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NEW BOUNDS FOR IRRATIONALITY MEASURES OF SOME

FAST CONVERGING SERIES

JAN ŠUSTEK

Abstract. This paper presents new upper bounds for irrationality measures of some

fast converging series of rational numbers. The results depend only on the speed of
convergence of the series and do not depend on the arithmetical properties of the

terms.

1. Introduction

For a real number ξ, its irrationality measure µ(ξ) is defined as the supremum of
all positive real numbers µ such that the inequality

0 <

∣∣∣∣ξ − p

q

∣∣∣∣ < 1

qµ

has infinitely many solutions p ∈ Z, q ∈ Z+. Irrationality measure describes how
closely the number ξ can be approximated by rational numbers. All irrational
numbers ξ have irrationality measure µ(ξ) ≥ 2. A famous result of Roth [5] is that
all algebraic irrational numbers ξ have irrationality measure µ(ξ) = 2. Sondow [6]
showed that if pnqn are the convergents of the continued fraction of a number ξ then

µ(ξ) = 1 + lim sup
n→∞

log qn+1

log qn
.

Adamczewski and Rivoal [1] found an upper bound for irrationality measure of
a number ξ depending on the growth properties of rational approximants of ξ.

Theorem 1.1. ([1], Lemma 4.1) Let ξ ∈ R. Suppose that the numbers α, β, γ,
C1, C2, C3 ∈ R+ satisfy α ≤ β and γ ≥ 1 and there exist a sequence pn

qn
∈ Q such

that for every n

qn < qn+1 ≤ C1q
γ
n,

C2

q1+βn

≤
∣∣∣∣ξ − pn

qn

∣∣∣∣ ≤ C3

q1+αn

.

Then, the irrationality measure is
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µ(ξ) ≤ (1 + β)γ

α
.

Hančl and Filip [3] proved the following theorem.

Theorem 1.2. ([3], Theorem 2) Suppose that the numbers ε,R, S ∈ R+ satisfy
S < ε

1+ε and R > 1
1−S . Let an, bn ∈ N be two sequences with an nondecreasing

such that

lim sup
n→∞

a
1

(R+1)n

n > 1,

bn = O(aSn)

and, for every sufficiently large positive integer n,

an > n1+ε.

Then, the number ξ :=
∑∞
n=1

bn
an

is irrational and has irrationality measure

µ(ξ) ≥ max{2, (1− S)R}.

Some other results on irrationality measure of infinite series can be found in [2].
For a survey on irrationality measure and other topics of transcendental number
theory, see [4].

This paper presents new upper bounds for irrationality measure of infinite series
of rational numbers. Our results depend only on the speed of convergence of the
series and do not depend on the arithmetical properties of the terms.

2. Results

Theorem 2.1. Let the numbers E,F,G, S, U, V ∈ R satisfy 1 < E ≤ F <
E(1−S)U , 0 ≤ S < 1 ≤ G and 1 < U ≤ V . Let Tn ∈ R+ be a sequence of numbers
and, for every n ∈ N, put Hn :=

∑n
k=1 Tk. Suppose that the following relations

hold.

U = lim inf
n→∞

Tn+1

Hn
≤ lim sup

n→∞

Tn+1

Hn
= V, (2.1)

lim sup
n→∞

Hn+1

Hn
= G. (2.2)

Let an, bn ∈ N be sequences with an nondecreasing such that

E = lim inf
n→∞

a
1
Tn
n ≤ lim sup

n→∞
a

1
Tn
n = F, (2.3)

lim sup
n→∞

log bn
log an

= S. (2.4)

Then, the number ξ :=
∑∞
n=1

bn
an

has irrationality measure

µ(ξ) ≤
(
logF
logE

)2
V G

logE
logF (1− S)U − 1

.



IRRATIONALITY MEASURES OF FAST SERIES 169

In the case of an | an+1, we obtain a better result.

