybrid analysis (as we were also using a debugger, cf. 2.2), but this time

performed by a human

14

http://git.kernel.org/?p=devel/sparse/sparse.git
http://www.kernel.org/pub/software/devel/sparse/dist/

Based on email address used and further mentioned clues, we can see the origins of
sparse are connected with Transmeta, a startup aimed at producing x86-compatible CPUs
with outstandingly low power consumption [79]. A cited entry agree that Linus was an
employee at about that time (last commit on behalf of Transmeta was in June 2003). As
a result, 25 core source files carry “Copyright (C) 2003 Transmeta Corp.” notice around
and these copyrights effectively used to prevent from relicensing sparse from the current
Open Software License v1.1 [80], otherwise very rare nowadays4.

In January 2009, the acquisition of Transmeta by Novafora was finished and a few
months later, Peter Anvin announced their repository was given to him and that Novafo-
ra agrees on relicensing respective copyrights under the MIT license [82]. Currently, there
is an ongoing effort to get the consent from the rest of the contributors to the project to
eventually release sparse under said license [83].

Back to the origin of sparse, specifically its motivation. Probably the most authentic
record that can be found today is a transcription of one of the Torvald’s presentation in 2003
[84]. As he explains, Linux kernel is a challenge for extended static type-checking, which
could provide reasonable safety without additional run-time overhead. Compared to the
approach taken by Stanford checker, he proposes direct annotations as an added attribute to
the data types, which sparse can recognize and use within the analysis. A notable example
of that is distinguishing pointers to user and kernel space.

Another reasons behind sparse can be deduced from FAQfile, which has a subtitle “Why
sparse?” It complains that G explicitly resists to open its front-end for other uses such
as the custom analysis the sparse checker performs (see also, e.g., [85]). To be noted that
these restrictions have been partly relaxed only very recently and this finally allowed for
a plug-in architecture [86].

In contrast with such restrictions of G of that time, sparse tried to be as “free” as
possible, which was reflected by the mentioned non-GPL copyleft license and by explicit
separation of the parsing library suggesting to be used as an alternative to G, even in
possibly “closed” projects.

3.1.2 sparse as Library

We now focus on the base sparse functionality, that is, on the library used to parse C pro-
grams. It represents a generic front-end that can be utilized by programs finishing the code
processing with a custom back-end (such sparse checker).

The parsing procedure was written from the ground up without a use of generators
simplifying construction of compilers, such as lex and yacc5. We pay more attention to
the phases of parsing in sec. 3.2, and for now, we rather look at it from a user’s standpoint.

As per README, sparse understands quite a complete subset of “extended C” that is G
able to parse, however it intentionally does not support some pre-ANSI features such as
K&R syntax for function declarations6, undeclared functions or automatic integer types.

Ease of use is one of the aim of sparse library. As README states, there is no extra con-
figuration and no callback schema. Just a few functions to build the per-file abstract syntax
tree (AST), that is tree representation of the abstract syntatic structure [87], in the memory
and perhaps manipulate it further. As we can see in listing 3.1, only two calls to sparse

4e.g., it is incompatible with Debian Free Software Guidelines [81]
5in README, Torvalds explains: [the result of using them] “tends to end up just having to fight the assump-

tions the tools make”
6this however, seems to be partially supported (see parse.c)

15

API are needed to get access to all the global symbols reprezenting AST for a particular
file.

1 #include ”sparse/lib.h”
2 /* ... */
3

4 struct string_list *filelist = NULL;
5 char *file;
6

7 action(sparse_initialize(argc , argv , filelist));
8

9 FOR_EACH_PTR_NOTAG(filelist , file) {
10 action(sparse(file));
11 } END_FOR_EACH_PTR_NOTAG(file);

Listing 3.1: Basic use of sparse library, where action is a function operating on a list of
global symbols (based on [76]).

Each file is parsed at once, and upon this event, a user is given a chance to perform partic-
ular analysis. This iterative approach file-by-file is common with sparse, although some
back-ends prefer to collect knowledge of all the files first.

We can also see that the only configuration as well as specification of files to parse is
passed as a vector of arguments, which may come directly from arguments to the back-end
as provided by a user. A more complete picture of using sparse library provides fig. 3.1;
some already depicted aspects are described later in this chapter.

On top of the base use (cf. listing 3.1), the demonstrative use case exercises other two
API calls. At first, the global symbol of interest is simplified (e.g., constant expressions eval-
uated) by expand_symbol call, followed by linearize_symbol, which generates a (normal-
ized) control flow graph corresponding to the function’s symbol definition. In other words,
sparse library is also capable of further refinement to the level of function-local entries of
linearized code as we examine in sec. 3.2.

During the parsing performed by the library, any fatal error (e.g., out of memory) means
termination of the whole user program along the message printed to its standard error out-
put (stderr). General errors in code are non-fatal, meaning that run recovers and tries to
proceed the rest. For a library user, it is useful that each occurrence of these sets a global
die_if_error flag, so the error state can be tracked externally. Other types of messages are
a warning (questionable code found) and an information note (provides additional infor-
mation to the previously emitted message). All of these are produced to stderr and follow
similar conventions as used by G.

The described functionality is used primarily by sparse tool, a Linux kernel checker we
introduce in sec. 3.1.3. There are, however, more projects leveraging this library. Starting
within the project tree, we can find these categories of back-ends:
Test printers to output program representation after particular phase of processing (e.g.,

lexing and parsing).
Programs to summarize the program in XML format (c2xml), as an identifiers index (so-

called tags; (ctags) or as a structured list (test-dissect).
Programs offering code insights can plot an intraprocedural CFG (graph) or interactively

inspect AST (test-inspect).
Programs for compilation are either intended to transform AST into assembly language

(compile) or an LLVM immediate representation (IR) (sparse-llvm) that can be then

16

Figure 3.1: Overview of sparse library in the context of use; each of x.c, y.c and z.c is
proceeded separately.

17

compiled in an executable. Neither is currently able to handle more complex programs.
There is also an example to start with when writing actual compiler based on sparse
(example.c).

Outside the project tree, there is not many publicly available back-ends.
A notable exception is Smatch, a static C code checker originally written in Perl but

migrated to sparse around 2006 [88]. It is likewise commonly applied on the kernel and
basically performs a data-flow analysis regarding uninitialized state of variables. The new
checks can be added as C modules [89].

3.1.3 sparse as Kernel Checker

The sparse tool was designed primarily for Linux kernel, and as we explained, the whole
infrastructure provided by sparse library is a kind of side-effect due to historical reasons.
In fact, the library provides some extensions specific to the checker (e.g., support for context
or range checking) but these extensions are not invansive towards other use cases.

As a result, the checker back-end sparse is only a tiny wrapper around the library7

which only adds a few checks, such as8:
Contexts imbalance check determines, e.g., that “lock” has a pairing “unlock” or a function

changes context as described by the annotation [91, 92].
Dangerous casts check prevents from losing bits (incl. a sign).
Amount of memory copied check warns when memory-copying function (memset, memcpy

and Linux-specific copy_to_user and copy_from_user) tries to copy more than 100 kB.

The rest of the checks, such as preventing from specially annotated types to be casted [93] or
specifically in the kernel, from pointers to different address spaces to be mixed, are implicit
part of the library. But as we said, these extensions will not trigger in the common code
without such annotations (or they are here on purpuse).

3.2 Internal Reprezentation of Code Throughout the Phases

In this section, we discuss the progress from a source file to the linearized code. It is partly
captured in fig. 3.1 and we will refer to it. The later phases are more important to us, so
we will pay more attention to them. Except for the first phase, we will demonstrate the
internal reprezentation of the code on an example from listing 3.2.

3.2.1 Tokenize + Preprocess: Tokenstream

The initial phase sparse performs is a lexical analysis resulting in the stream of tokens.
There is a special built-in stream (e.g., where “__CHECKER__” symbolic macro is defined
which can influence the analysed files), which is persistent. In the stated common use,
a temporary token stream is built (tokenize), these tokens are the passed through the in-
ternal preprocessor (preprocess), which supports also advanced constructs like macros
with variable arguments9, and ready for proper parsing. Once the token stream is parsed,
it is no longer needed.

7of the same name, but it is not a name clash (sparse vs. libsparse)
8with a help of the man page [90]
9so-called variadic macros

18

3.2.2 (Semantically) Parse: Abstract Syntax Tree Reprezentation

The main phase of parsing operates on the preprocessed tokens and builds AST for particu-
lar file (external_declaration); the parser’s own pass (parse.c, symbol.c, expression.c)
is followed by initializer, constant expression and lazy type10 evaluation (evaluate.c), and
by a proper inlining of functions marked so (inline.c). Yielded AST is reprezented by
a list of globals entities (“symbols” as we explain) and its progression “symbol – statement
– expression” partly copies the syntax of C.

One will not find anything on “symbol” in the C standard11 [94], as it is a custom ab-
straction for “[a]n identifier with semantic meaning” (symbol.h). This includes keywords,
types, variables, functions, and labels, to name the most important ones.

A symbol is reprezented by struct symbol and its role is distinguished by a type field
being one of the values from enum type (symbol.h). Symbols form a hierarchy, such that
a top-level symbol for a variable or a function is of SYM_NODE kind and carries, amongst oth-
ers, the identifier12; the linked “subsymbol” represents the type of that node(or possibly
a function definition. This “subsymbol”, however, may be composite type referencing an-
other “subsymbol” and this may apply repeatedly until a base C type is eventually reached.
For “int **i”, this chain has a form SYM_NODE (“i”) – SYM_PTR – SYM_PTR – SYM_BASETYPE
(&int_ctype).

We intentionally marked the last item in that chain as a concrete reference because
sparse treats base C types as singletons. This exploitation of (run-time) uniqueness both
avoids duplication (set of C types is known in advance) and conveniently replaces per-
items match test with a simple test for address equality in some cases.

As far as statements and expressions are concerned (reprezented by struct statement
and struct expression from parse.h and expression.h respectively), the C standard [94]
if followed more tightly. We can find, e.g., compound, expression or iteration statements.
Initializers are expressions coupled with the symbols they initialize.

Example of an AST built by this pass (cf. listing 3.2) is presented in fig. 3.2. Amongst
others, it demonstrates the described chains of symbols starting with SYM_NODE.

This reprezentation of program is ready-to-use and the back-ends we called “programs
to summarize/offer code insights” do it. Also compile back-end stops here and does not
use further refined linearized code.

3.2.3 Linearize: Control Flow Graph Reprezentation + Linearize Code

From now own, the user of the library can operate with a symbol/function granularity as
the previous pass yielded a list of externally visible13 symbols. Before linearizing defini-
tions of functions through additional pass provided by sparse library, it is a tradition14 to
expand constant expressions possibly present in AST (expand.c). The linearization is usu-
ally iteratively perfomed on all the symbols from the list, as linearize_symbol function
(linearize.c) can filter function definitions to be linearized, leaving the other symbols

10the type of each symbol has to be explicitly examined by examine_symbol_type function (symbol.h) to
make sure the type information is complete

11at least not in the referenced draft
12as a reference to respective structure, possibly shared due to scoping
13i.e., another compilation unit can reach them (not static/local)
14based on observing the other back-ends

19

untouched (see also fig. 3.1). The compound statement forming a function definition is
broken into a respective CFG.

Per-function CFG, representation of all paths that might be traversed during the exe-
cution, is modelled as a directed graph as usual [95]. As we can in fig. 3.1, its vertices are
of two types (both reprezented by structures in linearize.h):

Entry point (depicted as ep) is, as the name suggests, a root of the whole CFG, where
the control flow of respective function begins (upon being called). Because of this, its
reprezentation – struct entrypoint – constitutes a return value of linearize_symbol,
so effectively a whole CFG is being returned. That is to say, this structure contains a list
of basic blocks forming the rest of CFG (its bbs field). Alerted reader may see a conflict
between linear list of basic blocks and non-linear CFG structure as shown in fig. 3.1.
This list only forms a convenient (and practical) projection of the original graph, which
is implicitly preserved as each basic block carries the information about the “jump”
edge on its own (the figure illustrates this as well).

Basic block (depicted as bbX and further abbreviated BB) is then a real building block of
CFG and sparse reprezents it as struct basic_block. It is formed by a sequence of
instructions (its insns field) with a linear control flow. Last instruction is an exception
from this rule as it always does a control transfer. This transfer can be either simple (jump
to another BB similar to goto in C, e.g., bb2 → bb4), branching (e.g., bb1 → {bb2, bb3}),
or it may be the termination point of the function (return in C, e.g., end of bb4). In this
view, a call of another function is not considered a control transfer as it is a separated
unit of computation15 that eventually returns the control back to the caller, which then
continues from the position the call was performed. In another words, a call may occur
at arbitrary position within BB except for the last one, which is reserved for a control
transfer of the mentioned types. Details of linearized code, especially the instruction
set, are studied in 3.3.

Intuitively, the process of linearization is a transformation of symbols, statements and
expressions spread through AST from a previous parsing into the CFG described above. In
fact, sparse is similar to commodity compilers in a way that it performs some optimizations
as well. This includes elimination of unreachable code, CFG simplification (e.g., when
depending on a constant) and data-flow analyses such as variable liveness and common
subexpression elimination (CSE)16.

Most of these optimizations work on intra-BB basis taking a graph dominance property
into account. In sparse CFG, bbA dominates bbB if every path from the entry point ep to
bbB must go through bbA, which is called a dominator of bbB [97].

The optimizations are performed repeatedly until a fixpoint is reached, characteristic
of data-flow analyses (2.5.2).

The linearization transforms the expressions (operands of generated instructions) in
a way that each intermediate result is associated with a new register (see further) and also
local variables are reprezented by a class such registers. Hence, it effectively produces the
code in static single assignment form (SSA) form, that is, a code reprezentation such that
each variable is assigned exactly once [98]. This the only canonic property we can recognize

15indeed, its side-effects may influence the control flow of the caller, but not directly
16utilizing the fact the instances of identical expressions may be computed just once [96]

20

– for instance, it is not strictly a three-address code17 as, e.g., switch construct is represented
by instruction grouping all its cases, although it is very similar.

The introduced notion of registers is generalized by so-called pseudos18 reprezented as
struct pseudo (linearize.h) but commonly used as pseudo_t – typedef’d pointer to them
(lib.h). They may stand for:

Proper registers (PSEUDO_REG) are unique artificial memory storages in an abstracted mem-
ory representing a space dimension of the program. Special non-artificial kind of reg-
isters are function arguments used within its body (PSEUDO_ARG). Another special kind
are Φ-pseudos, registers exclusively used as operands to Φ-functions as in SSA theory
(OP_PHI instruction in sparse), that is, used when several paths within CFG are merged
at a particular BB where each source BB contributes with its own version of variable(s)
that are virtually merged as the only instance by this destination BB19. These only orig-
inate from assignment of other pseudos by a dedicated instruction (OP_PHISOURCE).
When are talking about “registers” further in the text, we have this class of pseudos
in mind.

