
technologies

Article

Traffic Similarity Observation Using a Genetic
Algorithm and Clustering

Vaclav Oujezsky * and Tomas Horvath

Department of Telecommunication, Brno University of Technology, 616 00 Brno, Czech Republic;
horvath@feec.vutbr.cz
* Correspondence: oujezsky@feec.vutbr.cz; Tel.: +420-541-146-923

Received: 27 October 2018; Accepted: 9 November 2018; Published: 11 November 2018
����������
�������

Abstract: This article presents a technique of traffic similarity observation based on the statistical
method of survival analysis by using a genetic algorithm. The basis comes from the k-means clustering
algorithm. The observed traffic is collected from different network sources by using a NetFlow
collector. The purpose of this technique is to propose a process of finding spread malicious traffic,
e.g., ransomware, and considers the possibility of implementing a genetic-based algorithm. In our
solution, a chromosome is created from clustering k-means centers, and the Davies–Bouldin validity
index is used as the second fitness value in the solution.

Keywords: clustering algorithms; evolutionary computation; IP networks; information security;
programming

1. Introduction

Recently, the computer world has been facing problems with many types of cyber-attacks.
Attackers use malicious software or codes to obtain the privileged rights to clients’ computers.
Ransomware [1] is one such malicious code. Typically, it generates cyclically repetitive communication
with command and control points or nonexistent domains. This behavior can produce an anomaly
that can be observed and analyzed.

Based on previous research [2], we found a possible way to filter traffic and collect such repetitive
behavior. We used survival analysis [3] and NetFlow messages [4] collected from Cisco network
devices. The analysis creates survival curves [5] of origin–destination traffic in a specific time window.
A sample of the graphical output from the survival analysis can be seen in Figure 1. All traffic can be
examined from such a perspective, not to observe the proper survival time but to determine a format
or pattern of traffic. Each curve is unique, as it depends on the type of traffic. The blue part is called
“confidence intervals” and is the measure of possible variability.

We have implemented our genetic cluster algorithm to find the similarity or closeness of each
curve as part of the continuous development of our genetic decision probe (GDP) application [6].
An output of our analysis is the clustering of traffic into groups based on the minimum Euclidean
distance. In principle, if there is network traffic displayed in the presented curves, it is possible to
compare the similarity of such curves. This can be done by the presented algorithm. This may be
useful, for example, for detecting the repetitive traffic of ransomware from captured data in different
parts of the network that would otherwise look like normal network traffic.

This article presents the idea and compares our genetic-based algorithm with a k-means algorithm,
which was also programmed by our team. The idea is to use a genetic algorithm instead of the common
approach to develop an auto-adaptive and extendible solution for an field-programmable gate array
(FPGA) [7] hardware system, and we compare each of the proposed and considered algorithms with
the classical one.

Technologies 2018, 6, 103; doi:10.3390/technologies6040103 www.mdpi.com/journal/technologies

http://www.mdpi.com/journal/technologies
http://www.mdpi.com
https://orcid.org/0000-0001-7629-6299
https://orcid.org/0000-0001-8659-8645
http://www.mdpi.com/2227-7080/6/4/103?type=check_update&version=1
http://dx.doi.org/10.3390/technologies6040103
http://www.mdpi.com/journal/technologies


Technologies 2018, 6, 103 2 of 10

0.00.51.01.52.02.53.03.54.0
Time (ms)

0.0

0.2

0.4

0.6

0.8

1.0

T
h
e
 m

a
in

 p
ro

to
co

l 
a
ft

e
r 

ti
m

e
 n arp

0 1 2 3 4 5
Time (ms)

0.0

0.2

0.4

0.6

0.8

1.0
udp

0 1 2 3 4 5
Time (ms)

0.0

0.2

0.4

0.6

0.8

1.0
tcp

0.0 0.5 1.0 1.5 2.0 2.5
Time (ms)

0.0

0.2

0.4

0.6

0.8

1.0
icmp

0.000.050.100.150.200.25
Time (ms)

0.0

0.2

0.4

0.6

0.8

1.0
rtcp

Figure 1. Survival curves of protocols.

