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1 Introduction

These days, optimization is used in almost every discipline of engineering.
Optimization is a process of finding the best solution from a set of available
solutions. The quality of a solution is defined by fitness values calculated
from fitness (objective, cost) functions. The fitness functions describe the
behavior of an optimized system with properties called decision variables
e.g. dimensions, reliability, or a price of a product. Therefore, fitness values
depend on the decision variables of the optimized system. The optimization
process is a process of finding minima (or maxima) of fitness functions.

Most of the real-world optimization problems are by its nature multi-
objective and the objectives are also conflicting. In such case, the result of
optimization is a set of trade-off solutions called Pareto-front [1]. This aimed
the research to develop various multi-objective optimization methods.

A common optimization problem has a fixed number of decision variables.
Therefore, the optimization algorithm knows the dimensionality of the deci-
sion space and tries to find the optimal position. Its fitness function depends
only on decision variables. However, there are some optimization problems
where the fitness function depends on the number of components of the de-
cision vector as well. Such problems are called problems with a Variable
Number of Dimensions (VND). When optimizing VND problems, an algo-
rithm has to find not only the proper position vector but its dimension as
well.

2 Theoretical background

Global optimization methods are preferred because the risk of being caught
in a local optimum of a fitness function is significantly lower compared to the
local optimization methods. Usually, the global optimization method works
with multiple sets of decision variables that are modified in each iteration of
an algorithm. These population-based and stochastic methods, inspired by
the theory of evolution, are generally called Evolutionary Algorithms (EAs),
which covers Genetic Algorithms (GA) [2], Differential Evolution (DE) [3],
etc.

Although the researchers initially worked with single-objective optimiza-
tion problems, it was only by assuming huge simplifications. As was men-
tioned before, most nature-inspired optimization tasks are multi-objective
ones. Therefore, the need for multi-objective optimization algorithms soon
emerged.
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2.1 Multi-objective Optimization

The most popular and well-known multi-objective optimization algorithms
are – Elitist Non-dominated Sorting Genetic Algorithm (NSGA-II) [4], the
successor of GA; Generalized Differential Evolution (GDE3) [5], the successor
of DE; and other EAs and their numerous modifications [6].

The multi-objective optimization algorithm confronts two fundamental
requirements:

� Minimize the distance between found solutions produced by the opti-
mization algorithm and the true Pareto-front.

� Maximize the spread of found trade-off solutions, so the solutions are
distributed as uniformly as possible over the whole Pareto-front.

The multi-objective optimization process deals with a finite number of
fitness functions. There are two spaces in multi-objective optimization – the
decision space and the objective space. Both spaces are connected by fitness
functions. Figure 1 shows both spaces of Poloni’s study [7] (dark red ”×”
solutions represent the true Pareto-front).

The result of multi-objective optimization is a set of solutions, which
makes it hard to decide whether one set of solutions is better than the other
[7]. In order to simplify the decision, a performance metric represents an
entire Pareto-front with a single number. The value of a metric depends on
the quality of the solution.

There are two metrics used for the performance assessment of the pro-
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Figure 1: Both spaces of the Poloni’s study. Dark red ”×” - true Pareto-
front, light blue ”·” - dominated solutions.
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posed method in this thesis – generational distance (GD) [8] and distance
hypervolume (dHV) [9].

3 Motivation

The thought of the optimization problems with a variable number of di-
mensions is almost as old as the optimization algorithms themselves [10].
However, for many years, researchers aimed for the simplicity of the opti-
mization process and worked with fixed-length decision vectors. In 1989, the
author of the original Genetic Algorithms stated in [11] that ”Nature has
formed its genotypes by progressing from simple to more complex life forms”
and proposed the Messy Genetic Algorithm (mGA) - a first algorithm to be
found working with a variable number of dimensions. Readers interested in
the survey of existing VND algorithms are encouraged to read a full version
of the dissertation thesis.

In the literature, most of the VND applications are tackled by VND
algorithms that are single-objective, but a multi-objective definition of an
optimization problem is more natural, because the nature itself is full of
contrasts. Leaving out any criterion to fit the problem for a single-objective
optimization algorithm may be tricky, if not odd, entirely.

However, only a few multi-objective algorithms were adapted to work
with a variable number of dimensions so far [12, 13, 14]. It is also important
to note that some papers claim a multi-objective VND algorithm is being
proposed, but in truth they are either:

� quasi multi-objective – aggregates several objectives into one [12],

� impure-VND – performs update position operator with fixed-length
decision vectors [13, 14].

Aggregating multiple objectives into a single one is a tricky issue. One
has to have some additional knowledge about the optimized problem in order
to satisfyingly set the aggregating method and therefore obtain a good trade-
off solution. However, the fact that the problem properties are unknown is
often the original reason the optimization is performed.

The method is called impure-VND in this thesis if a VND problem is
being optimized, but a fixed decision space is eventually used in the update
position operator. Although such an algorithm may be able to find opti-
mal dimensionality, it necessarily performs position update with the whole
position vectors. Therefore, the performance of an algorithm is wasted on
exploring unfeasible regions of decision space (regions unused in fitness func-
tion evaluation). Note that only a few single-objective VND algorithms in
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the literature can be considered to be pure VND.