Symbols (PSEUDO_SYM) refer directly to the externally visible variables or functions which
have their unique predestined memory storage (possibly shared by more compilation
units). Thus, these variables are the only that can be assigned repeatedly, but only by
OP_STORE instruction (an exception from said SSA form as we show in sec. 3.3.2).

Immediate values (PSEUDO_VAL) represent immediate (constant) integral values as operands
within instructions. Similarly, there is a special further unstructured reprezentation for
void as present in C (PSEUDO_VOID).

From a back-end’s standpoint, it is important that initializers of local variables, which are
represented as (named) registers rather than symbols, are directly linearized into the in-
struction stream within the respective BB20. This is opposed to initializers of global vari-
ables that cannot be linearized as they are not local to a set of BBs, but rather reachable
globally.

The example of the linearized code incl. OP_PHISOURCE and OP_PHI instructions can
be found in listing 3.3. One can note the # call instruction meaning that a function was
inlined at its place.

17its statements has a general form: result := operand1operatoroperand2
18the foundation paper calls them pseudoassignments
19more on how sparse models Φ-functions provides [99]
20apparently, before they are used

21

1 struct s {
2 int x;
3 };
4

5 extern struct s s1;
6 struct s s1 = {
7 .x = 42,
8 };
9

10 static inline int neg(int a)
11 {
12 return -a;
13 }

14

15

16 int main(void)
17 {
18 if (s1.x < 0)
19 return neg(s1.x);
20 else
21 return 0;
22 }

Listing 3.2: Example code to demonstrate
internal reprezentation of code throughout
the phases.

1 main:
2 .L0xf1:
3 <entry -point >
4 load .32 %r1 <- 0[s1]
5 setlt .32 %r2 <- %r1, $0
6 br %r2, .L0xf2 , .L1
7

8 .L0xf2:
9 neg.32 %r5 <- %r1

10 # call %r5 <- neg , %r1
11 phisrc .32 %phi2(return) <- %r5
12 br .L0xb1
13

14 .L1:
15 phisrc .32 %phi3(return) <- $0
16 br .L0xb1
17

18 .L0xb1:
19 phi.32 %r7 <- %phi2(return), %phi3(return)
20 ret.32 %r7

Listing 3.3: Example code (listing 3.2) in a form of per-function CFG with SSA after (parsing
+) linearization as output by test-linearize (labels simplified).

22

Figure 3.2: Example code (listing 3.2) in a form of AST after parsing as displayed by test-
inspect.

23

1 main:
2 .L0xf1:
3 <entry -point >
4 load .32 %r1 <- 0[s1]
5 setlt .32 %r2 <- %r1, $0
6 br %r2, .L0xf2 , .L1
7

8 .L0xf2:
9 neg.32 %r5 <- %r1

10 # call %r5 <- neg , %r1
11 copy .32 %r8 <- %r5
12 br .L0xb1
13

14 .L1:
15 copy .32 %r8 <- $0
16 br .L0xb1
17

18 .L0xb1:
19 copy .32 %r7 <- %r8
20 ret.32 %r7

Listing 3.4: Example code (listing 3.2) in a form of per-function CFG after (parsing + lin-
earization +) transformation from SSA as output by test-unssa (labels simplified).

24

3.2.4 Additional Passes

In addition to the main passes sparse mentioned so far, sparse also contains some rather
convenient ones, which all operate on per-function CFGs as yielded by linearization pass:

“Storage” pass (storage.c) is helpful when one needs to determine concrete allocations
(e.g., stack and architecture-specific registers) instead of the unspecified abstract mem-
ory we talked about (sec. 3.2.3). Its prime purpose is to ease writing real compilers
based on sparse.

UnSSA pass offers transformation of rather compiler-oriented SSA form into its equivalent
without any sign of a Φ-function. To achieve this, it uses two passes and OP_PHI instruc-
tion (performing said virtual merge of alternatives) is replaced by OP_COPYwhich is feed
by another OP_COPY that was previously OP_PHISOURCE. The register used between these
two instructions is effectively assigned multiple times (particularly because one OP_PHI
was feeded by more OP_PHISOURCE instructions). This breaks SSA form, but on the other
hand, is easier to handle at some use cases as the respective dependencies are implictly
solved.

How unSSA pass works in practice is demonstrated in listing 3.4 – it is especially apparent
when compared to a previous CFG reprezentation in listing 3.3.

3.3 Memory Models and Intermediate Instruction Set

Now, we look at the atoms of CFG as produced by sparse – intermediate instructions.
They are modelled as struct instruction (linearize.h). We will not enumerate the
whole instruction set21 but rather aim our interest at their classes with particular focus on
memory handling ones. We will see that the intermediate instruction set indeed has very
close to three-address code (3AC).

But first, we will introduce memory models used by sparse. Despite the fact they may
be intuitively recognized, for better comprehension of our further commentary, it is more
appropriate to distinguish the two models. Also associating them with clear terms22 ease
further discussion. Especially one of these models is important to us, and the major place
is dedicated to the associated instructions. Next, we briefly state some other categories.

3.3.1 Memory Models: Register Storage and Addressable Storage

Every computational model needs some kind of memory to reprezent, e.g., the state, inter-
mediate results, etc. The same holds for IR of programs, and linearized code as generated
by sparse is not an exception.

In a similar manner to how C distinguishes local and global variables, sparse distin-
guishes abstract memory for function-local registers (reprezented by pseudos of PSEU-
DO_REG kind) and for symbol-like variables (i.e., global-scoped, either static or external;
reprezented by pseudos of PSEUDO_SYM kind; see sec. 3.2.3).

The first memory abstraction – we will call it register storage – is pretty straightforward
in a way how it is manipulated. An instruction producing result (e.g., a binary operation)
simply uses as input operands registers allocated so far (or pseudos of other kinds) and

21reader is kindly referred to the stated header file
22they are chosen intuitively as we are not aware about any prevalent term

25

produces a new register as the output operand. This copies the philosophy of SSA form.
Also the register storage is quite transient because registers represent only a (progress of)
state within the function and can only be shared by passing them into another function
as arguments. If the common instructions23 ever touch pseudo of PSEUDO_SYM kind, it is
always used as a reference to the underlying value (i.e., the address of respective global
variable or possibly a function), not as the value itself.

On the contrary, the second memory abstraction, storage of symbol-like variables, is
modelled as addressable. Furthermore, it is only accessible through an address of some
kind, which can be also refined using an offset displacement. This particular storage will be
referred to as addressable storage and we will be using “symbols” as a short term for “symbol-
like variables” (PSEUDO_SYM pseudos), leaving the general meaning we described earlier (or
more specifically, we will consider only a subset of general symbols, cf. sec. 3.2.2). Within
the run-time, addressable storage is a persistent one as it preserves the state regardless of
the current control flow. Only two instructions are privileged to access it directly: OP_LOAD
for read-access and OP_STORE for write-access. This model is further explained along their
description (sec. 3.3.2).

3.3.2 Instructions Using the Addressable Storage: OP_LOAD and OP_STORE

In the considered model of addressable storage, each symbol has its unique abstract ad-
dress that can be further combined with a relative offset (e.g., to visit particular nested item
in case of composite objects). This, e.g., means that to assign the actual symbol’s value to
the register, it has to be obtained from the addressable storage via the address associated
with particular symbol. To be noted that if this storage is accessed through an immediate
integral (in the role of a pointer), which is in accordance to what is expressible in C24, it
has no connection to the contained values of symbols as these are available only by those
abstract addresses associated with them.

Using symbol’s value (or any nested value in case of an composite object) as an instruc-
tion operand (e.g., for binary operations) is arranged in a way that the value is loaded by the
OP_LOAD instruction to the auxiliary register, which can be subsequently used in the par-
ticular context. This is, however, not true if the instruction expects the symbol’s reference
(said abstact address within the storage) – no prior OP_LOAD is needed in this case.

Similarly, values represented by symbols cannot be directly accessed for modification
(e.g., cannot be direct targets for results of operations) with any instruction except for a ded-
icated OP_STORE. This is the only instruction to provide write-access to the addressable stor-
age.

We will introduce these two instructions in detail and demonstrate their principles on
short examples.

OP_LOAD instruction

This instruction serves the purpose of literally loading the value of symbol from address-
able storage into register, usually (or rather always, due to optimizations sparse perform)
to use this value as an operand to another instruction, which may be followed by a subse-
quent OP_STORE if it is “load – modify – store” schema. As we are in a domain of SSA code,
the assigned register is always a unique new one.

23there are two exceptions explained shortly
24e.g., int state = *((void *) 0xC0FFEE;)

26

This register is referenced by target field of the instruction. The other operands to the
instruction are mainly a pseudo denoting the address to be accessed within the storage
(src field, a source address) and offset within the addressed object (offset field). When
we look at OP_LOAD instruction as an expression of assigment, using the stated field names,
we obtain:

r1 := addressable_storage[src+ offset] (3.1)

where r1 is a newly allocated register. The pseudo denoting the address to be accessed
(src) can be any of three main kinds we described (sec. 3.2.3).

In case the address is expressed by a symbol, the address is directly the abstract address
associated with it, and hence, if the instruction offset is zero and provided that the type
of symbol’s value matches the type the instruction wants to access (we will explain this
shortly), it yields a direct assignment as follows:

r1 := addressable_storage[&symbolA + 0] (3.2)
r1 := symbolA (3.3)

To demonstate it practically, let’s have a C code as in listing 3.5, followed by a respective
linearization (simplified output of test-linearize).

1 static int i;
2 static int
3 load_from_sym (int arg)
4 {
5 return i;
6 }
7

8 /*
9 load .32 %r1 <- 0[i]

10 ret.32 %r1
11 */

Listing 3.5: Simplest exercising of OP_LOAD
instruction.

When PSEUDO_REG (PSEUDO_ARG) or PSEUDO_VAL kind of pseudo is used in place of a source
address (src), the value it holds is treated as a pointer to the addressable storage, adding
the offset value to it first (plain arithmetic without taking the referenced type into account).

Contrary to the example in listing 3.5, if some specific item within the addressed object
– presumably of a composite type (notably a structure) – is ought to be loaded, the offset is
generally non-zero. Especially zero offset can be ambiguous in case of a composite object,
as it can stand either for a whole object or its initial item (or a chain of such nested ones).
The exact semantic meaning can be deduced from the exact type the instruction wants to
find within the accessed object (type field, or perhaps also size field, which only tells the
bitsize, though). For instance, we can have a look at 3.6, which demonstrates this ambiguity
between the first and the second example, provided that we examine only the offset; when
we have more information, such as the shown source bitsize, the object of interest can be
determined).

1 extern struct foo
2 { int a; int b; } bar;
3

4 static struct foo
5 load_from_sym_bar(void)
6 {

7 return bar;
8 }
9 /*

10 load .64 %r1 <- 0[bar]
11 ret.64 %r1
12 */

27

13

14 static int
15 load_from_sym_bar_a(void)
16 {
17 return bar.a;
18 }
19 /*

20 load .32 %r1 <- 0[bar]
21 ret.32 %r1
22 */

Listing 3.6: OP_LOAD: the type information is
needed to prevent ambiguity.

OP_STORE instruction

As we said, this instruction has an exclusive access for writing into the addressable storage,
which makes it the only exception to otherwise strictly adhered SSA form, and if we do not
consider the addressable storage, it is still assuredly kept25.

Contrary to OP_LOAD, it can use pseudo of arbitrary kind as both operand denoting the
target address (src field of the instruction) and the value to be stored (target field). To
distinguish both sides of such assignment, we will use terms left-hand side (LHS) and
right-hand side (RHS) for the target address and the value to be stored respectively. Hence
we get:

addressable_storage[LHS + offset] := RHS (3.4)

We already marked the offset, which also has its role with OP_STORE instruction (also its
offset field) – this time to adjust the target of assignment within the addressed object
(again, presumably composite).

Similarly to address operand in case of OP_LOAD, when PSEUDO_REG (PSEUDO_ARG) or
PSEUDO_VAL pseudo is used as the (target) address (this time LHS), the value it holds is
treated as a pointer. Likewise, this include a case of address provided as an immediate
integral value.

With symbol used as LHS, it depends whether the associated object is of a composite
type (or a pointer to it). When it is, the OP_STORE instruction may be accompanied with
a non-zero offset denoting the target item and, similarly to OP_LOAD, the exact semantic
meaning of the access (through possibly chain of accessors) can be deduced from the in-
struction’s type. Otherwise, it boils down to a direct assignment:

addressable_storage[&symbolA + 0] := 42 (3.5)
symbolA := 42 (3.6)

With RHS of the assignment, the situation is a bit easier. In this context, a symbol is26

seen as the reference to associated value (its address within the addressable storage). With
a pseudo of other kinds, the value it holds is used directly, which can even be a composite
object (as with structure assignment in C).

Perhaps a better idea can be retrieved by the examples as provided in listing 3.7.

1 static int i;
2 static int aux;
3 static int *ptr = &i;
4 static int ** ptrptr = &ptr;
5

6 static struct {
7 int first;
8 int second;
9 } s;

10

25unless unSSA pass is performed (sec. 3.2.4)
26similarly as in case of most of non-memory related instructions

28

11 static void
12 sym_to_sym (int **arg)
13 {
14 ptr = &aux;
15 }
16 /*
17 store .64 aux -> 0[ptr]
18 */
19

20 static void
21 arg_to_sym (int *arg , int arg_aux)
22 {
23 i = arg_aux;
24 }
25 /*
26 store .32 %arg2 -> 0[i]
27 */
28

29 static void
30 reg_to_sym (int *arg)
31 {
32 i = aux + 1;
33 }
34 /*
35 load .32 %r3 <- 0[aux]
36 add .32 %r4 <- %r3, $1
37 store .32 %r4 -> 0[i]
38 */
39

40 static void
41 val_to_sym (int *arg)
42 {
43 i = 42;
44 }
45 /*
46 store .32 $42 -> 0[i]
47 */
48

49 static void
50 sym_to_reg (int **arg)
51 {
52 *ptrptr = &aux;
53 }
54 /*
55 load .64 %r6 <- 0[ptrptr]
56 store .64 aux -> 0[%r6]
57 */
58

59 static void
60 arg_to_reg (int *arg , int arg_aux)
61 {
62 *ptr = arg_aux;
63 }
64 /*
65 load .64 %r8 <- 0[ptr]
66 store .32 %arg2 -> 0[%r8]
67 */
68

69 static void
70 reg_to_reg (int *arg)

71 {
72 *ptr = aux + 1;
73 }
74 /*
75 load .32 %r9 <- 0[aux]
76 add.32 %r10 <- %r9, $1
77 load .64 %r11 <- 0[ptr]
78 store .32 %r10 -> 0[%r11]
79 */
80

81 static void
82 val_to_reg (int *arg)
83 {
84 *ptr = 42;
85 }
86 /*
87 load .64 %r12 <- 0[ptr]
88 store .32 $42 -> 0[%r12]
89 */
90

91 static void
92 sym_to_arg (int **arg)
93 {
94 *arg = &aux;
95 }
96 /*
97 store .64 aux -> 0[% arg1]
98 */
99

100 static void
101 arg_to_arg (int *arg , int arg_aux)
102 {
103 *arg = arg_aux;
104 }
105 /*
106 store .32 %arg2 -> 0[% arg1]
107 */
108

109 static void
110 reg_to_arg (int *arg)
111 {
112 *arg = aux + 1;
113 }
114 /*
115 load .32 %r17 <- 0[aux]
116 add.32 %r18 <- %r17 , $1
117 store .32 %r18 -> 0[% arg1]
118 */
119

120 static void
121 val_to_arg (int *arg)
122 {
123 *arg = 42;
124 }
125 /*
126 store .32 $42 -> 0[% arg1]
127 */

Listing 3.7: Exercising OP_STORE instruction.