2. Related Work

Genetic algorithms are often used to improve current detection methods. We can find many
articles related to this topic and why genetic algorithms are a useful solution. In [8], the authors used a
genetic algorithm to extract data in principal component analysis (PCA). In [9], the authors applied it
to the calculation of matrices of Euclidean distance. Related to the clustering problem and the use of
genetic algorithms (GAs), in the past, many applications based on genetic clustering algorithms were
developed. They use different representations for chromosomes, fitness functions, crossover, etc.

In [10], they presented a solution that uses a genetic algorithm with gene rearrangement for
K-means clustering. Here, each chromosome is described by a sequence of M = N ∗ K real-valued
numbers, where N is the dimension of the feature space, and K is the number of clusters. For crossover,
the path-based crossover operator has been used to build a path between two parent chromosomes.

In [11], the authors presented an efficient genetic algorithm-based clustering technique that
utilizes the principles of a k-means algorithm. The chromosome is created in the same way. It is
represented by a sequence of N ∗ K floating point numbers.

In their subsequent publication [12], the authors presented a genetic algorithm-based clustering
technique, called GA-clustering. Generally, we can say that a chromosome is commonly created in two
ways. The first solution maintains all centroids and data, and the second solution creates chromosomes
only from centroids.

As a fitness measurement of an individual, the error measure from the minimum of the Euclidean
distance is used, or a second measurement is added, for example, using a silhouette function.
This second measureis used to measure the proportionality of centroids.

In our solution, a chromosome is created only from centroids, and the data are associated in
each fitness observation. As the second measurement of the fitness, we used the Davies–Bouldin
validity index.

Regarding FPGA and the possibility of implementing a genetic algorithm, for a full overview for
readers, a genetic IP-based core was developed and tested in [13].

3. Algorithms

In this section, k-means and genetic-based algorithms are presented. First, the principle of using
survival analysis is presented.



Technologies 2018, 6, 103 3 of 10

Survival Analysis

The survival function S(t) is defined by Equation (1). This function defines the probability that,
at the end of the event or equivalent, the probability of survival until at least t does not occur at
time t [3].

S(t) = Pr(T > t) (1)

where 0 ≤ S(t) ≤ 1, FT = 1− S(t), and FT is the cumulative distribution function T, which means that
S(t) is a non-increasing function of t.

To estimate the survival function, a Kaplan–Meier analysis (2) or Cox estimate is used.

Ŝ(t) =
k

∏
j=1

(
nj − dj

nj

)
= Ŝ(t)

(
1− dt

nt

)
(2)

where dj corresponds to the number of events, eventually the number of completed events in time j.
So far, nj is related to the number of objects that are still observed in time j. In our case of NetFLow
traffic collection, we use this survival analysis function to create a gene expression matrix during a time
window. The gene expression matrix is given as GEMm,n = m× n for a time window w(t), where m
represents a set of solutions with n values; m = {n1, n2, . . . , n(t)} of the set m in a given linear space.
The example of the GEMm,n for our genetic cluster algorithm is presented in Table 1.

Table 1. Gene expression matrix.

IP Address Survival function S(t)

192.168.1.66 1.00 0.73 0.64 0.45 0.45 0.27 0.18 0.18
192.168.1.255 1.00 0.42 0.42 0.28 0.14 0.14 0.07 0.00
89.176.9.204 1.00 1.00 0.66 0.32 0.00 0.00 0.00 0.00

We work further with these values. In this example, the first four values are the time line, and the
other four values are the probabilities for the time-line values. The sizes of the time-line axis and the
probability axis are not limited.

