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1 Introduction

Historical sound recordings usually suffer from imperfections. The history of sound
recordings started at the end of nineteenth century with wax cylinders, followed by
shellac, acetate, vinyl disc recordings, stainless steel wire recordings and magnetic
tapes. Typical distortions like a hiss, impulse noise, crackle, wow and flutter, back-
ground noise or power line hum are a natural part of such archive audio sources. The
high quality digital audio brought by Digital Audio Tape (DAT) or Compact Disc
(CD) caused an enormous increase of sound quality demands. Meanwhile, the inter-
est in nostalgic and historical material was still retained. Therefore, requirement for
the audio restoration of degraded recordings grew.

Audio restoration is a generalized term for the process of removing faultiness from
sound recordings. The perfect restoration would reconstruct the original audio exactly
as captured by the transducer (e.g. microphone, reproducer, horn). Original pure
quality can, of course, never be reached in practice. However, there are methods
which can come close according to some suitable error criterion ideally based on the
perceptual characteristics of the human hearing.

Recently, after more than one hundred years, the wax cylinders captured at the end
of 19th century by the famous music composer LeoS Janacek and his collaborators
were re-recorded by the digital systems, digital restoration was performed and they
are available together with detailed study for a large audience in [26].

The theoretical interest in the process of audio restoration was enforced by coop-
eration with The Institute of Ethnology of the Academy of Sciences of the Czech
Republic, v.v.i. and the National Institute of Folk Culture which led in joint research
interests in audio signal processing and the ethnological research. The restoration of
ancient audio recordings was performed in a sensitive way to the music genre. The ex-
perience of treating a lot of sound impairments using a commercial software resulted
in experiments using novel restoration methods based on the sparse representations.

Audio restoration is not only the matter of historical recordings. Nowadays, pro-
fessional audio/video production has human and technical resources that are mostly
aware of audio processing failures. However, people who are not experienced in work-
ing with recording equipment can cause signal degradation which is usually discov-
ered in the post-processing or mastering stage.

All of the algorithms and software tools are a great assistants for audio mixing,
post-processing, mastering and publishing. However, they should never be used for
audio archiving, since the original information is lost during the restoration process.

Condition of the material 1s clearly affected by the age of the sound information
carrier. The description of common types of damages is based on a detailed study of
the collection of wax cylinders [33]. Typical damages of audio carriers are: scratches,
fissures and weld, scratching off the groove, mould, pitch fluctuation. The consequent
audio signal artifacts coming out of these damages are: clicks, crackles, noise, hum
and rumbling or clipping.



2 State of the Art

The early methods of interpolation of the missing samples portions performed an ex-
trapolation, 1.e. expanding the signal from only one side of the gap. Extrapolation
algorithms were based on a signal periodicity and samples repetition supposed to fill
in reliably only a stationary signal [17], [19], [39].

The extrapolation from both sides of the gap is more advantageous since there is
less restriction on the signal stationarity. Filling in the signal based on knowledge of
the samples from both sides of the gap is called an interpolation.

One of simpler methods of the interpolation is to repeat the most recent M/ samples

{z[ll = M|, z[l = M +1],...,x[l — 1]}, (1)

where x is a signal vector and [ is an index of the first missing sample. Having an
estimate from both sides of the gap, the resulting signal could be enhanced by the
linear weighted combination of both periodicity-based substitutions.

The signal interpolation based on modeling of an autoregressive process improves
the results of interpolation in contrast with samples repetition [21]. Recovering of the
missing samples is performed by minimizing the sum of squares of the residual errors
which result in the estimates of the autoregressive parameters. The interpolation based
on autoregressive modeling from both sides of the gap is introduced in [17]. Recal-
culation of missing samples in both sides of the gap is utilized according to the linear
prediction. Among several block-based methods for calculating the autoregressive
parameters two of them were chosen: Yule-Walker and Burg method.

A more advantageous approach based on interpolation of the signal parameters (am-
plitude, frequency) by the autoregressive modeling. Pure time domain interpolation
methods presented in previous section often fail if the length of the signal gap is longer
than 10 ms. Bringing into account a two-dimensional time-frequency signal structure
promises more space to the process of restoration of degraded recordings [25]. Si-
nusoidal model [29] of the signal interprets the audio signal as a sum of harmonic
and non-harmonic components usually called the partials. These components are de-
scribed by an amplitude, frequency and phase in time. Using these parameters the
resulting signal is obtained as

P

y(t) = Ay(t) cos(ey(t)), )

p=1

where P is the number of partials, A, is an instantaneous amplitude and ¢, is an
instantaneous phase of the pth partial. This group of three parameters (f,, A,, ¢,) of
the additive model represents particular samples of partials [24].

The proposed method in [24] models only the tonal part of the signal while the noisy
part is not considered at all. An extension was brought in [25] adding the interpolation
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of the noisy residual signal and minor harmonics. Since most of real world signals
contain noise with significant amount of energy, the residuum should not be avoided.

Presented state-of-the-art methods are supposed to be comparative approach to the
novel methods based on underdetermined systems of linear equations which will be
described in the next chapter. Regarding the results in papers utilized as the references
in this chapter, the sinusoidal modeling should be the most promising state-of-the-art
method for audio signal interpolation.

