
BRNO UNIVERSITY OF TECHNOLOGY
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ

FACULTY OF INFORMATION TECHNOLOGY
FAKULTA INFORMAČNÍCH TECHNOLOGIÍ

DEPARTMENT OF INTELLIGENT SYSTEMS
ÚSTAV INTELIGENTNÍCH SYSTÉMŮ

COMPUTER-AIDED SYNTHESIS OF PROBABILISTIC
MODELS
POČÍTAČEM PODPOROVANÁ SYNTÉZA PRAVDĚPODOBNOSTNÍCH MODELŮ

MASTER’S THESIS
DIPLOMOVÁ PRÁCE

AUTHOR Bc. ROMAN ANDRIUSHCHENKO
AUTOR PRÁCE

SUPERVISOR RNDr. MILAN ČEŠKA, Ph.D.
VEDOUCÍ PRÁCE

BRNO 2020

Brno University of Technology
Faculty of Information Technology

 Department of Intelligent Systems (DITS) Academic year 2019/2020

 Master's Thesis Specification

Student: Andriushchenko Roman, Bc.
Programme: Information Technology Field of study: Mathematical Methods in Information

Technology
Title: Computer-Aided Synthesis of Probabilistic Models
Category: Formal Verification
Assignment:

1. Study the current methods for automated design and synthesis of probabilistic models
including methods based on MDP abstraction and counter-example guided inductive
synthesis.

2. Evaluate the methods on practically relevant case-studies and identify their limitations.
3. Design possible improvements and extensions of the methods including a fusion of the

methods from the item 1.
4. Implement the improvements and extension within an existing probabilistic model-checker

(e.g. STORM or PRISM)
5. Carry out a detailed evaluation of the implemented methods and assess improvements over

the existing methods.
Recommended literature:

1. Milan Češka, Nils Jansen, Sebastian Junges, and Joost-Pieter Katoen. Shepherding hordes
of Markov chains. In Proc. of TACAS'19. Springer, 2019.

2. Milan Češka, Christian Hensel, Sebastian Junges, and Joost-Pieter Katoen.
Counterexample-Driven Synthesis for Probabilistic Program Sketches. In Proc. of FM'19.
Springer, 2019.

Requirements for the semestral defence:
Items 1, 2 and partially item 3.

Detailed formal requirements can be found at https://www.fit.vut.cz/study/theses/
Supervisor: Češka Milan, RNDr., Ph.D.
Head of Department: Hanáček Petr, doc. Dr. Ing.
Beginning of work: November 1, 2019
Submission deadline: June 3, 2020
Approval date: October 31, 2019

Powered by TCPDF (www.tcpdf.org)

Master's Thesis Specification/22997/2019/xandri03 Page 1/1

Abstract
This thesis considers the problem of automated synthesis of probabilistic systems: having a
family of Markov chains, how can one efficiently identify a chain satisfying a given specifi-
cation? Such families often arise in various domains of engineering when modeling systems
under uncertainty, and deciding even the simplest problems shows to be 𝒩𝒫-hard. To
tackle this problem, we adopt the principles of counterexample-guided inductive synthesis
(CEGIS) and abstraction refinement (CEGAR) and develop a novel integrated technique for
probabilistic synthesis. Experiments on practically relevant case studies demonstrate that
the designed technique is not only comparable to state-of-the-art synthesis approaches, in
most cases it manages to significantly outperform existing methods, sometimes by a margin
of orders of magnitude.

Abstrakt
Předkládaná práce se zabývá problémem automatizované syntézy pravděpodobnostních
systémů: máme-li rodinu Markovských řetězců, jak lze efektivně identifikovat ten který
odpovídá zadané specifikaci? Takové rodiny často vznikají v nejrůznějších oblastech in-
ženýrství při modelování systémů s neurčitostí a rozhodování i těch nejjednodušších syn-
tézních otázek představuje 𝒩𝒫-těžký problém. V dané práci my zkoumáme existující tech-
niky založené na protipříklady řízené induktivní syntéze (counterexample-guided inductive
synthesis, CEGIS) a na zjemňování abstrakce (counterexample-guided abstraction refine-
ment, CEGAR) a navrhujeme novou integrovanou metodu pro pravděpodobnostní syntézu.
Experimenty nad relevantními modely demonstrují, že navržená technika je nejenom srov-
natelná s moderními metodami, ale ve většině případů dokáže výrazně překonat, někdy i o
několik řádů, existující přístupy.

Keywords
Markov models, probabilistic model checking, synthesis of probabilistic models

Klíčová slova
Markovovy modely, probabilistický model checking, syntéza pravděpodobnostních modelů

Reference
ANDRIUSHCHENKO, Roman. Computer-Aided Synthesis of Probabilistic Models. Brno,
2020. Master’s thesis. Brno University of Technology, Faculty of Information Technology.
Supervisor RNDr. Milan Češka, Ph.D.

Rozšířený abstrakt
Modelování systémů vykazující žádoucí chování – např. návrh síťového protokolu umožňu-

jícího zvýšit paketovou propustnost, nebo výběr optimální strategie pro řízení spotřeby – je
netriviální úkol vyžadující uvažování nad mnoha alternativami. Lze použít tzv. program
sketch [41, 5] – popis systému obsahující volby – a pak uvažovat jak dané volby instanco-
vat tak, aby výsledný program vyhovoval zadané specifikaci. Tyto volby mohou pokrývat
počáteční hodnoty proměnných nebo dokonce podmínky pro větvení a tímpádem ovlivňo-
vat topologii stavového prostoru programu. Navíc modelování systému s nepředvídatelným
nebo nespolehlivým chováním vyžaduje použití matematických aparátů založených na teorii
pravděpodobnosti, což vede k tzv. pravděpodobnostním programům. Aplikace pravděpodob-
nostních programů pokrývá širokou škálu výzkumných oblastí, včetně např. analýzy soft-
warových produkčních linek [40, 22, 16], syntézy ovladaců pro částečně pozorovatelné mod-
ely [30, 36], adaptivního managementu [7, 20] nebo návrhu komunikačních protokolů [28, 34].

Použijeme-li Markovův řetězec jako operační model pro pravděpodobnostní program,
automatizovaný syntezátor zkoumá rodinu těchto řetězců a vybíra ten který odpovídá
zadané specifikaci. Automatizovaná syntéza sama o sobě představuje obrovskou výzvu,
zejména kvůli problému stavové exploze, který ovlivňuje syntézu dvojím způsobem: ne-
jen počet kandidátních řešení je exponenciální vůči počtu uvažovaných voleb, ale stavový
prostor každého jednotlivého řetězce obvykle také roste exponenciálně vůči délce popisu
programu. Problém syntézy může být naivně vyřešen analýzou všech jednotlivých členů
rodiny – tzv. one-by-one přístup [16, 17] – nebo modelováním rodiny kandidátních řešení
jako jeden all-in-one Markovův rozhodovací proces [16, 18], jehož velikost je úměrná ve-
likosti rodiny. Bohužel problém dvojí stavové exploze prostoru způsobuje, že oba tyto
přístupy nejsou použitelné pro velké rodiny. K potlačení problému stavové exploze au-
toři [22] úspěšně používají evoluční vyhledávací algoritmy pro syntézu softwarových sys-
témů. Metoda však zůstává neúplná a není schopna účinně řešit náročnější problémy syn-
tézy, například který člen rodiny vyhovuje specifikaci optimálně. K zajištění úplnosti byly
navrženy sofistikovanější metody, které se obvykle pokoušejí poskytnout analýzu celých po-
drodin řetězců najednou. V této práci se zaměříme na dva nejmodernější úplné přístupy
k pravděpodobnostní syntéze. První metodou je protipříklady řízená induktivní syntéza
(counterexample-guided inductive synthesis, CEGIS) [13], která analyzuje každý řetězec
jeden po druhém a využívá kritické podsystémy protipříkladů pro zamítnutí celých po-
drodin řetězců, které neodpovídají specifikaci. Druhým přístupem je protipříklady řízené
zjemňování abstrakce (counterexample-guided abstraction refinement, CEGAR) [14], který
analyzuje celou rodinu řetězců najednou a pokud analýza dává neprůkazné výsledky, dělí
rodinu kandidátů na jemnější podrodiny, které jsou zpracovány analogicky. I když obě
tyto techniky prokázaly přesvědčivé výsledky, nejsou zbaveny omezení a obadva přístupy
jsou nesrovnatelné v tom smyslu, že jedna technika může být vhodnější pro specifické třídy
pravděpodobnostních programů a naopak.

V této práci se zabýváme fúzí induktivních a abstrakčních přístupů a navrhujeme
novou integrovanou metodu, která kombinuje silné stránky obou technik. Konkrétněji,
navržená metoda nejprve analyzuje rodinu najednou, podobně jako CEGAR, a sbírá něk-
teré obecné informace o nejhorším a nejlepším chování (vůči zadané specifikaci) každého
Markovského řetězce v rodině. Poté metoda analyzuje rodinu analogicky jako CEGIS, ale
používá shromážděná data ke zlepšení kvality kritických podsystémů, což vede na zrychlení
prohledávání stavovým prostorem kandidátních řešení. Všechny tři metody – CEGIS, CE-
GAR a novou techniku – vyhodnocujeme na rozsáhlé sadě případových studií a ukazujeme,
že nově navržený přístup je korektní, úplný a navíc zmírňuje rozdíly mezi induktivními a

abstraktními přístupy, takže umožňuje efektivní syntézu jakéhokoliv konkrétního modelu.
Z hlediska výkonu navržená technika je nejenom srovnatelná s moderními metodami, ale
ve většině případů dokáže výrazně překonat, někdy i o několik řádů, existující přístupy.

Analýza jednotlivých Markovových řetězců je kritickou části procesu syntézy a před-
stavuje výzvu ortogonální k syntéze pravděpodobnostních systémů. Zatímco syntéza bo-
juje s exponenciálním růstem velikosti rodiny, analýza jednotlivých řetězců čelí explozi
základního stavového prostoru. Součástí práce je i krátká prezentace vybraných výsledků
kterých jsme dosáhli v oblasti aproximačních technik pro Markovovy modely. Výsledky byly
původně prezentovány jako bakalářská práce [6], ale od té doby byly významně rozšířeny
a vylepšeny během práce na této diplomové práci1. Tyto výsledky představují důležitý
příspěvek v oblasti verifikace pravděpodobnostních programů. Konkrétněji, my rozšiřujeme
existující metody pro agregovanou analýzu Markovových modelů tím, že jim dovolujeme
zpracovávat řetězce s libovolnou strukturou stavového prostoru a zlepšovat odhad aprox-
imační chyby. Vyhodnocení existujících aproximačních technik pro analýzu Markovských
řetězců naznačuje, že nově navržené schéma výrazně překonává stávající přístupy a posky-
tuje zrychlení analýzy až pětkrát s odpovídající aproximační chybou ohraničenou na 0.1%.
I přesto že v současné době tyto výsledky nelze přímo použít během syntézního procesu
(navrhovaná rozšíření analýzy založené na agregaci předpokládají mírně odlišné specifikace),
stále představují pro takovéto účely důležitý základ a budou sloužit jako odrazový můstek
pro následný výzkum.

1Navrhovaná vylepšení vedla k článku (přiloženého jako doplňkový materiál) pro Performance Evaluation,
prestižní mezinárodní časopis, v únoru 2020.

Computer-Aided Synthesis of Probabilistic Mod-
els

Declaration
I hereby declare that this master’s thesis was prepared as an original work by the author
under the supervision of RNDr. Milan Češka, Ph.D. I have listed all the literary sources,
publications and other sources, which were used during the preparation of this thesis.

. .
Roman Andriushchenko

June 17, 2020

Acknowledgements
My sincere gratitude goes to my supervisor, RNDr. Milan Češka, Ph.D., for his guidance
and continuous support throughout my master’s studies.

Contents

1 Introduction 2

2 Preliminaries 5
2.1 Discrete-Time Markov Chains . 5

2.1.1 Model Checking MCs . 6
2.1.2 Counterexamples for MCs . 7

2.2 Markov Decision Processes. 9
2.2.1 Model Checking MDPs . 11

3 Adaptive Aggregation of Markov Chains 14
3.1 State Space Clustering . 15
3.2 Approximation Error . 17
3.3 Experimental Evaluation of Approximate Methods 18

3.3.1 Precision of Aggregation Schemes . 18
3.3.2 Speedup of Approximate Methods 18

4 Synthesis of Probabilistic Programs 20
4.1 Families of Markov Chains . 20
4.2 Counterexample-Guided Inductive Synthesis 22
4.3 Counterexample-Guided Abstraction Refinement 23
4.4 Probabilistic Programs . 26

4.4.1 PRISM Sketch Language . 26
4.4.2 Program-Level CEGIS . 28

5 Novel Integrated Methods for Probabilistic Synthesis 29
5.1 The Naive Approach . 32
5.2 Towards Improved Counterexample Generation 33
5.3 The Advanced Approach . 39

6 Experimental Evaluation 41
6.1 Evaluating the Naive Approach . 42
6.2 Tuning the Integrated Method . 43
6.3 Performance Evaluation of the Synthesis Methods 45

7 Final Considerations 49
7.1 Future Research . 49
7.2 Conclusions . 50

Bibliography 51

1

Chapter 1

Introduction

Designing a system exhibiting a desirable behavior – e.g. a network protocol allowing to
increase the packet throughput, or selecting the optimal power management strategy – is
a difficult task that involves reasoning over multiple alternative designs. One might start
with the so-called program sketch [41, 5] – a system description with ‘holes’ (options) – and
then consider filling these holes so that the obtained program satisfies a given specification.
These holes may represent initial values of variables or even branching conditions that affect
the topology of the underlying state space of the program. Furthermore, modeling a sys-
tem with unpredictable or unreliable behavior calls for using mathematical apparata based
on the probability theory, resulting in the so-called probabilistic programs. Application of
probabilistic programs covers a wide variety of research fields, including e.g. analysis of soft-
ware product lines [40, 22, 16], controller synthesis for partially observable models [30, 36],
adaptive management [7, 20] or design of communication protocols [28, 34].

Using a Markov chain as the operational model of a probabilistic program, an automated
synthesizer explores the family of such chains and picks the one that satisfies a given
specification. Automated synthesis, in itself, represents a tremendous challenge, particularly
due to the state-space explosion problem that affects the synthesis in a twofold manner:
not only the number of candidate solutions is exponential wrt. the number of options being
considered, the state space of each particular chain usually also grows exponentially wrt. the
length of the description of the program. The problem of efficient model checking for
Markov chains has been tackled using simulation approaches [24, 42] or various approximate
methods. The latter include state-space truncation [19] and state aggregation techniques [1].
State-space truncation [19] bypasses the state explosion problem by dynamically neglecting
states with insignificant probability, while state aggregation approach [1] employs clustering
of the state space. In both cases, an approximation error has to be quantified and highly
accurate estimates are crucial.

Returning to the synthesis problem, it can be naively solved by analyzing all individual
family members – the so-called one-by-one approach [16, 17] – or by modeling the family
of candidate solutions as a single all-in-one Markov decision process [16, 18], the size of
which is proportional to the family size. Unfortunately, the double state-space explosion
problem renders both of these approaches infeasible for large families. To circumvent this
issue, the authors of [22] have successfully employed evolutionary search algorithms for
the synthesis of software systems. However, the method remains incomplete and is unable
to efficiently solve more challenging synthesis problems, e.g. which family member satisfies
the specification optimally.

2

To provide completeness, more sophisticated methods have been proposed. These meth-
ods usually attempt to provide analysis for whole subfamilies of chains at once. In this work,
we will focus on two frontline complete approaches for probabilistic synthesis. The first
method is a counterexample-guided inductive synthesis (CEGIS) [13] that analyzes each
chain one by one and exploits critical subsystems of counterexamples to prune all chains
behaving incorrectly. The second approach is a counterexample-guided abstraction refine-
ment (CEGAR) [14] that analyzes the complete design space at once and, if the analysis
yields inconclusive results, partitions the family of candidate solutions into refined sub-
families that are handled analogously. While both of these techniques have demonstrated
compelling results, they are not void of limitations and the two approaches are incompara-
ble in the sense that one technique may be more suitable for specific classes of probabilistic
programs, and vice versa.

Key contributions.

In this thesis, we consider a fusion of both inductive and abstracting approaches and develop
a novel integrated method that combines the power of all-in-one abstraction with the pre-
cision of one-by-one analysis. In particular, the designed method first analyzes the family
at once, in the spirit of CEGAR, collecting some general information about the worst-case
and best-case behavior – wrt. the given specification – of each Markov chain in the family.
Then, the method analyzes the family analogously to CEGIS, but uses the collected data to
improve the quality of critical subsystems in order to accelerate pruning of the state space
of candidate solutions. We evaluate all three methods – CEGIS, CEGAR, and a novel tech-
nique – on an extensive set of real-world case studies, and show that the newly designed
approach is not only sound and complete, but it also mitigates differences between induc-
tive and abstracting aproaches, enabling efficient synthesis of any particular model. From
the performance perspective, the designed method is not only comparable with the state-of-
the-art synthesis techniques, we demonstrate that, in most cases, it manages to significantly
outperform existing approaches, sometimes by a margin of orders of magnitude.

Analysis of individual Markov chains represents a core stage of the synthesis pipeline
and presents a challenge orthogonal to that of the synthesis of probabilistic systems. While
synthesis deals with the exponential growth of a family size, analysis of each particular
member deals with the explosion of the underlying state space of the chain. In this work,
we also include a short presentation of selected results we have achieved in the area of ap-
proximation techniques for Markov models. The results were originally presented as a bach-
elor’s thesis [6], but were since significantly extended and improved during the work on this
master’s thesis1. These results represent an important contribution to the verification of
probabilistic programs. In particular, we extend existing frameworks for aggregation-based
analysis of Markov models by allowing them to handle chains with an arbitrary structure of
the underlying state space and improve upon existing bounds on the approximation error.
We carry out a comparative evaluation of existing approximative techniques for Markov
chain analysis and demonstrate that the newly designed scheme significantly outperforms
existing approaches and provides a speedup of the analysis up to a factor of five with
the corresponding approximation error bounded within 0.1%. Although, at the moment,
these results cannot be directly used during the synthesis process – the proposed extensions
of aggregation-based analysis assume slightly different specifications that those we consider

1The proposed improvements had led to a paper (attached as supplementary material) submitted to
Performance Evaluation, a top-ranked international journal, in February 2020.

3

for synthesis – they still represent an important groundwork for such integration and will
serve as a stepping stone to the follow-up research.

Structure of this paper.

In Chapter 2 we give an overview of the necessary theory regarding discrete-time Markov
chains and Markov decision processes. In Chapter 3 we briefly present our selected results in
the area of approximation techniques for Markov chains. In Chapter 4 we formulate a prob-
abilistic synthesis problem and give an overview of two modern techniques for its solution:
CEGIS and CEGAR. In Chapter 5 we develop key ideas associated with the integration of
the two approaches and then carry out this integration in two ways: first rather naively,
by blindly applying the developed integration principles, and then in a more sophisticated
way, thus introducing the main integrated scheme. Then, in Chapter 6, we put the designed
techniques to a test and compare them to state-of-the-art synthesis methods on a broad set
of real-world case studies. Finally, Chapter 7 closes the thesis with the collection of notes
and issues that could serve as a departure point for the follow-up research.

4

Chapter 2

Preliminaries

In this chapter, we review the necessary theory and introduce notation that will be used
throughout the paper. We first cover the simplest probabilistic models – discrete-time
Markov chains – representing an operational model for probabilistic programs. We describe
basic techniques for their analysis, including the notion of critical subsystems, which will be
important when introducing the counterexample-guided inductive synthesis (CEGIS) [13]
method. We then describe a slightly more complex construct – Markov decision processes.
A Markov decision process represents the same Markov chain, but is equipped with extra
nondeterminism. Markov decision processes will play an essential role when describing
counterexample-guided abstraction refinement (CEGAR) [14], a counterpart of CEGIS.

2.1 Discrete-Time Markov Chains
Definition 1. [13] Let 𝑆 be a finite set. A (discrete) probability distribution on 𝑆 is
a function 𝜇 : 𝑆 → [0, 1] s.t.

∑︀
𝑠∈𝑆 𝜇(𝑠) = 1. Let 𝐷𝑖𝑠𝑡𝑟(𝑆) denote the set of all probability

distributions on 𝑆. The support of a distribution 𝜇 is supp(𝜇) = {𝑠 ∈ 𝑆 | 𝜇(𝑠) > 0}.

Example 1. Let 𝑆 = {𝑠0, 𝑠1, 𝑠2, 𝑠3}. A function 𝜇 : 𝑆 → [0, 1] defined as 𝜇 : [𝑠0 ↦→ 1
2 , 𝑠1 ↦→

1
6 ,

𝑠2 ↦→ 1
3 , 𝑠3 ↦→ 0] is a probability distribution on 𝑆, i.e. 𝜇 ∈ 𝐷𝑖𝑠𝑡𝑟(𝑆). The support of 𝜇 is

supp(𝜇) = {𝑠0, 𝑠1, 𝑠2}. To simplify notation, we might write this distribution as 𝜇 =
1
2 : 𝑠0 +

1
6 : 𝑠1 +

1
3 : 𝑠2.

Definition 2. A discrete-time Markov chain (MC) is a tuple 𝐷 = (𝑆, 𝑠𝑖𝑛𝑖𝑡,𝑃), where 𝑆
is a finite set of states, 𝑠𝑖𝑛𝑖𝑡 ∈ 𝑆 is an initial state and 𝑃 : 𝑆 → 𝐷𝑖𝑠𝑡𝑟(𝑆) is a transition
probability matrix.

Intuitively, an MC is a state-transition system where, for each state 𝑠 ∈ 𝑆, a probability
distribution 𝑃 (𝑠) represents a stochastic choice of transitioning from state 𝑠 to one of its
successor states from the set supp(𝑃 (𝑠)). In the following, we will write 𝑃 (𝑠, 𝑡) to denote
𝑃 (𝑠)(𝑡). Under this semantics, it follows that, at any particular time, the probability of
transitioning from state 𝑠 to state 𝑡 ∈ supp(𝑃 (𝑠)) is constant and is independent of the path
the chain has already taken to reach state 𝑠 - this is known as the Markov property (memo-
rylessness). We say that the state 𝑠 is absorbing iff 𝑃 (𝑠) = 1 : 𝑠, i.e. 𝑃 (𝑠, 𝑠) = 1. Sometimes
it is helpful to lay out the chain in the so-called transition probability graph, whose nodes
are the states and whose arcs are non-zero transitions, as illustrated in Figure 2.1.