4. K-Means Algorithm

The k-means algorithm uses the Euclidean distance [14]. By taking two vectors~x = (x1, x2, . . . , xn)

and ~y = (y1, y2, . . . , yn) as a two-dimensional finding of values, the Euclidean distance between ~x
and ~y is then defined by Equation (3):

d(~x,~y) =
√
(~x−~y)′(~x−~y). (3)

Since each value contributes to the calculation of the Euclidean distance, the results can vary
considerably, even with only a small change in the values. Generally, the k-means expression is defined
as Equation (4):

n

∑
i=0

min
cj∈C

(‖xj − ci‖2) (4)

where cj represents centroids, and C represents clusters. The k-means algorithm, which has been
implemented in this study, is created using the Lloyd algorithm. The means x ∈ X are the key
values and are equal to minc∈IRd ∑x∈X‖c − x‖2. However, a simpler option is to use the distances
~d(x, c) = ‖x− c‖2. The slowest process, but one that reduces the restrictions previously described, is to
choose the centroid ci according to {x ∈ X|φC(x) = ci}. The class diagram of our k-means algorithm
is shown in Figure 2.



Technologies 2018, 6, 103 4 of 10

K-Means

Object

unittest TestCaseGetDaviesBouldin
+ dbIndex : []
+ interLenSum : []
+ Centroids : centroids
+ Clusters : clusters
+ K : k
- _solveDB() KmeansCase

+ test(self)
+ computeKmeans(X, k)

Figure 2. Partial K-Means.py class diagram.

The class GetDaviesBouldin is used in both the k-means and genetic-based algorithms to verify
the correct distribution of centroids. It is a separated imported class. It also returns the sum of the
Euclidean distance values. The Davies–Bouldin validity index expression has the following equation,
adopted from [15]:

DB =
1
n

n

∑
i=1

max
i 6=j

{Cn(Qi) + Cn(Qj)

Cn(Qi, Qj)

}
(5)

where Cn(Qi) is the average distance inside the cluster from its center, and Cn(Qi, Qj) is the distance
between the clusters represented by centroids. The unittest TestCase [16] comes from the Python test
package, and it is used here as the testing class. The main methods are implemented in the KmeansCase
class, which takes the unittest as the object.

In the first step of the algorithm, ci = xi ∈ X is chosen, and the Euclidian distance calculation of a
member xi against centroid ci follows. This member is then inserted into the fittest group. The centroids
are recomputed and replaced by the mean value of all members of a cluster Ck. The process is repeated
until all members are assigned, as shown in Expression (6).

Ck = {xn : ‖xn − ck‖ ≤ ∀‖xn − ck‖}

ck =
1

Ck
∑

xn∈Ck

xn
. (6)

In the next convergence step, the algorithm compares each member with its own cluster and the
neighboring cluster from the Euclidean distance point of view. If a more appropriate cluster is selected,
the member is moved to this cluster. This step is repeated until there are no more member shifts.

5. Genetic Algorithm

The implemented genetic algorithm uses the previously created k-means algorithm class, and its
partial diagram is shown in Figure 3.



Technologies 2018, 6, 103 5 of 10

Genetics

Object

unittest TestCaseGetDaviesBouldin
+ dbIndex : []
+ interLenSum : []
+ Centroids : centroids
+ Clusters : clusters
+ K : k
- _solveDB()

GeneticsCase
+ test(self)
+ computeKmeans(X, k)

GeneticCore Population

- _init (self, chromosomes, fitness, interlen):[]
+ SumOfSum : []
+ Chromosomes : chromosomes
+ Fitness : fitness
+ interlen : interlen
- _sum()
- _str_(self) : return str interlen
- _gt_(self, other)
- _eq_(self, other)
- _lt_(self, other)

methods
- generate_population(length, geneSet, popSize,
fnGetFitness)
- _crossover(chromosomes)
- _mutation(population, fnGetFitness)
- _recompute_fitness(population, fnGetFitness)
+ generate_best(population, fnGetFitness, dataSet, k)

K-Means

method
+ euclidianDistanceMean(adept,
centroids)
+ euclidianDistance(adept, centroids)
+ euclidianCentroids(center1, center2)

<
<

im
po

rt
>

>
<

<
im

po
rt

>
>

< < im
port > >

Figure 3. Partial GeneticsCore.py class diagram.