3 Sparse representations

3.1 Frames

The representation of the signal x is not unique considering the number of generators
of a vector space V is greater than the dimension n of the space. The signal vector
can be represented using various linear combinations. This property is called the
underdetermination and the group of linearly dependent basis vectors is called the
frame. Frames are generally less constrained than the basis and are widely utilized
because of their flexibility. According to a mathematical definition a frame is formed
by a countable set of vectors {®}}c; in a vector space V if there are two positive
constants 0 < A < B < oo such that

Allxl* < Y 1 (x, @) [ < Bljx|*, vx € V, 3)
keJ

where constants A, B are representing the frame bounds. Each element (column) of a
frame P, is called the arom [32], [10].
The frame operator S is defined as

Sx = Z(X, CI)k>(I)k 4)

k

The upper bound A is equal to the smallest eigenvalue of a frame operator. Likewise,

lower frame bound B is equal to the biggest eigenvalue. If A = B the frame is called

tight. Moreover, if A = B = 1 the frame is called normalized or Parseval tight.
Dual frame is an important element in searching for coordinates c; for a vector

representation as X = » _, cxej using frame E = {e;,..., e, } in vector space V of
dimension n < m. Frame F = {f;,... f,} is called the dual frame of E if each
x € V is defined as
X = Z <X, fk> €, = Z <X, ek> fk (5)
k k

Searching for coordinates ¢ of vector X in a primary frame is performed using the
dual frame by equation ¢; = (x,f)). Matrix representation of the same problem is
¢ = F*x. This operation is called the analysis. A backwards reconstruction of the
signal by superposition of atoms is called the synthesis [32].



Each primary frame has got an infinite number of dual frames in general. How-
ever, usually the task is to find a canonical dual frame. This frame results in a set of
coefficients {c; }res with minimal energy (norm). Such frame is defined as

f. = S_lek (6)

If matrix E has a full row rank, using the Moore-Penrose pseudoinverse a canonical
dual frame can be obtained by

E' = E*(EE*)". (7)

A special family of frames are the Gabor frames [32], [3]. The construction is
based on the translation and modulation operators. The signal x is represented as a
superposition if translated and modulated version of the basic function g € L?(R)
which are generated as

Grw(t) =gt — T)e%tw. (8)

3.2 Sparse representations

During last decade, the attention of researchers in the field of signal processing in-
creasingly focused on mathematical methods searching so-called sparse representa-
tions. Mathematical fields such as linear algebra, functional analysis, convex opti-
mization or statistics provide a basis for finding sparse solutions of systems of linear
equations which is usable in various fields. This thesis focuses on the use of sparse
representations in the field of signal theory and systems, which were one of the first
areas of sparse solutions applications.
The basic task is to find a solution of a linear system

min ||x||, subjectto y = Dx, )

where D is a transformation matrix called the dictionary, x is a coefficient vector,
which we are looking for and y is a vector of input signal samples. Solution is called
sparse if the resultant vector of the coefficients x contains only a few non-zero el-
ements in comparison with the size of the system of linear equations. Because of
uncertainty of the solution there is a possibility of adaptivity of the solution, which is
amongst others the most appropriate for the particular purpose. Graphical demonstra-
tion of the problem is in Fig. 1

Sparse solutions offer adaptation of the dictionary for a particular purpose which
benefits in terms of information compression, analysis, interpretation and numerical
stability. Their advantage is the ability to represent the signal with a few important
coefficients.

Because the selected dictionaries are overdetermined (the matrix contains more
columns than rows), searching for such solutions can be computatively intensive, de-
pending on the choice of algorithm for signal decomposition. Moreover, improperly
assembled dictionaries can lead to system instability.



Figure 1: Graphical illustration of the sparse representation

3.3 Audio Inpainting

Sparse signal representations for inpainting problems were first used in image signal
processing [16] and a few years later the Audio Inpainting algorithm was introduced
in [1].

The Audio Inpainting is based on the approximation of missing or distorted infor-
mation with a linear combination of atoms {d, } from the dictionary. Input signal sam-
ples are classified into two parts: reliable samples with support vector Z" and distorted
samples with support vector Z™. Longer signals (typically audio) can be segmented
into portions of defined length equal to the atom length N and defined overlap, while
information about signal support is preserved. Segments are formed in a matrix Y
as well as their support vectors form the measurement matrix M" with reliable sam-
ples support and M™ with missing signals support. For those segments where wrong
samples are detected an individual inpainting process is performed. Wrong samples
are identified in a measurement matrix M™ € {0, 1} as ones as well as reliable sam-
ples in matrix M* € {0, 1} with values complementing the M™ matrix. Using the
measurement matrix reliable data are obtained as

y =My (10)

and the main goal is to reconstruct the non-reliable samples y(Z™), where Z™ =
{1,2,..., L} is a vector of missing signal support from the whole input signal of
length L. Regarding sparse representations of signals, each segment of reliable sam-
ples can be obtained by the input signal approximation through dictionary atoms and
appropriate coefficients

y; = M;Dx;. (11)