4 Dissertation Objectives

The following list summarizes the most important objectives of this thesis:

� develop an optimization framework suitable for algorithms with a vari-
able number of dimensions,

� create a library of benchmark problems with a variable number of di-
mensions,

� propose new algorithms for optimization with a variable number of
dimensions,

� verify the performance of the proposed methods on a set of benchmark
problems,

� exploit new algorithms on several real-world applications.

Implementing novel optimization techniques in any optimization frame-
work is a beneficial step in the design process. The optimization framework
not only simplifies the designing of the algorithm but its setting and ver-
ifying as well. However, maintaining problems with a variable number of
dimensions casts a special requirement on the framework itself. Due to the
requirement that any agent in a population can have a different number of
components, no existing optimization framework was suitable for our cause.
Therefore, a new optimization framework in MATLAB was developed, which
makes it easier to implement an algorithm, run a simulation, view its results,
or compare its performance to other algorithms.

The library of benchmark problems is a necessary part of the verification
of the algorithm’s convergence properties. A proper set of benchmarking
problems has several individual problems with all kinds of difficultie. Ad-
vantageously, if the true Pareto-front of a benchmark problem is known, it
is possible to compare the found Pareto-fronts to the true Pareto-front.

Deriving new stochastic optimization methods is a crucial part of this
thesis. They are exploited on a special class of optimization problems –
problems with a variable number of dimensions. Such an optimization al-
gorithm not only determines proper values of the decision vector but the
number of decision variables as well.

Verifying the performance of proposed methods is a substantial step in
the design process. Each novel algorithm is compared to the algorithm with
a fixed number of dimensions and a hybrid-VND method in a scenario that
tries not to favor any of the methods.
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Finally, novel algorithms are exploited on several real-world applications
related to the field of electrical engineering:

� Anisotropic band-stop filter design,

� Antenna array design,

� Transmitter placement problem,

� Digital circuit design,

� Automated image thresholding,

� Clustering problem.

Note that only the antenna array design problem and the automated image
thresholding problem are presented in this shortened version of the thesis.

5 FOPS

The motivation of researches for the development of optimization techniques
is that there simply does not exist a universal method suitable for all kinds
of optimization problems. Wolpert proposed the “no free lunch” theorem for
the optimization [15]. It says that for any algorithm, any elevated perfor-
mance over one class of problems is exactly paid for over another class in
performance. Therefore, when an unknown optimization problem is given, it
is common to use various optimization methods and see which one serves the
best to our needs. Such practice encourages the development of optimization
frameworks.

There are several MOEA frameworks to be found in the literature (see
survey in [16]). However, none of them naturally allows an implementation
of pure VND algorithm where each agent has a different number of decision
variables. Therefore, a new optimization framework – Fast Optimization
ProcedureS (FOPS) was developed.

The FOPS is a standalone MATLAB toolbox. Therefore, it is available
for various operating systems. It includes 16 methods for single- and multi-
objective optimization. Currently, there are seven single-objective (plus one
single-objective VND) and four multi-objective (plus two multi-objective
VND) optimization methods, almost 110 benchmark problems of various
types, and many performance metrics such as generational distance, hyper-
volume, spread, etc. The FOPS can be controlled from the command line or
by graphic user interface.

Visualization of the results is an important part of the optimization pro-
cess since it is capable of disclosing a relationship between different quantities.
The FOPS framework has many features there are beyond the extent of this
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thesis. Some of them were presented in [MM1, MM2]. Readers interested
in the FOPS framework are referred to paper [MM3] where the FOPS is
presented or its documentations [MM4].

Figure 2 shows the results suite when results of optimization task are
visualized. Tables in the lower half of the figure contain positions and fitness
values of the non-dominated set. The upper half of the figure shows the
control panel. There is an vizualization of the fitness values of a custom
optimization task presented on the right side of the figure. Green points
depict the true Pareto-front, red points build the non-dominated set, and
blue points depict the fitness values from consecutive iterations.

The main advantage of an in-house optimization toolbox for MATLAB
is that the implementation of a new optimization algorithm is simple and
straightforward. Within moments, the user implements the unique properties
of a given algorithm. The procedures that are common for many optimization
algorithms (e.g. initialization of population, non-dominated sorting, etc.) are
already defined and can be utilized without effort. Afterward, the verification
of a new algorithm is easily performed by predefined optimizing routines on
a set of benchmark problems that are already defined too.

The versatility of the framework is demonstrated in Section 9. Vari-
ous features of the FOPS framework are exploited there. It was utilized in
many research papers [MM5, MM1, MM2, MM6, MM7, MM8, MM9, MM10,
MM11, MM12, MM13, MM14].

Figure 2: Results suite of the FOPS on the left side, and the animation of
the fitness values of MOZDT1 problem on the right.
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6 Multi-objective Testing Problems with Vari-

able Number of Dimensions

When comparing the performance of multiple optimization algorithms, it is
convenient to use testing problems with known true Pareto-front. Therefore,
the non-dominated sets can be compared and qualified.

Single-objective VND benchmark problems were proposed in [17] or [18].
Before these publications, most of the studies were validated by arbitrary and
often simplified real-world problems. Speaking of a multi-objective problems
with a variable number of dimensions, no such library of benchmark problems
can be found in the open literature (to the authors’ knowledge).