29

3.3.3 Other Assignment Instructions

Beside the assignment instructions privileged to access the addressable storage, there are
other instructions that facilitate assignments:

• OP_SETVAL is used to assign an immediate value (PSEUDO_VAL) to a register,

• OP_COPY only makes and alias between the source and the target register and is a result
of unSSA pass (see 3.2.4),

• OP_CAST (OP_SCAST) is an equivalent to OP_COPY, except that it carries both source and
target type information to denote the semantic of the cast (“signed cast”), and

• OP_PTRCAST casts the input operand representing a pointer, usually a symbol which in
this context represents the reference to the associated value (see sec. 3.3.1) to another
type, typically another pointer.

30

Chapter 4

Code Listener, Predator and Forester

We start with introduction of CL infrastructure followed by the flagship analysers – Predator
and Forester – which we listed as “cherkers based on formal methods” (2.6.2). As we show,
they allow for automated formal verification of C programs.

4.1 Code Listener Infrastructure

CL1 is an easy to use infrastructure for building static analysis tools [100, 101]. Currently,
it is a part of Predator in the terms of code repository [102] and GPLv3 license, although it
can be used independently with any custom analyser.

It can be viewed from three perspectives. The introduction from the most general one
is followed by a view of an author of its component, front-end in particular.

4.1.1 Overview of Code Listener

Code Listener infrastructure originates in an idea to simplify construction of tools for static
analysis, splitting fully-fledged analyser into the main analysis unit modularly connected
to the shared unit facilitating the rest. Several other similar infrastructures exist (some of
the alternatives are listed in sec. 2.6.2) but none offered enough flexibility or there were
other limitations (see [100]). Hence this custom infrastructure was born.

The modularity was further extended on the side of yielding a canonical immediate rep-
resentation (IR), typically represented by a code parser, leading to “producer–consumer”
model of interchangeable and reusable components. The only common part, an active me-
diator between the modules, became a core of the whole infrastructure. Its main role is to
encapsulate the communication defined as said IR and bi-directional auxiliary messages,
constituting a concise API at both interfacing sides. As we show later, it in fact has more
to offer to analyser’s creator.

In the context of CL, the term “producer” we originally used refers to front-end, a provider
of IR. Such code is a result of transformation from another form such as direct source file(s)
if the whole parsing is done in-place; more frequently2, however, the sources are parsed by
a helper unit (program or library) on its behalf and adapted to an expected form afterwards.

This is an example of the only code parse adapter, G compiler plug-in hooked in
such that it can access an internal reprezentation of code (GIMPLE) which is, after some

1homepage: <http://www.fit.vutbr.cz/research/groups/verifit/tools/code-listener/>
2considering the effort investment

31

http://www.fit.vutbr.cz/research/groups/verifit/tools/code-listener/

transformations, being emitted, that is, in a form of API callbacks passed, towards CL. As
mentioned in the first chapter (1.2), our task is to provide exactly such adapter, this time
based on sparse library 3).

The other end we initially called “consumer”, represents back-end within the infrastruc-
ture. It may be the end analyser, or more generally, a listener which, in CL terminology,
means a handler of IR on its input. For instance, some native diagnostic tools are imple-
mented as listeners3. Specialized consumers are filters used to transform IR and pass it to
the next consumer in the chain. For example, one native CL filter decomposes switch into
a series of if statements. The end analyser then solves its particular task based on IR that
is made available by CL, either directly or indirectly via filter(s). CL also allows to perform
more analyses at the same time.

Amongst other native listeners, there is one particularly important – code storage com-
ponent. Its purpose is to build a persistent object model of IR it obtains at its input, some-
thing which is useful especially for data-flow analyses as these need to traverse a program
structure repeatedly (see sec. 2.5.2). This functionality is incorporated into CL infrastruc-
ture and effectively extends the most basic API for passing IR with API to ease this static
orientation within the structure of analysed program.

Schematically is this overview together with our forthcoming adapter (on the left, marked
in dashed) shown in fig. 4.1.

switch

to if

c
o
d
e
 s

to
ra

g
e

filters

listeners analyzers

error stream

sparse
CFG

plotter
predator

gcc

c
o
d
e
 p

a
rs

e
r

in
te

rf
a
c
e

...

...

... forester

Figure 4.1: Overview of Code Listener infrastructure incl. our sparse adapter (adapted
from [101]).

4.1.2 Programmer’s View on Code Listener

A programmer with a desire to, e.g., add a support for a language expressible in terms of
IR of CL, can do so4 implementing a program to generate it either from direct source form
or from another IR obtained elsewhere. Conversely, the idea of a new kind of program

3e.g., an intermediate code printer
4and most probably will be warmly welcome

32

analysis can be realized as a program operating from the level of CL IR (or CFG statically
available when using code storage) up.

The adapter interacts with CL via pure C API cl/code_listener.h in way it first “boot-
straps” the whole infrastructure through a sequence of several API calls. This includes in-
frastructure initialization (cl_global_init/cl_global_init_defaults) and creating the
object encapsulating particular listener (cl_code_listener_create). If more of them are
to be used, it is convenient to address them all at once when emitting. To achieve this,
a special listener representing chain of others can be created (cl_chain_create) and read-
ily created listener objects appended (cl_chain_append). Either the object of a single lis-
tener or a whole chain is subsequently the only way to communicate with CL. Such object
represents a structure carrying a set of callbacks that serves this purpose.

Once the infrastructure is set up, the adapter may start emitting information corre-
sponding to the program constructions being systematically traversed within the parser’s
representation of a program. This traversal may or may not reflect the actual traversal of
the parser. The sequence of expected callbacks is to be found in 7.3.

The cycle is finished by a dedicated callback to confirm everything has been emitted
(acknowledge), which usually triggers the analysis (so far waiting for complete reprezen-
tation), followed by the infrastructure teardown (destroy).

One implication arises from this approach5 – the adapter represents the whole analysis
externally towards its user (unless wrapped by another environment as it is in case of G
plugin). This includes adjusting the details of analysis to be performed as per the user’s
input. Similarly, the adapter is the main medium to announce the results of analysis to the
user6.

From the analyser’s standpoint, the base API is extended by functionality offered by
stated code storage component as exposed via C++ header cl/storage.hh. We do not
actively use it in our project so we can only point out a simple analyser7 distributed with
CL, fwnull, demonstrating a use of code storage API.

4.2 Predator Analyser

Predator8 is a tool for checking manipulation of dynamic data structures in sequential C
programs with a goal to verify real system code in a fully automated way [103–105]. It is
published under GPLv3 [102] and its principal developer is Kamil Dudka.

4.2.1 Overview of Predator

Predator performs sound analysis to verify memory safety in a code possibly exercising
some composite data structures. Implicit checks include invalid deferences, double frees
and memory leaks, and also allows for detection of memory-related defects like buffer
overruns as it is designed to consider memory not just from dynamic allocation standpoint.

5as already pointed out in fig. 1.1
6if debug, warn, error, note and die hooks are defined, standard (error) output is used implicitly otherwise
7for this reason, have omitted it when exploring practical tools (sec. 2.6), even though it was proved useful

for checking real SW project
8homepage: <http://www.fit.vutbr.cz/research/groups/verifit/tools/predator/>

33

http://www.fit.vutbr.cz/research/groups/verifit/tools/predator/

4.2.2 Analysis Performed by Predator

The foundation of Predator is an advanced shape analysis employing separation logic
with high-order inductive predicates, a technique elaborated in [37], and is influenced by
SpaceInvander9. Unlike the mentioned predecessor using lists of separation logic formu-
lae, it rather adopts a graph representation of such formulae for a description of heaps. The
nodes in such symbolic heaps are of two kinds: objects, denoting allocated space, and values
of objects. In this concept, objects have values, while values (addresses) point to objects.
A newly-designed algorithm operates on this reprezentation, whereas the number of sym-
bolic heaps to be maintained is reduced in terms of detecting particular occurences of heap
structures and applying join operator to merge the objects.

The analysis is performed up to interprocedural level (see 2.5.2), which includes sup-
port for indirect function calls and recursive calls of a fixed depth.

So far, Predator is able to analyse various linked list variants, even if they include nested,
cyclic or possibly shared lists. Limited pointer arithmetic to navigate through list nodes is
supported by Predator as well. Amongst the linked data structures, Predator is especially
aimed at dealing with native Linux lists, which is possible thanks to taking offsets of sub-
objects within encapsulating objects into account.

Support for other more complicated variants of data structures such as trees or hash
tables is a subject of future development. Similarly lacking is support for non-pointer data.

4.2.3 Predator in Practical Use

In its current form, it is tightly integrated with G compiler as a plug-in via described
Code Listener infrastructure, and hence is easy to add to any project toolchain leveraging
this compiler. Discovered defects are reported in a form complying with other compiler’s
messages, which is another step towards a smooth integration into development environ-
ment10. Importantly, errors are accompanied with backtraces easying to find the particular
reason. Predator can recover from most detected errors in an effort to provide as complete
defects summary as possible.

Beside the implicit checks, one can also make custom checks regarding shape properties
extending her code to hit error-raising location if the desired property is rendered broken11.

Despite Predator being a work in progress, its practical usability and efficiency has
been recently widely recognized at the SV-COMP’1212, where it placed first and second in
HeapManipulation and DeviceDrivers categories respectively [104].

4.3 Forester Analyser

Forester13 is a tool that is many apects similar to Predator. The same purpose is, howev-
er, achieved by a very different, novel method [106]. Currently, this prototype requires C

9<http://www.cs.ucl.ac.uk/staff/p.ohearn/Invader/Invader/Invader_Home.html>, we can guess that
“Predator” is a paraphrase of “SpaceInvander”

10e.g., IDEs may semantically distinguish error–warning–note
11this universal use of analysers has already been slightly hinted in case of B (2.6.2)
12International Competition on Software Verification (first held right in 2012)
13homepage: <http://www.fit.vutbr.cz/research/groups/verifit/tools/forester/>

34

http://www.cs.ucl.ac.uk/staff/p.ohearn/Invader/Invader/Invader_Home.html
http://www.fit.vutbr.cz/research/groups/verifit/tools/forester/

programs to be non-recursive and can handle only a restricted subset of program construc-
tions. It shares the same source tree (and license) with Predator, but has its own authori-
tative repository [107].

4.3.1 Overview of Forester

Forester likewise concentrates on memory safety properties and their verification. The ap-
proach to shape analysis taken by Forester is to represent a heap as canonically decomposed
parts, where the decomposition borrows from separation logic. Each of these parts can be
represented by a tree automaton. As the decomposition requires ordering, its result is in
fact a tuple of tree automata, called forest automaton. This explains the name of the tool.

Some of the repeating structures, e.g., a doubly-linked list (of an arbitratry length), are
accommodated by hierarchical encoding of, e.g., a list segment, as a forest automaton of its
own.

The implementation of Forester is based on non-deterministic tree automata, and shares
many aspects of its usage with Predator as mentioned above (4.2.3), which is partly imposed
by CL.

When compared to Predator in its current version, it adds a support for tree structures14,
but on the other hand, does not provide such level of context sensitivity15 .

14probably thanks to a flexibility provided by automata-based approach
15e.g., a support for recursive calls

35

Chapter 5

Adapter approaches and
considerations

Adaptability is not imitation. It means
power of resistance and assimilation.

Mahatma Gandhi

We will go through various entities that we need to convert from the linearized code as
provided by sparse on the input side to the intermediate reprezentation we are passing –
emitting – to CL.

5.1 Types

Types in isolation are not a major problem. Worse is to

5.1.1 Base Types Mapping

As we mentioned in sec. 3.2.2, the base types are defined as a kind of singletons. The base
thing to do is to define a suitable mapping of these. We follow the same singleton approach,
getting a base mapping as shown in table 5.1. This will allow us, e.g., to directly assign
a particular type to an operand. One such use case is with PSEUDO_VAL (sec. 3.2.3).

The above mapping, however, is not a solution for any other type, such as pointers (ar-
bitrarily “deep”), arrays and various custom-defined types. From code_listener.h per-
spective, it would be desirable not to create each type (struct cl_type) anew for each
operand as we can presume that there is a limited set of types within the program that
are shared by many variables. This reuse is what uid field of the CL type is for. sparse
implictly reuses the types if it is a base C type as listed in table 5.1, but this unfortunately
not a common case with any derived type, such as pointers.

This leads us to the idea that we can utilize a hash table, where we associate the con-
verted CL type according to the pointer of the sparse type. This way, whenever the type
is repeated, we can use its converted form directly, otherwise the type is converted and
prepared in the hash table for possible future reuse. If the very least even if only the base
C types are considered, this approach will be more performance-wise than comparing the
type of particular operand at hand comparing with each of the types listed in table 5.1.

36

sparse base C type enum cl_type_e adapter singletons
void_ctype CL_TYPE_VOID void_clt
incomplete_ctype incomplete_clt
bad_ctype CL_TYPE_UNKNOWN bad_clt
int_ctype int_clt
short_ctype short_clt
long_ctype long_clt
llong_ctype CL_TYPE_INT llong_clt
sint_ctype sint_clt
sshort_ctype sshort_clt
slong_ctype slong_clt
sllong_ctype CL_TYPE_INT sllong_clt
uint_ctype uint_clt
ushort_ctype ushort_clt
ulong_ctype ulong_clt
ullong_ctype CL_TYPE_INT ullong_clt
char_ctype char_clt
schar_ctype schar_clt
uchar_ctype CL_TYPE_CHAR uchar_clt
bool_ctype CL_TYPE_BOOL bool_clt
float_ctype float_clt
double_ctype double_clt
ldouble_ctype CL_TYPE_REAL ldouble_clt
string_ctype CL_TYPE_STRING string_clt

Table 5.1: Mapping basic C types from sparse singletons (of type struct sym-
bol/symbol.h) to respective enum cl_type_e (code_listener.h) and adapter-local single-
tons (of type struct cl_type/code_listener.h).