The genetic algorithm works with chromosomes that represent a solution to the problem. In this
case, a chromosome represents k genes for k centroids ci of clusters C.

The chromosome or individual α and, consequently, the population P are determined in the
first step according to Equation (7). A centroid ci = xi, and xi represents a vector of values
~xi = {n1, n2, . . . , nM}, where n represents elements of the set M from the gene matrices.

αi = (~c1,~c2, . . . ,~ck) ∈ C|~ck = ~ci ∈ X

P = {α1, α2, . . . , αC}
. (7)

The chromosome only keeps clusters’ centroids, and ~xi values are associated with this centroid
just when evaluating an individual’s fitness. The ~xi valuesare released after the fitness evaluation.

The Euclidean distance and the Davies–Bouldin validity index are used to evaluate an individual.
The genetic algorithm minimizes the sum of the Euclidean distance for all individual clusters.
Expression (8) is the objective function f (α) of the problem.

minimize
K

∑
k=1

∑
xn∈Ck

‖xn −~ck‖2

according to~ck, Ck

. (8)

The criteria, i.e., the individual’s (chromosome) evaluation, are based on the sum of the mean
distances inside the clusters, i.e., f (α) ∧ f it1(α) and ∀αi ∈ P : 0 < f (α)1 < f (α)2. For example, for the
number of clusters C = 4, k = 4, the individual contains four genes, with each gene representing the
solution of one cluster. An example of the output is presented in Table 2.



Technologies 2018, 6, 103 6 of 10

Table 2. The sum of the mean distances inside the clusters.

Mean Distances Inside Clusters Sum

0.0 0.0 0.0 1.5871699711831 1.5871699711831

The genetic algorithm selects individuals with the lowest value of the sum of the average distances
in the population P. To simplify the running of the algorithm, this method is called from the imported
custom class GetDaviesBouldin from the previous k-means solution. This class provides the calculation
for the Davies–Bouldin validity index and returns its value to the dbIndex variable. This validity index
is the second fitness measure.

The class population maintains the current population values, self.Chromosomes, and the
evaluation of individuals in self.Fitness and self.interlen. This algorithm contains its own methods for
comparing populations: OBJECT.__lt__(self, other) and eq, gt. Therefore, the minimum intra-cluster
distance is always searched within two populations. One population represents the original population,
and the other population is the same population after the crossover and mutation with the recalculated
values of the fitness functions.

Thus, the evaluation of all populations is carried out in the framework of elitism. This is
because the crossing is both vertical and horizontal between individuals in populations. Erroneous
results (inf,null), broken down by zero, are filtered using the Python np.ma.masked_invalid package.
This ensures that the wrong individuals are not selected. The crossover, mutation, and recalculation of
fitness values are performed in each cycle. After that, populations are compared, and individuals are
returned to those populations that satisfy the condition of choosing the best solution.

In the proposed solution, a method of crossing is created based on random selection, both in the
chromosomes’ own genes and among the chromosomes. In the first step, the selected parts are crossed
between the chromosomes, and the positions of the genes in the chromosomes are then changed.
In this way, limiting the trapping of the solution in a local minimum is ensured.

Muting the solution ensures that there is no trapping at the local and global minima. In addition,
this ensures that the current centroid values are not accidentally replaced by this mutation.

So far, centroid~ci is equal to~xi. In this part of the performed mutation, the GetDaviesBouldin class
returns the value of ~xi ∈ C(k). The chromosome is then formed according to the following equation:

αi:new = (~c1,~c2, . . . ,~ck) ∈ C|~ck = ∅C(k)

P = {α1, α2, . . . , αS}
ck:new = ~ck = ~xi|i, k : Ω −→ (1, N)

. (9)

For example, a population with four chromosomes, each with three genes (three clusters),
is created in the following format. An output from the GDP application is represented in Table 3.