Coefficients x; are computed from reliable samples using any greedy or relaxation
algorithm. The process of analysis is performed by the dictionary D with atom length
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restricted to the length of the reliable samples of input signal. Recovering unknown
samples y(Z™) can be performed by estimating as X; a sparse vector of each segment

Yi(Z") = M"DX;. (12)

For reconstruction of missing samples with obtained coefficients x; we use the orig-
inal dictionary D with original atoms length. Only samples at missing positions are
replaced by the reconstructed samples

y=y(T") +y(I@"). (13)

3.4 Dictionaries

The most frequent dictionaries are trivial dictionaries (Heaviside disctionary), fre-
quency dictionaries (Fourier, cosine dictionary), time-scale dictionaries (wavelet dic-
tionary) and time-frequency dictionaries [9].

Time-frequency analysis is a projection of signal y onto the atoms g, . In fact,
we are dealing with a redundant STFT known as the Gabor analysis [18]. The dis-
tribution of sampling points in the time-frequency plane and the corresponding frame
construction is defined as

G(ga a, b) - Mmean97 (14)

where My,,, is a modulation operator, T, is a translation operator and a, b, m,n € 7Z
are sampling parameters of the STFT. The basic question is how to choose parameters
a,b and a function g € L*(R) to form a frame in space L*(R). Limits of the time-
frequency resolution are described by the Heisenberg’s principle of uncertainty saying
that there is no signal well concentrated in both time and frequency [14]. Function g
is called the window function. In theory the Gaussian function g(x) = exp(—x2/2) is
the only function with optimal time-frequency concentration according to the Heisen-
berg’s principle [32]. In praxis, the disadvantage is its support of infinite length.
Therefore, more feasible window functions are utilized such as Hamming’s, Hann’s,
Nuttall’s etc. An example of modulated and translated Hann’s window is in Fig. 2.
If the Gabor system forms a frame, then the reconstruction of the signal from time-
frequency coefficients could be performed.

One possible way how to represent the signal more sparsely is to adapt the dictio-
nary to a specific signal. This process is called the dictionary learning. The process of
adaptation of the dictionary to the specific signal comprises two main steps: the first
step is to isolate a group of training samples from the reliable part of the signal. This
means that we can not train dictionary from noisy or missing sections of the signal,
which will later be reconstructed. The range and number of samples, from which the
dictionary will be learned, specifies the user when setting parameters for the selected
algorithm. In the second step the adaptation itself will be processed on the dictionary
data gathered in the first step.
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Figure 2: Hann window function (blue), modulated, translated and windowed cosine functions
(green, black).

Preparing such adapted dictionary brings a more computationally demanding task,
which certainly prolong the total time required for data reconstruction. However, out-
put may result in sparser representation and thus more accurate reconstruction of miss-
ing data [4]. K-SVD is a non-convex dictionary learning algorithm The goal of the
algorithm is to adapt the dictionary D in order to achieve a higher degree of sparsity
in the representation of input signal yj, using any algorithm which approximates the
optimization problem.

4 Algorithms for sparse approximations

Traditional methods of synthesis use transformation matrix ® which is orthogonal
(i.e. that the dimensions are n X n) and forms the basis. The analysis coefficients
are obtained by simply inverting the operator ®. However, since the tasks that we
deal with use overdetermined dictionaries that produce infinitely many solutions it is
necessary to apply the algorithms that find optimal solutions in some way. Searching
for sparse solutions is a problem of £, norm minimization. Unfortunately, this norm
is not a convex function and it is not possible to use any currently existing algorithm
solving convex optimization. It constitutes an NP-hard problem and the exact solution
can not be found in polynomial time [8].
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4.1 Greedy algorithms

Greedy algorithms are selecting one (or more) of the most important atoms in each
iteration. An important feature is that once the coefficient of the respective atom is
found it does not change during the calculation of other coefficients nevermore. Al-
gorithms like Matching Pursuit [28] or the currently popular modification called Or-
thogonal Matching Pursuit (OMP) [31] have relatively low complexity, unfortunately,
achieving the global optimum is not guaranteed.

OMP algorithm performs the following steps in each iteration: first calculates the
correlation of all atoms of the dictionary with the current input signal segment. The
highest coefficient which is found in this step is saved, backward synthesis of the co-
efficients and the dictionary is performed and the signal is then compared with the
original input signal. The difference between these two signals is stored as a residue.
The reconstruction error for the residual is computed as the square of ¢ norm and
every following iteration correlates atoms (except those already used) with the current
residuum. Therefore, new coefficients are being obtained repeatedly. The reconstruc-
tion error decreases with increasing number of coefficients.

OMP algorithm iterates over and over again until one or more stopping criterion is
fulfilled [15].

4.2 Relaxation algorithms

The closest convex norm that can be utilized for approximation of sparse solutions is
/1. In most cases results of minimization of the coefficients of ¢, and #; norm coincide.
This group of algorithms assumes that under certain conditions we get to accurate or
at least approximate solution. The algorithms are based on ¢; relaxation.