A path 𝜋 of an MC, representing one possible execution of the chain, is a (possibly
infinite) sequence of states 𝑠0𝑠1𝑠2 . . . , where 𝑠0 = 𝑠𝑖𝑛𝑖𝑡 and ∀𝑖 ∈ N0 : 𝑃 (𝑠𝑖, 𝑠𝑖+1) ≥ 0. Let

5

0.5
0.50.5

1
0.5 1

Figure 2.1: A simple Markov chain.

Paths𝐷(𝑠) and Paths𝐷fin(𝑠) denote a set of all infinite and finite paths taken from state 𝑠,
respectively. For a finite path 𝜋 = 𝑠0𝑠1 . . . 𝑠𝑛, let last(𝜋) = 𝑠𝑛 denote its last state. Markov
property allows us to quantify the probability of individual (finite) paths using the transition
probability matrix: P[𝑠0𝑠1 . . . 𝑠𝑛] =

∏︀𝑛−1
𝑖=0 𝑃 (𝑠𝑖, 𝑠𝑖+1).

Example 2. Consider a Markov chain with the initial state 𝑠0 depicted in Figure 2.1.
A path 𝜋 = 𝑠0𝑠1𝑠0𝑠2𝑠1 is one possible trajectory of this MC. The probability that 𝜋 is
executed is 𝑃 (𝑠0, 𝑠1) ·𝑃 (𝑠1, 𝑠0) ·𝑃 (𝑠0, 𝑠2) ·𝑃 (𝑠2, 𝑠1) =

1
2 ·

1
2 ·

1
2 · 1 = 1

8 . The probability that
the chain eventually reaches state 𝑠2 can be computed by summing the probabilities of all
finite paths that end up at 𝑠2. In this particular case, where the chain has a rather trivial
structure, the sum can be computed by hand:

P[𝑠0𝑠2] + P[𝑠0𝑠1𝑠0𝑠2] + P[𝑠0𝑠1𝑠0𝑠1𝑠0𝑠2] + · · · =
1

2
+

1

8
+

1

32
+ · · · = 2

3
.

2.1.1 Model Checking MCs

In general, a stochastic model checking [32] is a method for verifying whether a system
exhibits a certain property by calculating the likelihood of occurrence of various events
during its execution. Model checking algorithms take as input a description of a model
along with specification expressed in probabilistic temporal logic and return a probability for
a given model to satisfy this property. In the context of Markov chains, an essential property
that will be the primary focus of this work is (unbounded) reachability: for a set 𝑇 ⊆ 𝑆
of target states, let P[𝑠 |= F 𝑇] denote the probability of, by starting in the state 𝑠 ∈
𝑆, eventually reaching any of the states in 𝑇 . Qualitative property is then of the form
𝜙 ≡ P◁▷𝜆[F 𝑇], where 𝜆 ∈ [0, 1] ∩ Q and ◁▷∈ {<,≤, >,≥}. Property 𝜙 is satisfied in
state 𝑠 iff the corresponding probability P[𝑠 |= F 𝑇] meets threshold 𝜆, i.e. 𝑠 |= 𝜙 :⇔
P[𝑠 |= F 𝑇] ◁▷ 𝜆. Finally, an MC 𝐷 satisfies a property 𝜙 iff it is satisfied in the initial state:
𝐷 |= 𝜙 :⇔ 𝑠𝑖𝑛𝑖𝑡 |= 𝜙. Computation of reachability represents a cornerstone technique of
MC model checking since deciding more complex properties – e.g. formulae in probabilistic
computation tree logic (PCTL) or 𝜔-regular properties – can be reduced to the computation
of reachability.

Model checking an MC 𝐷 against a reachability property 𝜙 ≡ P◁▷𝜆[F 𝑇] proceeds by
calculating, for each state 𝑠 ∈ 𝑆, exact probabilities P[𝑠 |= F 𝑇] of eventually reaching any
of the states in 𝑇 from state 𝑠, and then checking whether P[𝑠𝑖𝑛𝑖𝑡 |= F 𝑇] ◁▷ 𝜆. These
exact values of reachability probabilities are computed as a solution to a linear system of
equations, as summarized in Algorithm 1.

Example 3. Let us return to Example 2, where we derived that P[𝑠0 |= F {𝑠2}] = 2
3 .

We can arrive at the same value systematically by applying the Algorithm 1. We see that

6

Algorithm 1: Computing unbounded reachability probabilities.
Input : MC 𝐷 = (𝑆, 𝑠𝑖𝑛𝑖𝑡,𝑃), a set of target states 𝑇 ⊆ 𝑆.
Output: Values of 𝑥(𝑠) = P[𝑠 |= F 𝑇] for each 𝑠 ∈ 𝑆.

1 Function reachabilityMC(𝐷,𝑇):
2 𝑆0 ← {𝑠 ∈ 𝑆 | reachabilityMC(𝑠, 𝑇) = 0} // a graph problem
3 𝑆1 ← 𝑇
4 𝑆? ← 𝑆 ∖ (𝑆0 ∪ 𝑆1)
5 Find the solution 𝑥 of the following system of equations:

𝑥(𝑠) =

⎧⎪⎨⎪⎩
0 if 𝑠 ∈ 𝑆0,

1 if 𝑠 ∈ 𝑆1,∑︀
𝑠′∈𝑆 𝑃 (𝑠, 𝑠′) · 𝑥(𝑠′) if 𝑠 ∈ 𝑆?.

(2.1)

6 return 𝑥

𝑆1 = {𝑠2} and that 𝑆0 = {𝑠3} (consider MC as a directed unweighted graph and identify
states from which the set 𝑇 = {𝑠2} is unreachable). We then solve the following system of
equations:

𝑥(𝑠0) =
1

2
𝑥(𝑠1) +

1

2
𝑥(𝑠2)

𝑥(𝑠1) =
1

2
𝑥(𝑠0) +

1

2
𝑥(𝑠3)

𝑥(𝑠2) = 1

𝑥(𝑠3) = 0

obtaining vector 𝑥 = (23 ,
1
3 , 1, 0)

𝑇 . Having computed this vector, we can now easily check,
for instance, that 𝐷 ̸|= P≤0.6[F {𝑠2}] and 𝐷 |= P≥0.5[F {𝑠2}].

2.1.2 Counterexamples for MCs

If the system refutes a given specification 𝜙, it is sometimes useful to provide a counterex-
ample in the form of a concrete execution of the system that violates 𝜙. In the context of
Markov chains and probabilistic model checking, a counterexample [2] is actually a (finite)
set of paths, the probabilities of which add up to a quantity that violates ◁▷ 𝜆. Based on
the form of the operator ◁▷, we distinguish between two main categories of reachability
properties 𝜙 ≡ P◁▷𝜆[F 𝑇]. A safety property is a reachability property 𝜙 with ◁▷∈ {<,≤}.
A chain 𝐷 violates a safety property if it is possible, with probability exceeding 𝜆, to reach
any of the states in 𝑇 . In other words, a counterexample to 𝜙 would be a set of finite
paths that satisfy F 𝑇 and add up to more than 𝜆 of the probability. A liveness property
is a property 𝜙 with ◁▷∈ {>,≥}. A chain 𝐷 violates a liveness property if it is possible,
with probability exceeding (1− 𝜆), to never reach any of the states in 𝑇 . That is, a coun-
terexample to 𝜙 would be a set of infinite paths that violate F 𝑇 and add up to more than
(1− 𝜆) of the probability. In our case, where the state space of the chain is finite, a set of

7

infinite paths can be represented by a finite prefix (see the notion of cylinder sets of paths
e.g. in [32]) that ends in a bottom strongly-connected component of 𝐷, from which none
of the states in 𝑇 is reachable - a set of such prefixes that constitute more than (1− 𝜆) of
the probability then represents a counterexample. In the following text, safety (liveness)
properties are considered of the form P≤𝜆[F 𝑇] (P≥𝜆[F 𝑇]): properties with < (>) are
handled similarly.

Example 4. Previously, in Example 3, we have demonstrated that the Markov chain 𝐷
from Figure 2.1 violates specification P≤0.6[F {𝑠2}]. A counterexample to this property
would be e.g. a set {𝑠0𝑠2, 𝑠0𝑠1𝑠0𝑠2} of two finite paths that satisfy F {𝑠2} and amount to
a probability of 1

2 +
1
8 = 0.625 > 0.6. Similarly, to show that 𝐷 ̸|= P≥0.9[F {𝑠2}], we need to

‘trap’ at least 1−0.9 = 0.1 of the probability mass in paths that never reach {𝑠2}. One can
see, for instance, that all (infinite) paths sharing prefix 𝑠0𝑠1𝑠3 indeed violate F {𝑠2} and
amount to a probability of at least 1

2 ·
1
2 = 0.25 > 0.1. Therefore, a set {𝑠0𝑠1𝑠3} represents

a valid counterexample for a liveness property P≥0.9[F {𝑠2}].

The problem with representing counterexamples as sets of paths is that, sometimes,
providing a user with a large set of possible executions of chain 𝐷 that violate F 𝑇 can
be quite overwhelming. A more compact approach is to provide a user with the so-called
critical subsystem 𝐷↓𝐶: a fraction of the original chain 𝐷 that contains enough of paths that
violate F 𝑇 . Essentially, a critical subsystem 𝐷↓𝐶 includes only the critical states (those
in 𝐶 ⊆ 𝑆), and therefore contains only some of the paths of the full system. Then, a set
of all paths Paths𝐷↓𝐶 ∪Paths𝐷↓𝐶

fin executable in the critical subsystem 𝐷↓𝐶 corresponds to
a counterexample. In the following definitions, we formalize this notion for safety properties.
A representation of counterexamples based on critical subsystems can be used for liveness
properties as well, although the corresponding construction algorithms require additional
manipulations with the model and/or the property. For more details, please refer to [2].

Definition 3. Let 𝐷 = (𝑆, 𝑠𝑖𝑛𝑖𝑡,𝑃) be an MC with 𝑠⊥ ̸∈ 𝑆 and let 𝐶 ⊆ 𝑆 with 𝑠𝑖𝑛𝑖𝑡 ∈ 𝐶.
The sub-MC of 𝐷 wrt. 𝐶 is an MC 𝐷↓𝐶 = (𝐶 ∪ {𝑠⊥}, 𝑠𝑖𝑛𝑖𝑡,𝑃 ′), where the transition
probability matrix 𝑃 ′ is defined as follows:

𝑃 ′(𝑠, 𝑠′) =

⎧⎪⎨⎪⎩
𝑃 (𝑠, 𝑠′) if 𝑠, 𝑠′ ∈ 𝐶,

1−
∑︀

𝑠′′∈𝑆∖𝐶 𝑃 (𝑠, 𝑠′′) if 𝑠 ∈ 𝐶 and 𝑠′ = 𝑠⊥,

1 if 𝑠 = 𝑠′ = 𝑠⊥.

Definition 4. Let 𝐷 = (𝑆, 𝑠𝑖𝑛𝑖𝑡,𝑃) be an MC and let 𝜙 ≡ P≤𝜆[F 𝑇] be a safety property
s.t. 𝐷 ̸|= 𝜙. If, for some set 𝐶, it holds 𝐷↓𝐶 ̸|= 𝜙, then this set 𝐶 and the corresponding
subsystem 𝐷↓𝐶 are called critical. A critical set 𝐶 is called minimal iff |𝐶| ≤ |𝐶 ′| for all
critical sets 𝐶 ′.

Both counterexample representations – as a set of paths or via a critical subsystem – have
their advantages and both have dedicated and well-researched methods for their calculation.
Keeping in mind what follows, we will restrict ourselves to the representation based on
critical sets and reserve the term counterexample for the corresponding critical subsystem.
Algorithms for counterexample generation [2] usually proceed by gradually building up
a reachable state space of 𝐷 by adding more and more states, therefore introducing more
and more paths. After adding a state, the obtained subsystem is model checked and, if
the property 𝜙 is satisfied (implying that there are still not enough paths leading to 𝑇),
expansion of the reachable state space continues. Once the subsystem contains enough paths

8

to violate 𝜙, the counterexample is completed. The procedure is guaranteed to terminate
since we assume that 𝐷↓𝑆 ̸|= 𝜙. Notice that a chain 𝐷 can have multiple critical sets 𝐶,
although we are usually interested in the most compact representation, i.e. we wish to find
a critical set with the least number of states. The quality (wrt. the number of states) of
a critical set is, naturally, determined by the specific order in which the states are added
during the counterexample construction: ideally, we want to add only those states that
would yield the shortest and most probable paths leading to target states 𝑇 . This inexact
formulation makes space for a number of heuristics, most notable ones include e.g. Best-
First search [3] or its enhanced variant eXtended Best-First search [4].

Example 5. Consider again the Markov chain 𝐷 from Figure 2.1 (reproduced again
in Figure 2.2a) and a safety property 𝜙 ≡ P≤0.6[F {𝑠2}]. As we have argued previously
in Example 4, a set 𝐶𝐸𝜋 = {𝑠0𝑠2, 𝑠0𝑠1𝑠0𝑠2} represents a path-based counterexample for
𝜙. In Figure 2.2a, the transitions that induce these critical paths are highlighted in red.
The corresponding critical set is 𝐶 = {𝑠0, 𝑠1, 𝑠2}: these states induce paths among which
we can find paths in 𝐶𝐸𝜋. Therefore, a sub-MC 𝐷↓𝐶 depicted in Figure 2.2b is a critical
subsystem of 𝐷 wrt. specification 𝜙: notice that we do not need states in 𝑆∖𝐶 (in our case,
states in {𝑠3}) to refute 𝜙, therefore, we replace them with an absorbing dummy state 𝑠⊥
which represents a ‘sink’ for all states and corresponding transitions that are omitted from
the critical subsystem. Here we would like to mention one additional detail that will play
a crucial important later on. Notice that, to provide user with a counterexample, we do not
even need to include 𝑠2 to a set 𝐶 of critical states. Yes, this violates Definition 4 of a critical
subsystem, but, for the sake of argument, instead of considering which states are important
to refute 𝜙, let us again return to the path-based representation of a counterexample, and
consider which transitions induce violating paths. Indeed, from the diagram in Figure 2.2a
we see that only transitions emanating from states 𝑠0 and 𝑠1 are decisive when we refute 𝜙.
Hence, as Figure 2.2c suggests, if we replace all target states with one target state 𝑠⊤,
the resulting transformation 𝐷′ violates 𝜙′ ≡ P≤0.6[F {𝑠⊤}] for the same reason why 𝐷
violates 𝜙, therefore representing (a semantical equivalent of) a valid counterexample.

2.2 Markov Decision Processes.
Each state of a Markov chain has a unique probability distribution over its successors. In
this section we introduce an extension of MCs that introduces for each state a nondeter-
ministic choice between multiple probability distributions.

Definition 5. [14] A Markov decision process (MDP) is a tuple 𝑀 = (𝑆, 𝑠𝑖𝑛𝑖𝑡, 𝐴𝑐𝑡,𝒫),
where 𝑆 and 𝑠𝑖𝑛𝑖𝑡 are as before, 𝐴𝑐𝑡 is a finite set of actions and 𝒫 : 𝑆 × 𝐴𝑐𝑡 9 𝐷𝑖𝑠𝑡𝑟(𝑆)
is a partial transition probability function. The set 𝐴𝑐𝑡(𝑠) = {𝑎 ∈ 𝐴𝑐𝑡 | 𝒫(𝑠)(𝑎) ̸= ⊥}
denotes the set of available actions in state 𝑠 ∈ 𝑆.

During its execution, an MDP that currently resides as state 𝑠 ∈ 𝑆 has a nondetermin-
istic choice of an action 𝑎 ∈ 𝐴𝑐𝑡(𝑠) yielding one possible probability distribution 𝒫(𝑠)(𝑎)
over possible successors. For simplicity, we will write 𝒫(𝑠, 𝑎, 𝑠′) do denote 𝒫(𝑠)(𝑎)(𝑠′)
in cases where 𝒫(𝑠)(𝑎) is defined. A path of an MDP 𝑀 is a (possibly infinite) se-
quence 𝜋 = 𝑠0

𝑎0−→ 𝑠1
𝑎1−→ . . . , where ∀𝑖 ∈ N0 : 𝒫(𝑠𝑖, 𝑎𝑖, 𝑠𝑖+1) > 0. As before, let

Paths𝑀 (𝑠) and Paths𝑀fin(𝑠) denote a set of all infinite and finite paths taken in 𝑀 from
state 𝑠, respectively, and let last(𝜋) = 𝑠𝑛 again denote the last state of a finite path
𝜋 = 𝑠0

𝑎0−→ 𝑠1
𝑎1−→ . . .

𝑎𝑛−1−−−→ 𝑠𝑛. The probability of such path is evaluated similarly to

9

0.5
0.50.5

1
0.5 1

(a)

0.5
0.50.5

1
0.5 1

(b)

0.5
0.50.5

1

0.5 1

(c)

Figure 2.2: Counterexample construction for a simple Markov chain and a safety prop-
erty P≤0.6[F {𝑠1}].

the path of an MC: P[𝜋] =
∏︀𝑛−1

𝑖=0 𝒫(𝑠𝑖, 𝑎𝑖, 𝑠𝑖+1). Although MDP behaves nondeterministi-
cally due to the presence of actions, one might use a scheduler to resolve this nondeterem-
inism.

Definition 6. A (deterministic) scheduler for an MDP 𝑀 = (𝑆, 𝑠𝑖𝑛𝑖𝑡, 𝐴𝑐𝑡,𝒫) is a function
𝜎 : Paths𝑀fin → 𝐴𝑐𝑡 such that 𝜎(𝜋) ∈ 𝐴𝑐𝑡(last(𝜋)) for all 𝜋 ∈ Paths𝑀fin. The set of all
schedulers for 𝑀 is denoted as Σ𝑀 .

When MDP 𝑀 enters a state last(𝜋) via a path 𝜋, a scheduler 𝜎 deterministically
chooses an action 𝑎 = 𝜎(𝜋) ∈ 𝐴𝑐𝑡(last(𝜋)) and the system proceeds to one of the successors
of state last(𝜋) according to the distribution 𝒫(last(𝜋), 𝑎). The resulting stochastic process
is devoid of any nondetereminism, thus representing an infinite-state Markov chain.

Definition 7. Let 𝑀 = (𝑆, 𝑠𝑖𝑛𝑖𝑡, 𝐴𝑐𝑡,𝒫) be an MDP. We say that the scheduler 𝜎 ∈ Σ𝑀

induces an MC 𝑀𝜎 = (Paths𝑀fin, 𝑠𝑖𝑛𝑖𝑡,𝑃
𝜎) iff 𝑃 𝜎(𝜋, 𝜋

𝜎(𝜋)−−−→ 𝑠′) = 𝒫(last(𝜋), 𝜎(𝜋), 𝑠′) and
𝑃 𝜎(·, ·) = 0 otherwise.

If a scheduler chooses an action solely based on the current state last(𝜋), and not on
the path 𝜋 that has been taken so far, then such scheduler is called memoryless.

Definition 8. Scheduler 𝜎 ∈ Σ𝑀 of an MDP 𝑀 = (𝑆, 𝑠𝑖𝑛𝑖𝑡, 𝐴𝑐𝑡,𝒫) is called memoryless
iff for all 𝜋, 𝜋′ ∈ Paths𝑀fin, last(𝜋) = last(𝜋′)⇒ 𝜎(𝜋) = 𝜎(𝜋′).

A memoryless scheduler essentially assigns to each state 𝑠 ∈ 𝑆 an action 𝜎(𝑠) that will
be taken whenever a process 𝑀 enters 𝑠. This allows us to ignore actions from the set
𝐴𝑐𝑡(𝑠)∖{𝜎(𝑠)} completely, thus obtaining a finite-state Markov chain consistent with Defi-
nition 2, as illustrated in the Proposition 1.

Proposition 1. Let 𝑀 = (𝑆, 𝑠𝑖𝑛𝑖𝑡, 𝐴𝑐𝑡,𝒫) be an MDP and let 𝜎 ∈ Σ𝑀 be a memoryless
scheduler. An MC 𝑀𝜎 induced by 𝑀 and 𝜎 is homomorphic to an MC (𝑆, 𝑠𝑖𝑛𝑖𝑡,𝑃

𝜎), where
𝑃 𝜎(𝑠) ≡ 𝒫(𝑠, 𝜎(𝑠)).

10

Example 6. Consider an MDP 𝑀 = (𝑆, 𝑠0, 𝐴𝑐𝑡,𝒫) with 𝑆 = {𝑠0, 𝑠1, 𝑠2, 𝑠3}, 𝐴𝑐𝑡 =
{𝑎0, 𝑎1, 𝑎2, 𝑎3} and 𝒫 encoded in a diagram depicted in Figure 2.3. In a diagram, for each
state 𝑠 ∈ 𝑆, outgoing edges lead to actions 𝑎 ∈ 𝐴𝑐𝑡(𝑠) that yield a concrete probability dis-
tribution over successor states. For instance, in the initial state 𝑠0, we have a choice between
three actions (𝐴𝑐𝑡(𝑠0) = {𝑎0, 𝑎1, 𝑎3}) where action 𝑎0 leads deterministically to state 𝑠1, ac-
tion 𝑎1 leads deterministically to state 𝑠2, and action 𝑎3 yields a 50/50 distribution between
states 𝑠1 and 𝑠2. Meanwhile, action 𝑎2 is not available in state 𝑠0: 𝒫(𝑠0, 𝑎2) = ⊥. One
possible execution of 𝑀 might be the path 𝜋 = 𝑠0

𝑎0−→ 𝑠1
𝑎1−→ 𝑠0

𝑎1−→ 𝑠2
𝑎0−→ 𝑠1

𝑎1−→ 𝑠3
𝑎2−→ 𝑠3.

The probability of executing 𝜋 can be computed as

P[𝜋] = 𝒫(𝑠0, 𝑎0, 𝑠1) · 𝒫(𝑠1, 𝑎1, 𝑠0) · 𝒫(𝑠0, 𝑎1, 𝑠2) · 𝒫(𝑠2, 𝑎0, 𝑠1) · 𝒫(𝑠1, 𝑎1, 𝑠3) · 𝒫(𝑠3, 𝑎2, 𝑠3)

= 1 · 1
2
· 1
2
· 1 · 1

2
· 1 =

1

8
.