Table 3. Outputs of chromosomes from the genetic decision probe (GDP) application.

Chromosomes Outputs Chromosomes Outputs

Chromosome 1

0.0 1.0 1000.0 0.0 0.79

Chromosome 3

0.0 1.0 1500.0 0.0 0.50

0.0 1.0 1000.0 0.0 0.45 0.0 1.0 1500.0 0.0 0.37

0.0 1.0 1000.0 0.0 0.45 0.0 1.0 1000.0 0.0 0.45

Chromosome 2

0.0 1.0 1500.0 0.0 0.37

Chromosome 4

0.0 1.0 0.0 0.0 0.00

0.0 1.0 1000.0 0.0 0.45 0.0 1.0 0.0 0.0 0.00

0.0 1.0 1500.0 0.0 0.37 0.0 1.0 1000.0 0.0 0.45



Technologies 2018, 6, 103 7 of 10

In this example, each chromosome expresses a vector of survival analysis values. The ranges of
the chromosomes and the population can be extended.

6. Results of the Genetic Algorithm Implementation

In testing the framework of our solution, comparative tests of the k-means algorithm and the
genetic algorithm for the driver and circle test kits were performed. The dataset of circles was imported
from the Python package sklearn.datasets.samples_generator [17] and the dataset of drivers from [18].

The dataset of drivers includes 4000 records, and it is used to test the robustness of algorithms.
The second dataset is used to test the convergence of algorithms. The individual outputs in Tables 4 and 5
show the observed values, which were the Davies–Bouldin validity indices and the average Euclidean
distance in the data cluster. Furthermore, the time needed to run the algorithms was also monitored.

Table 4. The results of performed tests for both algorithms.

Algorithms

Datasets K-Means GA Tests

Drivers

8 cycles to convergence (4m, 16s)
DB Index 0.5167630551103491
Sum: 29.107135396708152

6 cycles, population = 4 (1m, 2s)
DB Index 0.46742701779860801
Sum: 27.452260723272207

Test 1

5 cycles to convergence (1m, 59s)
DB Index 0.6928435886081372
Sum: 38.22747907985817

2 cycles, population = 4 (23s)
DB Index 0.67284260223514103
Sum: 29.601280430142346

Test 2

Cyrcles

6 cycles to convergence (3s, 926ms)
DB Index 0.9987036150188133
Sum: 1.717726567997643

2 cycles, population = 4 (2s, 72ms)
DB Index 0.77739787348584977
Sum: 1.5172548869635047

Test 1

2 cycles to convergence (1s, 663ms)
DB Index 0.9133526077302941
Sum: 1.6639746612808648

2 cycles, population = 6 (4s, 49ms)
DB Index 0.97353773307594249
Sum: 1.7154716157662906

Test 2

3 cycles to convergence (2s, 2ms)
DB Index 0.8400359621183359
Sum: 1.4401091736722333

2 cycles, population = 10 (6s, 2ms)
DB Index 0.8418532846822262
Sum: 1.5331916473395522

Test 3

Table 5. The results of performed tests for the genetic algorithm (GA) with manipulations.

Genetic Algorithm

Circles

2 cycles, population = 6 (4s, 49ms)
DB Index 0.97353773307594249
Sum: 1.7154716157662906

Test 1
Cycles 2
Population 6

2 cycles, population = 10 (6s, 2ms)
DB Index 0.8418532846822262
Sum: 1.5331916473395522

Test 3
Cycles 2
Population 10

6 cycles, population = 6 (9s, 738ms)
DB Index 0.84332527741694963
Sum: 1.2663053983838712

Test 2
Cycles 6
Population 6

6 cycles, population = 10 (16s, 304ms)
DB Index 0.89134036655984594
Sum: 1.4076740115353803

Test 4
Cycles 6
Population 10

No dynamic increase or decrease in the number of centroids was expected with this solution.
The results of the two algorithms were compared. Each test was run 10 times, and the best results are
shown in the format of the GDP program console output. The distance number does not express a
particular unit; it depends on what is being measured. The value “sum” represents the sum of the
average distances in clusters. The lower score of the Davies–Bouldin index is better. Based on the
repetition of the tests and the results, it can be concluded that GA had both faster data processing and a
faster total calculation time. While increasing the population, the overall calculation time was increased.
The processing time was also affected by data being read from datasets and by the hardware used.