Basis Pursuit is an optimization problem which decomposes the signal into a super-
position of atoms in an optimal way. Optimality is reached by having the smallest ¢;
norm of coefficients

min ||c|[|; subjectto Dc =y, (15)
(¢

among all considered decompositions where c is the coefficient vector, D is the dic-
tionary and y is the resulting signal.

Proximal algorithms are methods from the optimization theory including relaxation
tasks with /1 norm. Proximal algorithms are splitting the problem of sparse regression
into separate problems as

argmin v (f1(%) + f2(x)) (16)

where x is the input (observed) signal, which are solved iteratively whereas the condi-
tions of convergence of the algorithm are known. These algorithms are not very fast,
however, the flexibility is advantageous [12].
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The constrained form of the optimization problem (not corresponding to the task
16) is
min ||x||, subjectto  [|Dx —yl|, <4, (17)

where ¢ is an allowed error from the true solution.
The unconstrained task which is going to be solved is called the LASSO.

~ . 1
y = DargmlnxeRN§ ly — Dx||; + A [|x]l, (18)

where ) ||x||; is a regularization term which penalizes certain types of solutions and \
is a weighting coefficient controlling strength of the term. The higher the A the more
penalized the non-sparse solutions are [38].

In an overcomplete case the solution is different for analysis and synthesis model.
Analysis model is referred as a co-sparse analysis [30]. The point is to enforce sparsity
of the analysis coefficients Ay instead of synthesis coefficients c. The definition of
solving and audio inpainting problem in an analysis sense is

y = argming gy [|[M'x — My|5+ Al Ayl (19)

where X is the observed signal, y is the unknown signal and A is an analysis operator.
The definition of solving and audio inpainting problem in an synthesis sense is

~ , 1
y" = M"D - argmin g~ (5 IM'Dc — M™x]|5 4+ A HCH1> : (20)

If both of the functions f; and f5 from Eq. 16 are non-smooth, we are not able to
compute the gradient (first derivative) and the problem is solved by Douglas-Rachford
algorithm [11]. On the other hand, if at least one of the functions f7, fs is smooth (eg.
/5 norm), the gradient for this function is defined and we can utilize the Forward —
Backward algorithm to solve the sparse regression problem.

Minimization of the function is performed using the proximity operator which min-
imizes the function without getting too far from the initialization point. The proximity
operator is a generalization of the projection [13].

Some of methods known from other areas of signal processing which can be formu-
lated as proximal are (F)ISTA (Fast Iterative Schrinkage/Thresholding Algorithm) [6]
or ADMM [7]. The synthesis model for solving an Audio Inpainting problem defined
in 20 is solved by proximal splitting.

Signal atoms which are affected by the signal gap do not fulfill the condition of
|d;]|, = 1. The computation of weights was formulated as

B g,
1 2 o )
Vgl — lmm s« g2,

where m™ is a missing mask of a corresponding atom of values {0, 1}.

W

2D
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4.3 Structured sparsity

Previous methods of /;-relaxation treated the coefficients independently regarding no
correspondence with the neighbourhood. Nevertheless, every typical spectrogram of
a musical signal is naturally structured. Considering this fact, the algorithm for sparse
signal modelling incorporating information about a structure in an analysis stage of
processing would be an advantage compared to the regular sparse modelling where
coefficients are treated independently [23]. Keeping or discarding particular coeffi-
cient under consideration is decided up to certain neighbourhood of the coefficient.

The convex optimization problem for Audio Inpainting with mixed norms is refor-
mulated as

~m m . 1 r r
y" = M"D - argmin, ¢~ (§||M y — M'Dc||5 + )‘Hch,q> (22)

where p represents a within-group penalty and ¢ is an across-group penalty.

Due to the non-stationarity of sound signals, windowing with overlapping and
weighting is incorporated. Generally, there are two set of mixed norms which are
widely used in literature Windowed-Group-Lasso and Persistent-Elitist-Lasso.

5 Experiments and evaluation of audio restoration

Experiments are evaluated using objective evaluation methods SNR and PEMO-Q.
The SNR is defined as

ly (1|13
[y (Im) — y(Im)[f;’

where y is the original signal, ¥ is the reconstructed signal and I™ is the vector of
indices of the corrupted signal. PEMO-Q evaluates the audio quality of a given dis-
torted signal in a relation to the corresponding high-quality reference signal whereas
the auditory model is employed to compute so-called internal representations adjusted
to the cognitive aspects [20].

All of the experiments have got following common input values: input signal sam-
ples, index of the first missing sample and length of the signal gap. Each approach to
audio interpolation uses individual method to trim the input signal according the the
transformation/modeling parameters.

An inpainting toolbox (Brno-Wien Inpainting Toolbox) including all of the pre-
sented methods was developed and all the following experiments were performed us-
ing this MATLAB toolbox. Inner computations of inpainting algorithms in the toolbox
are dependent on some other toolboxes. All of the files are single channel (mono) with
the sampling frequency of 16 kHz and 16 bit depth. Example files consist of harmonic
and non-harmonic musical samples and speech signals.