Now consider a memoryless scheduler 𝜎 ∈ Σ𝑀 defined as

𝜎 : [𝑠0 ↦→ 𝑎1, 𝑠1 ↦→ 𝑎1, 𝑠2 ↦→ 𝑎0, 𝑠3 ↦→ 𝑎2].

Applying scheduler 𝜎 on 𝑀 is equivalent to dropping, in each state 𝑠 ∈ 𝑆, all actions
except 𝜎(𝑠), thus resolving the nondeterminism and inducing a Markov chain 𝑀𝜎 homo-
morphic to a chain depicted previously in Figure 2.1.

1

0.5 1

1

0.5 0.5

1
0.5

1

Figure 2.3: A simple Markov decision process.

2.2.1 Model Checking MDPs

For model checking MDPs, we use the same specification language as for MCs, although
the properties now have slightly different semantics. In particular, we say that a specifi-
cation 𝜙 holds for an MDP 𝑀 iff it holds for the induced MCs of all schedulers, that is,
𝑀 |= 𝜙 :⇔ ∀𝜎 ∈ Σ𝑀 : 𝑀𝜎 |= 𝜙. Instead of enumerating over an infinite set of schedulers,
it is sufficient to consifer only memoryless schedulers, as illustrated in Proposition 2.

Proposition 2. [21] Let 𝑀 = (𝑆, 𝑠𝑖𝑛𝑖𝑡, 𝐴𝑐𝑡,𝒫) be an MDP and 𝜙 be a property. Then
there exist memoryless schedulers 𝜎min, 𝜎max ∈ Σ𝑀 such that ∀𝜎 ∈ Σ𝑀 : P[𝑀𝜎min |= 𝜙] ≤
P[𝑀𝜎 |= 𝜙] ≤ P[𝑀𝜎max |= 𝜙].

11

Proposition 2 is applied as follows. If 𝜙 ≡ P≤𝜆[F 𝑇] is a safety formula, we compute
a maximizing scheduler 𝜎max and set 𝑀 |= 𝜙 ⇔ 𝑀𝜎max |= 𝜙 ⇔ P[𝑀𝜎max |= F 𝑇] ≤ 𝜆.
Similarly to deciding reachability for MCs, MDP model checking against reachability prop-
erties boils down to computing, for each 𝑠 ∈ 𝑆, a maximum probability 𝑥max(𝑠) :=
max𝜎∈Σ𝑀 P[𝑀𝜎, 𝑠 |= F 𝑇] of reaching 𝑇 , and then asserting that 𝑥max(𝑠𝑖𝑛𝑖𝑡) ≤ 𝜆. This
upper bound 𝑥max on the reachability probability can be obtained as a solution to a mixed-
integer linear program (MILP), as illustrated in Algorithm 2. We included this algorithm
to help us later prove some key theorems, although be aware that modern model checkers
apply heuristic methods for estimating reachability probability, e.g. value iteration or pol-
icy iteration methods [21]. Notice that, in general, for the purpose of model checking, we
are primarily interested in maximum probabilities and not the corresponding maximizing
scheduler 𝜎max, although the latter can be easily obtained by checking which of the con-
straints 𝑥max(𝑠) ≥

∑︀
𝑠′∈𝑆 𝒫(𝑠, 𝑎, 𝑠′) · 𝑥max(𝑠

′) is satisfied as equality. Similarly, deciding
liveness properties involves computing, for each state 𝑠 ∈ 𝑆, minimum probabilites 𝑥min

of reaching target states and then checking whether 𝑥min(𝑠𝑖𝑛𝑖𝑡) ≥ 𝜆. The computation of
𝑥min is carried out analogously to Algorithm 2 up to the interchange of some operators.

Algorithm 2: Unbounded reachability probabilities for MDP.
Input : MDP 𝑀 = (𝑆, 𝑠𝑖𝑛𝑖𝑡, 𝐴𝑐𝑡,𝒫), a set 𝑇 ⊆ 𝑆 of target states.
Output: Values of 𝑥max(𝑠) = max𝜎∈Σ𝑀 P[𝑀𝜎, 𝑠 |= F 𝑇] for each 𝑠 ∈ 𝑆.

1 Function reachabilityMDP(𝑀,𝑇):
2 𝑆0 ← {𝑠 ∈ 𝑆 | ∀𝜎 ∈ Σ𝑀 : P[𝑀𝜎, 𝑠 |= 𝜙] = 0} // a graph problem
3 𝑆1 ← {𝑠 ∈ 𝑆 | ∃𝜎 ∈ Σ𝑀 : P[𝑀𝜎, 𝑠 |= 𝜙] = 1} // a graph problem
4 𝑆? ← 𝑆 ∖ (𝑆0 ∪ 𝑆1)
5 Find 𝑥max as the solution to the following linear program:

𝑥max = argmin𝑥∈[0,1]|𝑆|
∑︀

𝑠∈𝑆? 𝑥(𝑠) subject to

∀𝑠 ∈ 𝑆0 : 𝑥(𝑠) = 0,

∀𝑠 ∈ 𝑆1 : 𝑥(𝑠) = 1,

∀𝑠 ∈ 𝑆? ∀𝑎 ∈ 𝐴𝑐𝑡(𝑠) : 𝑥(𝑠) ≥
∑︁
𝑠′∈𝑆
𝒫(𝑠, 𝑎, 𝑠′) · 𝑥(𝑠′).

6 return 𝑥max

Example 7. Assume an MDP 𝑀 from Example 6 and a safety specification 𝜙 ≡ P≤0.6[F {𝑠2}].
To check whether 𝑀 |= 𝜙, we first compute, for each state 𝑠 ∈ 𝑆, an upper bound 𝑥max

on the reachability probability across all (memoryless) schedulers. Following Algorithm 2,
it is easy to see that 𝑆0 = {𝑠3} and 𝑆1 = {𝑠0, 𝑠2}. Therefore, 𝑥max(𝑠0) = 𝑥max(𝑠2) = 1,
𝑥max(𝑠3) = 0 and 𝑥max(𝑠1) is a minimum value for which

𝑥max(𝑠1) ≥ 0.5 · 𝑥max(𝑠0) + 0.5 · 𝑥max(𝑠3) = 0.5,

i.e. 𝑥max(𝑠1) = 0.5. We obtain an upper bound 𝑥max = (1, 0.5, 1, 0)𝑇 and can see that
𝑥max(𝑠0) = 1 > 0.6, concluding that 𝑀 ̸|= 𝜙: there exist schedulers which induce Markov
chains violating 𝜙. Examples of such schedulers include e.g. schedulers that map state 𝑠0 to
action 𝑎3; another example is a scheduler 𝜎 we investigated previously in Example 6: since

12

𝜎 induces the chain 𝐷 we considered in the previous section, we know that it violates 𝜙 ≡
P≤0.6[F {𝑠2}]. Furthermore, if we take vector 𝑥 = (23 ,

1
3 , 1, 0)

𝑇 of exact values of reachability
probabilities for Markov chain 𝐷 we computed in Example 3, we can additionally confirm
that 𝑥 ≤ 𝑥max.

13

Chapter 3

Adaptive Aggregation of Markov
Chains

As was outlined previously in the introductory Chapter 1, analysis of individual Markov
chains represents a core stage of the synthesis pipeline and presents a challenge orthogonal
to that of the synthesis of probabilistic systems. While synthesis deals with the exponential
growth of a family size, analysis of each particular member deals with the explosion of
the underlying state space of the chain. In this chapter we tackle the second problem and
provide a short presentation of selected results we have achieved in the area of approxima-
tion techniques for Markov models. The results were originally presented as a bachelor’s
thesis [6], but were since significantly extended and improved during the work on this the-
sis1. These results represent an important contribution to the verification of probabilistic
programs. In particular, the techniques improve the performance and scalability of the ver-
ification process by reducing the state space of a given probabilistic model while providing
the upper bound on the approximation error. As such, they simplify the evaluation of
candidate programs explored during the synthesis process.

Problem statement

Let 𝐷 = (𝑆,𝑝0,𝑃) be a Markov chain with the state space 𝑆 and transition probabil-
ity matrix 𝑃 . Here, instead of starting process 𝐷 from initial state 𝑠𝑖𝑛𝑖𝑡, we initialize
the chain with the initial probability distribution 𝑝0. Also, rather than viewing transition
probability matrix 𝑃 as a collection of probability distributions, in this chapter we will
primarily interpret 𝑃 as an actual matrix 𝑃 : 𝑆 × 𝑆 → [0, 1] (hence the name). Since
∀𝑠 ∈ 𝑆 :

∑︀
𝑠′∈𝑆 𝑃 (𝑠, 𝑠′) = 1, we say that the matrix 𝑃 is stochastic. Transient analysis of

an MC 𝐷 considers the problem of computing, for a given time horizon 𝑘 > 0, a transient
probability distribution 𝑝𝑘 ∈ 𝐷𝑖𝑠𝑡𝑟(𝑆) of 𝐷, where the value 𝑝𝑘(𝑠) denotes the probability
that process 𝐷 resides at state 𝑠 after 𝑘 time steps. These probabilities can be computed
using the following recurrent formula:

𝑝𝑘(𝑠) =
∑︁
𝑟∈𝑆

𝑝𝑘−1(𝑟)𝑃 (𝑟, 𝑠), (3.1)

or, using matrix notation, 𝑝𝑘 = 𝑝𝑘−1 ·𝑃 , where 𝑝𝑖 are row vectors of transient probabilities.
1The proposed improvements had led to a paper (attached as supplementary material) submitted to

Performance Evaluation, a top-ranked international journal, in February 2020.

14

Computing transient probability distribution for a given Markov chain plays an important
role when deciding bounded reachability properties: formulae of the form P◁▷𝜆[F

≤𝑘 𝑇] rep-
resenting reachability of 𝑇 ⊆ 𝑆 in a limited time horizon 𝑘. Computing vector 𝑝𝑘 directly
using (3.1) suffers from the state explosion problem, and the primary focus of this chap-
ter will be to develop methods providing an efficient and accurate approximation of 𝑝𝑘.
As was mentioned previously, extending these results to unbounded reachability (which is
considered in the rest of the thesis) represents an open challenge, as discussed in Chapter 7.

3.1 State Space Clustering
Let 𝐷 = (𝑆,𝑝0,𝑃) be an MC and assume that we are interested in approximating its
transient probability distribution 𝑝𝑘, 𝑘 > 0. Let Φ be a partition of the state space 𝑆. We
treat clusters in Φ as abstract states of a new aggregated chain Δ = (Φ,𝜋0,Π), where Π
represents a suitable abstract transition probability matrix Π : Φ×Φ→ R≥0. The chain Δ
is initialized using the probability distribution 𝜋0 : Φ→ R≥0 computed as

𝜋0(𝜎) =
∑︁
𝑠∈𝜎

𝑝0(𝑠), (3.2)

i.e. the probability of residing in cluster 𝜎 is the sum of transient probabilities for the con-
crete states in 𝜎. We can now recursively compute the transient probability distribution 𝜋𝑘

of Δ using vector-matrix multiplications, similar to (3.1), as:

𝜋𝑘 = 𝜋𝑘−1 ·Π. (3.3)

Having obtained 𝜋𝑘, i.e. the probability of residing in individual clusters at time 𝑘, the ap-
proximation 𝑝̃𝑘 : 𝑆 → R≥0 of the transient probability distribution 𝑝𝑘 is defined as

𝑝̃𝑘(𝑠) =
𝜋𝑘(𝜎)

|𝜎|
, 𝑠 ∈ 𝜎, (3.4)

where |𝜎| denotes the size of cluster 𝜎 (namely the number of concrete states comprising it).
That is, the probability of residing in cluster 𝜎 is distributed uniformly among its concrete
states. To recapitulate, state-space aggregation is the process where we cluster the state
space 𝑆 into Φ and treat these clusters as states of a new abstract Markov chain Δ, where
we assume that, if Δ resides at cluster 𝜎 ∈ Φ, then 𝐷 resides in one of the states 𝑠 ∈ 𝜎 with
equal probability. Transitions of chain Δ are encoded in matrix Π, which, as its definition
suggests, might not necessarily be stochastic. As a consequence, probability vectors 𝜋𝑘

might not necessarily be probability distributions according to the Definition 1 (elements
of 𝜋𝑘 might not sum to one). However, we still want to associate elements of Π with
transition probabilities and elements of 𝜋𝑘 with transient probabilities of the aggregated
model. To avoid any confusion, we will reserve the term ‘stochastic’ for matrices and
vectors that satisfy the corresponding normalization property. Lack of stochasticity should
not discourage us from using such abstractions: function Π (respectively, 𝜋𝑘) simply serves
as a higher-level representative of function 𝑃 (respectively, 𝑝𝑘) on new state space and
provides us with an approximation of its concrete counterpart.

A specific choice of an aggregation scheme (a shape of the abstract transition matrix
Π) decides how accurate approximation 𝑝̃𝑘 will be. Estimating approximation error is

15

the interest of Section 3.2. For now, let us simply present three possible ways to define Π
and discuss their applicability.

State-space aggregation based on average incoming transition probabilities

The approximate transition matrix for this aggregation is defined as follows:

Π𝑖𝑛(𝜌, 𝜎) =
1

|𝜎|
∑︁
𝑟∈𝜌

∑︁
𝑠∈𝜎

𝑃 (𝑟, 𝑠). (3.5)

The intuition behind this equation is that it encompasses the average incoming probability
to cluster 𝜎 from cluster 𝜌. This shape of the transition matrix Π was previously intro-
duced in [1] and the corresponding error bound on the approximation error (discussed in
Section 3.2) was derived specifically for this scheme.

State-space aggregation based on average outgoing transition probabilities

This scheme is similar to the previous one, except that now we utilize average outgoing
transition probabilities:

Π𝑜𝑢𝑡(𝜌, 𝜎) =
1

|𝜌|
∑︁
𝑟∈𝜌

∑︁
𝑠∈𝜎

𝑃 (𝑟, 𝑠). (3.6)

In [6] we show that outgoing averaging (3.6) is the most natural (wrt. semantics of the ab-
stract model) approach to define transitions between clusters of states. Additionally,
the transition probability function Π𝑜𝑢𝑡 has another property, namely that, for each cluster
𝜌,

∑︁
𝜎∈Φ

Π𝑜𝑢𝑡(𝜌, 𝜎) =
∑︁
𝜎∈Φ

1

|𝜌|
∑︁
𝑟∈𝜌

∑︁
𝑠∈𝜎

𝑃 (𝑟, 𝑠) =
1

|𝜌|
∑︁
𝑟∈𝜌

∑︁
𝜎∈Φ

∑︁
𝑠∈𝜎

𝑃 (𝑟, 𝑠)

=
1

|𝜌|
∑︁
𝑟∈𝜌

∑︁
𝑠∈𝑆

𝑃 (𝑟, 𝑠) =
1

|𝜌|
∑︁
𝑟∈𝜌

1 = 1,

i.e. matrix Π𝑜𝑢𝑡 is stochastic, unlike general abstract matrices Π. Since 𝑝0 is always
a stochastic vector, then so is 𝜋0, by definition. This implies that all vectors 𝜋𝑘 and there-
fore all 𝑝̃𝑘 are stochastic as well. So, the abstract chain (Φ,𝜋0,Π𝑜𝑢𝑡) is actually a Markov
chain. This subtle difference has two benefits. First, from a technical standpoint, this leads
to a slightly better approximation compared to the incoming-based scheme (3.5), as will
be shown later. Second, preserving the stochasticity of 𝑝̃𝑘 is the key to enable a transient
analysis of continuous-time Markov chains (beyond the scope of this thesis).

Median-based state-space aggregation

This scheme is defined as follows:

Π𝑚𝑒𝑑(𝜌, 𝜎) =
|𝜎|
|𝜌|

med
𝑠∈𝜎

{︃∑︁
𝑟∈𝜌

𝑃 (𝑟, 𝑠)

}︃
. (3.7)

16

The median-based scheme was derived to minimize the error bound (see Section 3.2) on
the approximation error. As a consequence, in the short run, using median-based scheme
proves to be more accurate as compared to the previous two approaches. However, since it
was designed to minimize error bound and not the actual error, and since the matrix Π𝑚𝑒𝑑

is not necessarily stochastic, in the long run, this scheme results in very poor accuracy.
Empirical evaluation of all three proposed schemes is included in Section 3.3.

3.2 Approximation Error
Let 𝑒𝑘 := 𝑝̃𝑘−𝑝𝑘 denote an error vector associated with the approximation 𝑝̃𝑘 of 𝑝𝑘. When
carrying out the transient analysis of the Markov chain, we cannot compute this vector
directly since we do not know the exact probabilities 𝑝𝑘. However, we can formally bound
the 𝐿1-norm of this vector: this norm is often used with stochastic vectors and is efficiently
computable from the structure of (Φ,𝜋0,Π). In [1], authors introduce the quantity

𝜖(𝜌, 𝜎) := max
𝑠∈𝜎

⃒⃒⃒⃒
⃒Π(𝜌, 𝜎)− |𝜎|

|𝜌|
∑︁
𝑟∈𝜌

𝑃 (𝑟, 𝑠)

⃒⃒⃒⃒
⃒ (3.8)

and denote 𝜖(𝜌) :=
∑︀

𝜎∈Φ 𝜖(𝜌, 𝜎). Then for the 𝐿1-norm of the error vector at time 𝑘 > 0 it
holds that

‖𝑒𝑘‖1 ≤ ‖𝑒𝑘−1‖1 +
∑︁
𝜌∈Φ

𝜋𝑘−1(𝜌) · 𝜖(𝜌), (3.9)

where

‖𝑒0‖1 =
∑︁
𝑠∈𝑆
|𝑝0(𝑠)− 𝑝̃0(𝑠)|. (3.10)

However, in [6] we derive a stronger bound. Namely, for each pair 𝜌, 𝜎 of clusters, define
the quantity

𝜏(𝜌, 𝜎) :=
∑︁
𝑠∈𝜎

⃒⃒⃒⃒
⃒Π(𝜌, 𝜎)

|𝜎|
− 1

|𝜌|
∑︁
𝑟∈𝜌

𝑃 (𝑟, 𝑠)

⃒⃒⃒⃒
⃒ , (3.11)

and denote 𝜏(𝜌) :=
∑︀

𝜎∈Φ 𝜏(𝜌, 𝜎). Then the 𝐿1-norm of the error vector 𝑒𝑘 is estimated
similarly to (3.9):

‖𝑒𝑘‖1 ≤ ‖𝑒𝑘−1‖1 +
∑︁
𝜌∈Φ

𝜋𝑘−1(𝜌) · 𝜏(𝜌). (3.12)

One can show that 𝜏(𝜌, 𝜎) ≤ 𝜖(𝜌, 𝜎) and therefore 𝜏 -terms in (3.12) provide a better error
bound than that in (3.9) based on 𝜖-terms. Furthermore, the new bound (3.12) is derived
independently on the form of abstract transition probability matrix Π, and therefore we
can use (3.12) to gauge the precision of aggregation schemes proposed in Section 3.1 and
pick those that demonstrate the best behavior.

Now it should be clear how aggregation helps to mitigate the state space explosion
problem. If we select a partition Φ such that |Φ| ≪ |𝑆|, working with the abstract chain

17

(Φ,𝜋0,Π) and performing vector-matrix multiplications (3.3) allows to approximate 𝑝𝑘

using 𝜋𝑘, and to reduce the computational demands when compared to performing the dis-
crete steps in (3.1) with the concrete model. The computational overhead associated with
estimating bound on the approximation error using (3.12) is almost negligible since this
update represents a simple scalar multiplication of two vectors in the aggregated (i.e. with
the reduced state space) setting. Another notable observation is that when we perform
discrete steps in the aggregated setting, the probability distribution shifts, so adapting
the clustering of the state space can reduce the error: an adaptive state-space aggregation
is therefore a method of using different clusterings sequentially in time, where the quality
of each clustering is quantified using (3.12).

3.3 Experimental Evaluation of Approximate Methods

3.3.1 Precision of Aggregation Schemes

Table 3.1 summarizes the experimental evaluation of the three proposed aggregation schemes
on a simple real-world case study (uniformized Lotka-Volterra model [25], 160k states). In
this experiment, we explore the precision of all three aggregation schemes – median-based
(Med), as in (3.7), the one based on incoming averaging (In), as in (3.5) and the one based
on outgoing (Out) averaging, as in (3.6). We carry out the transient analysis of the chain
for a short (𝑘 = 1) and a long (𝑘 = 100) time horizon; for each strategy, we report both
empirical error ‖𝑝̃𝑘 − 𝑝𝑘‖1 (e) and its theoretical upper bound (t) computed using (3.12).
Also, for 𝑘 = 100, we allowed reclusterings at fixed time steps. In the case of average incom-
ing probabilities, we also compute theoretical bound using the 𝜖-factors, as in (3.9) (In’),
and using the new bound (3.12) based on 𝜏 -factors (In).

Med In’ In Out

𝑘 = 1
(e) 1.93E-23 2.07E-23 2.07E-23 2.51E-23
(t) 9.77E-24 1.31E-20 1.28E-23 1.65E-23

𝑘 = 100
(e) 3.50E-4 2.01E-17 2.01E-17 2.85E-20
(t) 3.50E-4 7.17E-14 2.81E-17 2.04E-19

Table 3.1: Precision of different aggregation schemes.

First, from all experiments we confirm that In ≪ In’, i.e. the newly derived error
bound (3.12) that utilizes 𝜏 -terms provides several orders of magnitude better bounds than
that based on 𝜖-terms (3.9). Second, experiment 𝑘 = 1 shows us that median-based aggre-
gation exhibits the best one-step behavior, followed by that based on incoming probability,
followed by that based on outgoing probability. Finally, in case 𝑘 = 100, we see that
median-based scheme results in very poor accuracy compared to those based on incom-
ing and outgoing probabilities, with the latter having an additional edge on the former of
a couple of orders of magnitude.

3.3.2 Speedup of Approximate Methods

In this set of experiments, we investigate the speedup (acceleration wrt. the exact compu-
tation) of approximate methods. We compare adaptive state-space aggregation (utilizing
outgoing averaging, the one that proved to be the most precise), described in this chapter,

18

with the state space truncation. Recall from Chapter 1 that truncation is another ap-
proach how to deal with the state space explosion problem, where, instead of aggregating
multiple states into clusters, we (dynamically) ignore a large portion of the state space,
thus retaining information about the probability distribution only in the selected subset of
states. Table 3.2 presents the results for three different case studies, where, for each method
and for five different levels of precision, we report acceleration wrt. the exact computation.
We can see that in all cases the state-space aggregation performs considerably better than
truncation, demonstrating a two- to fivefold acceleration.