Technologies 2018, 6, 103 8 of 10

7. Real Dataset of Traffic

The real dataset was imported during the application run from the GDP database into the
supervisor module using the pandas:DataFrame package. An example of the composition of the
custom dataset in an instance of the DataFrame is shown in Table 6.

Table 6. Program output of the custom dataset.

N IP Address Survival Analysis Timeline Timeline Values

0 89.176.9.204 0 1 1033 1041 1049 0 0.45 0.78 1.28 2.28

1 192.168.1.54 0 1 1501 1509 1553 0 0.37 0.44 0.51 0.58

2 79.143.185.229 0 1 0 0 0 0 0.00 0.00 0.00 0.00

3 192.168.1.46 0 1 1497 1501 1509 0 0.50 0.75 1.09 1.59

4 192.168.1.66 0 1 1033 1041 1049 0 0.79 0.88 0.98 1.09

N + 1

This dataset is a gene matrix for every source to destination (SD). This simple example verifies the
possibilities of working with the output values of survival analysis and the resolution of individual
survival curves. For explanation, the dataset represents a group of addresses that communicated
through a peer-to-peer (P2P) network that excludes one IP address.

Using the genetic algorithm, individual clusters were assembled. These clusters represent the
survival curves that are closest to the Euclidean distance with respect to its lowest centroid value.
Again, the results of both algorithms, GA and k-means, were compared.

From this point of view, the k-means algorithm assigned similar courses to the same cluster. In the
next step, the genetic algorithm was verified. The resulting output is the average distance within the
cluster for each cycle. The k-means and GA results are shown in Table 7. The GA minimization process
of values can be seen in the same table. According to the similarity of curves and our awareness of
where the IPs belong to, individual IP addresses were correctly assigned to clusters. These were IP
addresses that communicated with each other.

Table 7. Program outputs of the final computation.

Algorithms
Dataset K-Means GA Tests

IP address

2 cycles to convergence, (78ms)
DB Index 0.0016132173486533587
Sum: 0.9918338445433054

Near curve value, cluster 0:
79.143.185.229
Near curve value, cluster 1:
192.168.1.66
89.176.9.204
Near curve value, cluster 2:
192.168.1.54
192.168.1.46

GA, 4 cycles, population = 4 (142ms)
Distance 1. cycle: [155.33340769869454]
Distance 2. cycle: [4.218783667088422]
Distance 3. cycle: [2.211733592974675]
Distance 4. cycle: [0.9918338445433054]
DB Index 0.0016132173486533587
Sum: 0.99183384454330537

Near curve value, cluster 0:
79.143.185.229
Near curve value, cluster 1:
89.176.9.204
192.168.1.66
Near curve value, cluster 2:
192.168.1.54
192.168.1.46

Test 1

8. Results

The genetic algorithm in the drivers–circles tests produced better results in terms of both the
Davies–Bouldin validity index and the distribution of individuals in clusters depending on their



Technologies 2018, 6, 103 9 of 10

Euclidean distance. In the case of the genetic algorithm, the result was no longer improved by
increasing the number of iterations and the population sizes. The results are influenced by the initial
random selection of centroids, as seen, for example, in the k-means algorithm in the driver dataset.
Thus, the number of iterations and duration are both affected by this initial selection.