This subsection proposes the methodology for creating multi-objective
VND benchmark problems based on the idea of [19]. Authors of that paper
say that different parts of the Pareto-front may have different sizes in real-
world optimization problems. Afterward, they constructed a few problems
with linearly-shaped Pareto-fronts where the number of decision variables of
the optimal solution is determined by the angle between the line connect-
ing the solution with the coordinate’s origin and the f2 axis (2-dimensional
Pareto-fronts) or individual coordinate planes (3-dimensional Pareto-fronts).

𝑓1
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𝐷(opt) (x1)

𝜃 (x1)

𝜃𝑀
𝐷(opt) (x2)𝜃 (x2)
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(a) Two-dimensional objective
space.
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𝑓1
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(b) Three-dimensional objective
space.

Figure 3: Construction of Pareto-fronts of general two- and three-objective
VND problems.

The dimensionality of an arbitrary solution on the Pareto-front is deter-
mined by the following process:
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D(opt) (x) = D
(opt)
j , (1)

where the dimensionality is selected from the listD(opt) =
{
D

(opt)
min , . . . , D

(opt)
max

}
with ND members and the index is defined by:

j =


1 +

⌊(
1− θ(x)

θM

)
(ND − 1)

⌋
, for θ (x) <= θM

1 +
⌊ (

θ(x)
θM

)
(ND − 1)

⌋
, for θ (x) > θM ,

(2)

where θM is the maximal angle shown in Figure 3 and is set to 45◦ in our
study. Pareto-fronts are divided into two regions, where the dimensionality
of the solution gradually decreases in the first region and gradually increases
in the second region. The angle θ (x) for two-dimensional Pareto-fronts is
defined as:

θ (x) = arccos

(
f2√

f 2
1 + f 2

2

)
(3)

and for three-dimensional Pareto-fronts:

θ(x) = arccos

[
max

i={1,2,3}

(
fi√

f 2
1 + f 2

2 + f 2
3

)]
. (4)

Note that f1, f2, and f3 denote fitness values of the first, second, and third
objective for vector x, respectively. The description of VND modifications
of ZDT1 and MODTLZ2 problems can be found in the full version of the
thesis. The definition of other benchmark problems used later in Section 8
is also there.

7 VND-GDE3

The idea of handling the variable decision space applied to the multi-objective
GDE3 comes from PSO-VND algorithm [20]. At first, the GDE3 algorithm
will be described and the VND-GDE3 is presented afterwards. Note that the
full version of the thesis shows also a description of VLGDE3 algortihm. The
VND-GDE3 is considered to be a pure-VND algorithm while the VLGDE3
is not.

7.1 GDE3

Generalized Differential Evolution (GDE3) is based on a Differential Evolu-
tion algorithm proposed in 1997 [3]. It is a population-based real-numbered
optimization algorithm with selection and crossover operators. A random
initial population is created at the beginning. Agents’ positions are then
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altered to find better solutions in every iteration until a stopping criterion
(usually predefined number of iterations) is met.

The crossover procedure is performed by constructing a trial vector (ui,g)
for each decision vector (xi,g) of the population. Here, i is the index of an
agent in the population, and g is an iteration (generation) index. The trial
vector is derived with following pseudocode:

Algorithm 1: Pseudocode of crossover operator in GDE3.

r1, r2, r3 ∈ {1, 2, . . . N};
r1, r2, r3 6= i;
jrand ∈ 1, 2, . . . D;
for (j = 1 : D) do

if (rnd (1) < PC ∨ j = jrand) then
uj,i,g = xj,r3,g + F · (xj,r1,g − xj,r2,g);

else
uj,i = xj,i;

end

end

where N denotes the number of agents in population, j denotes the j-th
decision variable, D is the number of decision variables, F is the scaling
factor, r1,r2, and r3 are randomly selected agents’ indices (mutually different
and different from i). Not all the trial vectors replace all the old vectors.
The ratio of replaced vectors is controlled by the crossover probability (PC).

In multi-objective optimization, where the objectives are conflicting, a
set of trade-off solutions constitute the Pareto-front. GDE3 selects trade-off
solutions based on the dominance principle [7, Chapter 2] as follows:

� If the old vector dominates the trial vector, the old vector remains as
it is for the next iteration.

� If the trial vector dominates the old vector, the trial vector replaces the
old vector for the next iteration.

� If the old vector and the trial vector are non-dominated, both vectors
are selected, and the population is temporarily extended.

However, the size of the population has to be limited due to increas-
ing computational demands. When the trial and old solutions are non-
dominated, both solutions remain in the population. If there are more non-
dominated solutions than the number of agents, the extended population is
trimmed using the crowding distance metric. This approach enhances the
diversity of the solution.
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7.2 VND-GDE3

Algorithm VND-GDE3 [MM6] is very similar to its predecessor – GDE3.
Nonetheless, its agents can have a different number of decision variables in
any iteration. The only differences are related to the crossover of the deci-
sion vectors of different sizes. Moreover, if a problem has a fixed number of
decision variables, the VND-GDE3 acts identically as the GDE3 algorithm.
Although, it might be slightly more computationally demanding. Variability
of solution’s dimensionality introduces a new user-defined parameter proba-
bility of dimension transition (PDT).