5.1.2 “Accessible” Types

With accessible types, we mean either composite types (structure, union, array) or pointers
and functions.

For these, following fields within the top-level type, that is, a nested symbol below
SYM_NODE level (see sec. 3.2.2) are important:

• structure and union (SYM_STRUCT, (SYM_UNION)): symbol_list, a list of structure fields

• array and pointer (SYM_ARRAY, SYM_PTR): ctype.base_type, another nested symbol,
either a “final” type or, e.g., a nested array

• function (SYM_FN): ctype.base_type, return type, and arguments, a list of parameters

The notion of “accessible” is used in the same meaning in sec. 5.4.1.

5.2 Operands

5.2.1 Operands conversion

As mentioned in 3.2.3, there is a few kinds of operands that needs to be converted.

37

PSEUDO_VOID

This directly matches to CL operand which uses CL_OPERAND_VOID as its code field.

PSEUDO_VAL

This conversion is also quite straightforward, as it maps to a literal – an integral constant.

PSEUDO_SYM

Symbol is the only kind of pseudo about which we have a complete and correct type im-
mediately available. However, it may represent a wide range of possible operands from
the CL point of view – both constants and variables.

PSEUDO_REG

Registers are a bit tricky regarding their types as these are not immediately available as
in case of symbols, so these has to be found elsewhere. The most reliable way to detect
the correct type seems to be iterating through users field (list of instructions using this
particular pseudo) and if the instruction is a casting one or OP_RET, one can use the type
associated with this instruction.

The other possibility is to use a type associated with “defining” instructions – as each
register is created as a result of instruction, this association is recorded on the register’s
side, and instructions usually carries the output/resulting type.

5.2.2 Global Variables Initializers

As mentioned in sec. 3.2.3, only global variables do not have the initializers linearized (con-
trary to local ones). These initializers are present as initializer field in the form of an
expression (see sec. 3.2.2).

One of the possibilities is to translate these expressions into respective instructions of
struct cl_initializer by custom routines. This might not be a best idea as we would
only duplicate functions already present in sparse. Therefore, we try to reuse them it this
option will be viable.

5.3 Instructions

Conversion of instructions can be divided into two categories: those where sparse instruc-
tions map directly to CL instructions, and those that do not.

sparse instructions that map 1:1 to CL instructions are listed in table 5.2.
There are also a few, that does not match exactly and some special treating is required.

They are discussed in the following sections.

5.3.1 OP_BR

This instruction can be used in two meanings, depending on whether its “condition” operand
(cond field) is reprezented by PSEUDO_VOID (sec. 3.2.3) or an actual value.

38

sparse instruction enum cl_insn_e specification for unary/binary op.
OP_RET CL_INSN_RET
OP_ADD CL_INSN_BINOP CL_BINOP_PLUS
OP_SUB CL_INSN_BINOP CL_BINOP_MINUS
OP_MULU CL_INSN_BINOP CL_BINOP_MULT
OP_MULS CL_INSN_BINOP CL_BINOP_MULT
OP_DIVU CL_INSN_BINOP CL_BINOP_TRUNC_DIV
OP_DIVS CL_INSN_BINOP CL_BINOP_TRUNC_DIV
OP_MODU CL_INSN_BINOP CL_BINOP_TRUNC_MOD
OP_MODS CL_INSN_BINOP CL_BINOP_TRUNC_MOD
OP_SHL CL_INSN_BINOP CL_BINOP_LSHIFT
OP_LSR CL_INSN_BINOP CL_BINOP_RSHIFT
OP_ASR CL_INSN_BINOP CL_BINOP_RSHIFT
OP_AND CL_INSN_BINOP CL_BINOP_BIT_AND
OP_OR CL_INSN_BINOP CL_BINOP_BIT_IOR
OP_XOR CL_INSN_BINOP CL_BINOP_BIT_XOR
OP_AND_BOOL CL_INSN_BINOP CL_BINOP_TRUTH_AND
OP_OR_BOOL CL_INSN_BINOP CL_BINOP_TRUTH_OR
OP_SET_EQ CL_INSN_BINOP CL_BINOP_EQ
OP_SET_NE CL_INSN_BINOP CL_BINOP_NE
OP_SET_LE CL_INSN_BINOP CL_BINOP_LE
OP_SET_GE CL_INSN_BINOP CL_BINOP_GE
OP_SET_LT CL_INSN_BINOP CL_BINOP_LT
OP_SET_GT CL_INSN_BINOP CL_BINOP_GT
OP_SET_B CL_INSN_BINOP CL_BINOP_LT
OP_SET_A CL_INSN_BINOP CL_BINOP_GT
OP_SET_BE CL_INSN_BINOP CL_BINOP_LE
OP_SET_AE CL_INSN_BINOP CL_BINOP_GE
OP_NOT CL_INSN_UNOP CL_UNOP_BIT_NOT
OP_NEG CL_INSN_UNOP CL_UNOP_MINUS
OP_LOAD CL_INSN_UNOP CL_UNOP_ASSIGN
OP_STORE CL_INSN_UNOP CL_UNOP_ASSIGN
OP_SETVAL CL_INSN_UNOP CL_UNOP_ASSIGN
OP_CAST CL_INSN_UNOP CL_UNOP_ASSIGN
OP_SCAST CL_INSN_UNOP CL_UNOP_ASSIGN
OP_FPCAST CL_INSN_UNOP CL_UNOP_ASSIGN
OP_PTRCAST CL_INSN_UNOP CL_UNOP_ASSIGN
OP_COPY CL_INSN_UNOP CL_UNOP_ASSIGN

Table 5.2: Mapping sparse instructions to respective enum cl_insn_e and further to enum
cl_unop_e/enum cl_binop_e (code_listener.h) if applicable.

In the former case, it is an unconditional jump to the basic block as defined by bb_true
instruction’s field. Otherwise, it is a conditional one and based on that condition, the con-
trol flow may continue with jumping to either basic block denoted by bb_true or bb_true.
From the CL perspective, this means either emitting CL_INSN_JMP or CL_INSN_COND.

39

5.3.2 OP_SWITCH

CL decomposes switch statement into several callbacks: insn_switch_open, the actual
cases (insn_switch_case) and finally insn_switch_close. Similarly to sparse, it supports
also ranges as cases targets (GNU C extension).

5.3.3 OP_SEL

This is how sparse reprezents a conditional operator, which is not directly supported by
CL. Solution is, however, simple – two basic block are artificially added and within each one
possible value is assigned to the target operand. The control flow is split by CL_INSN_COND
according to the tested operand and pointed to those blocks. A third added basic block
serves as a merge of these two paths.

5.3.4 OP_CALL

Similarly to OP_SWITCH, this is also split by CL into several callbacks: insn_call_open, the
arguments to the call as insn_call_arg and finally insn_call_open.

5.4 Missing Information about Object Traversal

The problem we want to address with this was mentioned in sec. 3.3.2. Briefly, we are
accessing some object within the addressable storage such that we only know the address
of the base object, the offset at which the target subobject resides, and the target type. In
case of offset = 0, this subobject may be directly a base object, otherwise is has to be some
nested object we obtain with a suitable traversal, subtracting the remaining offset along.

To address this, we will need a procedure to perform a type matching, and based on
that, we can propose a solution.

5.4.1 Matching Types

For the reasons described in 3.3.2, we will need a procedure to perform a type matching,
that is, it decides whether the two types can be considered equal and thus can finish the
search for a correct subitem at the given position within some accessible object present in
the addressable storage (see 3.3.1).

This should work on these assumptions for two types T1, T2 and auxiliary functions
decorating the original type with an array of it or pointer to it (PTR, ARRAY):

• T1 ≡ T2 → T1 = T2 (≡ is a pointer match)

• T1 = T2 → ARRAY(T1) = PTR(T2)

• T1 = T2 → PTR(T1) = ARRAY(T2)

• T1 ̸= T2 otherwise

40

5.4.2 “Digging” the accessible object

Now, we can present our proposed method to find a correct subitem within some accessible
object in the addressable storage (see 3.3.1). We call this act as “digging the object.”

The intuitive solution, utilizing the method for matching types we already described,
can be as follow. The inputs are Tt, target type, off, the offset, Ob, the base object, and Ow

is a working object initialized to Ob. TYPE is a function to return the type of its argument
and ABSTYPE is a function to return the abstract type of its argument (pointer, structure,
etc.).

1. if TYPE(Ow) = Tt and off = 0, we (most probably) found the expected object Ow,
otherwise

2. if ABSTYPE(Ow) = structure, access the item either matching the offset or the fur-
thest item not exceeding the offset, yielding a new Ow and decreasing the remaining
offset respectively, and go to 1

3. if ABSTYPE(Ow) = array, access via index the item either matching the offset or the
furthest item not exceeding the offset when measured from address of Ob, yielding
a new Ow and decreasing the remaining offset respectively, and go to 1

4. if ABSTYPE(Ow) = pointer, use dereference to access the underlying object, yielding
a new Ow, and go to 1

5. if this is reached, something is wrong

If the solution exists for the particular instance of the problem, the method will even-
tually find it. However, it is not true when also unions are involved.

The issue with them is that there is no such straightforward progress towards the ex-
pected item. Therefore, the further refinement of the method is to wrap the above pseu-
doalgorithm with depth-first search method which, for a given union, tries systematically
all the possible traversals. When it obtains “something is wrong” result, it continues with
the remaining possibilities. This does not guarantee unambiguous and correct results, but
it is the best we can currently achieve.

41

Chapter 6

Implementation

The adapter is implemented as clsp program. We first look at its architecture and then on
some other implementation-specific topics.

6.1 Architecture

We can distinguish three base layers of the application (also see fig. 6.1):

Figure 6.1: Schema of clsp adapter and its two main layers (the middle one reprezents the
initialization and finalization).

• Control/Init: this is the layer that initializes the other two, then is inactive (therefore
marked dashed) and when the analysis is over, it runs some cleanup routines

• CLI: interacts with the user and handles the messages; also the interactive mode be-
longs to this layer

• Conversion/Emit: handles the intermediate code from sparse on its input, converts
it and emits towards CL

42

One notable thing regarding the architecture is grouping global variables to be shared
amongst the modules in a single structure as opposed to individual items. This may have
a use, e.g., in unit tests, and some functions already access these globals through a depen-
dency injection instead of accessing the structure directly.

6.1.1 Build Flexibility

One of the impotant features is a flexibility regarding how it can cooperate with CL analy-
sers. It can be either directly linked (dynamically, but easily extendable to link statically),
or the analyzers can be used directly in the form of GCC plug-ins.

This is possible thanks to imitating native G symbols the plug-ins require. The list
of them can be easily extended, thanks to using a custom API wrapper implemented in
clsp-apis.h. This wrapper is also utilized to encapsulate both API of sparse1 and of CL.

6.1.2 Files

The implementation constists of these files:

• clsp.c (+ clsp.h) is the main file containing driving the run of clsp; beside initial-
ization incl. sparse and CL, it also hooks finalization functions it implements

• clsp-options.c (+ clsp-options.h) handles command-line options

• clsp-defaults.h is a way to configure some default values

• clsp-emit.c (+ clsp-emit.h) implements the core of the conversions

• clsp-types.c (+ clsp-types.h) supports types handling

• clsp-conv.c (+ clsp-conv.h) contains auxilirary conversions and debug macros

• clsp-interact.c (+ clsp-types.h) offers the interactive mode

• clsp-colors.c (+ clsp-colors.h) provides support for coloring outputs

• clsp-out-base.c (+ clsp-out-base.h) implements base functionality of streams

• clsp-out-ext.c (+ clsp-out-ext.h) adds some additional functionality regarding
streams (e.g., streams swapping, debugging macros)

• clsp-ret.c (+ clsp-ret.h) provides a way of verbose program termination

• clsp-use-cl.c (+ clsp-use-cl.h) provides some helpers for debugging CL entities

• clsp-use-sparse.c (+ clsp-use-sparse.h) provides some helpers for debugging
sparse entities

• clsp-alloc.h provides some macros regarding memory allocation

• clsp-macros.h implements some useful, relatively reusable macros

• clsp-version.h carries some information regarding a version and build details
1e.g., the functions are distinguished to those producing output on stderr, stdout, and those without the

output, which is further utilized for “swapping” streams to achieve desired form of an output

43

• clsp-apis.h is a general mean of foreign API encapsulation

• clsp-api-cl.h encapsulates API of CL

• clsp-api-sparse.h encapsulates API of sparse

• clsp-api-gccplug.h declares API as required by G plug-ins from CL infrastruc-
ture

• clsp-gccplugstub.c mimics symbols required by G plug-ins from CL infrastruc-
ture

6.2 Streams

As clsp reprezents a user-visible envelope to the whole analysis, we also have to deal with
the outputs – not only ours, but also of both sides we are interfacing with. It is reasonable
to assume that the outputs should be separable (mainly for automated processing by other
programs/scripts) and, if possible, also distinguishable to the user.

To address these requirements, we came with a concept of “streams.” Basically, a stream
is meant as a separation on a logical level, but can be turned into a real separation, e.g.,
outputting the respective messages to the different file descriptor. In addition, we also
extended this concept with a simple normal color – highlight color palette customizable
for each stream.

List of these streams is as follows:

• debug: internal debugging facility

• sp: sparse warnings/errors

• cl: CL notes/warnings/errors

• cl-debug: CL debug messages

• warn: reports of unexpected internal state

To achieve that, e.g., the messages emitted by sparse can be redirected to another file
descriptor, we use a simple trick utilizing duplication of descriptors (dup,dup2 calls), which
was tested to work even if, e.g., sparse uses glibc I/O.

6.3 Debug Mode

The program contains a simple interactive mode (-A option), which currently offers step-
ping with instruction granularity. It can be used together with desired level of debug mes-
sages to follow the progress through the code avoiding the confusion from a long list of
messages printed all-at-once.

It currently also offers a change of the debug level directly from its internal shell.

44

6.4 Internal Testsuite

The program is accompanied with an internal testsuite. It is written as a comparison against
referential outputs. To get rid of false positives arising from some differences across the
runs due to pointers being used in the outputs2 a Python script makeinv was written to
make the output “invariant” to the reference file in case of particular patterns.

Currently, the testsuite only stresses instructions, but new tests may be easily added.

2sparse is a “culprit”

45

Chapter 7

Conclusion

7.1 Program Checking Overview Study

In the first part we studied some basics of program analyses, especially its static branch. We
have also tried to consisely cover automated approaches towards program safety checking
and that is to say, this report of state is very incomplete. The field of program checking,
verification and testing is very large at both breadth (large scale of techniques even when
we limited ourselves to primarily automated approaches) and depth (summarizing details
of all the techniques and their variations would hardly fit into a single book1) with many
pioneering efforts in progress as opposed to settled down state-of-art.