Precision (a) (b) (c)
Tru Agg Tru Agg Tru Agg

1E-7 6.66 9.10 7.02 21.71 4.81 11.54
1E-6 7.55 10.56 9.16 28.40 5.76 14.97
1E-5 8.28 11.21 9.86 35.78 6.54 16.75
1E-4 8.86 16.55 10.97 40.16 7.37 18.74
1E-3 9.78 17.96 11.81 51.00 8.46 24.13

Table 3.2: Speedup (acceleration wrt. concrete computation for guaranteeing a given pre-
cision) comparison. Models: (a) workstation cluster [26], dimension of the state space:
1M states, time horizon: 10804; (b) uniformized prokaryotic gene expression [31], dimen-
sion of the state space: 1.2M states, time horizon: 10000; (c) uniformized two-component
signalling pathway [15], population bounds [14,46]; property of interest is bounded reach-
ability with 𝑘 = 10000; dimension of the state space after PCTL driven transformation:
1M states.

19

Chapter 4

Synthesis of Probabilistic
Programs

4.1 Families of Markov Chains
Having explored techniques for analyzing an individual Markov chain and deciding whether
it exhibits desirable properties, the next step is to be able to synthesize a chain possessing
these properties. In other words, having a family of MCs, how can one efficiently identify
a chain satisfying a given specification? Synthesizing a Markov chain having a fixed topology
but unknown transition probabilities have been addressed by techniques for parameter
synthesis [12, 39] or model repair [8, 38]. In this work, we want to focus on families of
Markov chains having different topologies of the state space and, as a result, different sets
of reachable states. The following definition introduces a construct for describing such
families.

Definition 9. [13] A family of MCs is a tuple 𝒟 = (𝑆, 𝑠𝑖𝑛𝑖𝑡,𝐾,ℬ) with 𝑆 and 𝑠𝑖𝑛𝑖𝑡 as before,
𝐾 is a finite set of parameters with domains 𝑇𝑘 ⊆ 𝑆 for each 𝑘 ∈ 𝐾, and ℬ : 𝑆 → 𝐷𝑖𝑠𝑡𝑟(𝐾)
is a family of transition probability functions.

Function ℬ of a family 𝒟 of MCs maps each state to a distribution over parameters 𝐾.
In the context of the synthesis of probabilistic models, these parameters represent unknown
options or features of a system under design. If we assign specific values (states) to each of
the parameters, function ℬ will map state to a distribution over states, yielding a concrete
Markov chain. This notion is captured in the following definition.

Definition 10. A realization of a family 𝒟 = (𝑆, 𝑠𝑖𝑛𝑖𝑡,𝐾,ℬ) of MCs is a function 𝑟 : 𝐾 → 𝑆
s.t. ∀𝑘 ∈ 𝐾 : 𝑟(𝑘) ∈ 𝑇𝑘. We say that realization 𝑟 induces MC 𝒟𝑟 = (𝑆, 𝑠𝑖𝑛𝑖𝑡,ℬ𝑟) iff
ℬ𝑟(𝑠, 𝑠′) =

∑︀
𝑘∈𝐾,𝑟(𝑘)=𝑠′ ℬ(𝑠)(𝑘) for any two states 𝑠, 𝑠′ ∈ 𝑆. A set of all realizations of 𝒟

is denoted as ℛ𝒟.

Notice that the set
∏︀

𝑘∈𝐾 𝑇𝑘 of possible parameter combinations and the set ℛ𝒟 of re-
alizations of 𝒟 are semantically equivalent, i.e. |ℛ𝒟| = |

∏︀
𝑘∈𝐾 𝑇𝑘| =

∏︀
𝑘∈𝐾 |𝑇𝑘| =: |𝒟|

is the size of the family. Since parameter domains 𝑇𝑘 are finite, then so is the fam-
ily, i.e. |𝒟| <∞. The number |𝒟| of family members is exponential in |𝐾|, giving rise
to the first state space explosion problem (another state explosion affects the number |𝑆|
of states of individual family members). To simplify notation, we might sometimes use
the same symbol 𝒟 do denote the set {𝒟𝑟}𝑟∈ℛ𝒟 of induced MCs, i.e. the set of family
members.

20

Example 8. Assume a family𝒟 = (𝑆, 𝑠0,𝐾,ℬ) of MCs with the state space 𝑆 = {𝑠0, 𝑠1, 𝑠2, 𝑠3}
and a set 𝐾 = {𝑋,𝑌, 𝑘0, 𝑘3} of parameters with domains 𝑇𝑋 = 𝑇𝑌 = {𝑠1, 𝑠2}, 𝑇𝑘0 = {𝑠0}
and 𝑇𝑘3 = {𝑠3}, where the family ℬ of transition probability functions is defined as follows:

ℬ(𝑠0) =
1

2
: 𝑋 +

1

2
: 𝑌,

ℬ(𝑠1) =
1

2
: 𝑘0 +

1

2
: 𝑘3,

ℬ(𝑠2) = 1 : 𝑋,

ℬ(𝑠3) = 1 : 𝑘3.

We have a total of |𝑇𝑋 | · |𝑇𝑋 | · |𝑇𝑘0 | · |𝑇𝑘3 | = 2 · 2 · 1 · 1 = 4 realizations. All four members
of the family 𝒟 are depicted in Figure 4.1. Notice that these chains have a different
topology of the underlying state space, which even results in different sets of reachable
states (in Figure 4.1, unreachable states are grayed out). Also, notice that the chain 𝒟𝑟1 is
the same chain 𝐷 we analyzed previously in Chapter 2, see Figure 2.1.

0.5
0.50.5

0.5 1

1

1
0.50.5

1

0.50.5

1 1

1

0.5
0.50.5

10.5
1

1

Figure 4.1: A family 𝒟 of four Markov chains. For each chain, unreachable states are grayed
out.

Assume 𝒟 is the family of Markov chains and 𝜙 ≡ P◁▷𝜆[F 𝑇] is a reachability specifica-
tion. We distinguish between the following synthesis problems:

∙ feasibility synthesis: identify 𝑟 ∈ ℛ𝒟 such that 𝒟𝑟 |= 𝜙,

21

∙ threshold synthesis: partition the set ℛ𝒟 of realizations into sets ℛ𝑇 and ℛ𝐹 such
that ∀𝑟 ∈ ℛ𝑇 : 𝒟𝑟 |= 𝜙 and ∀𝑟 ∈ ℛ𝐹 : 𝒟𝑟 ̸|= 𝜙,

∙ maximum synthesis: identify 𝑟* ∈ ℛ𝒟 such that 𝑟* ∈ argmax𝑟∈ℛ𝒟 P[𝒟𝑟 |= F 𝑇].

In the following, we focus on the simplest problem – feasibility. In our case, when
the state space 𝑆 and the set 𝐾 of parameters are finite, the feasibility problem is decidable
and, to be more specific, 𝒩𝒫-hard [12]. A possible solution to the problem – the so-
called one-by-one approach [17] – is to enumerate through each realization 𝑟 ∈ ℛ𝒟 and
check whether 𝒟𝑟 |= 𝜙. As was argued previously, the double state-space explosion renders
this approach unusable for large families, necessitating the usage of advanced techniques.
These techniques usually attempt either to analyze whole subfamilies at once or generalize
analysis results to subfamilies, thus accelerating the pruning of the state space of candidate
solutions. Definition 11 below formalizes the concept of subfamily by restricting a family to
a subset of realizations. Additionally, Definition 12 gives us one way to define these subsets
of realizations.

Definition 11. Let 𝒟 = (𝑆, 𝑠𝑖𝑛𝑖𝑡,𝐾,ℬ) be a family of MCs and ℛ ⊆ ℛ𝒟 a subset of
realizations. A subfamily of 𝒟 wrt. ℛ is a family 𝒟[ℛ] = (𝑆, 𝑠𝑖𝑛𝑖𝑡,𝐾,ℬ) with ℛ𝒟[ℛ] = ℛ.

Definition 12. Let 𝒟 = (𝑆, 𝑠𝑖𝑛𝑖𝑡,𝐾,ℬ) be a family of MCs and 𝑟 ∈ ℛ𝒟 be any re-
alization. A generalization of 𝑟 wrt. a subset 𝐾 ⊆ 𝐾 of parameters is a set 𝑟↑𝐾 =
{𝑟′ ∈ ℛ𝒟 | ∀𝑘 ∈ 𝐾 : 𝑟(𝑘) = 𝑟′(𝑘)}.

A set 𝑟↑𝐾 describes a maximum set of realizations that share with realization 𝑟 the same
assignment of parameters in 𝐾: values of parameters 𝐾∖𝐾 are irrelevant.

Example 9. Assume a family 𝒟 of MCs from Example 8 and realization 𝑟1 (see Figure 4.1).
A generalization of 𝑟1 wrt. set {Y} of parameters is the set 𝑟1↑{𝑌 } = {𝑟1, 𝑟3} of realizations
that assign a value 𝑟1(𝑌) = 2 to parameter 𝑌 . Furthermore, we can define a subfamily
𝒟[𝑟1↑{𝑌 }] of 𝒟 as a family which considers only realizations 𝑟1 and 𝑟3.

4.2 Counterexample-Guided Inductive Synthesis
Let 𝒟 = (𝑆, 𝑠𝑖𝑛𝑖𝑡,𝐾,ℬ) be a family of MCs and 𝜙 be a property of interest. One approach for
synthesizing a Markov chain satisfying 𝜙 is the counterexample-guided inductive synthesis
(CEGIS) [13] and its main idea goes as follows. First, we assume a set ℛ = ℛ𝒟 of candidate
solutions. We pick any realization 𝑟 ∈ ℛ and construct the corresponding instance 𝒟𝑟. We
then check whether 𝒟𝑟 |= 𝜙 and, if so, the synthesis is complete and we return realization 𝑟
to the user. Otherwise, we compute a critical set 𝐶 for 𝒟𝑟 and 𝜙, according to Definition 4.
Recall that a critical set 𝐶 (usually) represents only a fraction of the original state space
𝑆. Hence, it is not improbable, that, for some parameter 𝑘 ∈ 𝐾, the value of 𝑟(𝑘) is
never used in the construction of the critical subsystem 𝒟𝑟↓𝐶. Therefore, such parameter
𝑘 is irrelevant. Naturally, there might be more of such parameters. Definition 13 below
formalizes this notion.

Definition 13. Let 𝒟 = (𝑆, 𝑠𝑖𝑛𝑖𝑡,𝐾,ℬ) be a family of MCs. For a subset 𝐶 ⊆ 𝑆 of critical
states, a set of relevant parameters (conflict) is a set 𝐾 =

⋃︀
𝑠∈𝐶 supp(ℬ(𝑠)).

Having obtained a set 𝐾 of relevant parameters, we construct a generalization 𝑟↑𝐾
of realization 𝑟 wrt. 𝐾, according to Definition 12. Recall that 𝑟↑𝐾 is the set of realiza-
tions that differ from unsatisfying realization 𝑟 only in the values of irrelevant parameters.

22

Therefore, since 𝒟𝑟 ̸|= 𝜙, then it must hold that ∀𝑟′ ∈ 𝑟↑𝐾 : 𝒟𝑟′ ̸|= 𝜙. In other words,
we reject 𝑟, construct its critical subsystem, identify which parameters are relevant for this
counterexample, and infer that any other realization 𝑟′, which differs from 𝑟 in the values
of irrelevant parameters only, must violate 𝜙 as well. The profound effect of this general-
ization is that, by checking one candidate solution, we reject the whole subfamily 𝒟[𝑟↑𝐾]
of Markov chains, which allows us to prune the state space of solutions more efficiently.
We then subtract 𝑟↑𝐾 from the set ℛ of candidate solutions and repeat the procedure
described above until either a satisfying realization is found, or the whole state space is
exhausted, which indicates that no feasible solution exists. The approach is summarized in
Algorithm 3.

Algorithm 3: Counterexample-guided inductive synthesis.
Input : A family 𝒟 = (𝑆, 𝑠𝑖𝑛𝑖𝑡,𝐾,ℬ) of MCs, a reachability property 𝜙.
Output: Realization 𝑟 ∈ ℛ𝒟 s.t. 𝒟𝑟 |= 𝜙, or UNSAT if no such realization exists.

1 Function CEGIS(𝒟, 𝜙):
2 ℛ ← ℛ𝒟

3 while ℛ ≠ ∅ do
4 𝑟 ← any(ℛ)
5 if 𝒟𝑟 |= 𝜙 then
6 return 𝑟
7 end if
8 𝐶 ← criticalSubsystem(𝒟𝑟, 𝜙)

9 𝐾 ← relevantParameters(𝒟, 𝐶) // using Def. 13
10 ℛ ← ℛ∖(𝑟↑𝐾)

11 end while
12 return UNSAT

4.3 Counterexample-Guided Abstraction Refinement
Counterexample-guided abstraction refinement (CEGAR) [14] is another synthesis method
that takes approach opposite to that of CEGIS. Namely, instead of model checking individ-
ual realizations and then generalizing them to subfamilies of unsatisfying chains, we instead
first assume a stochastic process in which all realizations are possible at once. In particular,
whenever the process visits a state 𝑠 ∈ 𝑆, it has a nondeterministic choice of realization
𝑟 ∈ ℛ𝒟 (assignment of parameters 𝐾), which in turn yields a specific distribution ℬ𝑟(𝑠)
over successor states. We recognize this informal description as a Markov decision process,
which we will call a quotient MDP.

Definition 14. [14] Let 𝒟 = (𝑆, 𝑠𝑖𝑛𝑖𝑡,𝐾,ℬ) be a family of MCs. A quotient MDP of 𝒟 is
an MDP 𝑀𝒟 = (𝑆, 𝑠𝑖𝑛𝑖𝑡,ℛ𝒟,𝒫), where 𝒫(·)(𝑟) ≡ ℬ𝑟. For ℛ ⊆ ℛ𝒟, a restriction of 𝑀𝒟

wrt. ℛ ⊆ ℛ𝒟 is an MDP 𝑀𝒟[ℛ] := 𝑀𝒟[ℛ].

Quotient MDP 𝑀𝒟 is capable of simulating the behavior of each family member 𝒟𝑟

and can even ‘switch’ to that of another member 𝒟𝑟′ mid-execution. In other words, if
the path 𝑠0𝑠1𝑠2 . . . is executable in some member 𝒟𝑟, then it is executable in 𝑀𝒟 as
𝑠0

𝑟−→ 𝑠1
𝑟−→ 𝑠2

𝑟−→ On the other hand, if a path 𝜋 is executable in 𝑀𝒟, then it might
be a path that is impossible in neither of the members of 𝒟. Quotient MDP essentially

23

overapproximates the behavior of each of the members of family 𝒟. A restriction of a quo-
tient MDP wrt. ℛ ⊆ ℛ𝒟 is this same MDP where we take into account only transitions
associated with ℛ. To ensure that the execution of a quotient MDP always picks the same
realization, we can make use of consistent schedulers.

Definition 15. Let 𝒟 = (𝑆, 𝑠𝑖𝑛𝑖𝑡,𝐾,ℬ) be a family of MCs and let 𝑀𝒟 = (𝑆, 𝑠𝑖𝑛𝑖𝑡,ℛ𝒟,𝒫)
be a quotient MDP of 𝒟. For 𝑟 ∈ ℛ𝒟, a (memoryless) scheduler 𝜎𝑟 ∈ Σ𝑀𝒟 is called
𝑟-consistent iff ∀𝑠 ∈ 𝑆 : 𝜎(𝑠) = 𝑟. A scheduler is called consistent iff it is consistent for
some 𝑟 ∈ ℛ𝒟.

Proposition 3. Let 𝑀𝒟 be a quotient MDP of the family 𝒟 of MCs and let 𝜎𝑟 ∈ Σ𝑀𝒟 be
an 𝑟-consistent scheduler. Then 𝑀𝒟

𝜎𝑟
≡ 𝒟𝑟.

Proposition 3 essentially states that a consistent scheduler for a quotient MDP yields
a valid member of the family. The proof follows directly from Definition 14. Returning to
the problem of probabilistic synthesis, having a quotient MDP 𝑀𝒟 that overapproximates
the behavior of each Markov chain in a family 𝒟, model checking this MDP against a spec-
ification 𝜙 can yield interesting results. In particular, assume that 𝜙 ≡ P≤𝜆[F 𝑇] is a safety
property. Let us compute minimizing and maximizing schedulers 𝜎min and 𝜎max, respec-
tively, as well as the corresponding lower (𝑥min) and upper (𝑥max) bounds on the reacha-
bility probability. If 𝑥min(𝑠𝑖𝑛𝑖𝑡) > 𝜆, we know for sure that, for each realization 𝑟 ∈ ℛ𝒟,
𝒟𝑟 ̸|= 𝜙, that is, the synthesis problem has no feasible solutions. On the other hand, if
𝑥max(𝑠𝑖𝑛𝑖𝑡) ≤ 𝜆, then each family member 𝒟𝑟 satisfies 𝜙 and we can return any realization
to the user as a solution to the synthesis problem. Finally, if 𝑥min(𝑠𝑖𝑛𝑖𝑡) ≤ 𝜆 < 𝑥max(𝑠𝑖𝑛𝑖𝑡),
then we cannot decide anything unless 𝜎min is a consistent scheduler, in which case 𝑀𝒟

𝜎min

represents a valid family member with 𝑥min(𝑠𝑖𝑛𝑖𝑡) ≤ 𝜆, i.e. it is a solution to the synthe-
sis problem. Otherwise, if 𝜎min is not consistent, the problem remains undecided since
the abstraction 𝑀𝒟 is too coarse.

Borrowing from the philosophy of abstraction refinement, we can try to fix such un-
decidable case by splitting the family of Markov chains into two subfamilies, and then
attempt to analyze each of them separately using the procedure described above. If these
subfamilies still represent undecidable cases, we continue to refine them into smaller and
smaller subfamilies until either we find a feasible solution, or we reject all family members.
The procedure is guaranteed to terminate for two reasons. First, the number of family
members is finite and we cannot refine subfamilies indefinitely. Second, in the extreme
case, where after numerous refinements we have obtained a subfamily with exactly one
realization, the corresponding quotient MDP is essentially an MC, for which 𝑥min = 𝑥max

and the case is necessarily conclusive. The described method is summarized in Algorithm 4.
Liveness properties are handled analogously.

Refinement of families is carried out through the process of splitting (see Line 18 of
Algorithm 4), which involves picking a suitable parameter 𝑘 ∈ 𝐾 having possible values 𝑇𝑘

and a predicate 𝑃 over 𝑆, and then constructing two subfamilies: a maximum subfamily
ℛ⊤ ⊂ ℛ, for which 𝑃 (𝑟(𝑘)) holds for any 𝑟 ∈ ℛ⊤, and ℛ⊥ = ℛ∖ℛ⊤. This results in a pair
ℛ⊤,ℛ⊥ of subfamilies of chains, for which the described procedure is called recursively
until MDP model checking call yields conclusive results.

CEGAR represents an approach diametrically opposite to that of CEGIS, and, therefore,
for different models and different specifications, these methods tend to behave differently.
Sometimes the shape of the family or the topology of the state space allow construction
of small counterexamples and CEGIS can prune the state space completely by analyzing

24

Algorithm 4: Counterexample-guided abstraction refinement.
Input : A family 𝒟 = (𝑆, 𝑠𝑖𝑛𝑖𝑡,𝐾,ℬ) MCs, a safety property 𝜙 ≡ P≤𝜆[F 𝑇].
Output: Realisation 𝑟 ∈ ℛ𝒟 s.t. 𝒟𝑟 |= 𝜙, or UNSAT if no such realization exists.

1 Function CEGAR(𝒟, 𝜙):
2 𝑀𝒟 ← buildQuotientMDP(𝒟) // using Def. 14
3 R← {ℛ𝒟}
4 while R ̸= ∅ do
5 ℛ ← any(R)
6 R← R ∖ {ℛ}
7 𝑀 ←𝑀𝒟[ℛ] // using Def. 14
8 (𝑥min, 𝜎min,𝑥max, 𝜎max)← reachabilityMDP(𝑀,𝑇) // using e.g. Alg. 2
9 if 𝑥min(𝑠𝑖𝑛𝑖𝑡) > 𝜆 then

10 continue
11 end if
12 if 𝑥max(𝑠𝑖𝑛𝑖𝑡) ≤ 𝜆 then
13 return any(ℛ)
14 end if
15 if 𝜎min is 𝑟-consistent for some 𝑟 ∈ ℛ then
16 return 𝑟
17 end if
18 (ℛ⊤,ℛ⊥)← split(ℛ)
19 R← R ∪ {ℛ⊥,ℛ⊤}
20 end while
21 return UNSAT

only a few realizations. Or it might be the case that CEGIS is unable to generalize any
of the parameters (yielding 𝐾 = 𝐾 as a conflict set) and therefore must analyze each
realization individually. Likewise, the form of the quotient MDP might yield very tight
bounds on the reachability probability, thus allowing to synthesize a solution after only
a couple of refinements, or we might be ‘unlucky’ and have to refine subfamilies up to
the level of individual MCs to obtain conclusive results.

The behavior of the methods also depends on the bound 𝜆 of the reachability property.
If the bound is too low or too high (wrt. the given model and a property), then such
cases are usually easily solvable. In particular, when analyzing a safety property, then for
low values of 𝜆 CEGIS is capable of constructing extremely small counterexamples (we
need only a handful of paths that end up in 𝑇), thus pruning the state space faster; on
the other hand, if the bound 𝜆 is too high, it will most likely imply that a majority of
realizations are satisfiable, thus increasing the chance that CEGIS picks one for model
checking. Likewise, very low or very high bound 𝜆 increases the chance that CEGAR, even
after obtaining conservative bounds on the reachability probability, is still able to decide
whether the subfamily is definitely satisfiable or definitely not. For this reason, when we
will later, in Chapter 6, evaluate the performance of the synthesis methods, we will usually
consider formulae with bound 𝜆 in the vicinity of the feasibility threshold 𝜆𝑓 , for which
the synthesis problem changes from ‘feasible’ to ‘unfeasible’.

The duality of these bottom-up and top-down approaches suggests that there might be
a middle ground: a method capable of combining the power of all-at-once analysis with

25

the precision of MC model checking. Designing such a method represents a formidable
challenge that we will tackle in Chapter 5. Before that, however, let us make one final step
and describe the connection between Markov chains and probabilistic programs.