The crossover operator in Algorithm 1 mixes the decision variables of
three different agents into a single trial decision variable with a probability
of crossover PC . Otherwise, the decision variable remains as it is.

The number of decision variables may differ between the three vectors.
Therefore, the dimensionality of a trial vector Dnew has to be determined
beforehand. Dimensionality Dnew is one of the following:

� dimensionality of the current agent Di,

� dimensionality of the first randomly picked agent Dr1 ,

� dimensionality of the second randomly picked agent Dr2 ,

� dimensionality of the third randomly picked agent Dr3 .

The dimensionality of the trial solution Dnew is equal to Di with the
probability PDT. Otherwise, it is one of the dimensionalities Dr1 , Dr2 , or Dr3

(picked with equal probability).
Afterward, four artificial agents are derived from the current agent and

random agents (r1, r2, and r3), but they all have the same size Dnew. Note
that missing decision variables are filled randomly and that only an undivided
part of the decision space vector can be deleted from the ending part of it
(please refer to [20], Figure 1).

8 Performance Assessment

This section shows the comparison of VND-GDE3 algorithm, its impure-
VND peer VLGDE3, and also Clustered-GDE3. The Clustered-GDE3 rep-
resents a non-VND approach used in problems with a variable number of
dimensions. In the full version of the thesis the comparison includes also
VND-MOPSO and VLMOPSO algorithms.

Controlling parameters of all the GDE3-based algorithms are: the scaling
factor F = 0.2, the probability of crossover PC = 0.2, the number of agents
N = 400, and the number of iterations G = 200. Note that the number of
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Table 1: List of parameter settings used for VND-GDE3 simulations.
SET N G Algorithm |D| D D(opt)

C1 400 200 VND-GDE3 10 {3,4,...,12} {3,4,5}
C2 400 200 VLGDE3 10 {3,4,...,12} {3,4,5}
C3 40∗ 200 Clustered-GDE3 10 {3,4,...,12} {3,4,5}
C4 400 200 VND-GDE3 50 {3,4,...,52} {10,11,12}
C5 400 200 VLGDE3 50 {3,4,...,52} {10,11,12}
C6 8∗ 200 Clustered-GDE3 50 {3,4,...,52} {10,11,12}
C7 400 200 VND-GDE3 80 {3,4,...,82} {15,16,17}
C8 400 200 VLGDE3 80 {3,4,...,82} {15,16,17}
C9 5∗ 200 Clustered-GDE3 80 {3,4,...,82} {15,16,17}
C10 400 200 VND-GDE3 100 {3,4,...,102} {20,21,22}
C11 400 200 VLGDE3 100 {3,4,...,102} {20,21,22}
C12 4∗ 200 Clustered-GDE3 100 {3,4,...,102} {20,21,22}
∗
Number of agents N of each cluster.

agents in each cluster in the Clustered-GDE3 algorithm vary according to
the number of dimensionalities |D| of the problem. Also note that VND-
GDE3 algorithm has the probability of dimension transition PDT parameter.
It was set to PDT = 0.35 according to comparative study described in the full
version of the thesis.

8.1 Comparison of Clustered, Pure-VND, and Impure-
VND Approaches

To perform a fair comparative study between the VND algorithm and a
standard non-VND GDE3 algorithm, a reasonable approach is to use several
simple GDE3 runs (clusters), each with a different number of decision vari-
ables. The number of agents of all the clusters summed together is identical
to the number of agents of VND-GDE3 and VLGDE3 algorithms. The num-
ber of iterations remains fixed for all clusters. The Pareto-fronts from each
separate run are combined, and the non-dominated solutions constitute the
resulting non-dominated set. We have modified algorithm GDE3 accordingly
and it is called the Clustered-GDE3 algorithm.

Three algorithms – VND-GDE3, VLGDE3, and Clustered-GDE3 – were
exploited on a set of ten benchmark problems with four dimensionality set-
tings (see Table 1). Figure 4 shows visualization of performance on the
modified UF4, UF6, and UF10 problems. The visualization is in the form of
standard boxplots. There are 12 boxes for each problem, where each triplet
corresponds to a single dimensionality scenario. It is clearly visible that
metric values deteriorate as the dimensionality of the problem grows. Aver-
age values of distance hypervolume and generational distance metric can be
seen in Tables 2 and 3. Table 4 shows results of Friedman’s and Wilcoxon’s
non-parametrical statistic tests on the distance hypervolume metric values.

The decision space in the case of sets C.1 – C.3 is much smaller than
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Figure 4: Comparison of VND-GDE3, VLGDE3, and Clustered-GDE3 on
UF problems.