Also we can conclude that there seems to be no wide-enough digest summarizing this
domain. The knowledge is scattered amongst many sources that are usually very specific
at their subject, but a bigger picture is hard to find. From this perspective, we can agree
with [108].

7.2 Implementation of the Adapter

7.2.1 Evaluation with Predator

Currently, clsp is able to successfully proceed roughly 75% of the tests within the Predator
testsuite.

Most common is reporting a memory leak which is not reported by G. The other com-
mon cause of a failure is an assertion error raised on either side (clsp, CL/Predator). If we
compare the memory and time consumed when running either front-end, it is comparable.
When this differs, slightly more successful is clsp on the testing configuration.

The Predator’s testsuite also discovered a few bugs directly in sparse.

7.2.2 Evaluation with Forester

The Forester tool was checked to principially work with clsp.
However problems of other kind were observed, preventing from objective comparison.

1the papers we refence might be issued as a single book on its own and still, it is only a fraction of relevant
resources

46

7.2.3 Conclusion

Admittedly, our clsp adapter is not in the best condition. Partly it is caused by spending
maybe too much time on things that were not directly connected with the adaption. But to
be said that some internal infrastructures is good to establish in an early stage rather than
later and when it is done, the program can be iteratively enhanced throughout the time.

Especially we would like to point out the flexibility clsp offers regarding its combina-
tion with CL. It can be compiled completely without it and then the needed functionality
drained from the analyser compiled as a G plug-in, or it can be linked (dynamically, but
with some changes, it could be statically as well).

Another thing we spent some time on was an internal debugging facility, which may
be significantly more difficult to push into the program in the later stage. If the adapter
does not work properly in some case, the cause should be easy to spot thanks to it – this
rather a defensive approach as opposed to trying to have a perfect program without any
diagnostics. To some extent, this applies also to the colors we have implanted into the
program. One can find it difficult to orient herself in a large amount of printouts, to see the
semantics of particular lines without “parsing” them ... a color distinguishing may ease it
a lot2.

Also, many of the time was spent in the debugger with an attempt to realize, why the
thing does not work as expected or how to find the requested piece of information within
a net of structures used by sparse, as they were not apparent from the static code. Not that
sparse would be written somehow obscurely, but it is already too complex to try to realize
all the contexts here and there in its code. Also its overhelmingly hard to claim something
about its internals, because when one does, a counter-example is to appear soon.

During our implementation, another quite painful thing we experienced is a non-locality
of the change involved in the code conversion. Something fixed, another problem arised.
It is perhaps an inherent property of any program trying to be somehow similar to a com-
piler. Also the number of possible variations of C programs to achieve a good coverage of
adapter’s code is overhelming, making it very difficult to even get close to a near-perfect
state.

From a more general point of view, these sufferings lead us to think that C language,
despite its efficiency, is maybe too cumbersome when it comes to handling a bit more com-
plex data structures. From this view, functional paradigm may be a better choice for such
tasks as language analyses, and suddenly the projects like the mentioned Frama-C become
to make even more sense.

If we return to sparse, several of our patches needed for a proper work of clsp was
accepted (e.g., [109]). We also discovered a few bugs lately that seem untrivial to fix. This
only demonstrates that sparse has not been much exercised by the back-ends apart from
the main checker and a few others, none of which actually produces the code or performs
more thorough analyses. That is to say, the bugs encountered with clsp may be on either
side (and the debugging facility might be a good judge in such case).

2at least it did help the implementer together with the debugging facility to spot some problems in a sig-
nificantly shorter time

47

7.3 Outlook

There is quite a lot of room for improvements in clsp. Especially, finishing the testsuites for
Predator and Forester properly is a prime goal to achive I, the implementer, feel obligated
towards developers of these. There is also a plenty of code asking for refactoring, which
was planned but did not fit for time reasons. It might be also useful to extend the internal
testsuite utilizing Csmith, a generator of C programs, to exercise both clsp and sparse
thoroughly.

Regarding sparse, there are some bugs investigation pending. Maybe it will show up
clsp requires some more modifications on the side of sparse. There was also recently
a suggestion in its community to move the types of operands from instructions defining
them directly to these pseudos. This looks like a good and beneficial idea, and clsp could
provide a way to experiment with such changes before being even seriously considered.

48

A. Bibliography

[1] Takashi Ishio. “Study on Aspect Extraction and Program Analysis for Effective Soft-
ware Development”. PhD thesis. Osaka University, 2006. : <http://sel.ist.
osaka-u.ac.jp/~lab-db/Dthesis/archive/16/16.pdf>.

[2] David Evans and David Larochelle. Splint User’s Manual. June 5, 2003. : <http:
//www.splint.org/manual/manual.pdf> (visited on 05/17/2012).

[3] Zachary Anderson et al. “Beyond bug-finding: sound program analysis for Linux”.
In: Proceedings of the 11th USENIX workshop on Hot topics in operating systems. HO-
TOS’07. San Diego, CA: USENIX Association, 2007, 21:1–21:6. : <http://static.
usenix.org/event/hotos07/tech/full_papers/anderson/anderson.pdf> (visit-
ed on 05/14/2012).

[4] Mark Driver. Open Source Predictions For 2010. Dec. 8, 2009. : <http://blogs.
gartner.com/mark_driver/2009/12/08/open-source-predictions-for-2010/>
(visited on 05/15/2012).

[5] Gartner Survey Reveals More than Half of Respondents Have Adopted Open-Source Soft-
ware Solutions as Part of IT Strategy. Feb. 8, 2011. : <http://www.gartner.com/
it/page.jsp?id=1541414> (visited on 05/15/2012).

[6] Program analysis (computer science) – Wikipedia, the free encyclopedia. Mar. 17, 2011.
: <http://en.wikipedia.org/w/index.php?title=Program_analysis&oldid=
419234316> (visited on 05/12/2012).

[7] Nicholas Nethercote. “Dynamic Binary Analysis and Instrumentation”. PhD thesis.
University of Cambridge, 2004. : <http://www.valgrind.org/docs/phd2004.
pdf>.

[8] Derek L. Bruening. “Efficient, Transparent, and Comprehensive Runtime Code Ma-
nipulation”. PhD thesis. Massachusetts Institute of Technology, 2004. : <http:
//www.burningcutlery.com/derek/phd.html>.

[9] Cormac Flanagan. “Hybrid type checking”. In: SIGPLAN Not. 41.1 (Jan. 2006), pp. 245–
256. : 0362-1340. : <10.1145/1111320.1111059>. : <http://www.cs.ucsc.
edu/~cormac/papers/popl06-hybrid.ps> (visited on 05/19/2012).

[10] Bowen Alpern et al. “Recognizing Safety and Liveness”. In: Distributed Computing 2
(1986), pp. 117–126. : <http://www.cs.cornell.edu/fbs/publications/86-
727.ps> (visited on 05/16/2012).

[11] Antti Valmari. “The State Explosion Problem”. In: Lectures on Petri Nets I: Basic Mod-
els, Advances in Petri Nets, the volumes are based on the Advanced Course on Petri Nets.
London, UK, UK: Springer-Verlag, 1998, pp. 429–528. : 3-540-65306-6. : <http:
//www.cs.tut.fi/ohj/VARG/publications/98-4.ps> (visited on 05/16/2012).

49

http://sel.ist.osaka-u.ac.jp/~lab-db/Dthesis/archive/16/16.pdf
http://sel.ist.osaka-u.ac.jp/~lab-db/Dthesis/archive/16/16.pdf
http://www.splint.org/manual/manual.pdf
http://www.splint.org/manual/manual.pdf
http://static.usenix.org/event/hotos07/tech/full_papers/anderson/anderson.pdf
http://static.usenix.org/event/hotos07/tech/full_papers/anderson/anderson.pdf
http://blogs.gartner.com/mark_driver/2009/12/08/open-source-predictions-for-2010/
http://blogs.gartner.com/mark_driver/2009/12/08/open-source-predictions-for-2010/
http://www.gartner.com/it/page.jsp?id=1541414
http://www.gartner.com/it/page.jsp?id=1541414
http://en.wikipedia.org/w/index.php?title=Program_analysis&oldid=419234316
http://en.wikipedia.org/w/index.php?title=Program_analysis&oldid=419234316
http://www.valgrind.org/docs/phd2004.pdf
http://www.valgrind.org/docs/phd2004.pdf
http://www.burningcutlery.com/derek/phd.html
http://www.burningcutlery.com/derek/phd.html
http://dx.doi.org/10.1145/1111320.1111059
http://www.cs.ucsc.edu/~cormac/papers/popl06-hybrid.ps
http://www.cs.ucsc.edu/~cormac/papers/popl06-hybrid.ps
http://www.cs.cornell.edu/fbs/publications/86-727.ps
http://www.cs.cornell.edu/fbs/publications/86-727.ps
http://www.cs.tut.fi/ohj/VARG/publications/98-4.ps
http://www.cs.tut.fi/ohj/VARG/publications/98-4.ps

[12] Aziem A. Chawdhary. “Proving Termination using Abstract Interpretation”. PhD
thesis. Queen Mary University of London, 2010. : <http://www.chawdhary.co.
uk/pubs/thesis.pdf>.

[13] Soundness – Wikipedia, the free encyclopedia. May 13, 2011. : <http://en.wikipedia.
org/w/index.php?title=Soundness&oldid=492311887> (visited on 05/14/2012).

[14] Pär Emanuelsson and Ulf Nilsson. “A Comparative Study of Industrial Static Anal-
ysis Tools”. In: Electron. Notes Theor. Comput. Sci. 217 (July 2008), pp. 5–21. : 1571-
0661. : <10.1016/j.entcs.2008.06.039>. : <http://www.ep.liu.se/ea/
trcis/2008/003/trcis08003.pdf> (visited on 05/15/2012).

[15] Michael Schwartzbach. Lecture Notes on Static Analysis. : <http://daimi.au.dk/
~mis/static.html> (visited on 05/16/2012).

[16] Toh Ne Win and Michael Ernst. “Verifying Distributed Algorithms via Dynamic
Analysis and Theorem Proving”. In: (2002). : <http://publications.csail.
mit.edu/lcs/pubs/pdf/MIT-LCS-TR-841.pdf> (visited on 05/12/2012).

[17] Type I and type II errors – Wikipedia, the free encyclopedia. May 7, 2011. : <http:
//en.wikipedia.org/w/index.php?title=Type_I_and_type_II_errors&oldid=
491119939> (visited on 05/14/2012).

[18] David Hovemeyer. “Simple and Effective Static Analysis to Find Bugs”. PhD thesis.
University of Maryland, 2005. : <http://drum.lib.umd.edu//handle/1903/
2901>.

[19] Found bugs - cppcheck. Nov. 6, 2011. : <http://sourceforge.net/apps/mediawiki/
cppcheck/index.php?title=Found_bugs> (visited on 05/16/2012).

[20] Leon G. Stucki and Gary L. Foshee. “New assertion concepts for self-metric software
validation”. In: SIGPLAN Not. 10.6 (Apr. 1975), pp. 59–71. : 0362-1340. : <10.
1145/390016.808425>. : <http://doi.acm.org/10.1145/390016.808425>
(visited on 05/12/2012).

[21] Reese T. Prosser. “Applications of Boolean matrices to the analysis of flow dia-
grams”. In: Papers presented at the December 1-3, 1959, eastern joint IRE-AIEE-ACM
computer conference. IRE-AIEE-ACM ’59 (Eastern). Boston, Massachusetts: ACM, 1959,
pp. 133–138. : <10.1145/1460299.1460314>. : <http://doi.acm.org/10.
1145/1460299.1460314>.

[22] Zhichen Xu, Barton P. Miller, and Thomas Reps. “Safety checking of machine code”.
In: SIGPLAN Not. 35.5 (May 2000), pp. 70–82. : 0362-1340. : <10.1145/358438.
349313>. : <http://research.cs.wisc.edu/wpis/papers/pldi00.ps> (visited
on 05/15/2012).

[23] William Landi. “Undecidability of static analysis”. In: ACM Lett. Program. Lang.
Syst. 1.4 (Dec. 1992), pp. 323–337. : 1057-4514. : <10.1145/161494.161501>.
: <http://www.research.rutgers.edu/~landi/loplas92.ps> (visited on
05/16/2012).

[24] Xavier Allamigeon. “Static analysis of memory manipulations by abstract interpre-
tation”. PhD thesis. Ecole Polytechnique, 2009. : <http://www.specif.org/
prix-these/2010/allamigeon-these.pdf>.

50

http://www.chawdhary.co.uk/pubs/thesis.pdf
http://www.chawdhary.co.uk/pubs/thesis.pdf
http://en.wikipedia.org/w/index.php?title=Soundness&oldid=492311887
http://en.wikipedia.org/w/index.php?title=Soundness&oldid=492311887
http://dx.doi.org/10.1016/j.entcs.2008.06.039
http://www.ep.liu.se/ea/trcis/2008/003/trcis08003.pdf
http://www.ep.liu.se/ea/trcis/2008/003/trcis08003.pdf
http://daimi.au.dk/~mis/static.html
http://daimi.au.dk/~mis/static.html
http://publications.csail.mit.edu/lcs/pubs/pdf/MIT-LCS-TR-841.pdf
http://publications.csail.mit.edu/lcs/pubs/pdf/MIT-LCS-TR-841.pdf
http://en.wikipedia.org/w/index.php?title=Type_I_and_type_II_errors&oldid=491119939
http://en.wikipedia.org/w/index.php?title=Type_I_and_type_II_errors&oldid=491119939
http://en.wikipedia.org/w/index.php?title=Type_I_and_type_II_errors&oldid=491119939
http://drum.lib.umd.edu//handle/1903/2901
http://drum.lib.umd.edu//handle/1903/2901
http://sourceforge.net/apps/mediawiki/cppcheck/index.php?title=Found_bugs
http://sourceforge.net/apps/mediawiki/cppcheck/index.php?title=Found_bugs
http://dx.doi.org/10.1145/390016.808425
http://dx.doi.org/10.1145/390016.808425
http://doi.acm.org/10.1145/390016.808425
http://dx.doi.org/10.1145/1460299.1460314
http://doi.acm.org/10.1145/1460299.1460314
http://doi.acm.org/10.1145/1460299.1460314
http://dx.doi.org/10.1145/358438.349313
http://dx.doi.org/10.1145/358438.349313
http://research.cs.wisc.edu/wpis/papers/pldi00.ps
http://dx.doi.org/10.1145/161494.161501
http://www.research.rutgers.edu/~landi/loplas92.ps
http://www.specif.org/prix-these/2010/allamigeon-these.pdf
http://www.specif.org/prix-these/2010/allamigeon-these.pdf

[25] P. Cousot and R. Cousot. “Abstract interpretation: a unified lattice model for stat-
ic analysis of programs by construction or approximation of fixpoints”. In: Confer-
ence Record of the Fourth Annual ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages. Los Angeles, California: ACM Press, New York, NY, 1977,
pp. 238–252. : <http://www.di.ens.fr/~cousot/COUSOTpapers/POPL77.shtml>
(visited on 05/16/2012).