Theorem 2.2. Let the numbers E,F, S, U, V ∈ R satisfy 0 ≤ S < 1 < U ≤ V
and 1 < E ≤ F < E(1−S)U . Let Tn ∈ R+ be a sequence of numbers such that

U = lim inf
n→∞

Tn+1

Tn
≤ lim sup

n→∞

Tn+1

Tn
= V. (2.5)

Let an, bn ∈ N be sequences such that an | an+1 for every n and that

E = lim inf
n→∞

a
1
Tn
n ≤ lim sup

n→∞
a

1
Tn
n = F, (2.6)

lim sup
n→∞

log bn
log an

= S. (2.7)

Then, the number ξ :=
∑∞
n=1

bn
an

has irrationality measure

µ(ξ) ≤
(
logF
logE

)2
V 2

logE
logF (1− S)U − 1

.

We obtain the results more easily if the sequence Tn is geometric.

Corollary 2.3. Let the numbers E,F, S, T ∈ R satisfy T > 2, 1 < E ≤ F <
E(1−S)(T−1) and 0 ≤ S < 1. Let an, bn ∈ N be sequences with an nondecreasing
such that

E = lim inf
n→∞

a
1
Tn
n ≤ lim sup

n→∞
a

1
Tn
n = F,

lim sup
n→∞

log bn
log an

= S.

Then the number ξ :=
∑∞
n=1

bn
an

has irrationality measure

µ(ξ) ≤
(
logF
logE

)2
(T − 1)T

logE
logF (1− S)(T − 1)− 1

.

Corollary 2.4. Let the numbers E,F, S, T ∈ R satisfy 0 ≤ S < 1 < T and
1 < E ≤ F < E(1−S)T . Let an, bn ∈ N be sequences such that an | an+1 for every n
and that

E = lim inf
n→∞

a
1
Tn
n ≤ lim sup

n→∞
a

1
Tn
n = F,

lim sup
n→∞

log bn
log an

= S.

Then, the number ξ :=
∑∞
n=1

bn
an

has irrationality measure

µ(ξ) ≤
(
logF
logE

)2
T 2

logE
logF (1− S)T − 1

.
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Example 2.5. For every n ∈ N put

xn =

{
n2 if n is a prime,

n if n is not a prime.

Using Theorem 2.1 with an = x4
n

n , bn = n!, Tn = 4n log2 n, E = 2, F = 4, G = 4,
S = 0, U = V = 3, we obtain

µ

( ∞∑
n=1

n!

x4nn

)
≤ 96.

Example 2.6. Let A > 1 be a real number. Using Theorem 2.2 with an =
n!bA

nc, bn = 1, Tn = bAnc(n lnn − n + 1
2 lnn), E = F = e, S = 0, U = V = A,

together with Stirling’s formula, we obtain

µ

( ∞∑
n=1

1

n!bAnc

)
≤ A2

A− 1
.

Example 2.7. Let A,B be real numbers with A,B > 2. Then, Theorem 1.2
and Corollary 2.3 imply that

B − 1 ≤ µ
( ∞∑
n=1

1

bABnc

)
≤ (B − 1)B

B − 2
.

Remark 2.8. Our results and proofs contain logarithms, but they do not de-
pend on the base of the logarithms.

3. Proofs

We will modify Theorem 1.1 a little.

Lemma 3.1. Let ξ ∈ R. Suppose that numbers α, β, γ, C4, C5, C6 ∈ R+ and
N1 ∈ N satisfy 1 < α ≤ β and γ ≥ 1 and there exist sequences pn ∈ Z and qn ∈ N
with lim

n→∞
qn =∞ such that for every n ≥ N1

qn ≤ qn+1 ≤ C4q
γ
n,

C5

qβn
≤
∣∣∣∣ξ − pn

qn

∣∣∣∣ ≤ C6

qαn
.

Then, the irrationality measure is

µ(ξ) ≤ βγ

α− 1
.

Proof. The proof is the same as that of Lemma 4.1 in [1], only the constants α, β
are shifted by one. Lemma 4.1 in [1] uses the strict inequality qn < qn+1 only to
ensure that lim

n→∞
qn =∞, so we use the latter in the assumption of our Lemma 3.1.

�
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In the following proofs the constants Ci > 0 and Ni ∈ N depend on δ and do
not depend on n.

Proof. (Theorem 2.1) Let δ ∈
(
0,min{E − 1, 1−S3 , U − 1}

)
be so small that

F + δ < (E − δ)(1−S−3δ)(U−δ).