4.4 Probabilistic Programs
When modeling a probabilistic system, we may describe it as a Markov chain, as per
Definition 2, but, in practice, the state space explosion problem renders such an approach
unjustifiable. Therefore, we usually describe the system using a high-level programming
language, such as PRISM [33], PIOA [43], JANI [11] or MODEST [10]. Probabilistic
model checkers then parse this high-level description 𝒫 and construct the corresponding
Markov chain [[𝒫]], which is then used as an input for various model checking algorithms.
A sketch [41, 5, 13] represents a high-level yet incomplete description of a system under
development. A sketch usually describes the fixed behavior of the modeled system but
leaves so-called ‘holes’ – parts of a program that must be filled in a way so that the resulting
description 𝒫 satisfies a given specification. In terms of constructs we are already familiar
with, a sketch is a high-level analog of a family of Markov chains, where holes correspond
to parameters and filling all holes yields a concrete Markov chain; program-level synthesis
then translates to recognizing how to fill these holes (complete the description) in order
to satisfy given constraints. In this section, we give a very brief overview of the PRISM
sketching language proposed in [13] and discuss a program-level analog of the previously
described CEGIS method.

4.4.1 PRISM Sketch Language

A PRISM program [33] consists of one or more modules that interact with each other.
Without loss of generality, we will consider programs with a single module (every program
can be ‘flattened’ into this form). A module contains a definition of (bounded) variables (as
well as their initial values) spanning the state space of the system and a set of commands
that describe the transitions between these states. These commands are of the form

guard→ 𝑝1 : update1 + . . . · · ·+ 𝑝𝑛 : update𝑛

The guard is a Boolean expression over the variables declared in the module. The command
itself represents a probability distribution over a set of updates, where each update encodes
a change in the values of variables. Essentially, the guard identifies states for which this
command is applicable, and updates describe successor states as well as the probability
distribution over these successors. Overlapping of guards yields nondeterminism and is
thus disallowed. A (reachable) state which is not covered by a command guard represents
a deadlock – in terms of model-based semantics such a state is considered absorbing. For
a program description 𝒫, underlying MC [[𝒫]] is a Markov chain that executes semantics
of 𝒫 on a state level. We say that a program 𝒫 satisfies specification Φ iff it is satisfied by
its underlying MC.

Example 10. Assume the following PRISM program 𝒫:

26

int s: [0..4] init 2;

s < 2→ 0.75 : (s’ = max(s-1,0)) + 0.25 : (s’ = s+1);

s = 2→ 0.5 : (s’ = s-1) + 0.5 : (s’ = s+1);

s > 2→ 0.25 : (s’ = s-1) + 0.75 : (s’ = min(s+1,4));

The corresponding underlying MC [[𝒫]] is depicted in Figure 4.2. A property of interest
might be e.g. 𝒫 |= P≤0.6[F (𝑠 ≥ 3)].

0
0.75

1 2 3 4
0.75

0.5

0.50.75

0.25 0.750.25

0.25 0.25

Figure 4.2: An underlying MC [[𝒫]] of a probabilistic program 𝒫 from Example 10.

A sketch [13] is a program that contains holes: open parts of the program and can be
filled with one of the finitely many options. These are declared as

hole ℎ either {expr1, · · · , expr𝑘}

where ℎ is a hole identifier and expr𝑖 is an expression over the program variables. A hole
can be used in variable declarations and commands, both as part of a guard or an update
expression. A program sketch represents a description of the system with an a priori
known general structure – number of variables, a form of commands, etc. – but with some
concrete details left out. Instantiating all holes yields a specific program and the goal of
the synthesizer is to decide how to replace all holes with their options in order to satisfy
a given specification. This synthesis is usually carried out on a state level using methods
described earlier in this chapter. PRISM sketching language also allows some additional
functionality: assigning costs to option holes, introducing constraints on hole values, etc.
For a comprehensive description, please refer to [13].

Example 11. Assume the following PRISM sketch:

hole 𝑋 either {0, 1};
hole 𝑌 either {1, 2, 3};
int s: [0..4] init X+1;

s < Y→ 0.75 : (s’ = max(s-X,0)) + 0.25 : (s’ = s+X);

s = Y→ 0.5 : (s’ = s-1) + 0.5 : (s’ = s+1);

s > Y→ 0.25 : (s’ = s-1) + 0.75 : (s’ = min(s+1,4));

Instantiating 𝑋 = 1 and 𝑌 = 2 yields program discussed in Example 10.

27

4.4.2 Program-Level CEGIS

Authors of [13] propose a lifting of the CEGIS method to a program level in order to improve
its scalability. In the remainder of this section, we describe only its basic idea: we will not
need this lifting when designing the integrated synthesis technique in Chapter 5, but we
will consider this variant of CEGIS during the experimental evaluation of the synthesis
techniques in Chapter 6, because program-level CEGIS, (alongside CEGAR), represents
a state-of-the-art approach for the synthesis of probabilistic programs.

In its core, a program-level CEGIS behaves exactly like its state-level counterpart. Hav-
ing a program sketch and a safety property, we execute the CEGIS loop: instantiate all
holes, construct the underlying Markov chain and, if the chain does not satisfy the spec-
ification, construct a counterexample and reject those realizations (combinations of hole
options) that also lead to programs violating the specification. The catch is that the coun-
terexample is constructed on a program level. In this setting, a counterexample represents
a subset of critical commands (as opposed to a subset of critical states) of the original
program. Keeping only some commands has the following effect: states that are covered
by a guard of a critical command have their original transitions, while states that are not
covered represent deadlocks (i.e. such states are absorbing). This perfectly mirrors the phi-
losophy of a state-level counterexample: states included in a critical set have their original
semantics, while states that are not critical essentially exhibit no behavior. Relevant holes
are those used in the critical commands: holes that are never used in this subprogram can be
therefore safely generalized. A (minimal) set of critical commands is constructed by trying
all possible combinations: we first try to select zero commands, then one command, then
two, etc. until the subprogram becomes critical. Liveness properties are handled similarly,
although they require some additional manipulations with the model and the property,
see [13].

28

Chapter 5

Novel Integrated Methods for
Probabilistic Synthesis

If we want to integrate both inductive and abstraction-refinement approaches into a single
versatile technique, we can consider multiple ways. First, we might consider using (exact)
results from MC model checking to improve the precision of MDP approximation, thus
obtaining decidable subfamilies earlier in the refinement process. Or we could consider
analyzing the relation between exact MC model checking results and approximate MDP
model checking results in order to search for feasible solutions faster, in the spirit of in-
formed search methods. Another approach would be to use lower and upper estimates on
the reachability probability, obtained by model checking a quotient MDP, to somehow assist
CEGIS in constructing counterexamples: either by computing them faster or by enabling
the construction of smaller critical sets, thus pruning the state space of candidate solution
at a higher rate. In this work, we focus on the last approach and present two possible
ways how CEGIS can facilitate MDP model checking techniques in order to arrive at bet-
ter counterexamples. The first method emerged during our work on the semester project
and, although it was shown to have no advantages over existing methods, it still represents
an adequate synthesis technique offering performance comparable to those of CEGIS or
CEGAR. We will discuss the approach in Section 5.1 since it will help to illustrate some
key aspects of integrated synthesis. Later, in Section 5.3, we will develop an advanced ap-
proach and present the primary contribution of this paper: an integrated technique capable
of outperforming state-of-the-art methods.

Since we decided to design a technique aiming at enhancing the counterexample gener-
ation, let us begin with a motivational example where CEGIS performs poorly.

Example 12. Consider a rather artificial family 𝒟 = (𝑆, 𝑠𝑖𝑛𝑖𝑡,𝐾
′,ℬ) of Markov chains,

where 𝑠 = {𝑠𝑖𝑛𝑖𝑡, 𝑠1, 𝑠2, 𝑡, 𝑓}, the parameters are 𝐾 ′ = {𝑋,𝑌, 𝑇, 𝐹} with domains 𝑇𝑋 =
{𝑠1, 𝑠2}, 𝑇𝑌 = {𝑡, 𝑓}, 𝑇𝑇 = {𝑡}, 𝑇𝐹 = {𝑓}, and a family ℬ of transition probability
functions is defined as:

29

ℬ(𝑠𝑖𝑛𝑖𝑡) = 1 : 𝑋,

ℬ(𝑠1) = 0.6 : 𝑇 + 0.2 : 𝑌 + 0.2 : 𝐹,

ℬ(𝑠2) = 0.2 : 𝑇 + 0.2 : 𝑌 + 0.6 : 𝐹,

ℬ(𝑡) = 1 : 𝑇,

ℬ(𝑓) = 1 : 𝐹.

Since 𝑇 and 𝐹 can each take only one value, these are not actual parameters, so from now
on we will only consider the set 𝐾 = {𝑋,𝑌 } as the set of parameters. There are a total
of |𝑇𝑋 | × |𝑇𝑌 | = 4 family members, all of them depicted in Figure 5.1. For simplicity, we
did not write the values of transition probabilities unless it is necessary (keep in mind that
probabilities must sum to one). For each member, the unreachable part of the state space
is grayed out. Assume a safety property 𝜙 ≡ P≤0.3[F {𝑡}]. Notice that only realization 𝑟3
satisfies 𝜙. Let us verbalize how CEGIS and CEGAR would find this solution.

0.4

0.8 0.8

0.4

0.6

0.2

0.6

0.2

Figure 5.1: A family 𝒟 of four Markov chains. For each chain, unreachable states are grayed
out.

CEGAR. We begin with a set ℛ1 = {𝑠1, 𝑠2} × {𝑡, 𝑓} of realizations and construct
the corresponding quotient MDP 𝑀𝒟[ℛ1] depicted in Figure 5.2. On a diagram, since multi-
ple realizations might yield the same probability distribution, we included these realizations
in set braces. Model checking this MDP yields 𝑥min(𝑠𝑖𝑛𝑖𝑡) = 0.2 ≤ 0.3 < 0.8 = 𝑥max(𝑠𝑖𝑛𝑖𝑡)
and, for the sake of argument, assume that the corresponding minimizing scheduler 𝜎min is
not consistent (e.g. 𝜎min : 𝑠𝑖𝑛𝑖𝑡 ↦→ 𝑟2 and 𝑠 ↦→ 𝑟3 for 𝑠 ̸= 𝑠𝑖𝑛𝑖𝑡. We obtain an undecidable
case and need to refine our abstraction. Let us pick parameter 𝑋 and split the set ℛ1 of
realizations into subcases ℛ2 = {𝑠1} × {𝑡, 𝑓} and ℛ3 = {𝑠2} × {𝑡, 𝑓}. The procedure is
repeated for these smaller subfamilies: model checking 𝑀𝒟[ℛ2] allows to reject all realiza-
tions associated with this subfamily (𝑥min(𝑠𝑖𝑛𝑖𝑡) = 0.6 > 0.3) and model checking 𝑀𝒟[ℛ3]
again yields undecidable result. Splitting ℛ3 once more, this time at parameter 𝑌 , yields
another two subcases: ℛ4 = {𝑠2} × {𝑡} and ℛ5 = {𝑠2} × {𝑓}, each containing a single
MC, where only for 𝑀𝒟[ℛ5] we obtain 𝑥(𝑠𝑖𝑛𝑖𝑡) = 0.2 ≤ 0.3, from which we conclude that
realization 𝑟3 represents the solution to the synthesis problem.

30

0.8

0.6

0.2
0.4

Figure 5.2: A quotient MDP 𝑀𝒟 of a family 𝒟. Multiple realizations that yield the same
probability distribution are included in set braces.

CEGIS. We begin with a set {0, 1}× {𝑡, 𝑓} of realizations. Assume we pick realization
𝑟0 : [𝑋 ↦→ 𝑠1, 𝑌 ↦→ 𝑡]. MC model checker gives 𝒟𝑟0 ̸|= 𝜙 since the corresponding reachability
probability in the initial state is 0.8 > 0.3. We now construct a counterexample for 𝒟𝑟0

and 𝜙. The critical subsystem must contain a path 𝑠𝑖𝑛𝑖𝑡𝑠1𝑡 having probability 0.8 > 0.3,
therefore, the corresponding critical set will be 𝐶 = {𝑠𝑖𝑛𝑖𝑡, 𝑠1, 𝑡}. Conflict (a set of rel-
evant parameters, see Definition 13) for 𝐶 are parameters used in the definition of ℬ(𝑠)
for 𝑠 ∈ 𝐶, i.e. 𝐾 = {𝑋,𝑌 }. This implies that we reject only a single realization 𝑟0 (none
of the parameters were generalized) and continue with a set ({𝑠1, 𝑠2} × {𝑡, 𝑓})∖{(𝑠1, 𝑡)} of
candidate solutions. The same argument applies for any subsequent realization: the con-
structed counterexamples do not allow any generalization and we will be iterating through
all realizations until we are lucky to pick 𝑟3 since it is our only feasible solution.

The key observation from Example 12 is the following: notice how CEGIS, while con-
structing a counterexample for 𝑟0, could potentially drop parameter 𝑌 from the conflict:
looking at the family members, we know for sure that, once the system enters state 𝑠1,
it will definitely reach target state 𝑡 with probability at least 0.6, exceeding threshold 0.3,
regardless of the value of the parameter 𝑌 . If CEGIS managed to detect this, then in one it-
eration it could reject all realizations for which 𝑟(𝑋) = 𝑠1. However, since CEGIS focuses on
a single Markov chain, it constructs a counterexample 𝒟𝑟0↓𝐶 wrt. this single chain: a con-
structed counterexample is the safest subsystem that refutes specification 𝜙 in the sense
that, if an adversary attempted to add arbitrary states and paths to 𝒟𝑟0↓𝐶, it would still
contradict 𝜙. However, in our case, having a ‘critical’ subsystem 𝒟𝑟0↓{𝑠𝑖𝑛𝑖𝑡, 𝑠1}, the ad-
versary cannot extend the chain arbitrarily – he is restricted with his choice by the chains
associated with realizations 𝑟0 through 𝑟3 since only these chains are valid from the point
of view of the considered family 𝒟, and therefore 𝒟𝑟0↓{𝑠𝑖𝑛𝑖𝑡, 𝑠1} is actually a perfectly valid
counterexample.

How do we assist CEGIS in detecting that the set {𝑠𝑖𝑛𝑖𝑡, 𝑠1} is critical for realization 𝑟0?
In other words, how can we be sure that, by entering state 𝑠1, the system is bound to have
at least 0.6 chance of reaching 𝑇? This is where MDP model checking comes into play:
notice how CEGAR easily handled subfamily 𝒟[ℛ2] for ℛ2 = {𝑠1} × {𝑡, 𝑓} by computing
a lower bound 0.6 on the reachability probability. At this point, we come to a conclusion
that, from the point of view of synthesis, a counterexample 𝒟𝑟0↓{𝑠𝑖𝑛𝑖𝑡, 𝑠1}, and a quotient
MDP for family 𝒟[{𝑠1} × {𝑡, 𝑓}] are the exact same construct: both manifest a minimum
probability of 0.6 of reaching 𝑇 and thus both allow to reject multiple realizations at once.

31

Both integrated methods discussed in the remainder of this chapter perform this kind of
analysis, but both tackle it from different angles. A naive approach utilizes this peculiar cor-
respondence between (incomplete) counterexamples and subfamilies of MCs, and switches
between these representations on the fly in order to prune the state space of candidate
solutions faster. An advanced technique executes this reasoning more precisely, at the level
of individual states, allowing to compute a counterexample directly and avoid the compu-
tational overhead associated with frequent MDP model checker calls that is inherent to
the naive approach.

5.1 The Naive Approach
The most straightforward way how to reinforce CEGIS with the power of MDP model
checking goes as follows. Recall a CEGIS run in Example 12, where, for realization 𝑟0 :
[𝑋 ↦→ 𝑠1, 𝑌 ↦→ 𝑡] we constructed a critical set 𝐶 = {𝑠𝑖𝑛𝑖𝑡, 𝑠1, 𝑡} with {𝑋,𝑌 } being the set
of relevant parameters. Since 𝒟↓𝐶 ̸|= 𝜙, then, if we use the correspondence between
counterexamples and quotient MDPs, it must hold that 𝑀𝒟[{𝑟0}] ̸|= 𝜙. In hindsight, we
know that parameter 𝑌 is actually irrelevant and parameter 𝑋 isn’t. At this point, having
an MDP 𝑀𝒟[{𝑟0}], we might as well try to drop the assumption that e.g. 𝑌 is relevant,
and instead model check MDP 𝑀𝒟[{𝑟0, 𝑟1}] representing family members where 𝑋 = 𝑠1
and 𝑌 takes arbitrary value. In this case, MDP model checker gives a lower bound 0.6 on
the reachability probability, confirming our belief that parameter 𝑌 is irrelevant. We have
obtained a conflict {𝑋} and there is no reason to stop generalizing parameters other than 𝑌 .
In particular, if we tried to generalize parameter 𝑋 as well, we would obtain a quotient MDP
𝑀𝒟[{𝑟0, 𝑟1, 𝑟2, 𝑟3}] with a minimum reachability probability 0.2 not exceeding threshold 0.3.
Therefore, conflict {𝑋} cannot be improved, and we are now able, by analyzing in such
way a counterexample for realization 𝑟0, reject realization 𝑟1 as well and continue with our
search.

To summarize, a naive integration is essentially a CEGIS method, where, after com-
puting a conflict set for an unsatisfying realization and before updating the state space of
candidate solutions (between Lines 9 and 10 of Algorithm 3), we try to improve this conflict
by attempting to generalize as many parameters as possible, as illustrated in Algorithm 5.

Algorithm 5: Improving conflicts via MDP model checking.
Input : A family 𝒟 = (𝑆, 𝑠𝑖𝑛𝑖𝑡,𝐾,ℬ) of MCs, a property 𝜙, unsatisfying

realization 𝑟 ∈ ℛ𝒟 (i.e. 𝒟𝑟 ̸|= 𝜙) and a conflict 𝐾 ⊆ 𝐾
(i.e. 𝑀𝒟[𝑟↑𝐾] ̸|= 𝜙)

Output: An improved conflict 𝐾̂ ⊆ 𝐾
1 Function improveConflict(𝒟, 𝜙, 𝑟,𝐾):
2 𝐾̂ ← 𝐾

3 for 𝑘 ∈ 𝐾 do
4 if 𝑀𝒟[𝐾̂∖{𝑘}] ̸|= 𝜙 then
5 𝐾̂ ← 𝐾̂∖{𝑘}
6 end if
7 end for
8 return 𝐾̂

32

The designed method represents a compromise between bottom-up induction and top-
down abstraction refinement. If the synthesis problem is the one that CEGIS handles
easily, then the integrated method will also be able to find a solution quickly since it is
essentially CEGIS. On the other hand, if the synthesis problem is the one that CEGAR
handles easily because abstracting the family members into a quotient MDP does not yield
too conservative bounds on the reachability probabilities (provided by MDP model checker),
then the integrated method will be capable of efficiently generalizing conflicts computed in
a CEGIS loop since now the method is equipped with MDP model checker as well. However,
as will be shown during experimental evaluation in Chapter 6, the designed method does
not offer anything new: it is comparable to both CEGIS and CEGAR, but, ultimately, it is
unable to outperform any of these two. The main drawback is the generalization approach:
for each counterexample, we attempt to generalize as many parameters as possible, thus
invoking MDP model checker up to |𝐾| times per iteration: for families with many param-
eters, this leads to a huge computational overhead (recall that computing reachability for
an MDP requires solving a linear program). Motivated by this, we go back to the roots of
counterexample generation and try to apply everything we have learned so far in order to
design a better integrated method.

5.2 Towards Improved Counterexample Generation
In the remainder of this chapter we wish to develop an integrated synthesis approach that
utilizes bounds on the reachability probability for all (sub-)family members, computed via
MDP model checking in a CEGAR loop, in order to construct smaller counterexamples in
a CEGIS loop. Recall from Example 12 why supplying CEGIS with a bound on the reach-
ability probability can be beneficial. Assume we computed, using MDP model checking
techniques, a lower bound 𝑥min on the reachability probability for a quotient MDP 𝑀𝒟

(no need for refinement). In particular, the value 𝑥min(𝑠1) = 0.6 essentially says that, if
the process 𝑀𝒟 started in state 𝑠1 and continued via paths present in members of fam-
ily 𝒟 only, then the probability of reaching 𝑇 would be – across all realizations – at least
0.6. Going back to CEGIS and its analysis of a specific realization 𝑟0, we have seen that
it had computed a critical set {𝑠𝑖𝑛𝑖𝑡, 𝑠1, 𝑡} inducing a set of relevant parameters {𝑋,𝑌 };
in this case, CEGIS is unable to detect that, given 𝑋 = 𝑠1, the state 𝑠1 – and there-
fore parameter 𝑌 – are actually superfluous: for 𝑋 = 𝑠1 the system is guaranteed with
probability 1 to reach state 𝑠1 (simply from the definition of ℬ(𝑠𝑖𝑛𝑖𝑡)) and it is guaranteed
(by the lower bound 𝑥min) to have at least 0.6 probability of reaching 𝑇 , thus violating
the threshold 𝜆 = 0.3. Hence, the main challenge here is to somehow incorporate this
bound on the reachability probability into counterexample construction. In this section,
we only show how to carry out this incorporation in order to improve the quality of con-
structed counterexamples. Later, in Section 5.3, we demonstrate how this approach yields
a powerful integrated synthesis method.