[26] Christèle Faure. PolySpace Technologies History. : <http://christele.faure.
pagesperso-orange.fr/polyspace.html> (visited on 05/16/2012).

[27] John C. Reynolds. “Separation Logic: A Logic for Shared Mutable Data Structures”.
In: Proceedings of the 17th Annual IEEE Symposium on Logic in Computer Science. LICS
’02. Washington, DC, USA: IEEE Computer Society, 2002, pp. 55–74. : 0-7695-
1483-9. : <http://www.cs.cmu.edu/~jcr/seplogic.pdf> (visited on 05/19/2012).

[28] Josh Berdine et al. “Symbolic Execution with Separation Logic”. In: In APLAS. Springer,
2005, pp. 52–68. : <http://www.eecs.qmul.ac.uk/~berdine/papers/execution.
pdf> (visited on 05/16/2012).

[29] Flemming Nielson, Hanne Riis Nielson, and Chris Hankin. Principles of Program
Analysis. Springer, 1999.

[30] Uday Khedker. Interprocedural Data Flow Analysis. CS618 Autumn 2011 course slides.
: <http://www.cse.iitb.ac.in/~uday/soft-copies/ip-dfa.pdf> (visited on
05/15/2012).

[31] Qing Yi. Principles of Program Analysis. CS6463 Spring 2008 course slides. : <http:
//www.cs.utsa.edu/~qingyi/cs6463/slides/cs6463- ch1.pdf> (visited on
05/15/2012).

[32] Joxan Jaffar et al. Path-Sensitive Backward Slicing. National University of Singapore,
The University of Melbourne, University of Sydney, 2012. : <http://www.comp.
nus.edu.sg/~joxan/papers/slicing.pdf> (visited on 05/18/2012).

[33] Control flow analysis – Wikipedia, the free encyclopedia. Dec. 15, 2011. : <http://en.
wikipedia.org/w/index.php?title=Control_flow_analysis&oldid=466064616>
(visited on 05/16/2012).

[34] Rastisalv Bodík and Sadun Anik. “Path-sensitive value-flow analysis”. In: Proceed-
ings of the 25th ACM SIGPLAN-SIGACT symposium on Principles of programming lan-
guages. POPL ’98. San Diego, California, United States: ACM, 1998, pp. 237–251. :
0-89791-979-3. : <10.1145/268946.268966>. : <http://www.cs.berkeley.
edu/~bodik/research/popl98.ps> (visited on 05/16/2012).

[35] Live variable analysis – Wikipedia, the free encyclopedia. May 14, 2012. : <http://
en . wikipedia . org / w / index . php ? title = Live _ variable _ analysis & oldid =
492465543> (visited on 05/21/2012).

[36] Vishwanath Raman. Pointer Analysis – A Survey. University of California, 2004. :
<http://users.soe.ucsc.edu/~vishwa/publications/Pointers.pdf> (visited on
05/16/2012).

[37] Josh Berdine et al. “Shape analysis for composite data structures”. In: Proceedings
of the 19th international conference on Computer aided verification. CAV’07. Berlin, Ger-
many: Springer-Verlag, 2007, pp. 178–192. : 978-3-540-73367-6. : <http://
www.eecs.qmul.ac.uk/~ohearn/papers/cav07.pdf> (visited on 05/19/2012).

51

http://www.di.ens.fr/~cousot/COUSOTpapers/POPL77.shtml
http://christele.faure.pagesperso-orange.fr/polyspace.html
http://christele.faure.pagesperso-orange.fr/polyspace.html
http://www.cs.cmu.edu/~jcr/seplogic.pdf
http://www.eecs.qmul.ac.uk/~berdine/papers/execution.pdf
http://www.eecs.qmul.ac.uk/~berdine/papers/execution.pdf
http://www.cse.iitb.ac.in/~uday/soft-copies/ip-dfa.pdf
http://www.cs.utsa.edu/~qingyi/cs6463/slides/cs6463-ch1.pdf
http://www.cs.utsa.edu/~qingyi/cs6463/slides/cs6463-ch1.pdf
http://www.comp.nus.edu.sg/~joxan/papers/slicing.pdf
http://www.comp.nus.edu.sg/~joxan/papers/slicing.pdf
http://en.wikipedia.org/w/index.php?title=Control_flow_analysis&oldid=466064616
http://en.wikipedia.org/w/index.php?title=Control_flow_analysis&oldid=466064616
http://dx.doi.org/10.1145/268946.268966
http://www.cs.berkeley.edu/~bodik/research/popl98.ps
http://www.cs.berkeley.edu/~bodik/research/popl98.ps
http://en.wikipedia.org/w/index.php?title=Live_variable_analysis&oldid=492465543
http://en.wikipedia.org/w/index.php?title=Live_variable_analysis&oldid=492465543
http://en.wikipedia.org/w/index.php?title=Live_variable_analysis&oldid=492465543
http://users.soe.ucsc.edu/~vishwa/publications/Pointers.pdf
http://www.eecs.qmul.ac.uk/~ohearn/papers/cav07.pdf
http://www.eecs.qmul.ac.uk/~ohearn/papers/cav07.pdf

[38] James Newsome. “Dynamic Taint Analysis for Automatic Detection, Analysis, and
Signature Generation of Exploits on Commodity Software”. In: 2005. : <http:
//valgrind.org/docs/newsome2005.pdf> (visited on 05/17/2012).

[39] Nenad Jovanovic, Christopher Kruegel, and Engin Kirda. “Pixy: A Static Analysis
Tool for Detecting Web Application Vulnerabilities (Short Paper)”. In: Proceedings of
the 2006 IEEE Symposium on Security and Privacy. SP ’06. Washington, DC, USA: IEEE
Computer Society, 2006, pp. 258–263. : 0-7695-2574-1. : <10.1109/SP.2006.
29>. : <https://iseclab.org/papers/pixy.pdf> (visited on 05/17/2012).

[40] Dumitru Ceara. “Detecting Software Vulnerabilities. Static Taint Analysis”. BSc the-
sis. Universitatea Politehnica Bucuresti, 2009. : <http://tanalysis.googlecode.
com/files/DumitruCeara_BSc.pdf>.

[41] Control flow analysis – Wikipedia, the free encyclopedia. Dec. 15, 2011. : <http://en.
wikipedia.org/w/index.php?title=Control_flow_analysis&oldid=466064616>
(visited on 05/16/2012).

[42] Jeffrey Dean, David Grove, and Craig Chambers. “Optimization of Object-Oriented
Programs Using Static Class Hierarchy Analysis”. In: Proceedings of the 9th European
Conference on Object-Oriented Programming. ECOOP ’95. London, UK, UK: Springer-
Verlag, 1995, pp. 77–101. : 3-540-60160-0. : <http://www.cs.ucla.edu/
~palsberg/tba/papers/dean-grove-chambers-ecoop95.pdf> (visited on 05/16/2012).

[43] He Zhu and Ian Watson. “A Full Program Control Flow Representation for Real
Programs”. In: IN EUROPEAN CONFERENCE ON PARALLEL PROCESSING. 1997.

[44] Olin Shivers. “Control-Flow Analysis of Higher-Order Languages”. PhD thesis. Carnegie
Mellon University, 1991. : <http://www.ccs.neu.edu/home/shivers/papers/
diss.pdf>.

[45] S. Gulwani and A. Tiwari. “Computing Procedure Summaries for Interprocedu-
ral Analysis”. In: European Symp. on Programming, ESOP 2007. Ed. by R. De Nicola.
Vol. 4421. LNCS. 2007, pp. 253–267. : <http://www.csl.sri.com/users/tiwari/
html/esop07.html> (visited on 05/15/2012).

[46] Thomas Reps. On the Sequential Nature of Interprocedural Program-Analysis Problems.
University of Wisconsin, 1995. : <http://research.cs.wisc.edu/wpis/papers/
acta96.pdf> (visited on 05/15/2012).

[47] Cristiano Calcagno et al. “Compositional shape analysis by means of bi-abduction”.
In: SIGPLAN Not. 44.1 (Jan. 2009), pp. 289–300. : 0362-1340. : <10 . 1145 /
1594834.1480917>. : <http://www.cs.ucl.ac.uk/staff/p.ohearn/papers/
popl09.pdf> (visited on 05/19/2012).

[48] The Valgrind Developers. Valgrind User Manual. : <http://www.valgrind.org/
docs/manual/manual.html> (visited on 05/13/2012).

[49] Julian Seward and Nicholas Nethercote. “Using Valgrind to detect undefined value
errors with bit-precision”. In: Proceedings of the USENIX’05 Annual Technical Confer-
ence. Anaheim, California, USA, 2005. : <http://www.valgrind.org/docs/
memcheck2005.pdf> (visited on 05/13/2012).

52

http://valgrind.org/docs/newsome2005.pdf
http://valgrind.org/docs/newsome2005.pdf
http://dx.doi.org/10.1109/SP.2006.29
http://dx.doi.org/10.1109/SP.2006.29
https://iseclab.org/papers/pixy.pdf
http://tanalysis.googlecode.com/files/DumitruCeara_BSc.pdf
http://tanalysis.googlecode.com/files/DumitruCeara_BSc.pdf
http://en.wikipedia.org/w/index.php?title=Control_flow_analysis&oldid=466064616
http://en.wikipedia.org/w/index.php?title=Control_flow_analysis&oldid=466064616
http://www.cs.ucla.edu/~palsberg/tba/papers/dean-grove-chambers-ecoop95.pdf
http://www.cs.ucla.edu/~palsberg/tba/papers/dean-grove-chambers-ecoop95.pdf
http://www.ccs.neu.edu/home/shivers/papers/diss.pdf
http://www.ccs.neu.edu/home/shivers/papers/diss.pdf
http://www.csl.sri.com/users/tiwari/html/esop07.html
http://www.csl.sri.com/users/tiwari/html/esop07.html
http://research.cs.wisc.edu/wpis/papers/acta96.pdf
http://research.cs.wisc.edu/wpis/papers/acta96.pdf
http://dx.doi.org/10.1145/1594834.1480917
http://dx.doi.org/10.1145/1594834.1480917
http://www.cs.ucl.ac.uk/staff/p.ohearn/papers/popl09.pdf
http://www.cs.ucl.ac.uk/staff/p.ohearn/papers/popl09.pdf
http://www.valgrind.org/docs/manual/manual.html
http://www.valgrind.org/docs/manual/manual.html
http://www.valgrind.org/docs/memcheck2005.pdf
http://www.valgrind.org/docs/memcheck2005.pdf

[50] Derek Bruening and Qin Zhao. “Practical memory checking with Dr. Memory”. In:
Proceedings of the 2011 9th Annual IEEE/ACM International Symposium on Code Gen-
eration and Optimization. CGO ’11. Washington, DC, USA: IEEE Computer Society,
2011, pp. 213–223. : 978-1-61284-356-8. : <http://www.burningcutlery.
com/derek/docs/drmem-CGO11.pdf> (visited on 05/13/2012).

[51] Konstantin Serebryany and Timur Iskhodzhanov. “ThreadSanitizer: data race de-
tection in practice”. In: Proceedings of the Workshop on Binary Instrumentation and
Applications. WBIA ’09. New York, New York: ACM, 2009, pp. 62–71. : 978-1-
60558-793-6. : <10.1145/1791194.1791203>. : <http://data-race-test.
googlecode.com/files/ThreadSanitizer.pdf> (visited on 05/13/2012).

[52] Abstract Interpretation – Polyspace. : <http://www.mathworks.com/discovery/
abstract-interpretation.html> (visited on 05/16/2012).

[53] Frequently Asked Questions. : <http://www.monoidics.com/en/resources/
frequently-asked-questions.html> (visited on 05/16/2012).

[54] Pascal Cuoq. Static analysis tools comparisons. : <http://blog.frama- c.com/
index.php?post/2011/11/25/Static-analysis-tools-comparisons> (visited on
05/18/2012).

[55] plugins - GCC Wiki. Aug. 10, 2011. : <http://gcc.gnu.org/wiki/plugins>
(visited on 05/16/2012).

[56] Chris Lattner and Vikram Adve. “LLVM: A Compilation Framework for Lifelong
Program Analysis & Transformation”. In: Proceedings of the international symposium
on Code generation and optimization: feedback-directed and runtime optimization. CGO
’04. Palo Alto, California: IEEE Computer Society, 2004, pp. 75–. : 0-7695-2102-9.
: <http://www.cgo.org/cgo2004/papers/06_76_lattner_c.pdf> (visited on
05/16/2012).

[57] Dan Quinlan and Chunhua Liao. The ROSE Source-to-Source Compiler Infrastructure.
Lawrence Livermore National Laboratory, 2011. : <http://cetus.ecn.purdue.
edu/cetusworkshop/papers/4-1.pdf> (visited on 05/16/2012).

[58] Pascal Cuoq et al. “Experience report: OCaml for an industrial-strength static anal-
ysis framework”. In: SIGPLAN Not. 44.9 (Aug. 2009), pp. 281–286. : 0362-1340.
: <10.1145/1631687.1596591>. : <http://frama-c.com/u3cat/download/
CuoqICFP09.pdf> (visited on 05/16/2012).

[59] George C. Necula et al. “CIL: Intermediate Language and Tools for Analysis and
Transformation of C Programs”. In: Proceedings of the 11th International Conference on
Compiler Construction. CC ’02. London, UK, UK: Springer-Verlag, 2002, pp. 213–228.
: 3-540-43369-4. : <http://citeseerx.ist.psu.edu/viewdoc/download?
doi=10.1.1.119.4385&rep=rep1&type=pdf> (visited on 05/16/2012).

[60] Frama-C. : <http://frama-c.com/> (visited on 05/16/2012).
[61] Alex Aiken et al. “An Overview of the Saturn Project”. In: Proceedings of the 7th ACM

SIGPLAN-SIGSOFT workshop on Program analysis for software tools and engineering.
PASTE ’07. San Diego, California, USA: ACM, 2007, pp. 43–48. : 978-1-59593-
595-3. : <10.1145/1251535.1251543>. : <http://theory.stanford.edu/
~hawkinsp/papers/paste2007saturn.pdf> (visited on 05/19/2012).