Equations (2.1), (2.2), (2.3) and (2.4) imply that there exists N2 ∈ N such that,
for every n ≥ N2,

U − δ < Tn+1

Hn
< V + δ, (3.1)

Hn+1

Hn
< G+ δ, (3.2)

(E − δ)Tn < an < (F + δ)Tn , (3.3)

bn < aS+δn . (3.4)

From (3.1), we obtain for every n ≥ N2

Hn+1

Hn
=
Hn + Tn+1

Hn
> 1 + U − δ > 2

and

Hn ≥ (1 + U − δ)n−N2 .

Using (3.1) again, we obtain for every n ≥ N2 + 1

Tn > (U − δ)Hn−1 > (U − δ)(1 + U − δ)n−N2−1 = C7(1 + U − δ)n,

where C7 = U−δ
(1+U−δ)N2+1 . Therefore, there exists N3 > N2 such that, for every

n ≥ N3,

an > (E − δ)C7(1+U−δ)n > 2n. (3.5)

In particular, lim
n→∞

an =∞. Let N4 ≥ N3 be so large that, for every n ≥ N4,

dlog2 ane < aδn, (3.6)

aδn +
1

21−S−δ − 1
< a2δn . (3.7)

Put qn :=
∏n
k=1 ak. Then, there exists a sequence pn of positive integers such

that, for every n ∈ N,
n∑
k=1

bk
ak

=
pn
qn
.

Equation (3.3) implies that, for every n ≥ N4,

qn = qN4−1

n∏
k=N4

ak > qN4−1

n∏
k=N4

(E − δ)Tk

= qN4−1(E − δ)Hn−HN4−1 = C8(E − δ)Hn , (3.8)

where C8 =
qN4−1

(E−δ)HN4−1
. Similarly,
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qn < qN4−1

n∏
k=N4

(F + δ)Tk = qN4−1(F + δ)Hn−HN4−1 = C9(F + δ)Hn , (3.9)

where C9 =
qN4−1

(F+δ)
HN4−1

.

Put α := log(E−δ)
log(F+δ) (1−S−3δ)(U−δ) > 1. Equation (3.4) implies that, for every

n ≥ N4, ∣∣∣∣ξ − pn
qn

∣∣∣∣ =

∞∑
k=n+1

bk
ak

<

∞∑
k=n+1

1

a1−S−δk

=

dlog2 an+1e∑
k=n+1

1

a1−S−δk

+

∞∑
k=dlog2 an+1e+1

1

a1−S−δk

. (3.10)

For the first summand, we obtain from the monotonicity of an and from (3.6) that

dlog2 an+1e∑
k=n+1

1

a1−S−δk

≤ dlog2 an+1e
a1−S−δn+1

<
1

a1−S−2δn+1

.

Equation (3.5) implies for the second summand that

∞∑
k=dlog2 an+1e+1

1

a1−S−δk

<

∞∑
k=dlog2 an+1e+1

1

2(1−S−δ)k
=

C10

2(1−S−δ)dlog2 an+1e

≤ C10

a1−S−δn+1

,

where C10 = 1
21−S−δ−1 . This, (3.10), (3.7), (3.3), (3.1) and (3.9) imply∣∣∣∣ξ − pn

qn

∣∣∣∣ < 1

a1−S−2δn+1

+
C10

a1−S−δn+1

<
1

a1−S−3δn+1

<
1

(E − δ)Tn+1(1−S−3δ)

=
1

(F + δ)
log(E−δ)
log(F+δ)

(1−S−3δ)Tn+1
Hn

Hn
<

1

(F + δ)αHn
<
C11

qαn
, (3.11)

where C11 = Cα9 . This in particular implies that the series ξ =
∑∞
n=1

bn
an

converges.

Put β := log(F+δ)
log(E−δ) (V + δ) > α. Then, (3.3), (3.1) and (3.8) imply for every

n ≥ N4 that∣∣∣∣ξ − pn
qn

∣∣∣∣ =

∞∑
k=n+1

bn
an

>
1

an+1
>

1

(F + δ)Tn+1
=

1

(E − δ)
log(F+δ)
log(E−δ)

Tn+1
Hn

Hn

>
1

(E − δ)βHn
>
C12

qβn
, (3.12)
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where C12 = Cβ8 .