Table 2: Average distance hypervolume (dHV) for a given set of settings.
SET ZDT2 ZDT4 ZDT6 DTLZ2 DTLZ4 LZ6 LZ8 UF4 UF6 UF10
C1 0.0207 0.0271 0.0310 1.7304 0.1236 4.9107 0.2828 0.0671 0.3867 8.8742
C2 0.0024 0.0128 0.0058 0.4432 0.0792 5.0128 0.8391 0.0929 1.4852 8.5796
C3 0.0302 0.0701 0.0090 1.7117 1.7053 3.3450 0.6461 0.0760 0.9408 8.9979
C4 0.1313 15.022 0.2731 3.2684 0.1977 5.9720 32.947 0.2162 45.531 25.819
C5 0.0894 0.7085 0.3519 0.4510 0.0748 6.3874 71.850 0.5374 87.468 70.869
C6 13.139 24.618 49.465 4.3554 10.258 24.974 24.252 0.6988 38.402 237.10
C7 0.2345 50.995 1.2437 3.1595 0.1588 6.2069 91.999 0.2826 101.51 26.826
C8 1.9930 8.2417 14.052 0.2922 0.1864 7.4858 115.75 0.7452 119.90 143.09
C9 26.892 113.62 73.608 9.1589 16.830 61.452 83.214 1.6444 107.76 539.15
C10 0.0777 102.55 6.9278 2.9256 0.1372 6.5641 119.66 0.3813 119.79 30.886
C11 4.5649 29.304 27.997 0.3758 0.3771 8.9248 120.63 0.9875 120.44 209.01
C12 34.939 120.67 79.665 17.118 31.736 97.288 119.80 2.4183 120.32 692.18

Table 3: Average generational distance (GD) for a given set of settings.
SET ZDT2 ZDT4 ZDT6 DTLZ2 DTLZ4 LZ6 LZ8 UF4 UF6 UF10
C1 0.0110 0.0015 0.0170 0.0064 0.0142 0.0339 0.1284 0.0329 0.4160 2.4548
C2 0.0000 0.0001 0.0002 0.0052 0.0110 0.0277 0.6986 0.0545 1.2193 2.2937
C3 0.0005 0.0033 0.0001 0.0388 0.0423 0.4862 0.4084 0.0367 0.9339 1.2889
C4 0.0165 0.8824 0.0513 0.0067 0.0313 0.0176 8.1427 0.0902 11.133 0.8285
C5 0.0021 0.0012 0.0030 0.0065 0.0152 0.0506 10.526 0.1088 12.267 1.8487
C6 0.6477 1.8461 3.8178 0.1327 0.1117 0.1881 6.4253 0.1648 8.7900 1.9795
C7 0.0202 3.9856 0.0820 0.0066 0.0352 0.0167 20.513 0.1069 25.977 0.5614
C8 0.0361 0.0634 0.3935 0.0151 0.0520 0.0766 14.964 0.1243 17.364 2.2798
C9 1.6960 12.405 5.8774 0.4118 0.3487 0.3188 19.921 0.3756 29.014 3.6947
C10 0.0252 9.4347 0.1221 0.0067 0.0350 0.0195 34.023 0.1243 44.107 0.5244
C11 0.0919 1.7927 1.6603 0.0331 0.1199 0.0950 17.704 0.1390 19.833 2.5466
C12 2.4015 31.700 6.4461 0.7774 0.7345 0.4403 40.204 0.5517 53.312 4.4521

the decision space in the case of sets C.10 – C.12. Therefore, the Clustered-
GDE3 was able to find decent Pareto-fronts because the algorithm deliber-
ately searched every dimensionality of the problem in the low dimensionality
scenario. Forty agents for each cluster was enough to explore the correspond-
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Table 4: Results of Friedman’s test / Wilcoxon’s test (at significance level
α = 0.05): + denotes that the first setting is significantly better, – denotes
that the second settings is significantly better, = denotes that the difference
is not significant.
Compare SET ZDT2 ZDT4 ZDT6 DTLZ2 DTLZ4 LZ6 LZ8 UF4 UF6 UF10
C.1 vs. C.2 -/- -/- -/- -/- =/- =/= +/+ +/+ +/+ =/=
C.1 vs. C.3 -/- -/- -/- =/= +/+ -/- +/+ +/+ +/+ =/=
C.4 vs. C.5 -/- -/- =/+ -/- -/- +/+ +/+ +/+ +/+ +/+
C.4 vs. C.6 +/+ +/+ +/+ =/+ +/+ +/+ -/- +/+ -/- +/+
C.7 vs. C.8 +/+ -/- +/+ -/- =/+ +/+ +/+ +/+ +/+ +/+
C.7 vs. C.9 +/+ +/+ +/+ +/+ +/+ +/+ =/- +/+ +/+ +/+
C.10 vs. C.11 +/+ -/- +/+ -/- +/+ +/+ =/+ +/+ +/+ +/+
C.10 vs. C.12 +/+ +/+ +/+ +/+ +/+ +/+ =/= +/+ +/+ +/+

ing dimensionality sufficiently. Contrarily, the Clustered-GDE3 spent most
of its efforts searching in non-optimal dimensions in the high dimensionality
scenario.

The same applies when comparing VL to VND algorithms. VLGDE3
performs much better in the low dimensionality scenarios. However, padding
decision variables makes the decision space of an optimization problem harder
to explore. Therefore, the performance of the VL algorithm deteriorates with
the growing number of decision variables of the problem quicker compared
to the VND-GDE3 algorithm.