From a time perspective, the real-life example using the genetic algorithm was more demanding.
Because of the algorithm profiling, it is time-consuming to create new instances of population classes.
During repeated attempts, the error rate of the algorithm was determined, namely, the assignment
of the same IP address to two different clusters. This error occurred when the algorithm ended the
calculation with the output value of DB value > 0.01. Since the proposed GA algorithm works only
with centroids as individuals and does not hold clustered data, as in the case of K-means, when a
population is created using the random.choice method, a paradox of choosing the same centroid occurs
with a small number of chromosomes. The genetic algorithm was then not able to correct the errors.
This paradox can be influenced by increasing the number of chromosomes in the population, possibly
increasing the value of the mutation.

The error has not occurred with more than 10 chromosomes in the population. If we compare the
results of both algorithms, with a small number of input values, both algorithms reached the same
degree of convergence. If the results with a large number of input values are compared, GA reaches a
better time of convergence, taking into account the population size and the number of repetitions that
have been fixed. In the case of a P2P real test, both algorithms correctly assigned the communicating
IP addresses to clusters. This was a traffic connection negotiation.

9. Conclusions

In this article, we presented the comparison and testing of k-means and genetic algorithms. These
algorithms were used to search for the similarity of survival curves. The idea behind this is that a
certain type of network traffic can be observed by converting it to specific traffic curves using a survival
analysis method and then comparing the individual curves. Comparing curves of different network
nodes—for example, in peer-to-peer repetitive behavior or ransomware generating requests in certain
periodic cycles—might be useful in finding unwanted traffic.

Therefore, we decided to test algorithms capable of performing the above calculation. We were
able to improve our genetic algorithm and decrease the time needed to find the solution by not
calling new classes of populations through crossover and mutation. The results show that the genetic
algorithm is better suited for the calculation of a larger number of survival curves. Algorithm efficiency
and the tuning of individual settings, such as the population size or number of iterations, must be
taken into account. Both algorithms correctly assigned the IP addresses in the test set relative to their
generated traffic.

Our continuing work is focused on automatically increasing or decreasing the number of centroids
to make the algorithm more effective and on parallelization. The source code is available on request.

Author Contributions: Conceptualization, V.O.; Methodology, V.O. and T.H.; Software, V.O.; Validation, T.H.;
Formal Analysis, T.H.; Investigation, V.O. and T.H.; Resources, V.O. and T.H.; Data Curation, V.O.; Writing—
Original Draft Preparation, V.O. and T.H.; Writing—Review & Editing, V.O.; Visualization, V.O.; Supervision, V.O.;
Project Administration, V.O.; Funding Acquisition, V.O. and T.H.

Funding: The presented research was funded by a project of the Ministry of Interior grant number VI20172019072
registration and the National Sustainability Program under grant number LO1401.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations

The following abbreviations are used in this manuscript:

DB Davies–Bouldin
FPGA field-programmable gate array
GA genetic algorithm



Technologies 2018, 6, 103 10 of 10

GDP genetic decision probe
IP internet protocol
PCA principal component analysis
P2P peer-to-peer
SD source to destination

References

1. Scaife, N.; Carter, H.; Traynor, P.; Butler, K.R.B. CryptoLock (and Drop It) Stopping Ransomware Attacks
on User Data. In Proceedings of the 2016 IEEE 36th International Conference on Distributed Computing
Systems (ICDCS), Nara, Japan, 27–30 June 2016; pp. 303–312.

2. Oujezsky, V.; Horvath, T.; Skorpil, V. Botnet C&C Traffic and Flow Lifespans Using Survival Analysis. Int. J.
Adv. Telecommun. Electrotech. Signals Syst. 2017, 6, 38–44.

3. Davidson-Pilon, C. Lifelines. Available online: https://lifelines.readthedocs.io/en/latest/ (accessed on
8 October 2018).

4. Caligare. What Is Netflow? Available online: http://netflow.caligare.com (accessed on 8 October 2018).
5. Kishore, J.; Goel, M.K.; Khanna, P. Understanding survival analysis: Kaplan-Meier estimate. Int. J. Ayurveda Res.