Let us perform a simple mental exercise, where we essentially explain the main process
behind the advanced integration of CEGIS and CEGAR. Assume a Markov chain 𝐷 =
(𝑆, 𝑠𝑖𝑛𝑖𝑡,𝑃) violating a safety property 𝜙 ≡ P≤𝜆[F 𝑇]. Remember that we consider chain 𝐷
to be a member of the family 𝒟, so let 𝛾 := 𝑥min denote the lower bound on the reachability
probability of 𝑇 . To recapitulate, the value of 𝛾(𝑠) for arbitrary 𝑠 ∈ 𝑆 represents that target
states 𝑇 are reachable from state 𝑠 with probability at least 𝛾(𝑠). When constructing
a counterexample to 𝐷 and 𝜙 using search methods (see Section 2.1.2), we can imagine
that, at the beginning, when no state has been discovered, each state 𝑠 ∈ 𝑆 is ‘connected’

33

to 𝑇 via a transition with probability 𝛾(𝑠). Likewise, we can ‘connect’ each 𝑠 ∈ 𝑆 to a new
dummy state 𝑠⊤, which is also considered as a target one. By doing so, we are basically
stating that the reachability probability for state 𝑠 is 𝛾(𝑠), even when the chain 𝐷 has
no other transitions: this is consistent with 𝛾(𝑠) being a lower bound on the reachability
probability. Then, we start to build up our reachable state space: we start from 𝑠𝑖𝑛𝑖𝑡
and replace its transition to 𝑠⊤ with the original transitions 𝑃 (𝑠𝑖𝑛𝑖𝑡). Since the successors
of 𝑠𝑖𝑛𝑖𝑡 are still connected to 𝑠⊤, the reachability probability for 𝑠𝑖𝑛𝑖𝑡 must still be at
least 𝛾(𝑠𝑖𝑛𝑖𝑡) (otherwise, 𝛾(𝑠𝑖𝑛𝑖𝑡) would not be a lower bound, see Algorithm 2), although
it might actually be higher, since, by ‘activating’ transitions from state 𝑠𝑖𝑛𝑖𝑡, we actually
introduced a concrete behavior inherent to chain 𝐷. By activating more and more states, we
continue to increase the probability that 𝑇 ∪ {𝑠⊤} is reachable from the initial state 𝑠𝑖𝑛𝑖𝑡,
up to a moment where it exceeds threshold 𝜆 (this is bound to happen since 𝐷 ̸|= 𝜙).
At this point, we have our counterexample. As was mentioned previously, this mental
exercise was actually an illustration of how to employ lower bound 𝑥min for counterexample
construction. The remainder of this section is dedicated to going through this exercise again,
introducing all necessary constructs formally, and justifying how using 𝑥min in the process
of counterexample construction described above actually yields smaller critical states. We
begin with a formal description of ‘connecting’ unactivated states to 𝑠⊤ via transition 𝛾(·).

Definition 16. Let 𝐷 = (𝑆, 𝑠𝑖𝑛𝑖𝑡,𝑃) be an MC with 𝑠⊤, 𝑠⊥ ̸∈ 𝑆. Let 𝐶 ⊆ 𝑆 denote a set of
active states and let 𝛾 : 𝑆 → [0, 1] denote a rerouting vector. Rerouting of Markov chain 𝐷
wrt. active states 𝐶 and rerouting vector 𝛾 is an MC 𝐷↓𝐶[𝛾] = (𝑆 ∪ {𝑠⊥, 𝑠⊤}, 𝑠𝑖𝑛𝑖𝑡,𝑃𝐶

𝛾)

with transition probability matrix 𝑃𝐶
𝛾 defined as follows:

𝑃𝐶
𝛾 (𝑠) =

⎧⎪⎨⎪⎩
1 : 𝑠 if 𝑠 ∈ {𝑠⊤, 𝑠⊥},
𝛾(𝑠) : 𝑠⊤ + (1− 𝛾(𝑠)) : 𝑠⊥ if 𝑠 ∈ 𝑆∖𝐶,
𝑃 (𝑠) otherwise.

Rerouting an MC using a vector of probabilities 𝛾 involves introducing two absorbing
states 𝑠⊤ and 𝑠⊥ and then, for each non-activated state 𝑠 ∈ 𝑆∖𝐶, replacing its original
distribution 𝑃 (𝑠) with two transitions: 𝛾(𝑠) leading to 𝑠⊤ and a complementary transition
(1 − 𝛾(𝑠)) leading to 𝑠⊥. Algorithm 6 summarizes the state space exploration with the
rerouting described above1.

Example 13. Consider a family of MCs from Example 12. Let us pick an unsatisfiable
realization 𝑟0 and see how Algorithm 6 constructs a counterexample for the chain 𝐷 := 𝒟𝑟0

and the same safety property 𝜙 ≡ P≤0.3[F {𝑡}], assuming we invoke it with the rerouting
vector 𝛾 = 0. Returning to the original semantics of 𝛾(𝑠) as a lower bound on the reacha-
bility probability, setting 𝛾(𝑠) = 0 is equivalent to saying that 𝑇 is unreachable from 𝑠 until
we activate concrete path from 𝑠 to 𝑇 . In other words, with 𝛾 = 0 we compute an actual
counterexample, without assuming that 𝐷 is a family member of 𝒟. Execution is illustrated
in Figure 5.3. We introduce absorbing states 𝑠⊤ and 𝑠⊥, where 𝑠⊤ is now also considered
a target state. Although in this example these states are superfluous (since 𝛾 = 0), they
will play an important role later on (once 𝛾 ̸= 0), so let us think of them symbolically.

(a) We begin iteration 0 with an empty set 𝐶(0) of active states. Model checking 𝐷(0)

from Figure 5.3a yields 𝑥(0)(𝑠𝑖𝑛𝑖𝑡) = 0 ≤ 0.3 and thus 𝐷(0) is not a counterexample:
we need to introduce more paths.

1For now, assume that Algorithm 6 is invoked with a safety property.

34

Algorithm 6: Generation of a critical subsystem wrt. a reachability property 𝜙
and rerouting vector 𝛾.

Input : An MC 𝐷 = (𝑆, 𝑠𝑖𝑛𝑖𝑡,𝑃), a reachability property
𝜙 ≡ P◁▷𝜆[F 𝑇] s.t. 𝐷 ̸|= 𝜙, a rerouting vector 𝛾.

Output: A critical set 𝐶 for 𝐷 and 𝜙.
1 Function counterexampleRerouting(𝐷,𝜙,𝛾):
2 𝑖← 0

3 𝐶(𝑖) ← ∅
4 while true do
5 𝐷(𝑖) ← 𝐷↓𝐶(𝑖)[𝛾]

6 𝑥(𝑖) ← reachabilityMC(𝐷(𝑖), 𝑇 ∪ {𝑠⊤})
7 if 𝑥(𝑖)(𝑠𝑖𝑛𝑖𝑡) ̸◁▷ 𝜆 then
8 return 𝐶
9 end if

10 𝑠(𝑖) ← next(𝑆 ∖ 𝐶(𝑖))

11 𝐶(𝑖+1) ← 𝐶(𝑖) ∪ {𝑠(𝑖)}
12 𝑖← 𝑖+ 1

13 end while

(b) We activate the initial state 𝑠𝑖𝑛𝑖𝑡 (𝐶(1) = {𝑠𝑖𝑛𝑖𝑡}) and model check the correspond-
ing subsystem 𝐷(1) depicted on Figure 5.3b. The obtained reachability probabil-
ity 𝑥(1)(𝑠𝑖𝑛𝑖𝑡) in the initial state is still 0 ≤ 0.3: set 𝐶(1) is not critical.

(c) We activate state 𝑠1 (𝐶(2) = {𝑠𝑖𝑛𝑖𝑡, 𝑠1}) and model check 𝐷(2) (see Figure 5.3c), finally
obtaining 𝑥(2)(𝑠𝑖𝑛𝑖𝑡) = 0.8 > 0.3, i.e. 𝐷(2) is a critical subsystem.

Recall our discussion from Example 5 in Chapter 2 and notice that, again, a target
state 𝑡 does not belong to a critical set. Although this violates Definition 4 of a critical set
(notice that 𝒟𝑟0↓{𝑠𝑖𝑛𝑖𝑡, 𝑠1} actually satisfies 𝜙), we are safe since we are primarily interested
in transitions of activated states: once transitions from states 𝑠𝑖𝑛𝑖𝑡 and 𝑠1 are activated,
we can reach target state 𝑡 with the probability exceeding threshold 𝜆. Therefore, it is
completely irrelevant what were the original transitions from state 𝑡 (or from state 𝑓 , for
that matter). The reason we complicate this notion of a critical subset is that, from the point
of view of synthesis, transitions emanating from 𝑡 (and therefore values of parameters used
for defining these transitions) were not important to refute 𝜙. Therefore, we want to declare
as critical only states that were activated (i.e. those the transitions from which are actually
used), to define a conflict (a set of relevant parameters) as per Definition 13. In our example,
we are interested in parameters 𝑋 and 𝑌 used in activated states 𝑠𝑖𝑛𝑖𝑡 and 𝑠1, confirming
that, from the point of view of CEGIS, both 𝑋 and 𝑌 are relevant parameters to reject 𝑟0.

The following proposition brings more light into how Algorithm 6 operates internally.
The proposition is stated with only an outline of a proof.

Proposition 4. Let 𝜙 ≡ P≤𝜆[F 𝑇] be a safety property and 𝐷 = (𝑆, 𝑠𝑖𝑛𝑖𝑡,𝑃) be an MC such
that 𝐷 ̸|= 𝜙. Let 𝜒 = reachabilityMC(𝐷,𝑇) be a vector of exact reachability probabilities
for 𝐷. Similarly, let 𝑥(𝑖) = reachabilityMC(𝐷(𝑖), 𝑇) for 0 ≤ 𝑖 ≤ |𝑆|, where chains 𝐷(𝑖) are
consistent with Algorithm 6 executed with rerouting vector 𝛾 ≤ 𝜒. Then 𝛾 ≤ 𝑥(0) ≤ 𝑥(1) ≤
· · · ≤ 𝑥(|𝑆|) = 𝜒.

35

1
0.8

0.2

1

1

1

1 1
1

1

1

(a)

1
0.8

0.2

1

1

1

1
1

1

1

(b)

1
0.8

0.2

1

1

1

1

1

1

(c)

Figure 5.3: Constructing a counterexample to𝒟𝑟0 and 𝜙 from Example 12 using Algorithm 6
and rerouting vector 𝛾 = 0.

Proposition 4 essentially states that, if Algorithm 6 is executed on an MC 𝐷 and a safety
property 𝜙 with the rerouting vector 𝛾 being a lower bound of the true reachability probabil-
ities 𝜒 for 𝐷, then, in each iteration, by activating more and more states – and introducing
more and more paths to the subsystem 𝐷(𝑖) – the sequence (𝑥(𝑖))

|𝑆|
𝑖=0 of reachability prob-

abilities computed on Line 6 is nondecreasing. To see why this is the case, let us consider
separate cases. Recall notation associated with computing reachability probabilities in Algo-
rithm 1. If 𝑠 ∈ 𝑆1 = 𝑇 , i.e. 𝜒(𝑠) = 1, then also 𝑥(𝑖)(𝑠) = 1, implying 𝛾(𝑠) ≤ 𝑥(𝑖)(𝑠) ≤ 𝜒(𝑠).
If 𝑠 ∈ 𝑆0 is a state from which 𝑇 is unreachable, i.e. 𝜒(𝑠) = 0, then 𝑇 is unreachable from 𝑠
in any subsystem 𝐷(𝑖); also, 𝑠⊤ must be unreachable from 𝑠 as well since it is ‘connected’ to
state 𝑠 via a transition 𝛾(𝑠) ≤ 𝜒(𝑠) = 0. Finally, let us consider a general case 𝑠 ∈ 𝑆?. Until
𝑠 is activated and original transitions are used, the only ‘target’ state reachable from 𝑠 is 𝑠⊤,
and therefore the reachability probability equals 𝛾(𝑠). Assume we observe some iteration
𝑖, when state 𝑠 has already been activated. Reachability probability 𝑥(𝑖)(𝑠) must satisfy

𝑥(𝑖)(𝑠) =
∑︁
𝑠′∈𝑆

𝑃 (𝑠, 𝑠′)𝑥(𝑖)(𝑠′) =
∑︁
𝑠′∈𝐶

𝑃 (𝑠, 𝑠′)𝑥(𝑖)(𝑠′) +
∑︁

𝑠′∈𝑆∖𝐶

𝑃 (𝑠, 𝑠′)𝛾(𝑠′).

If none of the successors of 𝑠 is activated, then 𝑥(𝑖)(𝑠) =
∑︀

𝑠′∈𝑆∖𝐶 𝑃 (𝑠, 𝑠′)𝛾(𝑠′) must be
at least 𝛾(𝑠) (otherwise, 𝛾 would not be a lower bound on the reachability probabil-
ity), i.e. 𝛾(𝑠) ≤ 𝑥(𝑖)(𝑠). On the other hand, if state 𝑠 is connected to some activated
states, there might exist some paths leading to 𝑇 and contributing more probability mass
to the overall value of 𝑥(𝑖)(𝑠), in which case, again, 𝛾(𝑠) ≤ 𝑥(𝑖)(𝑠). The value of 𝑥(𝑖)(𝑠),
however, cannot exceed 𝜒(𝑠) since only by expanding all states and accounting all possible
paths leading to 𝑇 we obtain the value 𝜒(𝑠). Hence, 𝛾(𝑠) ≤ 𝑥(𝑖)(𝑠) ≤ 𝜒(𝑠). The last
remark also justifies why 𝑥(|𝑆|) = 𝜒.

Proposition 4 is a key to unlocking a superior counterexample generation technique. Let
us again return to Example 13. According to Proposition 4, 𝛾 ≤ 𝑥(0) ≤ 𝑥(1) ≤ 𝑥(2) ≤ 𝜒.
Without computing exact values of vectors 𝑥(𝑖), we can at least assert that the proposition
holds for the initial state (0 ≤ 0 ≤ 0 ≤ 0.8 ≤ 0.8): recall that, in Example 13, we
executed Algorithm 6 with the lower bound 𝛾 = 0 ≤ 𝜒 on the reachability probability.
Now consider we execute Algorithm 6 with 𝛾 = 𝜒. We would obtain a rerouting of 𝒟𝑟0 ,
where the initial state 𝑠𝑖𝑛𝑖𝑡 is connected to 𝑠⊤ via a transition 𝛾(𝑠𝑖𝑛𝑖𝑡) = 𝜒(𝑠𝑖𝑛𝑖𝑡) = 0.8,
immediately yielding a ‘counterexample’ with the critical set 𝐶 = ∅. The interpretation
of such behavior goes as follows. The case 𝛾 = 0 is the most pessimistic one: we assume
a family of all Markov chains, having a lower bound 0 on a reachability probability, and

36

then we are asking, given 𝐷 ̸|= 𝜙, what is an essential part of 𝐷 that makes it violate 𝜙?
In other words, what fraction 𝐷↓𝐶 of 𝐷 is sufficient to reject not only 𝐷 but also those
chains that share the same subsystem 𝐷↓𝐶? On the other hand, if we take 𝛾 = 𝜒, we
are essentially asking: given that 𝐷 ̸|= 𝜙 (remember that 𝜒(𝑠𝑖𝑛𝑖𝑡) > 𝜆), what fraction of
𝐷 is sufficient to prove that 𝐷 ̸|= 𝜙? Well, 𝐶 = ∅ is enough: 𝐷 ̸|= 𝜙 follows trivially
from 𝐷 ̸|= 𝜙, period. The two cases above represent two extreme cases for counterexample
generation: the pessimistic case 𝛾 = 0, where we deal with a family of all Markov chains
and try to safely reject as many possible chains as possible, and a trivial case 𝛾 = 𝜒 where
we deal with a family {𝐷} of Markov chains and there is nothing more to reject other than
𝐷 that a priori violates 𝜙. This comparison is peculiar for one specific reason. Notice how
computing counterexample for a family of all Markov chains is hard (it took Algorithm 6
three iterations to arrive at a critical set inducing two relevant parameters) and computing
counterexample for a small family {𝐷} is almost trivial (one model checking call, after
which all parameters are declared irrelevant), and the only difference in the execution of
Algorithm 6 was the lower bound 𝛾 it was supplied with. Essentially, the closer 𝛾 to 𝜒,
the better the quality of produced counterexamples.

At this point it should be obvious how one would improve counterexample generation
for a family 𝒟 of MCs and a safety property 𝜙: construct a quotient MDP 𝑀𝒟 and in-
voke an (analog of) MDP model checking Algorithm 2 to compute a lower bound 𝑥min on
the reachability probability for all chains in family 𝒟, and then supply 𝑥min as the rerouting
vector 𝛾 for subsequent counterexample generation. In cases where the lower estimate 𝑥min

is not too conservative (𝑥min ̸≈ 0) then we have a chance for obtaining smaller counterex-
amples (relevant to not all MCs, but at least to those that are considered in the family 𝒟),
thus pruning the state space of candidate solutions faster. Let us test this conjecture in
practice.
Example 14. We return again to the family 𝒟 of MCs and the safety property 𝜙 ≡
P≤0.3[F {𝑡}] from Example 12. Model checking a quotient MDP 𝑀𝒟 yields the follow-
ing lower bound on the reachability probability (can be easily read from Figure 5.2):
𝑥min : [𝑠𝑖𝑛𝑖𝑡 ↦→ 0.2, 𝑠1 ↦→ 0.6, 𝑠2 ↦→ 0.2, 𝑡 ↦→ 1, 𝑓 ↦→ 0]. Let us now follow the steps of
CEGIS and consider a realization 𝑟0, which, as we already know, is unsatisfiable. We now
invoke Algorithm 6 with 𝛾 = 𝑥min to construct the corresponding counterexample. The ex-
ecution is illustrated in Figure 5.4. We begin iteration 0 with an empty set 𝐶(0) of active
states. Model checking 𝐷(0) (see 5.4a) yields 𝑥(0)(𝑠𝑖𝑛𝑖𝑡) = 0.2 ≤ 0.3 and thus 𝐷(0) is not
a counterexample. We then activate 𝑠𝑖𝑛𝑖𝑡, 𝐶(1) = {𝑠𝑖𝑛𝑖𝑡}, and now model checking 𝐷(1)

(depicted in Figure 5.4b) yields 𝑥(1)(𝑠𝑖𝑛𝑖𝑡) = 0.6 > 0.3, completing the counterexample
generation. The only relevant parameters are those used in activated transitions from
state 𝑠𝑖𝑛𝑖𝑡, i.e. 𝐾 = {𝑋}, improving upon the previously computed conflict {𝑋,𝑌 }.

One can view transition 𝛾(𝑠) = 𝑥min(𝑠) from inactive 𝑠 to a target state 𝑠⊤ as a ‘short-
cut’ representing the least possible set of transitions connecting 𝑠 and 𝑇 in all MCs in
the considered family 𝒟. In other words, by ignoring exact transitions of inactive 𝑠, we
retain information that the reachability probability in 𝑠 is not zero (as considered in pure
CEGIS) but at least 𝑥min(𝑠). Furthermore, if in the obtained counterexample the state 𝑠
remains inactive, it means that, in order to refute 𝜙, the system might have to use paths
connecting 𝑠 and 𝑇 , but the contributed probability is enough to exceed threshold 𝜆, re-
gardless of the exact values of the parameters that are considered on these paths. In our
example, during iteration 0 we have e.g. a shortcut with value 0.2 from state 𝑠𝑖𝑛𝑖𝑡 to a vir-
tual target state 𝑠⊤, illustrating the fact that it is possible to reach 𝑇 with probability at
least 0.2, regardless of concrete transitions available in state 𝑠𝑖𝑛𝑖𝑡 and beyond. In some

37

1
0.8

0.2

1

1

1

0.8

0.4

1

1

0.2

0.6 1

(a)

1
0.8

0.2

1

1

1

0.4

1

1

0.6 1

(b)

Figure 5.4: Constructing a counterexample to𝒟𝑟0 and 𝜙 from Example 12 using Algorithm 6
and rerouting vector 𝛾 = 𝑥min.

cases, the value of 𝑥min(𝑠) might represent impossible reachability value since it is based
on inconsistent schedulers – for consistent ones the value is even higher – but we are sat-
isfied with a lower bound. Unfortunately, during iteration 0 the value 0.2 is not enough
to refute 𝜙, and therefore we activate 𝑠𝑖𝑛𝑖𝑡. By doing so, we introduce to subsystem 𝐷(0)

behavior that is specific to the family member 𝒟𝑟0 , and continue to particularize this chain
until it represents few enough family members, all of them violating 𝜙. In our case, by
activating 𝑠𝑖𝑛𝑖𝑡, we declare that the subsystem must at least enter state 𝑠1 (since 𝑋 = 𝑠1),
and therefore the considered counterexample will be applicable to those family members
that also assume 𝑋 = 𝑠1. From state 𝑠1 having a minimum probability of 0.6 of reaching
𝑇 (as reflected in transition 0.6 to 𝑠⊤), it is now sufficient to violate threshold 𝜆 and thus
complete the construction of the counterexample. The obtained conflict set involves only
parameters associated with the activated transitions, i.e. {𝑋}.

Before we describe in more detail how to properly use this improved counterexample
generation approach in the context of probabilistic synthesis, let us complete our improved
counterexample generation by considering liveness properties as well.

Proposition 5. Let 𝜙 ≡ P≥𝜆[F 𝑇] be a liveness property and 𝐷 = (𝑆, 𝑠𝑖𝑛𝑖𝑡,𝑃) be an MC
such that 𝐷 ̸|= 𝜙.Let 𝜒 = reachabilityMC(𝐷,𝑇) be a vector of exact reachability proba-
bilities for 𝐷. Similarly, let 𝑥(𝑖) = reachabilityMC(𝐷(𝑖), 𝑇) for 0 ≤ 𝑖 ≤| 𝑆 |, where chains
𝐷(𝑖) are consistent with Algorithm 6 executed with the rerouting vector 𝛾 ≥ 𝜒. Then
𝛾 ≥ 𝑥(0) ≥ 𝑥(1) ≥ · · · ≥ 𝑥(|𝑆|) = 𝜒.

Justification of Proposition 5 is analogous to that of Proposition 4 concerning safety
formulae. To construct a counterexample for a liveness property, we begin with a pes-
simistic estimate that each state can reach 𝑇 with probability 𝛾(·) and then gradually add
behavior inherent to 𝐷, until we manage to trap enough probability outside of 𝑇 . Basi-
cally, every conclusion we have reached regarding the safety properties can be applied to
liveness formulae as well, up to the interchange of operators. In particular, for construct-
ing a counterexample for a family 𝒟 of MCs, one must compute an upper bound 𝑥max on
the reachability probability and then use it for rerouting in Algorithm 6. Furthermore,
Algorithm 6 can be used for synthesizing chains wrt. reward properties as well, since, nu-
merically, these work on similar principles as reachability properties. Hence, we obtain
a unified algorithm capable of handling a huge variety of specifications, as opposed to ex-

38

isting algorithms for counterexample generation, where handling liveness specifications or
even reward properties requires additional manipulations with model and/or specification.