SNR(y,y) = 10log (23)
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5.1 State-of-the-Art interpolation methods

Regarding samples repetititon method of interpolation, the best SNR = 1.28 dB was
reached for ¢, = 260 samples. g, specifies the area surrounding the gap supposed to be
the model for signal estimation. The subjective listening of the result is not satisfying
and the listener can clearly recognise the gap position in the sound. Regarding the
speed of computations, this method is one of the fastest with the time duration of
less than a second. The speed is definitely shorter than the gap length, therefore the
algorithm is feasible also for real-time applications.

Utilizing the AR modeling of signal samples (Least-Squares Residual Predictor
method) on an example gap, the best SNR = (.67 dB is reached with the maximum
AR model order. Second method, the Weighted Forward-Backward Predictor resulted
in the maximum SNR = 0.84 dB was at AR model order of 270.

Results of batch testing of the first method, the Least-Squares Residual Predictor
was performed for gap size of {10, 20,...,100} ms which corresponds to {160,320,
...,1600} samples. The AR model order was selected from the range of {0.5, 1,2,
...,5,6,8,...,12} times of the gap size. Every combination of gap size and AR
model order was used ten times for different gap positions in music file musicl1_16-
kHz.wav and the resulting SNR was computed as an average of these experiments. A
lot of experiments were not performed at all because of the very long processing time
(> 1000 s for single interpolation experiment). The best SNR = 5.78 dB was reached
for gap size of 360 samples and AR model order of 10 times the gap length. However,
the variance of 14 dB makes the results very unstable. Therefore, there is no general
recommendation for interpolation parameters selection.

Furthermore, the same experiment was made with the Weighted Forward-Backward
Predictor. Since the computational load of this method is higher than the previous
method, batch experiment was performed with much more restricted range of parame-
ters. The AR model order was selected from the range of {0.5, 1,2, 3,4} times the gap
size. The best result (SNR = 5.06 dB) was reached for gap size of 160 samples and
model order of 400 samples. Compared to LSRI method, the variance of the results
was much lower (4.65 dB).

Previous methods needed only one parameter to be set up: the model order or neigh-
bourhood size. The sinusoidal modeling uses four parameters that influence the power
of the algorithm:

e Frequency difference threshold,

e amplitude difference threshold,

e length of the vector for amplitude mean value computation,

e order of AR model.

The frequency threshold in the following experiments will be set to value of 3 while
this value should keep SNR higher and bring a little variability in the matching deci-
sion. Further experiments indicate the best amplitude difference threshold thrA = 0.5
Batch testing for the optimal settings of length of the vector for amplitude mean value
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Figure 3: SNR of audio interpolation by sinusoidal modeling with various gap length and AR
model order.

computation (M) show that there are very little differences between the mean am-
plitude range of (10; 100). Therefore, following experiments will be performed with
M = 60.

The most important parameter is the model order. It is obvious that there is no
conspicuous evolution of the SNR with respect to gap length in Fig.3. Therefore,
any general recommendations for the selection of the model order according to the
gap length can not be defined. The interpolation algorithm has to be tuned for each
gap size and position individually to reach the best results. Regarding the speed of
computations, the time consumption of the interpolation algorithm increases with the
increasing model order value.

5.2 Greedy algorithm

The core algorithm for solving the sparse approximation by greedy methods is the
Orthogonal Matching Pursuit (OMP). The size of the segment (neighbourhood size)
S is computed from the gap length M and neighbourhood multiplier /N such that
S = N x M. There are several parameters of the OMP algorithm which influence the
result of audio inpainting:

e no. of coefficients obtained in each iteration

e maximum number of iterations,

e maximum error,

e dictionary redundancy,

16
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Figure 4: SNR of audio inpainting by OMP with various neighbourhood size according to gap
length with highlighted best results by green points.

e neighbourhood size for inpainting.

Analyzing the number of coefficients, better SNR was reached obtaining only 1 coeffi-
cient in a single iteration. In contrast, the processing time increases enormously when
o coefficients are obtained simultaneously. Therefore, for the following experiments
only 1 coefficient per an iteration will be obtained.

In another experiment the redundancy factor red is set up in the range of red =
{1,2,...,10}. Redundancy of 1 and 2 produce poor results in terms of SNR, some-
times with SNR below zero. Higher values of redundancy factor produce better results
with the best reached value of SNR = 15, 64 dB for red = 9 and neighbourhood size
of 1280 samples. However, the processing time of higher values of the redundancy
factor is not efficient either for experimental or practical purpose. Therefore, for the
following experiments redundancy factor of 3 will be used since it provides a good
trade-off between the interpolation results and the processing time.

The most extensive batch testing was performed on music file musicl1_16kHz. wav.
The objective of the experiment was to find an optimal neighbourhood size according
to the various gap length. The size of the gap was from the range of {10, 20, ...
, 100} ms which corresponds to {160, 320, ..., 1600} samples. Neighbourhood size
factor is a multiplier of the gap size resulting in the full neighbourhood size and was
selected from the range of {2,4,...,20}.