Put γ := log(F+δ)
log(E−δ) (G + δ) > 1. Then, (3.9), (3.2) and (3.8) imply for every

n ≥ N4 that

qn ≤ qn+1 < C9(F + δ)Hn+1 = C9(E − δ)
log(F+δ)
log(E−δ)

Hn+1
Hn

Hn

< C9(E − δ)γHn < C13q
γ
n, (3.13)

where C13 = C9

Cγ8
.

Equations (3.11), (3.12), (3.13) with Lemma 3.1 imply that

µ(ξ) ≤ βγ

α− 1
=

( log(F+δ)
log(E−δ)

)2
(V + δ)(G+ δ)

log(E−δ)
log(F+δ) (1− S − 3δ)(U − δ)− 1

.

The proof of Theorem 2.1 is finished by letting δ → 0. �

Proof. (Theorem 2.2) Let δ ∈
(
0,min{E − 1, 1−S3 , U − 1}

)
be so small that

F + δ < (E − δ)(1−S−3δ)(U−δ).

Equations (2.5), (2.6) and (2.7) imply that there exists N5 ∈ N such that for every
n ≥ N5

U − δ < Tn+1

Tn
< V + δ, (3.14)

(E − δ)Tn < an < (F + δ)Tn , (3.15)

bn < aS−δn .

From (3.14), we obtain for every n ≥ N5 that

Tn > TN5
(U − δ)n−N5 = C14(U − δ)n,

where C14 =
TN5

(U−δ)N5
. This with (3.15) implies that there exists N6 ≥ N5 such

that for every n ≥ N6

an > (E − δ)C14(U−δ)n > 2n.

In particular, lim
n→∞

an =∞.

Let N7 ≥ N6 be so large a positive integer that, for every n ≥ N7, the inequal-
ities (3.6) and (3.7) hold.

For every n ∈ N, put qn := an. From the property an | an+1 we obtain that
there exists a sequence pn of positive integers such that, for every n ∈ N,

n∑
k=1

bk
ak

=
pn
qn
.
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Put α := log(E−δ)
log(F+δ) (1 − S − 3δ)(U − δ) > 1. Then, from (3.15) and (3.14), we

have

an+1 > (E − δ)Tn+1 = (F + δ)Tn
log(E−δ)
log(F+δ)

Tn+1
Tn > a

log(E−δ)
log(F+δ)

Tn+1
Tn

n > a
α

1−S−3δ
n . (3.16)

Now, for every n ≥ N7, we will find an upper bound for the error of approxi-
mation of ξ. As in the proof of Theorem 2.1, we obtain∣∣∣∣ξ − pn

qn

∣∣∣∣ < 1

a1−S−3δn+1

with the series ξ =
∑∞
n=1

bn
an

converging. Equation (3.16) then implies∣∣∣∣ξ − pn
qn

∣∣∣∣ < 1

a1−S−3δn+1

<
1

aαn
=

1

qαn
. (3.17)

Put β := γ := log(F+δ)
log(E−δ) (V + δ) > α > 1. Equations (3.15) and (3.14) imply

that, for every n ≥ N7,

qn ≤ qn+1 = an+1 < (F + δ)Tn+1 = (E − δ)Tn
log(F+δ)
log(E−δ)

Tn+1
Tn

< a
log(F+δ)
log(E−δ)

Tn+1
Tn

n < aγn = qγn. (3.18)

From this, we obtain a lower bound for the error of approximation of ξ∣∣∣∣ξ − pn
qn

∣∣∣∣ =

∞∑
k=n+1

bk
ak

>
1

an+1
>

1

aγn
=

1

qβn
. (3.19)

Equations (3.17), (3.18), (3.19) with Lemma 3.1 imply that

µ(ξ) ≤ βγ

α− 1
=

( log(F+δ)
log(E−δ)

)2
(V + δ)2

log(E−δ)
log(F+δ) (1− S − 3δ)(U − δ)

.

The proof of Theorem 2.2 is finished by letting δ → 0. �

Proof. (Corollary 2.3) Put Tn = Tn, G = T , U = V = T − 1 and use Theo-
rem 2.1. �

Proof. (Corollary 2.4) Put Tn = Tn, U = V = T and use Theorem 2.2. �
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