Table 4 shows the results of non-parametric statistical testing. The com-
parison seems balanced if test problems have only ten possible dimensional-
ities. However, the VND-GDE3 algorithm outperforms VLGDE3 in most of
the problems in the case of a hundred possible dimensionalities. Note that the
signs in the table are results of Friedman’s and Wilcoxon’s non-parametric
tests with a level of significance α = 0.05. Friedman’s unadjusted p-values
were adjusted by Holmberg’s posthoc procedure.

9 Applications

The FOPS optimization framework was used to study the performance of
VND-GDE3 and VND-MOPSO algorithms. Studies were carried out with
benchmark problems, i.e., with analytically prescribed fitness functions with
known minima. However, strengths of FOPS lie in a real-world application.
The FOPS toolbox was designed to be as versatile as possible for real appli-
cations that have various needs. It is also used as an internal optimizer of
the Antenna Toolbox for MATLAB (AToM [MM15]).

The full version of the thesis includes design of a band-stop filter[MM5,
MM3], hybrid optimization problem [MM3], transmitter placement problem
[MM3], synthesis of digital circuits problem, and clustering problem. Here,
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in this shortened version, only the linear antenna array problem and the
automated image thresholding problem are presented.

VND algorithms were also exploited in other applications such as [MM9,
MM12, MM8, MM10]. However, these applications are not discussed in this
thesis.

9.1 Linear Antenna Array Design

This section aims to delineate the difference between problem formulation
with a fixed number of dimensions and a variable number of dimensions.
A linear antenna array consists of ν antennas distributed alongside the x-
axis. In this particular example, all the constituent antennas are identical.
Therefore, the formulation of the total radiation vector of the antenna array
is simplified to [21]:

Ftot (k) = A (k) F (k) , (5)

where k = kr is the wave number vector, k is the free space wave number,
and r is the position vector. The radiation vector of an elementary antenna
F (k) is multiplied by the array factor A (k). The array factor is determined
by the array configuration, and it is defined as:

A (k) =
N∑
i=1

ai exp (jk · di) . (6)

Here, j is the imaginary unit, ai is the complex number representing excita-
tion amplitude and phase, and di is the position of the i-th antenna.

Antenna array properties that are of interest in this study are the Side-
Lobe Level (SLL) and the number of antennas ν. The problem formulation
for a fixed number of decision variables commonly utilizes the uniform grid
(UG). If UG is used, a particular antenna is activated or deactivated ac-
cording to the decision vector. Therefore, the distribution grid of antennas
has to be determined a priori, and it might affect the overall performance
of the optimization. Contrarily, the VND formulation of the problem allows
an algorithm to not only find the proper number of antennas but to find the
optimal positioning on the x-axis as well.

The multi-objective problem using UG is formulated as follows:

f1 = SSL (x) (7)

f2 = ν (x) , (8)

where both objectives are to be minimized, and the x is the decision vector.
In the case of a uniform grid, the decision vector is a binary string of fixed
length equal to the possible number of antennas. In our comparative study,
the array can contain up to 100 antennas, and the gap between two grid
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Figure 5: Comparison of VND-GDE3 (VND formulation) and GDE3 (uni-
form grid formulation) algorithms on the linear antenna array problem.

positions is one-quarter of the wavelength (0.25λ0).

The variable number of dimensions formulation gives:

f1 = SSL (x, n) (9)

f2 = ν (x, n) , (10)

where x is the vector of n values expressing the gaps between consecutive
elements of the array. Note that the first antenna of the array is placed at
x = 0m. The gap between individual elements can vary according to the
interval of xi ∈ [0.25λ0, λ0]. The number of elements in the antenna array is
ν = n+ 1.

The problem with the uniform grid was optimized by the standard GDE3
algorithm with default properties as defined in [MM4]. The VND formu-
lation of the problem was optimized with the VND-GDE3 algorithm with
default settings (i.e. SET A.3). Both algorithms used 200 agents over 200 it-
erations. Results shown in Figure 5 accumulates 100 independent runs. The
solutions marked with ”×” signs belong to the uniform grid formulation and
the solutions marked with ”•” signs belong to the VND formulation. The
VND-GDE3 algorithm outperforms the standard GDE3 algorithm, especially
from the viewpoint of the number of the used antennas. The only drawback
of the VND-GDE3 method is that the average number of non-dominated so-
lutions found per one run is lower (N = 10.62) than that of standard GDE3
(N = 24.88).
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9.2 Image Thresholding Problem

Image thresholding is the simplest method for digital image segmentation.
The idea of image thresholding is to find the optimal threshold value that
divides the gray-level image into ”object” pixels (gray level is greater than
the threshold value) and ”background” pixels (gray level is lower than the
threshold value) [22].

Examples of thresholding applications can be a document image analysis
(Optical Character Recognition) [23], x-ray computed tomography [24] or
license plate image recognition [25].

The most famous automated image thresholding method is Otsu’s method
[26]. It is a histogram shape-based method and assumes two distinct peaks
in the histogram. Therefore, the threshold value separates the two classes of
gray-levels so that the intra-class variance σ2

b (t) is maximized.

Otsu’s method calculates the inter-class variance exhaustively. Figure 6b
shows the histogram of the cameraman testing image (blue bar graph) and
the corresponding values of inter-class variance (red line). The black cross
marker shows the threshold value found by Otsu’s method – t = 89. Figure 6a
shows the cameraman testing image translated into a binary image using the
threshold t = 89.