The best results were reached for the shortest gap size. The highest average SNR =
7.59 dB was obtained for gap size of 10 ms and neighbourhood size factor of 8 which
results in the neighbourhood size of 1280 samples (80 ms). Larger neighbourhood size
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produces better inpainting results in the terms of SNR. However, the processing time
increases dramatically with increasing neighbourhood and gap size.

As a conclusion of this evaluation, the optimal trade-off between the speed of com-
putation and the resulting inpainting performance using OMP algorithm should be the
neighbourhood size factor of at least 4 (see Fig. 4).

5.3 Dictionary learning

Among several dictionary learning algorithms the K-SVD method implemented within
the SMALLbox! was chosen for experiments. Several parameters were examined dur-
ing the tests. Setting the number of iterations to 4 reaches a satisfying value of RMSE
(Root Mean Squeare Error) and after 10 iterations the RMSE is stabilized at its min-
imum. Other experiments were focused on minimizing RMSE according to space
between segments obtained from reliable samples to get the training data.

Using the audio file of length 80 000 samples, the segment length of 256 samples
and redundancy factor of 3, the dictionary D has got a size of 256 x 768 samples.
With these parameters the shift of segments could be set to a value from interval
{1,2,...,100}. Increasing the segment shift value results in smaller RMSE during
the dictionary learning process.

Another parameter of the dictionary learning explored further was the maximum
number of non-zero coefficients Syax. For Spax € {1,2,3,4,5} dictionary learning
experiments were performed with focus on the lowest RMSE depending on different
Smax and therefore reaching the minimal error. After six iterations the minimal RMSE
was reached by Sp,.x = 3 and remains minimal with very little change.

The number of iterations has to be set up deliberately. The number can be small
and RMSE will remain high (the dictionary is not adapted as much as it can be) or
the number can be too high and after reaching the minimum RMSE the algorithm
can waste the time with new iterations or worse the RMSE can raise up. As a result,
satisfying RMSE can be obtained with three or four iterations.

Figure 5 shows that for gap length of 40 to 110 samples dictionary trained by the
K-SVD algorithm overcomes static dictionaries by about 10 dB. Results of recon-
struction by static dictionaries (Gabor and DCT) produce almost the same results.
Presented results were published in [27].

5.4 [;-relaxation algorithm

Most of the contribution was focused on the implementation of the analysis and the
synthesis model for their comparison. Since all of the papers dealing with the audio
inpainting use the synthesis model ([1],[22],[5]) there was a natural interest in an
implementation of the analysis model and its evaluation.

Thttp://small-project.eu/software-data/smallbox/
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Figure 5: Signal reconstruction of a guitar audio sample using the K-SVD algorithm and
greedy solver.

The time-frequency transform is built up from time and frequency localized win-
dows and their translations [34]. There were two varying parameters during these
tests: redundancy value from the ranges of {2, 3, ..., 8} and the length of the window
of {513, 1026, 2052, 3078, 4104, 5130, 6156, 7182, 8208, 9234, 10260, 11286} sam-
ples. The evolution of SNR for an increasing window length seems to be more or less
the same for all redundancy values. From this time the redundancy will be fixed to the
value of 3 for all of the following experiments. The weights of the atoms are applied
on resulting coefficients.

For each combination of gap size and window length there were 10 independent
inpainting experiments with different gap position for each analysis and synthesis
model. Very small (window length)/(gap size) ratio the window is not able to find
enough of a reliable pattern for inpainting such a gap. Regarding the analysis model
for harmonic signals, the best restoration in the terms of objective SNR evaluation
was obtained in the case of short gaps and a size of window length from 2000 to
9000 samples (from 125 to 560 ms). Likewise in the synthesis model, the satisfying
SNR for gap length of 1120 samples is reached using window length in the range from
5130 to 7182 samples.

As a conclusion, there are somehow optimal parameters for a particular gap size
and gap position, nevertheless, they can be very easily missed by a slight modification
of a window length.

Audio Inpainting for the reconstruction of non-harmonic signals failed in all com-
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Table 1: Results of inpainting experiments over all of the sound files (analysis model, sorted by
the average SNR)

Filename Average Average Character
SNR [dB] | STD [dB]

musicll 16kHz | 8.1 4.4 harmonic, guitar
music03_16kHz | 7.9 4.6 harmonic, guitar
music02_16kHz | 5.0 3.8 harmonic, double bass
musicO4_16kHz | 4.5 4.7 harmonic, woman singing
musicl0_16kHz | 4.2 1.7 harmonic, orchestra
music08_16kHz | 3.4 2.0 harmonic, pop music
music09_16kHz | 1.7 1.7 speech, rap
musicl?2 16kHz | 1.1 1.5 speech, DJ show
musicO7_16kHz | 0.1 0.6 non-harmonic, drums

Table 2: Results of inpainting experiments over all of the sound files (synthesis model, sorted
by the average SNR)

Filename Average Average Character
SNR [dB] | STD [dB]

musicll _16kHz | 7.3 4.3 harmonic, guitar
musicO3_16kHz | 6.7 4.7 harmonic, guitar
music02_16kHz | 4.4 4.0 harmonic, double bass
musicO4_16kHz | 4.0 5.2 harmonic, woman singing
musicl0_16kHz | 3.8 1.6 harmonic, orchestra
musicO8_16kHz | 2.8 1.9 harmonic, pop music
music09_16kHz | 1.4 1.7 speech, rap
musicl2_16kHz | 0.8 1.6 speech, DJ show
musicO7_16kHz | —0.3 1.5 non-harmonic, drums

binations of parameters. Therefore, the Audio Inpainting of such non-harmonic signal
should be performed by some other technique.