5.3 The Advanced Approach
Although we have already seen how to properly facilitate MDP model checking for coun-
terexample generation – compute lower/upper bound on the reachability probability and
then run a CEGIS loop, where counterexamples are computed using Algorithm 6 – a couple
of implementation details are still worth mentioning. First of all, although we might use
lower/upper bound for the quotient MDP 𝑀𝒟 directly, this bound might be too conser-
vative (𝑥min ≈ 0 and 𝑥max ≈ 1) and thus offer little to no help during counterexample
generation. Therefore, it makes sense to run CEGAR loop for some time and let it re-
fine 𝒟 into a set of subfamilies for which the corresponding bounds are usable. In our
algorithm, we use a parameter 𝑚𝑑𝑝𝑀𝐶𝑙𝑖𝑚𝑖𝑡 to limit the number of MDP model checking
calls to a constant value. If, after reaching this limit, CEGAR still has undecidable (but
analyzed) subfamilies, we stop CEGAR phase and start analyzing each of these subfami-
lies separately in a CEGIS loop, where we use bounds associated with the corresponding
subfamily for rerouting. Surprisingly, during the experimental evaluation, it will be shown
that, in the majority of cases, even the value 𝑚𝑑𝑝𝑀𝐶𝑙𝑖𝑚𝑖𝑡 = 1 (implying no splitting into
subfamilies) can be optimal, and the value 𝑚𝑑𝑝𝑀𝐶𝑙𝑖𝑚𝑖𝑡 = 7 (implying the depth two of
recursive splitting) was a safe pick for all observed cases.

Second, during counterexample construction in Algorithm 6, it is unlikely that, for
a family member with thousands of states, activating one state at a time is reasonable:
recall that, during each iteration, we have to invoke MC model checker. Instead, we
propose to activate multiple states at a time to avoid this computational overhead. In
our implementation, this is again dictated by a parameter 𝑎𝑐𝑡𝑖𝑣𝑎𝑡𝑒𝑃𝑒𝑟𝐼𝑡𝑒𝑟 representing
a number of states activated before subsequent model checks. Intuitively, small values of
𝑎𝑐𝑡𝑖𝑣𝑎𝑡𝑒𝑃𝑒𝑟𝐼𝑡𝑒𝑟 require frequent model checks but yield smaller counterexamples, since
exceeding the threshold 𝜆 is detected sooner. Conversely, large values of 𝑎𝑐𝑡𝑖𝑣𝑎𝑡𝑒𝑃𝑒𝑟𝐼𝑡𝑒𝑟
save model checking time but might result in poor counterexamples, in the extreme cases
even yielding conflict sets 𝐾 = 𝐾, thus discarding the advantage of MDP model checking
results. In practice, however, we noticed little to no performance fluctuation between simi-
lar values of 𝑎𝑐𝑡𝑖𝑣𝑎𝑡𝑒𝑃𝑒𝑟𝐼𝑡𝑒𝑟: provided that the chosen value is not extreme (i.e. not 1 and
not |𝑆|/2), the designed algorithm provides sound results. Usually, we recommend choosing
the value of |𝑆| · 0.05, i.e. activating 5% of the state space at a time.

Finally, we have not yet discussed how the method 𝑛𝑒𝑥𝑡 used on Line 10 of Algorithm 6
is implemented. Until now it was irrelevant: any order of activation of reachable states suf-
fices, including e.g breadth-first or depth-first search. However, for real-world applications,
where families have millions of members and each member has thousands of states, a ‘good’
order can provide ten times smaller counterexamples than a ‘bad’ one. In particular, one
might get inspired by some informed search heuristics discussed in [3, 4]. In our research, we
considered the simpler approaches discussed below. As will be shown later, they will prove
to be efficient enough, although they still leave some space for subsequent research. Assume
a safety property 𝜙 ≡ P≤𝜆[F 𝑇] and an MC 𝐷 violating 𝜙. Let 𝜒 = reachabilityMC(𝐷,𝑇)
denote the exact reachability probabilities for 𝐷 and that the procedure is executed with
the rerouting vector 𝛾 containing lower bound 𝑥min on the reachability probability. As-
sume we have already activated 𝑖 states in the set 𝐶(𝑖), computed the corresponding 𝑥(𝑖)

(reachability probabilities for subsystem 𝐷(𝑖)), and still do not have a counterexample for

39

𝜙. Let 𝐵(𝑖) := 𝑆𝑢𝑐𝑐(𝐶(𝑖)) ∖ 𝐶(𝑖) ⊆ 𝑆 denote a set of states that are reachable (in one step)
from the activate subspace, yet not have been activated yet. We store states ready for
activation from 𝐵(𝑖) in a priority queue, where we activate a state 𝑠 ∈ argmax𝑠∈𝐵(𝑖) 𝜐(𝑠)
having the maximum value of the key 𝜐(𝑠). For possible candidates for key 𝜐, we consid-
ered vectors 𝑥min, 𝑥max, 𝜒, 𝑥(𝑖) or their combinations. Experimental evaluation associated
with these strategies will be discussed in Chapter 6, here we will mention that the most
suitable key vector was 𝜒. Ultimately, activating a state with the maximum reachabil-
ity probability for a given MC 𝐷 (for which we, essentially, construct a counterexample)
will prioritize states that are closer (in a probabilistic sense) to 𝑇 , and therefore satisfying
paths contributing to a reachability probability exceeding 𝜆 are constructed much faster.
Similarly, if we analyze a liveness property, we choose a state 𝑠 ∈ 𝐵(𝑖) with a minimum
reachability probability 𝜒(𝑠). To summarize, the proposed synthesis technique for family
𝒟 and a reachability property 𝜙 consists of two phases.

∙ [CEGAR phase] Analyze family 𝒟 in a CEGAR loop (see Algorithm 4) with the use of
at most 𝑚𝑑𝑝𝑀𝐶𝑙𝑖𝑚𝑖𝑡 (= 7) MDP model checker calls. Whenever a feasible solution
is found, return it. Whenever all analyzed subfamilies were shown to contain no solu-
tions, return UNSAT. Otherwise, let {(𝒟𝑘,𝛾𝑘)}𝑘 be a set of undecidable families 𝒟𝑘,
with 𝛾𝑘 being the corresponding bound on the reachability probability for each 𝑠 ∈ 𝑆
(lower bound for safety, upper bound for liveness).

∙ [CEGIS phase] For each subfamily 𝒟𝑘, initiate a CEGIS loop (see Algorithm 3).
For constructing counterexamples, use Algorithm 6 with 𝛾𝑘 as a rerouting vector
and activate 𝑎𝑐𝑡𝑖𝑣𝑎𝑡𝑒𝑃𝑒𝑟𝐼𝑡𝑒𝑟 (= 5%) states before subsequent MC model checks.
Whenever a feasible solution if found, return it. If none of the subfamilies contains
a solution, return UNSAT.

40

Chapter 6

Experimental Evaluation

Both integrated methods discussed in Chapter 5 were implemented in Storm [27] – a state-
of-the-art probabilistic model checker. Auxiliary procedures (building and checking models,
CEGIS and CEGAR adapters) were implemented as a Python module using the Storm
Python API. For SMT solving, we use Z3 [35]. The toolchain takes a PRISM [33] or
JANI [11] sketch and a PCTL specification, and returns a satisfying hole assignment, if
such exists. In the following set of experiments, we will investigate the performance of
the synthesis methods for various models and properties. We will be interested in how our
integrated methods compare to two state-of-the-art synthesis approaches for probabilistic
synthesis: program-level CEGIS [13] and CEGAR [14]. All of the experiments are run on
the Ubuntu 19.04 machine with Intel i5-8300H (4 cores at 2.3 GHz) and using up to 8
GB RAM, with all the algorithms being executed sequentially (1 thread). The benchmark
consists of five different models from various domains. In no particular order, these include:

∙ Grid represents a benchmark for solving partially observable MDPs (POMDPs) [29],
where an agent attempts to locate a target in a 4x4 grid. Specifications include
a lower- and upper- bounded properties on the number of steps. The number of holes:
6; family size: 1.7k members; the size of the quotient MDP: 9k states; the average
size of a family member: from 0.6k (safety) to 1.2k (liveness) states.

∙ Pole considers a balancing pole in a noisy environment (motivated by [7, 20]). A spec-
ification is either lower- or upper-bounded probability of balancing the pole for at
least a given amount of time. The number of holes: 17; family size: 1.3M members;
the size of the quotient MDP: 17k states; the average size of a family member: from
11k (liveness) to 14k (safety) states.

∙ Maze is inspired by the infamous cheese-maze example [37]: a simple maze where
an agent (similarly to Grid) attempts to reach a target location. A specification is
either lower- or upper-bounded target state reachability. The number of holes: 20;
family size: 1M members; the size of the quotient MDP: 9k states; the average size
of a family member: from 5k (liveness) to 7k (safety) states.

∙ DPM considers a scheduler for a disk power manager (motivated by [9, 23]). A spec-
ification is a safety property on a service queue overflow. The number of holes: 16;
family size: 43M members; the size of the quotient MDP: 27k states; the average size
of a family member: 4k states.

41

∙ Herman considers a distributed Herman protocol for self-stabilizing rings [28, 34].
A specification is a liveness property asserting that stabilization takes place after one
round. The number of holes: 8; family size: 0.5k members; the size of the quotient
MDP: 54k states; the average size of a family member: 2k states.

6.1 Evaluating the Naive Approach
First, let us briefly evaluate the naive integration: generalizing conflicts using MDP model
checking. We consider a (slightly smaller version of) Grid benchmark with a liveness prop-
erty 𝜙 ≡ P≥𝜆[F 𝑇] and investigate how the three methods: CEGIS, CEGAR, and their
naive integration, handle property 𝜙 with varying threshold 𝜆. The results are reported in
Table 6.1, where for each of the four different values of the threshold we report the com-
putation time (time, in milliseconds) as well as the number of iterations (iters): MC model
checking calls for CEGIS, MDP model checking calls for CEGAR and both (MC+MDP) in
the case of the integrated approach.

𝜆
CEGIS CEGAR Naive

time iters time iters time iters
0.10 69 3 249 8 218 3+6
0.40 413 17 402 24 465 5+14
0.75 5062 191 821 72 1894 16+60
0.90 12113 452 44 2 84 1+2

Table 6.1: Experimental evaluation of three methods for model synthesis.

First, let us investigate how CEGIS and CEGAR alone handle this family of Markov
chains. Notice that, with the increasing value of the threshold 𝜆, we decrease the chance that
any particular model satisfies the liveness property: larger values of 𝜆 correspond to stricter
formulae. This is reflected in the behavior of CEGIS, where, for instance, for the value 0.1 of
𝜆, it was lucky enough to find a satisfiable assignment on the third try. On the other hand,
for the value of 0.9, it takes CEGIS twelve seconds and hundreds of iterations to exhaust
the state space and thus show that the satisfiable assignment does not exist. On the other
hand, CEGAR handles the limiting cases quite well: if the threshold is too small or too large,
then, after a couple of refinements, imprecise under- and over-approximations provided
by MDP model checking are accurate enough to reach a conclusive result. However, for
the values of the threshold that evenly splits the state space of candidates into satisfiable
and unsatisfiable ones (around 0.75 in this case), CEGAR struggles for a while until it
obtains a refined partitioning.

Finally, let us turn our attention to the integrated method. For the value 0.1 of
the threshold 𝜆, where CEGIS is slightly favorable, the integrated method performs the ex-
act same three MC model checking calls and tries (unsuccessfully) during each iteration to
generalize relevant parameters, hence six additional MDP model checking calls. The re-
sulting time is worse than for pure CEGIS, but it still beats the abstraction refinement
scheme. In the case when 𝜆 = 0.4, where there is no clear winner between CEGIS and
CEGAR, the computational overhead in the integrated scheme comes into play and the re-
sulting time is slightly worse than for pure methods. However, notice how in this case
MDP model checking starts to help our integrated method: during the first four iterations

42

it managed to successfully detect and generalize some irrelevant parameters, which lead it
to the satisfiable assignment already in the fifth iteration, instead of 17th in the case of
CEGIS. With the increasing value of the threshold 𝜆, now being 0.75, the CEGIS approach
becomes less and less favorable compared to CEGAR. Nonetheless, the integrated method
manages to leverage the situation with the help of the MDP model checking and the result-
ing time is much better as compared to pure CEGIS, although it still loses to the CEGAR
approach. Finally, when the threshold 𝜆 goes to the extreme values and CEGIS bleaks in
comparison to CEGAR, which manages to prune the state space in two calls, the integrated
method again represents a middle ground between the two methods and is capable of prun-
ing the state space almost as efficiently as pure CEGAR: here the value 1+2 in the table
cell represents one MC model checking call, where it managed to provide a counterexample
where only two parameters are relevant, and then two subsequent MDP model checking
calls where the integrated method successfully generalized both of these parameters and
hereby completed the synthesis.

From the experiment, we can see the integrated method confirms our expectations in
the sense that it is perfectly capable of applying MDP model checking in order to improve
the quality of generated conflicts and is capable, in some cases, of pruning the state space
more efficiently. Performance-wise, it works fine: only in one case (𝜆 = 0.4) it is slightly
outperformed by both methods, otherwise, it tends to emulate a superior approach (CEGIS
for 𝜆 = 0.1, CEGAR for 𝜆 ∈ {0.75, 0.9}), although never outperforming both of the existing
methods. To summarize, the designed method is an adequate approach for probabilistic
synthesis, although it does not represent anything special. As will be shown shortly, the ad-
vanced approach offers much more from the point of view of performance. Therefore, we
abandon the naive approach completely, and, from now on, we reserve the term ‘integrated
method’ exclusively for the synthesis approach that uses estimates of reachability probabil-
ity for the construction of better counterexamples.

6.2 Tuning the Integrated Method
Before comparing the integrated method with existing approaches, let us first report some
interesting observations regarding the strategy design for this method. In particular, we
wish to investigate (1) different strategies for state activation and (2) how the value of
parameters 𝑚𝑑𝑝𝑀𝐶𝑙𝑖𝑚𝑖𝑡 and activatedPerIter determines the behavior of model synthesis.
Regarding the first tangent, recall that we chose to use a priority queue for reached but
not yet activated states, where we activate a state 𝑠 having the maximum (with safety
properties) or minimum (with liveness properties) value of 𝜐(𝑠). Here a choice of vector 𝜐
represents our strategy for state activation. Assume we deal with a safety property. After
investigating several candidates, the following three strategies were shown to be the most
interesting.

1. 𝜐 = 𝑥min: this strategy represents activating a state with a maximum lower bound
on the reachability probability, potentially representing a beginning of a path that
would lead in all members of a family to the set 𝑇 of target states.

2. 𝜐 = 𝜒: this strategy, compared to the previous one, tries instead to activate a state
having a maximum reachability probability for this particular chain.

3. 𝜐 = 𝜒 − 𝑥min: this strategy takes a different approach and, instead of looking for
maximum probabilities, either for a whole family of chains of this particular chain only,

43

0 50 100 150 200 250
mdpMClimit

0

100

200

300

400

500

C
E

G
IS

 it
er

s

mdplower
dtmc-mdplower
dtmc

(a) number of iterations

0 50 100 150 200 250
mdpMClimit

30

40

50

60

70

80

90

tim
e

(s
)

mdplower
dtmc-mdplower
dtmc

(b) execution time (s)

Figure 6.1: Investigating activation strategies for Grid model, safety property, threshold is
𝜆1 = 0.28 (unfeasible).

it takes a difference between the two. The idea here is to pick a state in the direction
where we maximize the difference between the pessimistic estimate 𝑥min and actual
probabilities 𝜒 that we are suspecting to achieve if we continue to expand more and
more states.

As a quick note, observe that using upper bound 𝑥max or the intermediate model check-
ing result 𝑥(𝑖) does not make sense. The first vector 𝑥max ≥ 𝜒 represents probabilities that
are most likely unachievable in the given member; in the second case, since we evaluate
these vectors for inactive state 𝑠, one can see that 𝑥(𝑖)(𝑠) = 𝛾(𝑠) = 𝑥min(𝑠), i.e. 𝑥(𝑖) has
the same semantics as 𝑥min. As for the three strategies mentioned above, we do not have
sufficient justification to prefer any of the three, so it is better to allow empirical evidence to
speak for itself. In the following experiment, we consider the Grid benchmark and a safety
specification, where the threshold 𝜆 first takes value 𝜆1 = 0.28, for which the corresponding
synthesis problem is unfeasible. Additionally, we execute the algorithm with different values
of 𝑚𝑑𝑝𝑀𝐶𝑙𝑖𝑚𝑖𝑡. The results are reported in Figure 6.1, where, for each of the three strate-
gies discussed above – 𝜐 = 𝑥min (mdplower), 𝜐 = 𝜒 (dtmc) and 𝜐 = 𝜒− 𝑥min (mdplower-
dtmc), we first report the number of CEGIS iterations (i.e. constructed counterexamples)
required for the synthesis, and then the synthesis time (in seconds). For reference, pure
CEGIS requires 453 iterations, whereas pure CEGAR requires 203 iterations.

Regarding the number of CEGIS iterations wrt. the allowed number 𝑚𝑑𝑝𝑀𝐶𝑙𝑖𝑚𝑖𝑡 of
CEGAR iterations, we, as expected, observe the inverse dependency: the more we refine
the subfamilies in the CEGAR phase, the easier it is to prune the state space in the CEGIS
phase. As we can see, the expansion strategy 𝜐 = 𝜒, by means of constructing better
(that is, smaller) counterexamples, and therefore by pruning the state space faster, requires
the least amount of CEGIS iterations, as compared to other strategies. This is immediately
reflected in the performance of the corresponding strategies, where choosing 𝜐 = 𝜒 displays
the best behavior. In Figure 6.2, the experiment is repeated with threshold 𝜆2 = 0.30 (for
which the synthesis problem is feasible) with the same results. For reference, in this case,
pure CEGIS requires 191 iterations, whereas pure CEGAR requires only 20 iterations.

Although this experiment answers which expansion strategy is the most efficient one
(from now on, we will be using exclusively 𝜐 = 𝜒, i.e. exact values of reachability probali-
ties), it remains unclear how to tune the parameter 𝑚𝑑𝑝𝑀𝐶𝑙𝑖𝑚𝑖𝑡. For 𝜆2 = 0.30, the opti-
mal solution seems to be around 𝑚𝑑𝑝𝑀𝐶𝑙𝑖𝑚𝑖𝑡 = 5, although, for 𝜆1 = 0.30, even the value
𝑚𝑑𝑝𝑀𝐶𝑙𝑖𝑚𝑖𝑡 = 1 seems enough: here we model check the quotient MDP and, even without
refining, obtain the lower bound on the reachability probability adequate enough to allow,

44

0 5 10 15 20 25
mdpMClimit

0

50

100

150

200

C
E

G
IS

 it
er

s

mdplower
dtmc-mdplower
dtmc

(a) number of iterations

0 5 10 15 20 25
mdpMClimit

0

10

20

30

40

tim
e

(s
)

mdplower
dtmc-mdplower
dtmc

(b) execution time (s)

Figure 6.2: Investigating activation strategies for Grid model, safety property, threshold is
𝜆2 = 0.30 (feasible).

in the CEGIS phase, to prune the state space in as low as 46 iterations (as compared to
191 for pure CEGIS), and therefore refining subfamilies even further is, in fact, excessive.
Of course, the exact behavior will depend on the model and on the property. However, as
was mentioned earlier, we rarely encountered cases where picking 𝑚𝑑𝑝𝑀𝐶𝑙𝑖𝑚𝑖𝑡 = 1 was
not optimal, although, even in such cases, picking the value of 𝑚𝑑𝑝𝑀𝐶𝑙𝑖𝑚𝑖𝑡 larger than
10 is unreasonable: we recommend to choose the value of 𝑚𝑑𝑝𝑀𝐶𝑙𝑖𝑚𝑖𝑡 around 7.

Finally, let us investigate how the value of parameter 𝑎𝑐𝑡𝑖𝑣𝑎𝑡𝑒𝑃𝑒𝑟𝐼𝑡𝑒𝑟 influences the ex-
ecution of the integrated algorithm. Intuitively, we expect, with the increasing values
of 𝑎𝑐𝑡𝑖𝑣𝑎𝑡𝑒𝑃𝑒𝑟𝐼𝑡𝑒𝑟, 1) spend less time model checking candidate counterexamples, thus
avoiding the computational overhead, and 2) provide larger counterexamples, thus pruning
the state space of candidate solutions slower and require more iterations in the CEGIS
phase. In Figure 6.3 we report the results of the corresponding experiment, confirming our
expectations. Here we pick the same Grid model and a safety property (i.e. average family
member has approx. 600 states) and execute integrated algorithm with 𝑚𝑑𝑝𝑀𝐶𝑙𝑖𝑚𝑖𝑡 = 1
and 𝑎𝑐𝑡𝑖𝑣𝑎𝑡𝑒𝑃𝑒𝑟𝐼𝑡𝑒𝑟 ranging from 1 to 65. For each case, we report a number of iterations
in the CEGIS phase and execution time, in seconds. We confirm that larger values of pa-
rameter 𝑎𝑐𝑡𝑖𝑣𝑎𝑡𝑒𝑃𝑒𝑟𝐼𝑡𝑒𝑟 correspond to larger counterexamples, requiring more iterations.
We also confirm that both extremely small and extremely large values of 𝑎𝑐𝑡𝑖𝑣𝑎𝑡𝑒𝑃𝑒𝑟𝐼𝑡𝑒𝑟
result in rather poor behavior: either because activating one to two states at a time is
unreasonable, or because activating a hundred of states at a time yields large counterexam-
ples. To put it into perspective, for this model and property, it takes pure CEGIS around
20 seconds and 453 iterations to exhaust the state space – the same amount of iterations as
for integrated method with 𝑎𝑐𝑡𝑖𝑣𝑎𝑡𝑒𝑃𝑒𝑟𝐼𝑡𝑒𝑟 ≥ 65. As was mentioned previously, we sug-
gest picking the value of 𝑎𝑐𝑡𝑖𝑣𝑎𝑡𝑒𝑃𝑒𝑟𝐼𝑡𝑒𝑟 to be around 5% of the state space of a Markov
chain. In such cases, we see that the integrated approach is capable of constructing smaller
counterexamples and requires much fewer iterations, in some cases achieving a threefold
performance increase.

6.3 Performance Evaluation of the Synthesis Methods
Having decided how to set the parameters of the integrated algorithm properly, we are
now ready to compare how the method performs compared to pure CEGIS and CEGAR.
We evaluate all three methods on a set of five models mentioned at the beginning of this
chapter, some of which having different properties of interest, resulting in a total of eight
different experiments. For each model and property P◁▷𝜆[F 𝑇], we investigate how the per-

45

0 10 20 30 40 50 60 70
activatePerIter

6

7

8

9

10

11

tim
e

(s
)

250

300

350

400

450

500

C
E

G
IS

 it
er

s

Figure 6.3: Caption

𝜆 CEGIS CEGAR Integrated
0.01 19.09 111.44 6.7
0.03 7.87 9.6 4.31
0.05 7.7 9.59 4.4
0.07 5.79 6.75 3.21
0.09 <1 5.22 <1
0.11 <1 5.34 <1
Grid model, safety property, 𝜆𝑓 = 0.02.