Therefore, in thresholding tasks where multiple thresholds are sought, the
number of inter-class variance calculation exponentially grows. The motiva-
tion for using an evolutionary algorithm to solve a multi-threshold threshold-
ing problem is evident. The problem is formulated as a multi-objective one

(a) Thresholded cameraman
image.
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(b) Histogram of the cameraman image
(blue) with inter-class variance values
found by Otsu’s method (red).

Figure 6: Otsu’s method explained on the cameraman testing image.
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with a variable number of dimensions where the value of Otsu’s inter-class
variance is used as the first fitness function. The number of thresholds stands
for the second fitness function. Note that the variability of the number of
thresholds is in accordance with the VND formulation.

9.2.1 License Plate Recognition by Using Thresholding

License plate recognition (LPR) is widely used in many real-life situations
including parking lot attendance, traffic laws enforcement, etc. An image
with a license plate is pre-processed before the optical character recognition
of the license plate by image thresholding [25]. However, the thresholding in
the license plate recognition is not a trivial task [28]. The following figures
in this subsection show that lighting conditions have a major impact on
the performance of the thresholding method. Note that image analysis in
LPR consists of three parts: localization of the license plate in the image,
thresholding of the license plate region, and optical character recognition
of the characters. However, the localization and OCR steps are out of the

(a) Original greyscale image –
AMG.

(b) AMG with one threshold.

(c) AMG with three thresholds. (d) Three thresholds – first layer.

Figure 7: LPR testing image – AMG [27].
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scope of this thesis. Therefore, the image thresholding is performed on the
whole testing image instead of the section with the license-plate. Such an
approach makes the thresholding more challenging. Nonetheless, it better
demonstrates the advantage of the variable number of dimensions approach.

The thresholding technique uses a variable number of dimensions repre-
sentation with two objectives to find trade-off solutions with multiple thresh-
old values. It is shown that the number of thresholds needed for the proper
image segmentation cannot be determined a priori.

Figures 7 – 8 show testing images for license-plate recognition. There are
four subfigures for each figure where the top-left shows the original greyscale
image and the remaining three subfigures show results of the thresholding
method. Note that only a limited number of subfigures is shown in this
shortened version of the thesis.

Figure 7 shows the AMG testing image. In this picture, the light from
the headlamps is much brighter than the background of the license plate.
Therefore, using just one threshold creates two layers, but the license plate
is apparent in neither of them. Contrarily, if three thresholds are used, the

(a) Original greyscale image –
Taxi.

(b) Taxi with one threshold.

(c) Taxi with two thresholds. (d) Two thresholds – first layer.

Figure 8: LPR testing image – Taxi [29].
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license plate is clearly visible in the first layer (see Figure 7d). The subsequent
OCR routine would most likely yield the desired ”6852 KWS”.

Figure 8 shows the Taxi testing image. Light conditions in this image are
very difficult. Moreover, the illumination from the license plate lamps makes
the thresholding task even harder. It can be seen in Figure 8b that most of
the characters in the license plate blends with the background. Figures 8c
and 8d shows the thresholding with two thresholds. In this case all the
characters in the license plate fell into the first layer. Contrarily, the whole
background of the license plate is in the second or third layer. Therefore, the
character recognition task is simple if two thresholds are used.

10 Conclusion

This dissertation thesis deals with multi-objective evolutionary optimization
with variable number of dimensions. Many real-life optimization tasks use de-
cision vectors of variable length by nature. Although standard optimization
algorithms with a fixed number of dimensions can solve such tasks, either the
computational demands are much higher compared to the algorithms with a
variable number of dimensions, or the representation of the problem has to
be simplified. Therefore, the risk of losing decision space resolution emerges.

The idea of optimization algorithms with variable number of dimensions
is probably as old as optimization algorithms itself. However, the research of
optimization methods with variable number of dimensions is rather marginal
compared to the fixed-length one. The survey of work in the field of opti-
mization with a variable number of dimensions showed that there are many
of them, but they are mostly only single-objective or can not work with the
decision vectors of uneven lengths in the pure-VND nature.

Particle Swarm Optimization for Variable Number of Dimensions is one of
the algorithms that is considered to be the pure-VND algorithm. However,
it is a single-objective optimization algorithm. Nonetheless, the employed
methodology for handling the vectors of different lengths was successfully
applied in a multi-objective version of Particle Swarm Optimization. That
gave birth to the VND-MOPSO algorithm. Similarly, a multi-objective Dif-
ferential evolution-based algorithm with a variable number of dimensions was
derived from GDE3 – the VND-GDE3 algorithm [MM6].

Novel methods were verified by comparative studies against their impure-
VND peers and also against the Clustered-GDE3 method. The Clustered-
GDE3 method represents the standard algorithm with a fixed number of
dimensions applied to problems with a variable number of dimensions. It was
shown that a pure-VND algorithm outperforms both opponents, especially
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if the number of dimensionalities is large.
Before the comparison of the novel methods against others, the study

of their setting parameters had to be carried out. Both these controlling
parameters (the probability of dimensions transition in the VND-GDE3 and
the probabilites to follow in the VND-MOPSO) control the behavior of the
algorithm in search of the optimal dimensionality of the problem. Studies of
other controlling parameters, common with non-VND peers, are unnecessary
because the VND methodology does not change the basic principles of the
corresponding predecessor. Therefore, the setting of parameters from various
studies in the literature still applies.