Another notable remark is that the order of the analysis and synthesis results is the
same, however, results of the analysis model are reaching better SNR values then the
synthesis. Further, the standard deviation of the synthesis model is the same or higher
in all of the experiments compared to the analysis model standard deviation. Results
of average SNR for various kinds of audio files are in Tab. 1 and 2

Considering the speed of the computation, there is quite a big difference between
the analysis and the synthesis model especially using large window sizes. The pro-
cessing time of the analysis model is significantly lower than the processing time of
the synthesis model. The average processing time of the inpainting process using a
proximity algorithm is not dependent on the gap size.

Results of inpainting of the example gap are in Tab. 3.
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Table 3: Complex evaluation of inpainting/interpolation algorithms
| Method name SNR [dB] | PSM [-] | PSM, [-] |

Samples repetition —3.9338 | 0.9839 | 0.5118
AR samples modeling (LSRI) 3.9738 0.9958 | 0.8312
AR samples modeling (WFBI) 3.9526 0.9971 | 0.9108
AR sinusoidal modeling 0.7873 0.9953 | 0.7330
Greedy algorithm (OMP) 13.7471 0.9980 | 0.9202
(;-relaxation (analysis model) 25.5870 0.9999 | 0.9961
(-relaxation (synthesis model) 23.6777 0.9998 | 0.9964
(;-relaxation (structured sparsity) | 21.1735 0.9997 | 0.9873

5.5 Structured Sparsity

The core problem being solved is described in Eq.22. The unconstrained version of
the model (see Eq. 18) for solving the inpainting problem utilizes the penalty term A\
which and has to be experimentally set to produce the smallest possible error. Using
the example gap position and size like in all other experiments the first parameter
under investigation was the empirical Wiener exponent. It is clear that the exponent
set to 2 produces better results of inpainting. Using A = 0.012 and expo = 2 the
following batch experiment was performed.

From other experiments is is clear that the inpainting performance decreases with
increasing gap length independently of the neighbourhood size. Center of the neigh-
bourhood was always set to the middle sample. On the other hand, the processing
time increases with increasing neighbourhood size. For better illustration of power
of the algorithm the example gap inpainting is in Fig. 6 in time and time-frequency
representation.

5.6 Audio Denoising

Another successful application of the structured sparsity is audio denoising [37] [35]
[36]. As described in [26] very old recordings on wax cylinders contain periodical
short-time distortions caused by fissures and mould of the material. Applying struc-
tured sparsity denoising on the digitized recordings of wax cylinders brought both
successful elimination of short time distortions and reduction of the broadband noise.
The preprocessing had to be performed on the original file to suppress the strongest
interferences such as crackles or low frequency rumbling.

Signal restoration shown in Fig. 7 was performed with the structured sparsity frame-
work. All the parameters were setup according to Tab.4 and the value A = 0.02
was chosen experimentally. The consequently created Gabor frame is a Parseval tight
frame. Higher value of A produces stronger denoising, lower value preserves a lot of
short-time harmonics in the whole spectrum. The subjective evaluations of Struc-
tured Sparsity for Audio Denoising outperformed denoising using the professional
software.
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Figure 6: Time and spectral representation of inpainting using the structured sparsity.
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Figure 7: Reconstruction by the structured sparsity

Table 4: Structured sparsity parameters
Dictionary Gabor
Window length 2304 samples
Window overlap 75 % of window length
Frequency channels | 2304

Shrinkage type WGL

A variable
Neighbourhood 5 x 50 coefs. ~ 0.32s
Center sample [3,25]

Exponent « 2 ~ Wiener
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6 Conclusion

This thesis dealt with the process of audio restoration, especially the interpolation of
missing data segments. Short time interruptions like clicks, crackles or signal gaps are
nowadays successfully treated by interpolation methods based on samples repetition
or autoregressive modeling of either signal samples or signal parameters. Recently,
sparse representations of signals brought novel approaches of signal analysis and syn-
thesis and naturally penetrated into the field of audio processing. The process of signal
interpolation using overcomplete dictionaries was termed the Inpainting and the main
goal of this thesis was to explore these new techniques, find possible ways of improve-
ment and compare them to the state-of-the-art methods.

In the beginning of this research, the presumptions were that the process of Audio
Inpainting will be feasible especially for harmonic signals and the restoration process
will be most efficient in shorter gap sizes. As will be described further, these preposi-
tions were proven by experiments.

Regarding the simplest method for interpolation, the Weighted Repetitive Substitu-
tion, both objective evaluation and subjective listening to the results is not satisfying
and the listener can clearly recognise the gap position in the sound. A naturally aris-
ing question is whether this kind of interpolation method is really useful because if
the signal gap was filled with zero samples the result sounds more naturally compared
to the interpolation result.