53

http://www.burningcutlery.com/derek/docs/drmem-CGO11.pdf
http://www.burningcutlery.com/derek/docs/drmem-CGO11.pdf
http://dx.doi.org/10.1145/1791194.1791203
http://data-race-test.googlecode.com/files/ThreadSanitizer.pdf
http://data-race-test.googlecode.com/files/ThreadSanitizer.pdf
http://www.mathworks.com/discovery/abstract-interpretation.html
http://www.mathworks.com/discovery/abstract-interpretation.html
http://www.monoidics.com/en/resources/frequently-asked-questions.html
http://www.monoidics.com/en/resources/frequently-asked-questions.html
http://blog.frama-c.com/index.php?post/2011/11/25/Static-analysis-tools-comparisons
http://blog.frama-c.com/index.php?post/2011/11/25/Static-analysis-tools-comparisons
http://gcc.gnu.org/wiki/plugins
http://www.cgo.org/cgo2004/papers/06_76_lattner_c.pdf
http://cetus.ecn.purdue.edu/cetusworkshop/papers/4-1.pdf
http://cetus.ecn.purdue.edu/cetusworkshop/papers/4-1.pdf
http://dx.doi.org/10.1145/1631687.1596591
http://frama-c.com/u3cat/download/CuoqICFP09.pdf
http://frama-c.com/u3cat/download/CuoqICFP09.pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.119.4385&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.119.4385&rep=rep1&type=pdf
http://frama-c.com/
http://dx.doi.org/10.1145/1251535.1251543
http://theory.stanford.edu/~hawkinsp/papers/paste2007saturn.pdf
http://theory.stanford.edu/~hawkinsp/papers/paste2007saturn.pdf

[62] Jan Obdržálek, Jiří Slabý, and Marek Trtík. “STANSE: bug-finding framework for c
programs”. In: Proceedings of the 7th international conference on Mathematical and Engi-
neering Methods in Computer Science. MEMICS’11. Lednice, Czech Republic: Springer-
Verlag, 2012, pp. 167–178. : 978-3-642-25928-9. : <10 . 1007 / 978 - 3 - 642 -
25929-6_16>. : <https://is.muni.cz/repo/956059/stanse.pdf/publication/
956059> (visited on 05/20/2012).

[63] George Chatzieleftheriou and Panagiotis Katsaros. “Test-Driving Static Analysis
Tools in Search of C Code Vulnerabilities”. In: Proceedings of the 2011 IEEE 35th Annu-
al Computer Software and Applications Conference Workshops. COMPSACW ’11. Wash-
ington, DC, USA: IEEE Computer Society, 2011, pp. 96–103. : 978-0-7695-4459-5.
: <10.1109/COMPSACW.2011.26>. : <http://mathind.csd.auth.gr/static_
analysis_test_suite/> (visited on 05/17/2012).

[64] S. C. Johnson. “Lint, a C Program Checker”. In: COMP. SCI. TECH. REP. 1978,
pp. 78–1273.

[65] SourceForge.net: cppcheck. Apr. 15, 2011. : <http : / / sourceforge . net / apps /
mediawiki/cppcheck/index.php?title=Main_Page> (visited on 05/16/2012).

[66] ROSE Team. Compass User Manual: A Tool for Source Code Checking. : <http://
rosecompiler.org/compass.pdf> (visited on 05/16/2012).

[67] David Svoboda. ROSE Checker Code - Secure Coding - CERT Secure Coding Standards.
Jan. 1, 2010. : <https://www.securecoding.cert.org/confluence/display/
seccode/ROSE+Checker+Code> (visited on 05/16/2012).

[68] Dirk Beyer et al. “The software model checker Blast: Applications to software en-
gineering”. In: Int. J. Softw. Tools Technol. Transf. 9.5 (Oct. 2007), pp. 505–525. :
1433-2779. : <10.1007/s10009-007-0044-z>. : <http://www.sosy-lab.org/
~dbeyer/Publications/2007-STTT.The_Software_Model_Checker_BLAST.pdf>
(visited on 05/17/2012).

[69] BLAST Documentation. : <http://www.sosy-lab.org/~dbeyer/blast_doc/>
(visited on 05/16/2012).

[70] Chucky Ellison and Grigore Roşu. “An Executable Formal Semantics of C with Ap-
plications”. In: Proceedings of the 39th Symposium on Principles of Programming Lan-
guages (POPL’12). ACM, 2012, pp. 533–544. : <10.1145/2103656.2103719>. :
<http://fsl.cs.uiuc.edu/pubs/ellison-rosu-2012-popl.pdf> (visited on
05/16/2012).

[71] David Malcolm. Usage example: a static analysis tool for CPython extension code — gcc-
python-plugin 0.9 documentation. : <http://gcc-python-plugin.readthedocs.
org/en/latest/cpychecker.html> (visited on 05/16/2012).

[72] George C. Necula et al. “CCured: type-safe retrofitting of legacy software”. In: ACM
Trans. Program. Lang. Syst. 27.3 (May 2005), pp. 477–526. : 0164-0925. : <10.
1145/1065887.1065892>. : <http://www.cs.sunysb.edu/~rob/teaching/
cse608-fa05/ccured_popl02.pdf> (visited on 05/19/2012).

[73] Christoph Csallner and Yannis Smaragdakis. “DSD-Crasher: A hybrid analysis tool
for bug finding”. In: Proc. ACM SIGSOFT International Symposium on Software Testing
and Analysis (ISSTA). ACM, July 2006, pp. 245–254. : <http://ranger.uta.
edu/~csallner/papers/csallner06dsd- crasher- abstract.html> (visited on
05/19/2012).

54

http://dx.doi.org/10.1007/978-3-642-25929-6_16
http://dx.doi.org/10.1007/978-3-642-25929-6_16
https://is.muni.cz/repo/956059/stanse.pdf/publication/956059
https://is.muni.cz/repo/956059/stanse.pdf/publication/956059
http://dx.doi.org/10.1109/COMPSACW.2011.26
http://mathind.csd.auth.gr/static_analysis_test_suite/
http://mathind.csd.auth.gr/static_analysis_test_suite/
http://sourceforge.net/apps/mediawiki/cppcheck/index.php?title=Main_Page
http://sourceforge.net/apps/mediawiki/cppcheck/index.php?title=Main_Page
http://rosecompiler.org/compass.pdf
http://rosecompiler.org/compass.pdf
https://www.securecoding.cert.org/confluence/display/seccode/ROSE+Checker+Code
https://www.securecoding.cert.org/confluence/display/seccode/ROSE+Checker+Code
http://dx.doi.org/10.1007/s10009-007-0044-z
http://www.sosy-lab.org/~dbeyer/Publications/2007-STTT.The_Software_Model_Checker_BLAST.pdf
http://www.sosy-lab.org/~dbeyer/Publications/2007-STTT.The_Software_Model_Checker_BLAST.pdf
http://www.sosy-lab.org/~dbeyer/blast_doc/
http://dx.doi.org/10.1145/2103656.2103719
http://fsl.cs.uiuc.edu/pubs/ellison-rosu-2012-popl.pdf
http://gcc-python-plugin.readthedocs.org/en/latest/cpychecker.html
http://gcc-python-plugin.readthedocs.org/en/latest/cpychecker.html
http://dx.doi.org/10.1145/1065887.1065892
http://dx.doi.org/10.1145/1065887.1065892
http://www.cs.sunysb.edu/~rob/teaching/cse608-fa05/ccured_popl02.pdf
http://www.cs.sunysb.edu/~rob/teaching/cse608-fa05/ccured_popl02.pdf
http://ranger.uta.edu/~csallner/papers/csallner06dsd-crasher-abstract.html
http://ranger.uta.edu/~csallner/papers/csallner06dsd-crasher-abstract.html

[74] Thomas A. Henzinger et al. Thread-modular Abstraction Refinement. University of Cal-
ifornia, Microsoft Research, 2003. : <http://goto.ucsd.edu/~rjhala/papers/
thread-modular_abstraction_refinement.pdf> (visited on 05/18/2012).

[75] Byung-Gon Chun et al. “CloneCloud: elastic execution between mobile device and
cloud”. In: Proceedings of the sixth conference on Computer systems. EuroSys ’11. Salzburg,
Austria: ACM, 2011, pp. 301–314. : 978-1-4503-0634-8. : <10.1145/1966445.
1966473>. : <http://berkeley.intel- research.net/bgchun/clonecloud-
eurosys11.pdf> (visited on 05/16/2012).

[76] Linus Torvalds et al. devel/sparse/sparse.git/blob - README. : <http://git.kernel.
org/?p=devel/sparse/sparse.git;a=blob;f=README> (visited on 05/20/2012).

[77] Main Page - Sparse Wiki. Oct. 19, 2009. : <https://sparse.wiki.kernel.org/
index.php/Main_Page> (visited on 05/20/2012).

[78] A parsing and analysis library for the C language. : <http://blog.gmane.org/
gmane.comp.parsers.sparse> (visited on 05/20/2012).

[79] Transmeta – Wikipedia, the free encyclopedia. May 15, 2012. : <http://en.wikipedia.
org/w/index.php?title=Transmeta&oldid=492757254> (visited on 05/20/2012).

[80] Linus Torvalds et al. devel/sparse/sparse.git/blob - LICENSE. : <http://git.kernel.
org/?p=devel/sparse/sparse.git;a=blob;f=LICENSE> (visited on 05/20/2012).

[81] The DFSG and Software Licenses. Apr. 8, 2012. : <http://wiki.debian.org/
DFSGLicenses> (visited on 05/20/2012).

[82] Novafora relicenses Transmeta sparse copyrights under the MIT license. : <http://
comments.gmane.org/gmane.comp.parsers.sparse/1799> (visited on 05/20/2012).

[83] relicensing Sparse. : <http : / / comments . gmane . org / gmane . comp . parsers .
sparse/2499> (visited on 05/20/2012).

[84] Doc Searls. Linus & the Lunatics, Part I. : <http://www.linuxjournal.com/
article/7272> (visited on 05/20/2012).

[85] Richard Stallman. Re: Converting the gcc backend to a library? Jan. 17, 2000. : <Yankhttp:
//gcc.gnu.org/ml/gcc/2000-01/msg00572.html> (visited on 05/20/2012).

[86] David Edelsohn. New GCC Runtime Library Exception. Jan. 27, 2009. : <http://
gcc.gnu.org/ml/gcc-announce/2009/msg00000.html> (visited on 05/20/2012).

[87] Abstract syntax tree – Wikipedia, the free encyclopedia. May 1, 2012. : <http://en.
wikipedia.org/w/index.php?title=Abstract_syntax_tree&oldid=490117586>
(visited on 05/21/2012).

[88] Re: Moving smatch to use sparse. : <http : / / blog . gmane . org / gmane . comp .
parsers.sparse/day=20061005> (visited on 05/21/2012).

[89] Dan Carpenter et al. smatch.git/blob - README-smatch. : <http://repo.or.cz/
w/smatch.git/blob/HEAD:/README-smatch> (visited on 05/21/2012).

[90] Josh Triplett et al. devel/sparse/sparse.git/blob - sparse.1. : <http://git.kernel.
org/?p=devel/sparse/sparse.git;a=blob;f=sparse.1> (visited on 05/21/2012).

[91] Linus Torvalds. Sparse “context” checking.. Oct. 30, 2004. : <https://lkml.org/
lkml/2004/10/30/293> (visited on 05/21/2012).

[92] [PATCH 0/3] improve context handling. : <http://thread.gmane.org/gmane.
comp.parsers.sparse/1249> (visited on 05/21/2012).

55

http://goto.ucsd.edu/~rjhala/papers/thread-modular_abstraction_refinement.pdf
http://goto.ucsd.edu/~rjhala/papers/thread-modular_abstraction_refinement.pdf
http://dx.doi.org/10.1145/1966445.1966473
http://dx.doi.org/10.1145/1966445.1966473
http://berkeley.intel-research.net/bgchun/clonecloud-eurosys11.pdf
http://berkeley.intel-research.net/bgchun/clonecloud-eurosys11.pdf
http://git.kernel.org/?p=devel/sparse/sparse.git;a=blob;f=README
http://git.kernel.org/?p=devel/sparse/sparse.git;a=blob;f=README
https://sparse.wiki.kernel.org/index.php/Main_Page
https://sparse.wiki.kernel.org/index.php/Main_Page
http://blog.gmane.org/gmane.comp.parsers.sparse
http://blog.gmane.org/gmane.comp.parsers.sparse
http://en.wikipedia.org/w/index.php?title=Transmeta&oldid=492757254
http://en.wikipedia.org/w/index.php?title=Transmeta&oldid=492757254
http://git.kernel.org/?p=devel/sparse/sparse.git;a=blob;f=LICENSE
http://git.kernel.org/?p=devel/sparse/sparse.git;a=blob;f=LICENSE
http://wiki.debian.org/DFSGLicenses
http://wiki.debian.org/DFSGLicenses
http://comments.gmane.org/gmane.comp.parsers.sparse/1799
http://comments.gmane.org/gmane.comp.parsers.sparse/1799
http://comments.gmane.org/gmane.comp.parsers.sparse/2499
http://comments.gmane.org/gmane.comp.parsers.sparse/2499
http://www.linuxjournal.com/article/7272
http://www.linuxjournal.com/article/7272
Yank http://gcc.gnu.org/ml/gcc/2000-01/msg00572.html
Yank http://gcc.gnu.org/ml/gcc/2000-01/msg00572.html
http://gcc.gnu.org/ml/gcc-announce/2009/msg00000.html
http://gcc.gnu.org/ml/gcc-announce/2009/msg00000.html
http://en.wikipedia.org/w/index.php?title=Abstract_syntax_tree&oldid=490117586
http://en.wikipedia.org/w/index.php?title=Abstract_syntax_tree&oldid=490117586
http://blog.gmane.org/gmane.comp.parsers.sparse/day=20061005
http://blog.gmane.org/gmane.comp.parsers.sparse/day=20061005
http://repo.or.cz/w/smatch.git/blob/HEAD:/README-smatch
http://repo.or.cz/w/smatch.git/blob/HEAD:/README-smatch
http://git.kernel.org/?p=devel/sparse/sparse.git;a=blob;f=sparse.1
http://git.kernel.org/?p=devel/sparse/sparse.git;a=blob;f=sparse.1
https://lkml.org/lkml/2004/10/30/293
https://lkml.org/lkml/2004/10/30/293
http://thread.gmane.org/gmane.comp.parsers.sparse/1249
http://thread.gmane.org/gmane.comp.parsers.sparse/1249

[93] Linus Torvalds. Re: [PATCH 00/16] mm: prepare for converting vm->vm_flags to 64-
bit. Mar. 22, 2012. : <https://lkml.org/lkml/2012/3/22/409> (visited on
05/21/2012).

[94] ISO. International Standard ISO/IEC 9899:1999: Technical Corrigendum 3. Committee
Draft. Sept. 7, 2007. : <http://www.open- std.org/jtc1/sc22/wg14/www/
docs/n1256.pdf> (visited on 05/21/2012).

[95] Control flow graph – Wikipedia, the free encyclopedia. May 1, 2012. : <http://en.
wikipedia.org/w/index.php?title=Control_flow_graph&oldid=492353392>
(visited on 05/21/2012).

