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Abstract: Magnetic resonance spectroscopy (MRS) is a technique capable of detecting chemical 

compounds from localized volumes in living tissues. Quantification of MRS signals is required for 

obtaining the metabolite concentrations of the tissue under investigation. However, reliable quanti-

fication of MRS is difficult. Recently deep learning (DL) has been used for metabolite quantifica-

tion of MRS signals in the frequency domain. In another study, it was shown that DL in combina-

tion with time-frequency analysis could be used for artifact detection in MRS. In this study, we ver-

ify the hypothesis that DL in combination with time-frequency analysis can also be used for me-

tabolite quantification and yields results more robust than DL trained with MR signals in the fre-

quency domain. We used the complex matrix of absolute wavelet coefficients (WC) for the time-

frequency representation of the signal, and convolutional neural network (CNN) implementation 

for DL. The comparison with DL used for quantification of data in the frequency domain is pre-

sented.  
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1 INTRODUCTION 

Magnetic Resonance Spectroscopy (MRS) has attracted the MR community over the past 7 decades 

[1]. A significant part of the interest in biomedical MRS stems from the possibility of noninvasive 

measurements of metabolites. Information about tissue metabolites can help in clinical diagnostics. 

For example, detection of metabolic pathway changes may facilitate diagnosing disease in earlier 

stages before anatomy changes can be observed [1], [2], and thus enable more efficient treatment. 

E.g., in glioma, a decrease of N-acetylaspartate (NAA) and creatine concentrations of  NAA and 

creatine and an increase of choline, lipids, and lactate predicts an increase of the glioma grade. To 

reach such a goal, at first, we need to quantify metabolic concentrations. Because there are many 

obstacles to reaching an accurate estimate of the metabolite concentrations, the use of MRS in daily 

clinical practice is still not common. The existing MRS quantitation methods are based on model 

fitting of a signal either in the time or the frequency domain [3]. Even though, in theory there is no 

difference in which domain is used for fitting, the reality in practice could be different. 

Deep learning has achieved many accomplishments in a wide range of tasks, including the MRI 

field [4]. Due to the poor signal-to-noise ratio (SNR), chemical shift displacement, and overlapping 

of signal components of the MRS signal, deep learning can be a useful tool. Recentely, Hatami et 

al. showed the first step in this area by using the deep learning approach for MRS signal quantifica-

tion [5]. Kim et al. conducted a comprehensive study on brain metabolite quantification using deep 

learning [6]. The input of both studies is a signal in the frequency domain (metabolite spectra), and 

their network is a 1D convolutional neural network (CNN). As we mentioned earlier, there are dif-

ferences between time and frequency domain quantification in practice. Be a case in point, elimina-

tion of the first few distorted data points of a signal in the time domain does not significantly dis-
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turb the time-domain analysis, whereas the missing time-domain data points can result in compli-

cated modulations throughout the entire spectrum [2]. To overcome the difficulties of the signal 

analysis in a single domain, time-frequency analysis has been carried out for decades in other areas 

[4]. Nevertheless, finding an accurate tool for the time-frequency analysis is fraught with difficulty. 

Here is where deep learning comes to play. Thomas et al. constructed time-frequency images of a 

speech signal and used them as an input to a CNN for classification [7]. Kyathanahally et al. 

learned a CNN with time-frequency data to detect and remove ghosting artifacts in clinical magnet-

ic resonance spectra of human brain [8]. Given the mentioned accomplishments of deep learning 

and time-frequency analysis in a variety of different areas, in particular in MRS for signal artifacts 

detection, this paper describes to our knowledge the first attempt to use this state-of-the-art tech-

nique to quantify MRS signal by deep learning and time-frequency analysis. First, we generate 

simulated MRS signals. Second, we transform the signals to the time-frequency representation. 

Third, we train a CNN with the new time-frequency representation. Finally, the result is compared 

with the previous study. 

2 METHODS 

A framework is created to generate MRS signals with different amplitudes, damping factors, and 

frequency shifts. Second, these one-dimensional signals are transformed into their two-dimensional 

time-frequency representation using wavelet transformation (WT). Finally, the data are split into 

two datasets, the training and testing datasets. The input of the CNN is the time-frequency repre-

sentation of signals, and the output is 21 values, which are the concentration-related amplitudes of 

20 metabolites and the amplitude of the background signal. The CNN is trained with a training da-

taset of signals of known amplitudes. Then, the trained CNN is used to estimate the metabolite am-

plitudes of the test dataset. Finally, the techniques for accuracy evaluation are used. 

2.1 SIGNAL GENERATION 

Deep learning approaches need a considerable amount of data. For this purpose, we need a basis set 

(metabolite signals with known concentrations) either simulated or acquired. To be able to compare 

our results with the previous studies [5], [9], we used the same simulated basis set as used in those 

studies, i.e., the basis set provided for the ISMRM challenge 2016 [10]. The MRS signal is defined 

as a combination of amplitude-scaled phase-shifted metabolite basis set signals, the baseline and 

noise (in this study we use a noisless signal). The mathematical model for the parametric part of the 

MRS signal  is given by: 

       (1) 

where Xm[n] is the n-th sample of the m-th simulated metabolite, ΔT is a sampling period, Am is the 

scaling factor of the metabolite  (Am*Xm[0] is an indication of the metabolite concentration), m 

is the damping factor, Δfm is the frequency shift of the m-th metabolite, and M is the number of 

metabolites. For our signal simulation the values of the amplitude, damping, and frequency shift 

are chosen randomly from a defined range with a uniform distribution 

( ). The known background signal MM is consid-

ered as another metabolite, then is added to S[n] with a random scaling factor, damping, and fre-

quency shift ( ). Ten thousand signals are generated, in which the process of 

value selection is entirely random, thus preventing any bias to our train dataset. The basis set used 

was simulated for sequence PRESS, magnetic field 3T, echo time TE= 30  ms, spectrum width SW 