Interpolation using the AR modeling of signal samples brought improvement of
the restoration in terms of SNR. The best average result of SNR = 5.78dB was
reached for a gap of length 360 samples using an AR model of order 3600. However,
the standard deviation of 14 dB makes the results very unstable. The computational
time of larger model orders (larger than 10 times the signal gap) makes this method
unusable in real experiments because reconstruction of a single gap takes more than
1000 seconds.

Exploring the most important parameters of sinusoidal modeling resulted in an op-
timal setting of frequency threshold thrF = 3, amplitude threshold thrA = 0.5, length
of the vector for amplitude mean value computation M = 60. There are no general
recommendations for selection of the core parameter, the model order, according to
the gap length since the values did not show any regular evolution using various gap
length and model order. Maximum average SNR did not exceed the value of 3 dB.

The Orthogonal Matching Pursuit (greedy algorithm) reached the best values of
SNR = 15.64dB for redundancy of dictionary of 9. However, the processing time
of such redundancy factor is quite long, therefore, the optimal redundancy factor is
red = 3. Batch experiments resulted in the highest average SNR = 7.59 dB obtained
for gap size of 10 ms and neighbourhood size factor of 8 which results in the neigh-
bourhood size of 1280 samples (80 ms). The optimal trade-off between the speed of
computation and the resulting inpainting performance using OMP algorithm should
be the neighbourhood size factor of at least 4.
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Main contribution of this thesis is the experimental verification of audio inpainting
utilizing ¢;-relaxation algorithms. Considering single coefficient sparsity (without re-
lation to its neighbourhood), both synthesis and analysis model were implemented.
Note that until now there was no scientific contribution on analysis model implemen-
tation for Audio Inpainting.

Fixing the atom length of the dictionary, results of the analysis model reached
slightly higher SNR values than the synthesis, both with best average SNR higher than
20 dB. Further, the standard deviation of the synthesis model is the same or higher in
all of the experiments compared to the analysis model standard deviation. There are
some optimal parameters for a particular gap size and gap position, nevertheless, they
can be very easily missed by a slight modification of a window length.

Regarding the speed of computation, the analysis model is about 2 to 4 times faster
than the synthesis whereas the number of iterations of the synthesis model was from
4 to 8 times higher than of the analysis model. Another remark from this experiment
is that the average computational time of the inpainting process using a proximity
algorithm is not dependent on the gap size. On the other hand, the standard deviation
of the computational time is slightly increasing with the growing gap size. The number
of iterations is dependent on the window length, especially in the synthesis model.

The highest SNR has been reached in files containing a harmonic signal, especially
when only a single instrument is playing. The worst results were obtained with rather
non-harmonic records containing speech or completely non-harmonic signals.

The structured sparsity for audio inpainting evaluated by SNR produced restoration
results comparable to the /;-relaxation without structure. Looking at the resulting
time plot of the signal, there is almost no visible difference between the original and
reconstructed signal. The restoration could be called perfect for small gap sizes up
to 500 samples. Moreover, such comparable results were reached in a shorter time
period. Finally, denoising using the structured sparsity outperformed professional
software and was successfully utilized for denoising of recently found wax cylinders
recordings.

This thesis proves that audio restoration could profit from sparse representations in
terms of restoration quality. However, there is a long way from the theory to the real
audio engineering field mainly because of the efficient implementation and optimiza-
tion. Further research in this field could be focused on content based audio inpainting
[2].

Like in all fields of research, new unanswered questions are arising from every
answered query. There is great opportunity for the success of new methods. The
ideas and results presented in this thesis are a step to contributing in this never ending
journey.
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7 Abstract

Recently, sparse representations of signals became very popular in the field of signal
processing. Sparse representation mean that the signal is represented exactly or very
well approximated by a linear combination of only a few vectors from the specific
representation system.

This thesis deals with the utilization of sparse representations of signals for the
process of audio restoration, either historical or recent records. Primarily old audio
recordings suffer from defects like crackles or noise. Until now, short gaps in audio
signals were repaired by interpolation techniques, especially autoregressive modeling.
Few years ago, an algorithm termed the Audio Inpainting was introduced. This algo-
rithm solves the missing audio signal samples inpainting using sparse representations
through the greedy algorithm for sparse approximation.

This thesis aims to compare the state-of-the-art interpolation methods with the Au-
dio Inpainting. Besides this, /;-relaxation methods are utilized for sparse approxima-
tion, while both analysis and synthesis models are incorporated. Algorithms used for
the sparse approximation are called the proximal algorithms. These algorithms treat
the coefficients either separately or with relations to their neighbourhood (structured
sparsity). Further, structured sparsity is used for audio denoising.

In the experimental part of the thesis, parameters of each algorithm are evaluated
in terms of optimal restoration efficiency vs. processing time efficiency. All of the
algorithms described in the thesis are compared using objective evaluation methods
Signal-to-Noise ratio (SNR) and PEMO-Q. Finally, the overall conclusion and discus-
sion on the restoration results is presented.
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