[96] Common subexpression elimination – Wikipedia, the free encyclopedia. Mar. 24, 2012. :
<http : / / en . wikipedia . org / w / index . php ? title = Common _ subexpression _
elimination&oldid=483696670> (visited on 05/21/2012).

[97] Dominator (graph theory) – Wikipedia, the free encyclopedia. June 22, 2011. : <http:
//en.wikipedia.org/w/index.php?title=Dominator_(graph_theory)&oldid=
435620107> (visited on 05/21/2012).

[98] Ron Cytron et al. “Efficiently computing static single assignment form and the con-
trol dependence graph”. In: ACM Trans. Program. Lang. Syst. 13.4 (Oct. 1991), pp. 451–
490. : 0164-0925. : <10.1145/115372.115320>. : <http://grothoff.org/
christian/teaching/2007/3353/papers/ssa.pdf> (visited on 05/16/2012).

[99] Martin Nagy. “Static Analysis of C Programs in Sparse and Similar Tools”. BSc the-
sis. FIT BUT, 2009. : <http://www.fit.vutbr.cz/study/DP/BP.php?id=7984&
y=2008> (visited on 05/22/2012).

[100] Kamil Dudka, Petr Peringer, and Tomáš Vojnar. “An easy to use infrastructure for
building static analysis tools”. In: Proceedings of the 13th international conference on
Computer Aided Systems Theory - Volume Part I. EUROCAST’11. Las Palmas de Gran
Canaria, Spain: Springer-Verlag, 2011, pp. 527–534. : 978-3-642-27548-7. : <10.
1007/978- 3- 642- 27549- 4_68>. : <http://www.fit.vutbr.cz/~vojnar/
Publications/codelistener11.pdf>.

[101] Kamil Dudka, Petr Peringer, and Tomáš Vojnar. Code Listener. An Easy to Use In-
frastructure for Building Static Analysis Tools. BUT FIT, VeriFIT. : <htp://www.
fit.vutbr.cz/research/groups/verifit/tools/code-listener/> (visited on
05/19/2012).

[102] Kamil Dudka et al. Predator. A Separation Logic-Based GCC Plug-in for Checking Manip-
ulation of Dynamic Data Structures. : <https://github.com/kdudka/predator>
(visited on 05/10/2012).

[103] Kamil Dudka, Petr Peringer, and Tomáš Vojnar. “Predator: a practical tool for check-
ing manipulation of dynamic data structures using separation logic”. In: Proceedings
of the 23rd international conference on Computer aided verification. CAV’11. Snowbird,
UT: Springer-Verlag, 2011, pp. 372–378. : 978-3-642-22109-5. : <http://www.
springerlink.com/content/0348r4140k031426/> (visited on 05/19/2012).

56

https://lkml.org/lkml/2012/3/22/409
http://www.open-std.org/jtc1/sc22/wg14/www/docs/n1256.pdf
http://www.open-std.org/jtc1/sc22/wg14/www/docs/n1256.pdf
http://en.wikipedia.org/w/index.php?title=Control_flow_graph&oldid=492353392
http://en.wikipedia.org/w/index.php?title=Control_flow_graph&oldid=492353392
http://en.wikipedia.org/w/index.php?title=Common_subexpression_elimination&oldid=483696670
http://en.wikipedia.org/w/index.php?title=Common_subexpression_elimination&oldid=483696670
http://en.wikipedia.org/w/index.php?title=Dominator_(graph_theory)&oldid=435620107
http://en.wikipedia.org/w/index.php?title=Dominator_(graph_theory)&oldid=435620107
http://en.wikipedia.org/w/index.php?title=Dominator_(graph_theory)&oldid=435620107
http://dx.doi.org/10.1145/115372.115320
http://grothoff.org/christian/teaching/2007/3353/papers/ssa.pdf
http://grothoff.org/christian/teaching/2007/3353/papers/ssa.pdf
http://www.fit.vutbr.cz/study/DP/BP.php?id=7984&y=2008
http://www.fit.vutbr.cz/study/DP/BP.php?id=7984&y=2008
http://dx.doi.org/10.1007/978-3-642-27549-4_68
http://dx.doi.org/10.1007/978-3-642-27549-4_68
http://www.fit.vutbr.cz/~vojnar/Publications/codelistener11.pdf
http://www.fit.vutbr.cz/~vojnar/Publications/codelistener11.pdf
htp://www.fit.vutbr.cz/research/groups/verifit/tools/code-listener/
htp://www.fit.vutbr.cz/research/groups/verifit/tools/code-listener/
https://github.com/kdudka/predator
http://www.springerlink.com/content/0348r4140k031426/
http://www.springerlink.com/content/0348r4140k031426/

[104] Kamil Dudka et al. “Predator: A Verification Tool for Programs with Dynamic Linked
Data Structures”. In: Tools and Algorithms for the Construction and Analysis of Systems.
Ed. by Cormac Flanagan and Barbara König. Vol. 7214. Lecture Notes in Computer
Science. Springer Berlin / Heidelberg, 2012, pp. 545–548. : 978-3-642-28755-8.
: <http://www.fit.vutbr.cz/~vojnar/Publications/dmpv-svcomp-12.pdf>
(visited on 05/19/2012).

[105] Kamil Dudka, Petr Peringer, and Tomáš Vojnar. Predator. A Practical Tool for Checking
Manipulation of Dynamic Data Structures Using Separation Logic. BUT FIT, VeriFIT.
: <http://www.fit.vutbr.cz/research/groups/verifit/tools/predator/>
(visited on 05/10/2012).

[106] Peter Habermehl et al. “Forest automata for verification of heap manipulation”. In:
Formal Methods in System Design (). 10.1007/s10703-012-0150-8, pp. 1–24. : 0925-
9856. : <http://dx.doi.org/10.1007/s10703-012-0150-8>.

[107] Jiří Šimáček et al. Forester. Tool for Verification of Programs with Pointers. : <https:
//github.com/jsimacek/forester/> (visited on 05/19/2012).

[108] Jan Kofroň, Pavel Parízek, and Ondřej Šerý. “On Teaching Formal Methods: Behav-
ior Models and Code Analysis”. In: Proceedings of the 2nd International Conference on
Teaching Formal Methods. TFM ’09. Eindhoven: Springer-Verlag, 2009, pp. 144–157. -
: 978-3-642-04911-8. : <10.1007/978-3-642-04912-5_10>. : <http://d3s.
mff.cuni.cz/publications/download/KofronParizekSery_TeachingFM.pdf>
(visited on 05/17/2012).

[109] A parsing and analysis library for the C language. : <http://permalink.gmane.org/
gmane.comp.parsers.sparse/2828> (visited on 05/20/2012).

57

http://www.fit.vutbr.cz/~vojnar/Publications/dmpv-svcomp-12.pdf
http://www.fit.vutbr.cz/research/groups/verifit/tools/predator/
http://dx.doi.org/10.1007/s10703-012-0150-8
https://github.com/jsimacek/forester/
https://github.com/jsimacek/forester/
http://dx.doi.org/10.1007/978-3-642-04912-5_10
http://d3s.mff.cuni.cz/publications/download/KofronParizekSery_TeachingFM.pdf
http://d3s.mff.cuni.cz/publications/download/KofronParizekSery_TeachingFM.pdf
http://permalink.gmane.org/gmane.comp.parsers.sparse/2828
http://permalink.gmane.org/gmane.comp.parsers.sparse/2828

B. List of Appendices

Help message of clsp . 59

Code Listener callback sequence schema in ABNF form 61

58

Appendix 1

Help message of clsp

Sparse -based Code Listener frontend , version someversion

Usage: ./clsp -run (INT -OPTS|CL -OPTS -OR-PLUGIN|SPARSE -OPTS)* file [...]

As no Code Listener plugin was built -in (no one to serve as a base one
at hand), at least one such has to be provided in the form of a shared
library containing the symbols of the interface (plugins targeted for
GCC should be compatible); see ‘-cl-plugin ’ below.

This Code Listener front -end defines a few internal options (INT -OPTS):
-h, --help Prints this help text
--version Prints the version information
-k, --keep -going Defect file does not end the run , it is skipped
-t, --try -hard Make best effort to proceed even defective file
-n, --dry -run Skip the final confirmation of emitted code
-A, --interactive Simple interactive mode , instruction granularity
-E, --preprocessor Terminate showing output of sparse preprocessor
|: file descriptors , use FD >file redirection for FD > 2, empty /0:/ dev/null :|
|: sparse: ‘D[FD]’ for output to optional FD (none=stderr) to be deferred :|
|: note: fatal errors are always produced on stderr :|
--fd-debug [=FD] Debugging (incl. entities) [1]
--fd-sp[=FD] Sparse defect reports [2]
--fd-cl[=FD] CL notes/warnings/errors [2]
--fd-cl -debug[=FD] CL debug messages [1]
--fd-warn[=FD] Unexpected int. state reports [1]
|: specification of colors (terminal only), empty or ’default ’: no color; :|
|: CLR format: NORMAL -CLR[:HIGHLIGHT -CLR] (latter autoselected otherwise) :|
--clr -debug[=CLR] Debugging (excl. entities) [green:boldgreen]
--clr -sp[=CLR] Sparse defects:debug entities [purple:brown]
--clr -cl[=CLR] CL notes+warnings:errors [red:boldred]
--clr -cl-debug[=CLR] CL debug messages:entities [lightgray:blue]
--clr -warn[=CLR] Unexpected int. state reports [darksome:darkgray]

darksome red green brown blue purple cyan lightgray
darkgray boldred boldgreen boldbrown boldblue boldpurpleboldcyan white
black darkred darkgreen darkbrown darkblue darkpurpledarkcyan gray

-d, --debug[=MASK] Internal debug; MASK can be sum of values below:
1 dump gathered options
2 print messages regarding streams
4 print diagnostics regarding plugins
8 print current file being proceeded

16 print current function being proceeded
32 print event of opening new basic block
64 print current symbol being considered

128 print type being processed
256 print instruction being proceeded
512 print instruction operands details

1024 print initializator being proceeded
2048 print event of cache hit
4096 print type being inserted into type DB

59

8192 print final allocators state
16384 random print -outs , work in progress
32768 allow extra , yet nondeterministic info

From the options affecting CL infrastructure (CL-OPTS -OR-PLUGIN), one
particularly important is a way to load other listeners as plugins:

-cl-plugin=FILE[:ARGS] Path to a shared library containg symbols of
Code Listener (for instance , GCC plugins can be
used directly), passing it optional ARGS;
the first one is a base one and must be provided

and specifically these options are for a base (provided) Code Listener:
-cl-default -output Use Code Listener ’s built -in message printers
-cl-pprint [=FILE] Pretty -print code along the run (stdout by def.)
-cl-pprint -types Add type information to pretty -printed code
-cl-pprint -switch -to-if Unfold ‘switch ’ into series of ‘if’ statements
-cl-gen -cfg[=MAIN -FILE] Generate control flow graphs (as per MAIN -FILE)
-cl-gen -type[=FILE] Generate type graphs (to FILE if specified)
-cl-debug -location Keep printing location along the run
-cl-debug [=LEVEL] Debug (according to LEVEL if specified)

Sparse options (SPARSE -OPTS) are generally compatible with the common
compilers (notably GCC) and unrecognized options are ignored anyway;
some are highlighted below (for the rest refer to sparse itself):

-v Report more defects , more likely false positives
-m64 Suppose 64bit architecture (32bit by default)
-W[no[-]] WARNING Request/not to report WARNING -related issues;

‘sparse -all ’ covers all available warnings
-ftabstop Tab stop size to calculate column position [8]

Tip:bash completion: eval ”$(./clsp -run --bash)”

Return values:
0 run was successful (e.g., Code Listener fed)
1 sparse fatal error
2 sparse detected error in the code
3 general failure
4 incorrect command -line
5 memory handling failed (probably OOM)
6 internal type database handling failed
7 Code Listener run has been aborted

60

Appendix 2

Code Listener callback sequence
schema in ABNF form

<analysis > ::= <termination > | <files > <termination >

<termination > ::= acknowledge destroy

<files > ::= <file > | <files > <file >

<file > ::= file_open <file -content > file_close

<file -content > ::= fnc_open <fnc > fnc_close

<fnc > ::= <fnc -args > <fnc -body > | <fnc -body >

<fnc -args > ::= fnc_arg_decl | <fnc -args > fnc_arg_decl

<fnc -body > ::= <fnc -entry > | <fnc -entry > <fnc -bbs >

<fnc -entry > ::= insn:CL_INSN_JMP

<fnc -bbs > ::= <fnc -bb > | <fnc -bbs > <fnc -bb>

<fnc -bb> ::= bb_open <term -insn > | bb_open <nonterm -insn > <term -bb>

<term -bb > ::= insn:<term -instruction > | <switch >

<term -instruction > ::= CL_INSN_JMP | CL_INSN_COND | CL_INSN_RET | CL_INSN_ABORT

<switch > ::= insn_switch_open insn_switch_close
| insn_switch_open <switch -case > insn_switch_close

<switch -case > ::= insn_switch_case | <switch -case > insn -switch -case

<bb-nonterm > ::= insn:<nonterm -insn > | <call >

<nonterm -insn > ::= CL_INSN_UNOP | CL_INSN_BINOP | CL_INSN_LABEL

<call > ::= insn_call_open insn_call_close
| insn_call_open <call -arg > insn_call_close

<call -arg > ::= insn_call_arg | <call -arg > insn_call_arg

61

	Preface Pages
	Cover
	Title Page
	Assignment
	Abstract + Keywords + Citace
	Declaration

	Document Contents
	Contents

	List of Figures
	List of Tables
	List of Acronyms
	1 Introduction
	1.1 Motivation
	1.2 Objective and Scope
	1.3 Outline

	2 Automated Approaches Towards Program Safety Checking
	2.1 Program Analysis as Program Checks
	2.2 Basic Classification of Program Analyses
	2.3 Fundamentals
	2.4 Dynamic Analysis Approach
	2.5 Static Analysis Approach
	2.6 Examples of Practical Tools
	2.7 Comparison of Dynamic and Static Approach

	3 sparse: static analysis tool and library
	3.1 Overview of sparse
	3.2 Internal Reprezentation of Code Throughout the Phases
	3.3 Memory Models and Intermediate Instruction Set

	4 Code Listener, Predator and Forester
	4.1 Code Listener Infrastructure
	4.2 Predator Analyser
	4.3 Forester Analyser

	5 Adapter approaches and considerations
	5.1 Types
	5.2 Operands
	5.3 Instructions
	5.4 Missing Information about Object Traversal

	6 Implementation
	6.1 Architecture
	6.2 Streams
	6.3 Debug Mode
	6.4 Internal Testsuite

	7 Conclusion
	7.1 Program Checking Overview Study
	7.2 Implementation of the Adapter
	7.3 Outlook

	A Bibliography
	B List of Appendices
	Help message of clsp
	Code Listener callback sequence schema in ABNF form