= 4000 Hz, and 2048 time-domain samples. 
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2.2 SIGNAL PROCESSING 

The time-frequency representation of the 1D signal shows a signal in both the time and frequency 

domain simultaneously. One of the forms of the time-frequency representation of the signal is a 

scalogram (a matrix of absolute values of the continuous wavelet coefficients (CWC) of a signal ) 

that can be plot as a function of time and frequency. The scalogram is calculated using the Matlab 

Wavelet Toolbox (R2019a, Mathworks Inc.,Natick, MA, USA). We use Morse wavelet to compute 

the CWC. The last 512 points of the time signals are cut off to reduce the amount of computation 

for the CWC calculation. The selection of the number of points was decided by visual inspection of 

the signals to ensure that no significant information will be lost. The wavelet coefficients are com-

puted. The minimum and maximum scales are determined automatically based on the energy 

spread of the wavelet in frequency and time by the toolbox. The coefficients matrix is a matrix 

where each row corresponds to one scale, and its column size is equal to the length of signal. Sca-

logram with 340 frequency bins and 1536 time points (340 × 1536 matrix) is created. Finally, the 

real and imaginary parts of 10000 matrices are stored in two channels. 

2.3 CNN 

A convolutional neural network is developed using the Matlab Deep Learning Toolbox (R2019a, 

Mathworks Inc.,Natick, MA, USA) on NVIDIA GTX 1050Ti graphics processing units. The archi-

tecture of the CNN is shown in Fig. 1 . This network includes one input layer with two channels, 

six convolutional layers, five max pool layers, and one regression layer. Rectified linear unit 

(ReLU) activation functions are used between CL and MP layers. The mean square error is imple-

mented as the loss function. The output of regresression layer is 21 parameters which correspond to 

twenty metabolites and one background MM. Using these parameters and Eq (1), the estimated 

signal is reconstructed. 

 

Figure 1: A schematic of the proposed approach. The generated signal based on a linear combination 

of metabolites basis sets is converted to two gray Scalogram images (real and imaginary). These imag-

es feed to CNN as inputs. The CNN includes 6 blocks, which comprise a Convolutional, Rectifier and 

Max-pooling layer. The last layers are a fully connected and a regression layer (which has 21 outputs). 

The estimated signal is reconstructed with the estimated parameters. 

2.4 ACCURACY EVALUATION 

Two methods are used to measure the accuracy of the model. First, the mean absolute error, 

which is the most straightforward regression error metric. MAE is defined as below for each 

metabolite: 

                                                      (2) 

where m, N, A, and A’ are the metabolite index, the number of test datasets, the ground truth, 

and the estimated amplitude, respectively. The second method is the Symmetric mean absolute 

percentage error (SMAPE) which is given by: 
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                                                  (3) 

2.5 RESULTS 

The dataset is separated into two datasets, namely a training dataset and a test dataset. The training 

dataset contains 80% of the data and the remaining 20% are the test dataset. CNNs with different 

hyperparameters such as minimum batch size, initial learning rate, and validation frequency are 

tested, and the CNN with the best result is chosen. The minimum batch size, initial learning rate, 

and validation frequency are 30, 1e-5, and 10, respectively. It has been shown that increasing the 

training sample would decrease the value of loss function [5]. Nonetheless, to be able to compare 

results obtained with our new approach (DL with time-frequency domain input) with the results of 

the Hatami et al approach (DL with frequency domain input)  in a reasonable time, we decided to 

use only 10000 samples for CNN training and testing.  Training and validation loss for the given 

dataset are 0.18 and 0.23, respectively. 

Fig. 2 shows one of the tested  (ground truth) signal, its estimate, and residual. The following con-

clusions may be drawn from this figure. First, the method used is able to estimate the tested signal. 

Second, residuals mainly occur when the signal shows rapid fluctuation. 

 

Figure 2:  Example of the signal estimation – ground truth signal (orange), estimated signal (vio-

let) and residual signal (green). 

 

Figure 3:   (left) Mean absolute error bar of every metabolite and its variance. (right) The symmetric 

mean absolute percentage error of each metabolite for (blue) our study (orange) Hatami et al.[5] 

The mean absolute errors (MAE) of metabolites are shown in Fig. 3 (left). Even though the amount 

of error is not too low compared to the amplitude range ([0, 1]), the variance of the error is small. 

Fig. 3 (right)  shows the comparison of the Symmetric mean absolute percentage error (SMAPE) 

between our approach and Hatami et al. approach. To avoid any bias in comparison, we used 
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the CNN described in this study and train it with our training set but in one case in the form of 

scalogram and in the other case (Hatami et al.) with the data in the frequency domain. The pro-

posed approach shows less amount of error compared to their method. 

3 CONCLUSION 

Quantification of MRS is an important topic where a robust and universal panacea approach to 

quantify signals is needed. It was shown in this study that time-frequency deep learning quantifica-

tion could outperform single domain quantification used in the previous studies [2, 5] and hopeful-

ly as a method using information from both MRS domains be successfully used also for quantifica-

tion of signals with artifact patterns [8]. The next steps may be to verify the tested approach on 1) 

the simulated noisy MRS with different signal-to-noise-ratios and for different pulse sequences 2) 

on real MRS acquired from a phantom, 3) on MRS acquired from a rat, and 4) to implement this 

approach as a plugin in the jMRUI software package [11]. 
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