𝜆 CEGIS CEGAR Integrated
0.89 <1 16.81 <1
0.91 <1 16.69 <1
0.93 <1 16.66 <1
0.95 9.09 56.92 5.1
0.97 8.65 54.39 5.14
0.99 21.1 298.95 10.64
Grid model, liveness property, 𝜆𝑓 = 0.98.

Figure 6.4: Performance evaluation (execution time, s) for Grid model.

formance of the methods depends on the bound 𝜆 for values in the vicinity of the feasibility
threshold 𝜆𝑓 , that is, we consider the hardest feasibility problems (problems with 𝜆 too
low or too high are usually easily solvable). For each method, we report the execution
time, in seconds. Measurements under one second are displayed as ‘<1’, measurements
with ten-minutes timeout are displayed as ‘>600’. The integrated method is executed with
‘optimal’ (wrt. a given model and a given property) values. For the exact values of obtained
measurements, as well as for the values of parameters of the integrated method (for the pur-
poses of reproducibility), please refer to the report file in the attached medium. The results
are reported in Tables 6.4 through 6.7. Let us try to process the presented numbers and
interpret them in a meaningful way.

∙ Grid. In our case, safety and liveness properties for the Grid model are dual (P≤𝜆[F 𝑇] ≡
P>1−𝜆[F 𝑆∖𝑇]), which is reflected in the behavior of synthesis methods (discrepancy
in the absolute values between safety and liveness properties are due to the difference
in the state space of family members, see the description at the beginning of this
chapter). This experiment is designed to showcase that the integrated method han-
dles liveness properties with the same ease as safety properties, also confirming that
our intuition to choose min𝜐 during activation with liveness properties is correct.
For all values of 𝜆, the integrated method is at least as good CEGIS; in hard cases
(𝜆 = 0.01 for safety or 𝜆 = 0.99 for liveness), it is at least twice as good as CEGIS
and at least 15x as good as CEGAR.

46

𝜆 CEGIS CEGAR Integrated
0.73 >600 <1 <1
0.75 >600 9.77 5.1
0.77 >600 9.16 5.15
0.79 <1 7.38 <1
0.81 <1 5.16 <1
0.83 <1 <1 <1
Pole model, safety property, 𝜆𝑓 = 0.74.

𝜆 CEGIS CEGAR Integrated
0.25 <1 <1 <1
0.27 <1 3.97 <1
0.29 <1 5.2 <1
0.31 >600 7.55 3.99
0.33 >600 8.38 2.92
0.35 >600 <1 <1
Pole model, liveness property, 𝜆𝑓 = 0.34.

Figure 6.5: Performance evaluation (execution time, s) for Pole model.

𝜆 CEGIS CEGAR Integrated
0.16 <1 <1 <1
0.18 25.48 10.79 2.09
0.20 25.5 10.8 1.14
0.22 43.09 10.91 1.15
0.24 39.65 10.82 1.17
0.26 1.54 10.87 1.16
Maze model, safety property, 𝜆𝑓 = 0.17.

𝜆 CEGIS CEGAR Integrated
0.74 1.49 94.86 1.67
0.76 79.27 10.2 1.63
0.78 106.13 10.42 4.65
0.80 82.9 10.33 1.5
0.82 566.82 10.52 2.27
0.84 5.75 <1 <1
Maze model, liveness property, 𝜆𝑓 = 0.83.

Figure 6.6: Performance evaluation (execution time, s) for Maze model.

𝜆 CEGIS CEGAR Integrated
0.003 1.28 <1 <1
0.005 52.74 <1 <1
0.007 >600 <1 <1
0.009 >600 32.14 1.08
0.011 2.1 31.67 1.02
0.013 2.09 31.85 1.01

DPM model, safety property, 𝜆𝑓 = 0.008.

𝜆 CEGIS CEGAR Integrated
0.52 46.01 77.77 2.34
0.54 45.23 77.53 2.37
0.56 45.4 79.76 2.3
0.58 >600 263.23 3.36
0.60 >600 260.27 3.33
0.62 >600 276.14 3.31

Herman model, liveness property, 𝜆𝑓 = 0.57.

Figure 6.7: Performance evaluation (execution time, s) for DPM and Herman models.

47

∙ Pole. This is an example where the program contains a considerable amount of
commands (as well as holes) and, additionally, the average size of a family member
is quite high (around 14k states). Therefore, high-level CEGIS does not perform
too good unless it is lucky to find a feasible solution early; meanwhile, CEGAR
performs fine. The integrated method does not have any issues the CEGIS approach
experiences, and in all cases performs almost twice as good as CEGAR.

∙ Maze. This is a model with a moderate number of family members of moderate
size. CEGAR clearly outperforms CEGIS here. Meanwhile, in non-trivial cases,
the integrated approach performs five (liveness) to ten (safety) times better than
CEGAR, and around 80 (liveness) to 25 (safety) better than CEGIS.

∙ DPM. The last two models address the scalability of the synthesis methods. Recall,
from the beginning of this chapter, that DPM is a family with 43M members, with
the corresponding quotient MDP having 27k states. We see that CEGIS easily handles
cases with high or low values of threshold 𝜆, but really struggles near the feasibility
threshold 𝜆𝑓 . On the other hand, CEGAR is able to reject all candidates in one
MDP model checking for unfeasible cases 𝜆 < 𝜆𝑓 , but has serious problems handling
feasible cases 𝜆 > 𝜆𝑓 due to the size of the quotient MDPs. Meanwhile, the integrated
method has absolutely no problems and is able to synthesize even the hardest cases
in around one second. Here, the integrated method is making use of one MDP model
checking in order to quickly prune the state space in about 3 iterations, as compared
to 11 for pure CEGIS.

∙ Herman. Finally, Herman is a model with an even larger quotient MDP (around 54k
states), although the total number of members is not that high. Nevertheless, both
CEGIS and CEGAR struggle with it, especially for unfeasible properties. However,
the integrated method computes all of the cases without particular effort, in a mat-
ter of a couple of seconds, demonstrating relative acceleration around 20x (feasible
properties, compared to CEGIS) and up to 80x (unfeasible properties, compared to
CEGAR).

Several conclusions are in order. First, we have never encountered a case study where
the integrated method would perform worse than either of the existing methods. The high-
lights of our experiment evaluation were cases where one of the methods – CEGIS or
CEGAR – is preferred to solve feasible problems and the other performs better for unfeasi-
ble cases: we have witnessed that the integrated technique inherits the strong sides of both
methods and is capable of handling any model and any property without any performance
decrease compared to pure approaches. In fact, in most cases, it performs significantly
better than both CEGIS and CEGAR. Finally, if we scale the model one or two orders of
magnitude up, we have witnessed that, while state-of-the-art methods struggle to compute
the solution within a meaningful time frame, the novel integrated approach manages to sail
through any of the problems it is faced with and manages to produce a sound result in
a matter of seconds.

48

Chapter 7

Final Considerations

7.1 Future Research
Although the designed integrated synthesis method demonstrates remarkable results, it still
offers a considerable space for improvement. First, it would be desirable to introduce a self-
tuning loop where a method would adapt its parameters 𝑚𝑑𝑝𝑀𝐶𝑙𝑖𝑚𝑖𝑡 and 𝑎𝑐𝑡𝑖𝑣𝑎𝑡𝑒𝑃𝑒𝑟𝐼𝑡𝑒𝑟
to a given model. The main idea is simple: we begin with some small values for both param-
eters and start a CEGAR loop. After refining the subfamilies for some time – as dictated
by 𝑚𝑑𝑝𝑀𝐶𝑙𝑖𝑚𝑖𝑡 – we initiate CEGIS phase, where we monitor the quality of computed
counterexamples: if provided counterexamples are too large (indicated by the number of
states, number of conflicting commands or, preferably, number of conflicting holes) then we
now that the provided bound on the reachability probability is too conservative, thus, we
continue refining the subfamilies. Once we start constructing adequate counterexamples,
we can try to increase the activation step 𝑎𝑐𝑡𝑖𝑣𝑎𝑡𝑒𝑃𝑒𝑟𝐼𝑡𝑒𝑟, thus reducing the computational
overhead, but probably leading to larger counterexamples, necessitating the execution of
CEGAR phase again. Speaking of activation, it makes sense to look more rigorously into
the activation strategy, i.e. in which order to activate states during counterexample con-
struction. Although we brushed off this issue and picked a simple uninformed search based
on the best criterium, we think it is still worth adopting ideas that gave rise to some
advanced approaches, as in e.g. previously mentioned eXtended Best-First search [4] and
the like. Finally, the method can significantly benefit from coarse-grained parallelization.

Regarding the functionality of the proposed method, we would like to introduce support
for multiple properties, i.e. synthesizing a Markov chain wrt. multiple specifications. This is
a feature that even CEGAR, in its current version, does not support, although the challenge
is more implementational than theoretical. Another such implementational challenge is
the support for parameter restrictions: given the domains for each of the parameters (holes),
we wish to introduce additional constraints on mutually exclusive parameter combinations.
Next, we wish to introduce support for reward properties or other PCTL specifications: this
is again a purely implementational task, since we have already established the necessary
theoretical background. Afterward, we wish to apply the novel approach for other synthesis
problems, including threshold synthesis or optimal synthesis.

Finally, we would like to investigate more challenging questions beyond the scope of
the existing synthesis framework. This includes, among others, adapting the ideas for state-
space aggregation developed in [6], since model checking a Markov chain against reachability
specifications remains a core stage of the synthesis pipeline. Other open problems include
synthesizing infinite families of (infinite-state) Markov chains or deciding monotonicity of

49

parameters, which could not only assist in the process of synthesis, but could also provide
sound feedback to the designer of a probabilistic system.

7.2 Conclusions
In this thesis, we considered the problem of automated synthesis of probabilistic systems.
After recognizing the importance of having an efficient solution to this problem and identi-
fying its key challenges: explosion of the underlying state space and the exponential growth
of the family of candidate solutions, we first tackled the former problem and extended
existing frameworks for aggregation-based analysis of Markov models by allowing them
to handle chains with an arbitrary structure of the underlying state space and improve
upon existing bounds on the approximation error. The designed framework was proved to
be superior to existing approaches, providing the speedup of the analysis up to a factor
of five with the corresponding approximation error bounded within 0.1%. Afterward, we
considered the synthesis problem itself and, by adopting previously developed principles of
counterexample-guided inductive synthesis (CEGIS) and abstraction refinement (CEGAR)
we introduced a novel integrated synthesis algorithm. Experiments on practically relevant
case studies demonstrated that the designed technique is not only comparable to state-of-
the-art synthesis approaches, in most cases it manages to significantly outperform existing
methods, sometimes by a margin of orders of magnitude.

50

Bibliography

[1] Abate, A., Brim, L., Češka, M. and Kwiatkowska, M. Adaptive aggregation of
Markov chains: Quantitative analysis of chemical reaction networks. In: Computer
Aided Verification (CAV). Springer, 2015, p. 195–213.

[2] Ábrahám, E., Becker, B., Dehnert, C., Jansen, N., Katoen, J.-P. et al.
Counterexample Generation for Discrete-Time Markov Models: An Introductory
Survey. In: Formal Methods for Executable Software Models: 14th International
School on Formal Methods for the Design of Computer, Communication, and
Software Systems, SFM 2014, Bertinoro, Italy, June 16-20, 2014, Advanced Lectures.
Cham: Springer International Publishing, 2014, p. 65–121. ISBN 978-3-319-07317-0.

[3] Aljazzar, H. and Leue, S. Directed Explicit State-Space Search in the Generation
of Counterexamples for Stochastic Model Checking. IEEE Transactions on Software
Engineering. 2010, vol. 36, no. 1, p. 37–60.

[4] Aljazzar, H., Leitner Fischer, F., Leue, S. and Simeonov, D. DiPro - A Tool
for Probabilistic Counterexample Generation. In: Groce, A. and Musuvathi, M.,
ed. Model Checking Software. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011,
p. 183–187. ISBN 978-3-642-22306-8.

[5] Alur, R., Bodik, R., Juniwal, G., Martin, M. M. K., Raghothaman, M. et al.
Syntax-Guided Synthesis. In: Proceedings of the IEEE International Conference on
Formal Methods in Computer-Aided Design (FMCAD). October 2013, p. 1–17.

[6] Andriushchenko, R. Approximate Techniques for Markov Models. Brno, CZ, 2018.
Bachelor’s thesis. Brno University of Technology, Faculty of Information Technology.
Available at: https://www.fit.vut.cz/study/thesis/20512/.

[7] Arming, S., Bartocci, E., Chatterjee, K., Katoen, J.-P. and Sokolova, A.
Parameter-Independent Strategies for pMDPs via POMDPs. In: McIver, A.
and Horvath, A., ed. Quantitative Evaluation of Systems. Cham: Springer
International Publishing, 2018, p. 53–70. ISBN 978-3-319-99154-2.

[8] Bartocci, E., Grosu, R., Katsaros, P., Ramakrishnan, C. R. and Smolka,
S. A. Model Repair for Probabilistic Systems. In: TACAS. 2011.

[9] Benini, L., Bogliolo, A., Paleologo, G. A. and De Micheli, G. Policy
optimization for dynamic power management. IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems. 1999, vol. 18, no. 6,
p. 813–833.

51

https://www.fit.vut.cz/study/thesis/20512/

[10] Biere, A., Heule, M., Maaren, H. and Walsh, T. Handbook of Satisfiability:
Volume 185 Frontiers in Artificial Intelligence and Applications. january 2009.

[11] Bornholt, J., Torlak, E., Grossman, D. and Ceze, L. Optimizing Synthesis
with Metasketches. In: Proceedings of the 43rd Annual ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages. New York, NY, USA:
Association for Computing Machinery, 2016, p. 775–788. POPL ’16. ISBN
9781450335492.

[12] Ceska, M., Dannenberg, F., Paoletti, N., Kwiatkowska, M. and Brim, L.
Precise Parameter Synthesis for Stochastic Biochemical Systems. Acta Informatica.
march 2016.

[13] Ceska, M., Hensel, C., Junges, S. and Katoen, J. Counterexample-Driven
Synthesis for Probabilistic Program Sketches. CoRR. 2019, abs/1904.12371.

[14] Ceska, M., Jansen, N., Junges, S. and Katoen, J. Shepherding Hordes of Markov
Chains. CoRR. 2019, abs/1902.05727.

[15] Češka, M., Šafránek, D., Dražan, S. and Brim, L. Robustness Analysis of
Stochastic Biochemical Systems. PLOS ONE. Public Library of Science. april 2014,
vol. 9, no. 4, p. 1–23.

[16] Chrszon, P., Dubslaff, C., Klüppelholz, S. and Baier, C. ProFeat:
feature-oriented engineering for family-based probabilistic model checking. Formal
Aspects of Computing. august 2017, vol. 30.

[17] Classen, A., Cordy, M., Heymans, P., Legay, A. and Schobbens, P.-Y. Model
checking software product lines with SNIP. International Journal on Software Tools
for Technology Transfer. 2012, vol. 14, p. 589–612.

[18] Classen, A., Cordy, M., Heymans, P., Legay, A. and Schobbens, P. Y. Formal
semantics, modular specification, and symbolic verification of product-line behaviour.
Science of Computer Programming. february 2014, vol. 80, p. 416–439.

[19] Didier, F., Henzinger, T. A., Mateescu, M. and Wolf, V. Fast Adaptive
Uniformization of the Chemical Master Equation. In: 2009 International Workshop
on High Performance Computational Systems Biology. Oct 2009, p. 118–127.

[20] Es, I., Carwardine, J., Martin, T., Nicol, S., Sabbadin, R. et al. MOMDPs: a
Solution for Modelling Adaptive Management Problems. Twenty-Sixth AAAI
Conference on Artificial Intelligence. july 2012.

[21] Forejt, V., Kwiatkowska, M., Norman, G. and Parker, D. Automated
Verification Techniques for Probabilistic Systems. In: Formal Methods for Eternal
Networked Software Systems: 11th International School on Formal Methods for the
Design of Computer, Communication and Software Systems, SFM 2011, Bertinoro,
Italy, June 13-18, 2011. Advanced Lectures. Berlin, Heidelberg: Springer Berlin
Heidelberg, 2011, p. 53–113. ISBN 978-3-642-21455-4.

[22] Gerasimou, S., Tamburrelli, G. and Calinescu, R. Search-Based Synthesis of
Probabilistic Models for Quality-of-Service Software Engineering (T). In: 2015 30th

52

IEEE/ACM International Conference on Automated Software Engineering (ASE).
Nov 2015, p. 319–330. ISSN null.

[23] Gerasimou, S., Calinescu, R. and Tamburrelli, G. Synthesis of Probabilistic
Models for Quality-of-Service Software Engineering. Automated Software
Engineering. april 2018.

[24] Gillespie, D. T. A general method for numerically simulating the stochastic time
evolution of coupled chemical reactions. Journal of Computational Physics. 1976,
vol. 22, no. 4, p. 403 – 434. ISSN 0021-9991.

[25] Gillespie, D. T. Exact stochastic simulation of coupled chemical reactions. The
journal of Physical Chemistry. ACS Publications. 1977, vol. 81, no. 25, p. 2340–2361.

[26] Haverkort, B., Hermanns, H. and Katoen, J.-P. On the Use of Model Checking
Techniques for Dependability Evaluation. In: Reliable Distributed Systems. IEEE,
2000, p. 228–237.

[27] Hensel, C., Junges, S., Katoen, J.-P., Quatmann, T. and Volk, M. The
Probabilistic Model Checker Storm. 2020.

[28] Herman, T. Probabilistic Self-Stabilization. Inf. Process. Lett. USA: Elsevier
North-Holland, Inc. june 1990, vol. 35, no. 2, p. 63–67. ISSN 0020-0190.

[29] Junges, S., Jansen, N., Dehnert, C., Topcu, U. and Katoen, J.
Safety-Constrained Reinforcement Learning for MDPs. CoRR. 2015, abs/1510.05880.

[30] Kaelbling, L. P., Littman, M. L. and Cassandra, A. R. Planning and acting in
partially observable stochastic domains. Artificial Intelligence. 1998, vol. 101, no. 1,
p. 99 – 134. ISSN 0004-3702.

[31] Kierzek, A. M., Zaim, J. and Zielenkiewicz, P. The Effect of Transcription and
Translation Initiation Frequencies on the Stochastic Fluctuations in Prokaryotic
Gene Expression. The Journal of Biological Chemistry. 2001, vol. 276, no. 11,
p. 8165–8172.

[32] Kwiatkowska, M., Norman, G. and Parker, D. Stochastic Model Checking. In:
Bernardo, M. and Hillston, J., ed. Formal Methods for the Design of Computer,
Communication and Software Systems: Performance Evaluation (SFM’07). Springer,
2007, vol. 4486, p. 220–270. LNCS (Tutorial Volume).

[33] Kwiatkowska, M., Norman, G. and Parker, D. PRISM 4.0: Verification of
Probabilistic Real-time Systems. In: Gopalakrishnan, G. and Qadeer, S.,
ed. Proc. 23rd International Conference on Computer Aided Verification (CAV’11).
Springer, 2011, vol. 6806, p. 585–591. LNCS.

[34] Kwiatkowska, M., Norman, G. and Parker, D. Probabilistic Verification of
Herman’s Self-Stabilisation Algorithm. Formal Aspects of Computing. Springer.
2012, vol. 24, no. 4, p. 661–670.

[35] Lindemann, C. Performance Modelling with Deterministic and Stochastic Petri
Nets. SIGMETRICS Perform. Eval. Rev. New York, NY, USA: Association for
Computing Machinery. august 1998, vol. 26, no. 2, p. 3. ISSN 0163-5999.

53

[36] Meuleau, N., Kim, K., Kaelbling, L. P. and Cassandra, A. R. Solving POMDPs
by Searching the Space of Finite Policies. CoRR. 2013, abs/1301.6720.

[37] Norman, G., Parker, D. and Zou, X. Verification and Control of Partially
Observable Probabilistic Real-Time Systems. CoRR. 2015, abs/1506.06419.

[38] Pathak, S., Ábrahám, E., Jansen, N., Tacchella, A. and Katoen, J.-P. A
Greedy Approach for the Efficient Repair of Stochastic Models. In:. April 2015.

[39] Quatmann, T., Dehnert, C., Jansen, N., Junges, S. and Katoen, J. Parameter
Synthesis for Markov Models: Faster Than Ever. CoRR. 2016, abs/1602.05113.

[40] Rodrigues, G. N., Alves, V., Nunes, V., Lanna, A., Cordy, M. et al. Modeling
and Verification for Probabilistic Properties in Software Product Lines. In: 2015
IEEE 16th International Symposium on High Assurance Systems Engineering. Jan
2015, p. 173–180. ISSN 1530-2059.

[41] Solar Lezama, A. Program Synthesis by Sketching. USA, 2008. Dissertation. ISBN
9781109097450.

[42] T Gillespie, D. Stochastic Simulation of Chemical Kinetics. february 2007, vol. 58,
p. 35–55.

[43] Wimmer, R., Jansen, N., Vorpahl, A., Ábrahám, E., Katoen, J. et al.
High-level Counterexamples for Probabilistic Automata. Logical Methods in
Computer Science. 2015, vol. 11, no. 1.

54

	Introduction
	Preliminaries
	Discrete-Time Markov Chains
	Model Checking MCs
	Counterexamples for MCs

	Markov Decision Processes.
	Model Checking MDPs

	Adaptive Aggregation of Markov Chains
	State Space Clustering
	Approximation Error
	Experimental Evaluation of Approximate Methods
	Precision of Aggregation Schemes
	Speedup of Approximate Methods

	Synthesis of Probabilistic Programs
	Families of Markov Chains
	Counterexample-Guided Inductive Synthesis
	Counterexample-Guided Abstraction Refinement
	Probabilistic Programs
	PRISM Sketch Language
	Program-Level CEGIS

	Novel Integrated Methods for Probabilistic Synthesis
	The Naive Approach
	Towards Improved Counterexample Generation
	The Advanced Approach

	Experimental Evaluation
	Evaluating the Naive Approach
	Tuning the Integrated Method
	Performance Evaluation of the Synthesis Methods

	Final Considerations
	Future Research
	Conclusions

	Bibliography