2010, 1, 274–278. [CrossRef] [PubMed]
6. Oujezsky, V.; Horvath, T. NetFlow Console Collector—Analyzer Developed in Python Language. In Proceedings

of the International Interdisciplinary PhD Workshop 2016, Brno, Czech Republic, 12–15 September 2016;
pp. 107–110.

7. Xilinx, Virtex 7. Available online: https://www.xilinx.com/products/silicon-devices/fpga/virtex-7.html
(accessed on 8 October 2018).

8. Somvanshi, D.; Yadava, R.D.S. Boosting Principal Component Analysis by Genetic Algorithm. Def. Sci. J.
2010, 60, 392–398. [CrossRef]

9. Rivera-Gallego, W. A genetic algorithm for solving the Euclidean distance matrices completion
problem. In Proceedings of the 1999 ACM symposium on Applied computing, San Antonio, TX, USA,
28 February–2 March 1999; pp. 286–290.

10. Chang, D.-X.; Zhang, X.-D.; Zheng, C.-W. A genetic algorithm with gene rearrangement for K-means
clustering. Pattern Recognit. 2009, 42, 1210–1222. [CrossRef]

11. Bandyopadhyay, S.; Maulik, U. An evolutionary technique based on K-Means algorithm for optimal
clustering in RN. Inf. Sci. 2002, 146, 221–237. [CrossRef]

12. Maulik, U.; Bandyopadhyay, S. Genetic algorithm-based clustering technique. Pattern Recognit. 2000, 33,
1455–1465. [CrossRef]

13. Fernando, P.R.; Katkoori, S.; Keymeulen, D.; Zebulum, R.; Stoica, A. Customizable FPGA IP Core
Implementation of a General-Purpose Genetic Algorithm Engine. IEEE Trans. Evol. Comput. 2010, 14, 133–149.
[CrossRef]

14. Barrett, P. Euclidean Distance—Raw, Normalized, and Double-Scaled Coefficients. Available online: http:
//www.pbarrett.net/techpapers/euclid.pdf (accessed on 8 October 2018).

15. MUNI Brno. Mathematics Biology. Available online: http://portal.matematickabiologie.cz/ (accessed on
8 October 2018).

16. Python Software Foundation, Unittest—Unit Testing Framework. Available online: https://docs.python.
org/3/library/unittest.html (accessed on 8 October 2018).

17. Scikit-Learn. Available online: http://scikit-learn.org/stable/modules/generated/sklearn.datasets.make_
circles.html (accessed on 8 October 2018).

18. Trevino, A. Introduction to K-Means Clustering. Available online: https://www.datascience.com/blog/k-
means-clustering (accessed on 8 October 2018).

c© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

https://lifelines.readthedocs.io/en/latest/
http://netflow.caligare.com
http://dx.doi.org/10.4103/0974-7788.76794
http://www.ncbi.nlm.nih.gov/pubmed/21455458
https://www.xilinx.com/products/silicon-devices/fpga/virtex-7.html
http://dx.doi.org/10.14429/dsj.60.495
http://dx.doi.org/10.1016/j.patcog.2008.11.006
http://dx.doi.org/10.1016/S0020-0255(02)00208-6
http://dx.doi.org/10.1016/S0031-3203(99)00137-5
http://dx.doi.org/10.1109/TEVC.2009.2025032
http://www.pbarrett.net/techpapers/euclid.pdf
http://www.pbarrett.net/techpapers/euclid.pdf
http://portal.matematickabiologie.cz/
https://docs.python.org/3/library/unittest.html
https://docs.python.org/3/library/unittest.html
http://scikit-learn.org/stable/modules/generated/sklearn.datasets.make_circles.html
http://scikit-learn.org/stable/modules/generated/sklearn.datasets.make_circles.html
https://www.datascience.com/blog/k-means-clustering
https://www.datascience.com/blog/k-means-clustering
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Related Work
	Algorithms
	K-Means Algorithm
	Genetic Algorithm
	Results of the Genetic Algorithm Implementation
	Real Dataset of Traffic
	Results
	Conclusions
	References