The verification of the methods utilizes a library of testing problems with
a variable number of dimensions. This library was created by modifying
the well-known libraries for multi-objective optimization (namely: DTLZ,
LZ, UF, and ZDT libraries). Therefore, the convergence properties of such
testing problems are ensured. The methodology is well described and is easily
applicable to any scalable multi-objective problem.

All the methods and testing problems are included in the FOPS opti-
mization framework [MM3, MM4]. The development of the framework is
an important part of this thesis, although its development began before my
doctoral studies. The reason for the creation of FOPS is that there did not
exist any framework where optimization methods with a variable number of
dimensions could be implemented. The use of a framework is essential if var-
ious and numerous comparative studies are to be composed, executed, and
visualized.

FOPS is a unique tool for the optimization of all kinds. It has already
been exploited in various papers [MM7, MM8, MM9, MM10, MM11, MM12,
MM13, MM14, MM15]. The last chapter of this thesis presents several real-
life applications published in [MM5, MM1, MM2]. All of them were carried
out in the FOPS framework. This demonstrates the versatility of the FOPS.
Moreover, most of the applications are problems with a variable number of
dimensions from the field of electrical engineering.

The first VND application is the Optimal placement of transmitters. It
was published in [MM3] This problem is a perfect demonstration of the VND
problem that can not be tackled with a non-VND algorithm without consid-
erable limitations. Either the number of transmitters is defined a priori, or
the decision space is sampled so the transmitters at predefined positions can
be enabled or disabled. The sampling of the decision space is shown in the
next application – the linear antenna array problem.

The linear antenna array problem presents a synthesis of dipole array
where the side-lobe level and the number of active dipoles are optimized. The
problem shows two different representations of the problem – representation
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with a variable number of dimensions tackled by the VND-GDE3 algorithm
and representation with a fixed number of dimensions using a uniform-grid.
Uniform-grid representation is tackled by the standard GDE3 algorithm. It
is shown that better values of Side-lobe Level with fewer antennas used are
achieved with the VND-GDE3 algorithm. The problems was published in
[MM6] and [MM12].

Another application is the synthesis of digital circuits. In this application,
the 3-input, 6-input, and 11-input multiplexers were synthesized by the VND-
GDE3 algorithm. The number of product terms in the SOP expression was
arbitrary. Therefore, the digital circuits were synthesized without the use of
Karnaugh maps or other time-consuming methods.

The next-to-last application is the automated image thresholding. The
standard, exhaustive approach is compared to the evolutionary approach in
the first part. Afterward, the optimization algorithm with a variable number
of dimensions is used to segment the testing images by multiple thresholds,
and the last part utilizes the multiple threshold approach in license-plate
recognition.

Finally, the clustering problem is solved by a multi-objective evolution-
ary algorithm with a variable number of dimensions. The evolutionary ap-
proach eliminates the main disadvantage of the widely used K-means clus-
tering method. Several clustering benchmark datasets were tackled by two
standard clustering methods and one exploiting the VND-GDE3 algorithm.
It was shown that for most clustering datasets, the VND-GDE3 approach
was the most successful method.
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Abstract

This dissertation thesis deals with multi-objective evolutionary optimization
algorithms with a variable number of dimensions. Such an algorithm enables
us to solve optimization tasks that are otherwise solved only by assuming
unnatural simplifications. The research of the optimization algorithms with
a variable number of dimensions required the development of a new optimiza-
tion framework. This framework contains, apart from various optimization
methods including two novel multi-objective algorithms for a variable number
of dimensions – VND-GDE3 and VND-MOPSO, a library of various bench-
mark problems. A set of multi-objective benchmark problems with a variable
number of dimensions is a part of the library designed to assess and verify
the novel methods with a variable number of dimensions. Novel methods are
exploited on several miscellaneous real-life optimization problems in the final
chapter of this thesis.

Abstrakt

Tato dizertačńı práce pojednává o v́ıce-kriteriálńıch optimalizačńıch algo-
ritmech s proměnným počtem dimenźı. Takový algoritmus umožňuje řešit
optimalizačńı úlohy, které jsou jinak řešitelné jen s použit́ım nepřirozených
zjednodušeńı. Výzkum optimalizačńıch method s proměnnou dimenźı si
vyžádal vytvořeńı nového optimalizačńıho frameworku, který obsahuje ve-
dle zmı́něných v́ıcekriteriálńıch metod s proměnnou dimenźı – VND-GDE3
a VND-MOPSO – i daľśı optimalizačńı metody r̊uzných tř́ıd. Optimalizačńı
framework obsahuje také knihovnu rozličných testovaćıch problémů. Mezi
nimi je také sada v́ıce-kriteriálńıch testovaćıch problémů s proměnnou di-
menźı, které byly navrženy pro nastaveńı a ověřeńı nových metod s proměnnou
dimenźı. Nové metody jsou dále použity k optimalizaci několika r̊uznorodých
optimalizačńıch úloh z reálného světa.


